If you have any problems related to the accessibility of any content (or if you want to request that a specific publication be accessible), please contact us at scholarworks@unr.edu.
Effect of Geometry Variation on Temperature Prediction in the TN-32 Used Nuclear Fuel Storage Cask
Date
2019Type
ThesisDepartment
Mechanical Engineering
Degree Level
Master's Degree
Abstract
During vacuum drying, low pressures in combination with the relatively high heat generation rate may cause the temperatures of the fuel cladding to exceed the limit of roughly 400°C set by the Nuclear Regulatory Commission. The low pressures (rarefied gas) conditions within the cask may induce an additional thermal resistance for heat transfer by conduction at the solid-gas interface, and it is this resistance, also called “temperature-jump,” that causes the temperature of the used nuclear fuel assemblies to increase considerably.The objective of this work is to accurately predict the peak cladding temperature during the low-pressure conditions associated with vacuum drying. Other models and experimental results indicate that the peripheral basket-rail gap is the most sensitive component in peak cladding temperature (PCT) prediction within the continuum regime, and its sensitivity is even more pronounced for rarefied conditions. Several geometrically-accurate two-dimensional computational fluid dynamics (CFD) models were built in order to predict PCTs under conditions associated with vacuum drying while taking into account a variety of probable gap geometries.
Permanent link
http://hdl.handle.net/11714/6715Subject
CFDHeat Transfer
Rarefied Gas
Vacuum Drying
Additional Information
Committee Member | Tsoulfanidis, Nicholas |
---|