If you have any problems related to the accessibility of any content (or if you want to request that a specific publication be accessible), please contact us at scholarworks@unr.edu.
Imaging the He-2 quantum halo state using a free electron laser
Author
Zeller, StefanKunitski, Maksim
Voigtsberger, Joerg
Kalinin, Anton
Schottelius, Alexander
Schober, Carl
Waitz, Markus
Sann, Hendrik
Hartung, Alexander
Bauer, Tobias
Pitzer, Martin
Trinter, Florian
Goihl, Christoph
Janke, Christian
Richter, Martin
Kastirke, Gregor
Weller, Miriam
Czasch, Achim
Kitzler, Markus
Braune, Markus
Grisenti, Robert E.
Schoellkopf, Wieland
Schmidt, Lothar Ph H.
Schoefflera, Markus S.
Williams, Joshua B.
Jahnke, Till
Doerner, Reinhard
Date
2016Type
ArticleAbstract
Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this "tunneling region," the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He-2's binding energy of 151.9 +/- 13.3 neV, which is in agreement with most recent calculations.
Permanent link
http://hdl.handle.net/11714/6390Subject
clustershelium dimer
wavefunction
tunneling
Additional Information
Journal Title | Proceedings of the National Academy of Sciences of the United States of America |
---|---|
Rights | In Copyright (All Rights Reserved) |
Rights Holder | Authors |