If you have any problems related to the accessibility of any content (or if you want to request that a specific publication be accessible), please contact us at scholarworks@unr.edu.
Non-Ionotropic Activation of the NMDAR, Leading to ERK 1/2 Phosphorylation
Date
2013Type
ThesisDepartment
Psychology Biology
Degree Level
Honors Thesis
Degree Name
Neuroscience
Abstract
N-methyl-D-aspartate receptors (NMDARs) are important to neuron function.
NMDARs are transmembrane ligand-gated and voltage-gated ion channels that pass
sodium, potassium, and calcium (MacDermott et al., 1986). They are composed of a
tetramer of proteins in the postsynaptic cell membrane of neurons. The NMDAR is
unique in the sense that it requires two agonists to stimulate its activation: the excitatory
transmitter glutamate, and the co-agonist glycine. It is also unique in voltage-dependent
regulation via a magnesium block in the ion channel. When the neuron is depolarized,
this block is removed and ions can pass freely through the channel (Nowak et al., 1984).
These three properties of passing calcium (MacDermott et al., 1986), being ligand-gated
by glutamate, and being voltage-gated with a magnesium plug (Nowak et al., 1984),
make the NMDAR important for regulating activity-dependent postsynaptic plasticity, a
mechanism believed to underlie learning and memory (Nicoll, 2003). Ionotropic
activation of NMDARs by ligands has been implicated in extracellular signal-regulated
kinase (ERK) signaling (Martel et al., 2009). ERK is a protein that promotes synaptic
plasticity by regulating the membrane trafficking of ?-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors, which is closely linked to learning and
memory formation (Sweatt, 2004).
It is unknown whether NMDARs have a non-ionotropic capacity. My hypothesis
is that the single NMDAR agonist glycine is capable of regulating ERK activity in the
absence of ion channel activity. NMDAR activation and coupling to intracellular
signaling cascades were probed using a pharmacological and molecular biology
approach. N-methyl-d-aspartate (NMDA) was used to stimulate the receptor at the
glutamate binding site, while the ionotropic pore was pharmacologically and physically
blocked. Cultured mouse neurons and transfected Human Embryonic Kidney (HEK) 293
cell cultures were used to determine a subunit-specific role of the NMDAR. ERK1 and
ERK2 phosphorylated protein and total ERK protein were measured using Western blot
standard procedures (Sambrook and Maniatis, 1989). This research is significant because
learning how to regulate NMDAR signaling cascades independent of ionotropic activity
with a single ligand could lead to the development of treatments that could promote
neuron survival and plasticity in patients with ischemia or neuronal insult.
The results presented here must be considered inconclusive since there are several
issues with the experimental protocols, only discovered late in the production of this
work. While the results cannot be reliably used for any definitive conclusions, they are
useful in troubleshooting and in refining these procedures. The understanding that these
experiments have brought can be used to create new experiments that will produce results
that can be reliably assessed, and these new results may be used to address the
hypothesis.
Permanent link
http://hdl.handle.net/11714/618Additional Information
Rights | In Copyright(All Rights Reserved) |
---|---|
Rights Holder | Author(s) |