If you have any problems related to the accessibility of any content (or if you want to request that a specific publication be accessible), please contact us at scholarworks@unr.edu.
Geochemical evolution of the Critical Zone across variable time scales informs concentration-discharge relationships: Jemez River Basin Critical Zone Observatory
Author
McIntosh, Jennifer C.Schaumberg, Courtney
Perdrial, Julia N.
Harpold, Adrian A.
Vazquez-Ortega, Angelica
Rasmussen, Craig
Vinson, David
Zapata-Rios, Xavier
Brooks, Paul D.
Meixner, Thomas
Pelletier, Jon
Derry, Louis
Chorover, Jon
Date
2017Type
ArticleAbstract
This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C-Q relationships over variable spatial and temporal scales. Chemical depletion-enrichment profiles of soils, combined with regolith thickness and groundwater data indicate the importance to stream hydrochemistry of incongruent dissolution of silicate minerals during deep bedrock weathering, which is primarily limited by water fluxes, in this highly fractured, young volcanic terrain. Under high flow conditions (e.g., spring snowmelt), wetting of soil and regolith surfaces and presence of organic acids promote mineral dissolution and provide a constant supply of base cations, Si, and DIC to soil water and groundwater. Mixing of waters from different hydrochemical reservoirs in the near stream environment during wet periods leads to the chemostatic behavior of DIC, base cations, and Si in stream flow. Metals transported by organic matter complexation (i.e., Ge, Al) and/or colloids (i.e., Al) during periods of soil saturation and lateral connectivity to the stream display a positive relationship with Q. Variable Si-Q relationships, under all but the highest flow conditions, can be explained by nonconservative transport and precipitation of clay minerals, which influences long versus short-term Si weathering fluxes. By combining measurements of the CZ obtained across different spatial and temporal scales, we were able to constrain weathering processes in different hydrological reservoirs that may be flushed to the stream during hydrologic events, thereby informing C-Q relationships.
Permanent link
http://hdl.handle.net/11714/5403Additional Information
Journal Title | Water Resources Research |
---|---|
Rights | In Copyright (All Rights Reserved) |
Rights Holder | An edited version of this paper was published by AGU. Copyright 2017 American Geophysical Union. |