If you have any problems related to the accessibility of any content (or if you want to request that a specific publication be accessible), please contact us at scholarworks@unr.edu.
Atomistic origin of brittle failure of boron carbide from large-scale reactive dynamics simulations: suggestions toward improved ductility
Date
2015Type
ArticleAbstract
Ceramics are strong, but their low fracture toughness prevents extended engineering applications. In particular, boron carbide (B(4)C), the third hardest material in nature, has not been incorporated into many commercial applications because it exhibits anomalous failure when subjected to hypervelocity impact. To determine the atomistic origin of this brittle failure, we performed large-scale (?200,000??atoms/cell) reactive-molecular-dynamics simulations of shear deformations of B(4)C, using the quantum-mechanics-derived reactive force field simulation. We examined the (0001)/?101?0? slip system related to deformation twinning and the (011?1?)/?1?101? slip system related to amorphous band formation. We find that brittle failure in B(4)C arises from formation of higher density amorphous bands due to fracture of the icosahedra, a unique feature of these boron based materials. This leads to negative pressure and cavitation resulting in crack opening. Thus, to design ductile materials based on B(4)C we propose alloying aimed at promoting shear relaxation through intericosahedral slip that avoids icosahedral fracture.
Permanent link
http://hdl.handle.net/11714/4807Additional Information
Rights | In Copyright |
---|---|
Rights Holder | Physical Review Letters |