If you have any problems related to the accessibility of any content (or if you want to request that a specific publication be accessible), please contact us at scholarworks@unr.edu.
Benchmark of CFD Simulations Using Temperatures Measured within an Enclosed Array of Heater Rods Oriented Vertically and Horizontally
Date
2010Type
DissertationDepartment
Mechanical Engineering
Degree Level
Doctorate Degree
Abstract
Experiments and computational fluid dynamics/radiation heat transfer simulations
of an 8 8 array of heated rods within an aluminum enclosure are performed. This
configuration represents a region inside the channel of a spent boiling water reactor
(BWR) fuel assembly between two consecutive spacer plates. The heater rods can be
oriented horizontally or vertically to represent transport or storage conditions,
respectively. The measured and simulated rod-to-wall temperature differences are
compared for various heater rod power levels (100, 200, 300, 400 and 500W), gases
(Helium and Nitrogen), enclosure wall temperatures, pressures (1, 2 and 3 atm) and
orientations (Horizontal and Vertical) to assess the accuracy of the computational fluid
dynamics (CFD) code. For analysis of spent nuclear fuel casks, it is crucial to predict the
temperature of the hottest rods in an assembly to ensure that none of the fuel cladding
exceeds its temperature limit.
The measured temperatures are compared to those determined using CFD code to
assess the adequacy of the computer code. Simulations show that temperature gradients
are much steeper near the enclosure walls than they are near the center of the heater rod
array. The measured maximum heater rod temperatures are above the center of heater rod
array for nitrogen experiments in both horizontal and vertical orientations, whereas for
helium the maximum temperatures are at the center of heater rod array irrespective of the
orientation due to the high thermal conductivity of the helium gas. The measured
temperatures of rods at symmetric locations are not identical, and the difference is larger
for rods close to the enclosure wall than for those far from it. Small but uncontrolled
ii
deviations of the rod positions away from the design locations may cause these
differences. For 2-inch insulated nitrogen experiment in vertical orientation with 1 atm
pressure and a total heater rod power of 500 W, the maximum measured heater rod and
enclosure wall temperatures are 375oC and 285oC respectively with the measured rod-towall temperature difference of 90oC. The simulated rod-to-wall temperature difference
for this case is 91.2oC. The simulations reproduce the measured temperature profiles.
The ∆TSIM vs. ∆TMEA for all experiments (i.e. N = 3384 measured/simulated
temperatures), the linear regression line " ∆TSIM,LR = 0.97∆TMEA + 0.8°C" shows that the
simulations slightly but systematically under predict the heater rod temperatures with
95% of the simulated temperatures are within 11°C. The ∆TSIM vs. ∆TMEA for the hottest
heater rod temperatures yields a linear regression line "∆TSIM = 1.01∆TMEA - 1.1oC" with
95% of the simulated temperatures are within 7.3°C which is 34% smaller than it was for
all the temperatures. These results can be used to assess the accuracy of using simulations
to design spent nuclear fuel transport and storage systems.
Permanent link
http://hdl.handle.net/11714/4492Additional Information
Committee Member | Wirtz, Richard; Park, Chanwoo; Fernandez, George; Tsoulfanidis, Nicholas |
---|---|
Rights | In Copyright(All Rights Reserved) |
Rights Holder | Author(s) |