If you have any problems related to the accessibility of any content (or if you want to request that a specific publication be accessible), please contact us at scholarworks@unr.edu.
Dual Diophantine Approximation on Planar Curves: General Hausdorff theory
Date
2018Type
ThesisDepartment
Mathematics and Statistics
Degree Level
Master's Degree
Abstract
The general Hausdorff theory of Dual Diophantine approximation on manifolds was initiated by the work of Beresnevich, Dickinson, and Velani, in which they established that the set of ψ -approximable points on a manifold has full measure when a certain sum diverges. A decade later, Hussain established the convergence counterpart to the above result in the case of the parabola. Not long after, Huang proved a convergence result for all planar curves with regards to the Hausdorff s-measure. In this thesis, we extend Huang's convergence result to the Hausdorff g-measure for all planar curves.
Permanent link
http://hdl.handle.net/11714/3438Additional Information
Committee Member | Olson, Eric; Shapiro, Hugh |
---|