If you have any problems related to the accessibility of any content (or if you want to request that a specific publication be accessible), please contact us at scholarworks@unr.edu.
Symmetry-breaking perturbations on the global attractor of the Kuramoto--Sivashinsky equation
Date
2017Type
ThesisDepartment
Mathematics and Statistics
Degree Level
Master's Degree
Abstract
We study symmetry-breaking of solutions on the global attractor of the Kuramoto--Sivashinsky equation. In our theory we prove that trajectories which result from small perturbations of a point on the global attractor stay close to the global attractor. In our numerics we exhibit a choice of parameters for the Kuramoto--Sivashinsky equation such that every $2\pi$-periodic initial condition (which isn't zero or periodic on some smaller domain) converges to a traveling wave solution and such that every $4\pi$-periodic initial condition converges to a distinctly different fixed point. Our main result is to compute a non-recurrent trajectory on the attractor, connecting the traveling wave to the fixed point, given as the limit of smaller and smaller symmetry-breaking perturbations.
Permanent link
http://hdl.handle.net/11714/2021Subject
attractorKuramoto
Sivashinsky
symmetry
Additional Information
Committee Member | Telyakovskiy, Aleksey S; Hurtado, Paul J; Leitner, David M |
---|---|
Rights | In Copyright(All Rights Reserved) |
Rights Holder | Author(s) |