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Our current understanding of the basal ganglia (BG) has facilitated the creation of
computational models that have contributed novel theories, explored new functional
anatomy and demonstrated results complementing physiological experiments. However,
the utility of these models extends beyond these applications. Particularly in neuromorphic
engineering, where the basal ganglia’s role in computation is important for applications
such as power efficient autonomous agents and model-based control strategies. The
neurons used in existing computational models of the BG, however, are not amenable
for many low-power hardware implementations. Motivated by a need for more hardware
accessible networks, we replicate four published models of the BG, spanning single
neuron and small networks, replacing the more computationally expensive neuron models
with an Izhikevich hybrid neuron. This begins with a network modeling action-selection,
where the basal activity levels and the ability to appropriately select the most salient input
is reproduced. A Parkinson’s disease model is then explored under normal conditions,
Parkinsonian conditions and during subthalamic nucleus deep brain stimulation (DBS).
The resulting network is capable of replicating the loss of thalamic relay capabilities
in the Parkinsonian state and its return under DBS. This is also demonstrated using a
network capable of action-selection. Finally, a study of correlation transfer under different
patterns of Parkinsonian activity is presented. These networks successfully captured
the significant results of the originals studies. This not only creates a foundation for
neuromorphic hardware implementations but may also support the development of
large-scale biophysical models. The former potentially providing a way of improving
the efficacy of DBS and the latter allowing for the efficient simulation of larger more
comprehensive networks.
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1. INTRODUCTION
The basal ganglia (BG) is a primal structure spanning the
telencephalic and mesencephalic regions of the nervous system.
This sub-cortical structure plays a role in a number of cog-
nitive and behavioral phenomena that include action-selection,
action-gating, timing, reinforcement-learning, working memory,
fatigue, apathy, goal-oriented behavior, and movement prepara-
tion. In addition, it is the epicenter of a number of neurological
disorders that include Parkinson’s disease and Huntington’s dis-
ease as well as psychiatric disorders such as schizophrenia and
obsessive compulsive behavior.

Computational models of the BG have proved useful in many
aspects of neuroscience; including developing novel theories of
Parkinson’s disease and deep brain stimulation (DBS) (Rubin and
Terman, 2004) or testing novel functional anatomy involved in
action-selection (Gurney et al., 2001). Given its prominent role in
behavioral function as well as its clinical relevance, models of the
BG are important to many different aspects of neuroscience appli-
cation and research. One of particular importance to this work, is
neuromorphic engineering.

Neuromorphic engineering is a bottom–up approach to neu-
ral modeling where the single neuron dynamics are implemented
in hardware specific digital and analog circuits. The neurons
are then connected to each other through different levels of
communication fabric to create large neural simulations. These
low-power application specific options offer not only a mecha-
nism for simulating large-scale neural models but also a means
of embodying them in mobile agents. First introduced by Mead
(1989), modern manufacturing processes with higher yield and
transistor density have resulted in a renaissance for neuromor-
phic engineering. This is evidenced by a number of projects
such as FACETS/BrainScaleS (Schemmel et al., 2010), SpiNNaker
(Furber et al., 2012), Neurogrid (Gao et al., 2012), and SyNAPSE
(Merolla et al., 2011; Srinivasa and Cruz-Albrecht, 2012) to name
a few. Each of these have different methods of simulating and
abstracting models of the nervous system. However, they share
the common goal of creating large-scale models of the nervous
system.

One possible application for these low-power neuromorphic
processors is in neural control engineering. The work of Voss

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 88 | 1

COMPUTATIONAL NEUROSCIENCE















Thibeault and Srinivasa Hybrid neuron basal ganglia models

illustrated in Figure 5A. The normal input is a constant 70 Hz
Poisson random spike train.

The first Parkinsonian pattern, labeled oscillatory, is con-
structed as a sum of 21 sine waves. The individual sine waves
have frequencies ranging from 5 to 15 Hz with step changes of
0.5 Hz between them. These are weighted by a Gaussian distribu-
tion with a mean of 10 Hz and a variance of 1.5 Hz; resulting in
the 10 Hz component dominating the rate function. The phase of
the sine waves are then randomly shifted and summed together.
The resulting function is then amplified by 50 Hz and shifted
up by 150 Hz. Any negative values are set to zero. Although
constructed differently than those described in Reitsma (2010);
Reitsma et al. (2011), the resulting function qualitatively matches
the samples presented there. In addition, the resulting functions
exhibited a distinct peak at 10 Hz, see Figure 5A below, similar
to the original work. The second Parkinsonian pattern, labeled
Bursty, consists of a basal level of firing at 70 Hz interrupted by
random bursts stepping to 470 Hz. The duration of each burst is
selected from a Gaussian distribution with a mean of 30 ms and
a variance of 10 ms. The time between bursts is selected from
a Poisson distribution with a mean of 70 ms. The final input
pattern, labeled Oscillatory Bursty, is constructed similar to the
bursty case, however, the inter-burst-interval is selected from a
Gaussian distribution with a mean of 30 ms and a variance of
10 ms. This results in more periodic bursts.

These rate functions are then used to generate Poisson
random spike trains. Examples of these spike trains are
presented in Figure 5B with the corresponding TC neu-
ron response in Figure 5C. These patterns were selected
by Reitsma et al. (2011) to replicate firing patterns and
overall spike rates found in the GPi under Parkinsonian
conditions.

2.6.2. TC model spike response
Both interspike interval (ISI) distributions and power spectra
were computed on the model TC cells for comparisons with
the original work. The power spectra was computed for the
TC model spike response as well as the corresponding GPi
and cortical inputs using the point process multi-taper spec-
trum analysis from the Chronux software package (Bokil et al.,
2010).

2.6.3. Correlation calculations
The measure of correlation is calculated using the Pearson’s
correlation coefficient. This is a spike count measurement that
compares the number of spikes that occur over a window of
length T defined as

ρ(t) = cov(n1(T), n2(T))

[var(n1(T)) · var(n2(T))]1/2
, (7)
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FIGURE 5 | Example GPi spike patterns and TC cell responses for each of the four modes. (A) Example input rate functions. Resulting GPi spike trains,
(B), and TC Cell responses, (C).
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where cov is the covariance, var is the variance and n1(T) and
n2(T) are spike counts at window T.

The correlation coefficient is used to calculate the correla-
tion susceptibility that quantifies the degree to which correlations
are transferred through the model. This is computed using the
equation

ρout(T) = S(T)ρin(T)− k, (8)

where ρin and ρout are the GPi input correlation coefficient and
the TC output correlation coefficient, respectively.

To demonstrate how sensitive the TC neurons were to corre-
lated input the correlation coefficients were calculated for f =
0, 0.25, 0.5, 0.75, 1.0 and similar to Reitsma et al. (2011) a sam-
ple bootstrap method was used to generate confidence intervals
on the analysis. For each value of f , 30 simulations of were run
for 100 s each. This resulted in 150 pairs of correlation coeffi-
cients. A straight line was then fit between the values of ρin and
ρout to find the correlation susceptibility S based on the slope
of the line. This was completed over a range of window sizes T.
The 150 pairs were then sampled with replacement to generate a
new set correlation coefficients and S values. This resampling was
completed 1000 times to generate 98% confidence bands for each
value of T.

2.7. HRLSim
With the exception of the correlation study, all of the mod-
els were simulated using the HRLSim neural simulator package
(Thibeault, 2012). HRLSim is the first distributed GPGPU spik-
ing neural simulation environment. It currently supports two
different point neuron implementations, the Leaky Integrate-
and-Fire (LIF) model and the simple hybrid Izhikevich model.
With an emphasis on high-performance, HRLSim was developed
to support the modeling efforts of the SyNAPSE project and its
team members. It has also proven extremely useful as a gen-
eral neural simulation environment for other studies (Srinivasa
and Cho, 2012; O’Brien and Srinivasa, 2013; Srinivasa and Jiang,
2013).

3. RESULTS
3.1. ACTION-SELECTION
The action-selection model of Figure 2 was first tuned to match
the original model of Humphries et al. (2006). Using the model-
as-animal strategy, 15 simulations were completed with different
randomly connected networks. From each of those simulations 3
cell indexes were randomly selected and the overall activity rate
of the last 9 s of simulation were computed for those neurons.
The mean rates and 95% confidence intervals were then com-
puted to ensure the activity was in similar ranges to Humphries
et al. (2006). This is presented in Figure 6. In addition, the spike
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FIGURE 6 | Basal activity of the model of action-selection.

Upper left: The mean rates for the STN, GPe, and SNr
qualitatively match the simulated and experimental results of

Humphries et al. (2006). Remaining plots: The spike rasters for
each of the nuclei are overlaid with the corresponding
spike-count firing rates.
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rasters and binned spike count rate functions are included. The
overall mean firing rate results are in good agreement with the
original work as well as with the experimental results referenced
there.

Using the protocol of Humphries et al. (2006) for normal lev-
els of dopamine the ability of the models to appropriately select
the most salient input was first simulated using two of the three
channels. Figure 7A illustrates the two channel action-selection
results. Initially the network is at its basal level of activity with a
3 Hz Poisson input. At 1 s the input for channel 1 is increased to
20 Hz, causing, through disinhibition, the selection of that chan-
nel. At 2.5 s a 40 Hz cortical input is injected into Channel 2. The
activity of channel 1 is pushed up to its basal level of activity
and the channel 2 output is inhibited causing it to be selected.
This selection mechanism is more decisive than the one presented
in Humphries et al. (2006). In the original work the previously
selected channel had an increase in activity that was only slightly
above the selection limit. To build on this result we tested the
selection capabilities of all three channels, something that was

A

B

FIGURE 7 | Action-selection performance. The model is capable of
appropriate selecting the most salient input between two competing
channels (A) as well as three competing channels (B).

not part of the original work. The results of this are presented
in Figure 7B as well as in Figure 8 where the spike rasters of
the model nuclei are plotted with the overlaid spike count rate
functions. This is an encouraging result and suggests that the
functional anatomy of the original work can be extended to more
than three channels.

3.2. THE PARKINSONIAN BG AND DEEP BRAIN STIMULATION
In the normal mode the BG nuclei have irregular firing patterns
with interspike interval coefficients of variation ≥1.0. With this
irregular pattern of activity the thalamus is capable of reliably
transmitting the somatomotor signals (see Figure 9A).

In Parkinson’s disease, the firing pattern of the BG neurons
have been reported to have regular synchronous firing patterns
(Walters and Bergstrom, 2010). In Figure 9B it can be seen
that the BG nuclei begin to fire synchronously. The neurons of
the STN separate into two distinct populations with different
phases of bursting. The periods of bursting oscillate around 4 Hz
which is consistent with synchronous oscillations observed in
the Parkinsonian BG (Walters and Bergstrom, 2010). This syn-
chronous activity results in a marked loss of thalamic relay. As
noted by Rubin and Terman (2004) the GPi activity is affected by
the periods of bursting in the GPe, where the GPi would otherwise
fire tonically.

The application of DBS to the STN results in an increased fir-
ing rate and a disruption of the synchronous oscillations of the
BG nuclei. This disruption in the oscillatory activity is sufficient
to restore the relay fidelity of the thalamus (see Figure 9C).

The results of Figure 9 are quantified in Figure 10. Here the
normal and DBS modes of the model result in EI medians that
are comparable. Although the spreads are somewhat dissimilar,
neither overlaps with the much higher values measured in the
Parkinsonian state.

3.3. RESTORING ACTION-SELECTION IN THE PARKINSONIAN BASAL
GANGLIA

The modified RT network of Pirini et al. (2009) puts the theo-
retical concepts of the previous sections into a dynamical model
of action-selection. The results of this experiment are shown in
Figure 11. Once again the loss of faithful relay can be alleviated
with the application of DBS to the STN.

3.4. BG CORRELATION TRANSFER
3.4.1. Firing patterns
Validating the generated GPi input spike trains was completed
by the spectral power analysis presented in Figure 12A. As in
Reitsma et al. (2011) the Oscillatory and Oscillatory Bursty pat-
terns have clear spectral peaks at 10 Hz, while the Normal and
Bursty cases have no obvious peak. As expected the cortical inputs
lack a peak in the frequency range of interest (see Figure 12B).

The parameters for the model were selected based on the TC
cells firing patterns and spectral analysis. Although the Normal
and Bursty spectral powers do peak around 10 Hz, there are oscil-
lations present in both (see Figure 12C). Consistent with the
original work, the Oscillatory and Oscillatory Bursty cases both
have more distinct peaks around 10 Hz. The discrepancies are
likely due to analysis parameters and the way GPi inputs were
generated, as discussed below.
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