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Abstract

We give a concise exposition on the application of non-abelian Galois cohomology to descent prob-
lems in algebra, as developed by A. Borel, J.-P. Serre, and others in the late fifties and early sixties.
Although its origins lie in algebraic number theory, this abstract framework allows one to formalize
and address a very general question: If two algebraic objects defined over a field k are found to be
isomorphic over a field extension 2 /k, are they also isomorphic over k?

In this thesis, we focus on explicit descent problems over a field of characteristic zero in which
the algebraic objects involved can be described as points in Zariski closed subsets of affine space,
and whose automorphism groups are subgroups of the algebraic group GL,,. In our cases of interest,
the action of the automorphism group arises by the conjugation action of GL,, on various spaces of
k-linear maps.

Our presentation follows closely the 2010 monograph G. Berhuy. Our contribution is that we
fill in numerous details in the proofs found there, in particular those involving techniques from al-
gebraic geometry. We clarify the relationship between the classical Hilbert’s Theorem 90 for cyclic
extensions and the more general non-abelian Hilbert’s Theorem 90, which is one of the fundamental
basic tools used in Galois cohomology. Finally, we give a complete proof that the descent prob-
lem for a finite dimensional associative k-algebra A is controlled by the Galois cohomology set

H(Ga, Aut(A)(Q)).
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1 Introduction

1.1 What is descent?

Most problems in algebra either begin or end with finding solutions to a system of polynomial equa-
tions. Finding an explicit formula for solutions is often impossible, even in the single variable case,
as was famously demonstrated by the work of E. Galois. For this reason we must step back and take
a more coarse-grained approach. In particular, we can instead ask if the system of equations have
at least one solution, never mind what the solution is. The answer to this simpler question is also
quite subtle, and can depend on the kinds of numbers we allow as valid solutions. For example, the
polynomial equation

2 —22-2=0

of degree 4 has either four solutions, two solutions, or no solutions depending on whether or not we
consider real and imaginary numbers, only real numbers, or only rational numbers, respectively, as
valid candidates for solutions. More abstractly, if an algebraic problem defined over a field k has a
solution in a larger field 2 containing k, we would like to know whether or not it also has a solution
over k.

Questions of this kind are called Galois descent problems, and they often arise when one is
trying to classify algebraic structures relative to some fixed initial k-linear data. For instance, sup-
pose we are interested in classifying, up to conjugacy, linear endomorphisms on an n-dimensional
vector space over an infinite field k. Then we fix a square matrix M, € Mat, (k) and suppose
M € Mat,, (k) is another matrix which we deduce is conjugate to M after passing to the algebraic
closure k. That is, there exists a n x n invertible matrix P € GL,, (k) with entries in k such that
M = PMyP~!. (Perhaps we needed to exploit certain techniques to verify this which only hold
over algebraically closed fields.) However, we are actually interested in whether or not M is equiv-
alent to M over the original field k. That is, does there exist an invertible matrix R € GL,, (k) with
entries in k that conjugates M and My?

It is important to note that above we are not asking for — nor do we need — P and R to be the
same matrix in order to verify that M and M, are equivalent over k. We only need to determine

whether or not such a R exists given the existence of P. It turns out that the answer to this descent



problem is “yes” for any fixed matrix My. The proof is a well known exercise in linear algebra.

On the other hand, if we adjust the problem by requiring P and the desired R to instead be
invertible matrices with determinant equal to 1, the answer to the descent problem depends on the
matrix My and is “no” in general. The reason why is closely related to the problem we began with:
finding solutions of polynomial equations. The constraint on the determinant of the conjugating
matrix in this case turns a linear problem into a non-linear polynomial one, which may or may not

have solutions depending on the field extension we work over.

1.1.1 The basic ingredients of a descent problem

There are several takeaways from the above matrix conjugation problem that become reoccurring

themes in the kinds of descent problems that we consider in this thesis.

e First, there is the set F'(k) of algebraic structures over k which we would like to classify,
and we have an “extension of scalars” operation, which provides a way of interpreting these

structures as elements of a set F'(€2) over any extension field 2 of k.

e Next, we can characterize the symmetries of the algebraic structures via a group action of a
subgroup G(k) of the general linear group GL,,(k), which gives us an equivalence relation
on F'(k) the corresponding “orbit space”. Two algebraic structures are considered equivalent
if they lie in the same orbit of this group action. Furthermore, the group action by G(k) is
naturally compatible with the action of an analogous group G(2) on F'(Q2) via the extension

of scalars.

e The descent problem is characterized by fixing one algebraic structure Ay € F'(k) and then
considering the so-called “twisted forms” of A that “split” over a field extension 2/k. These
are isomorphism classes of algebraic structures A € F'(k) which become isomorphic to Ay

as objects in F'(€2) via the action of G(2).

e Finally, the Galois group of any Galois extension §2/k acts on the set of structures F'(£2) and
the group of symmetries G(£2) in a functorial way. The way we determine whether or not

the descent problem has a “positive” or “negative” solution is by checking to see if a twisted



form split over 2 “descends” back down to F'(k) by taking the fixed points of the Galois group

action.

1.2 Why profinite groups?

In order to determine whether or not a descent problem for €2/k has a positive answer, we need a
way to get from {2 down to k. If 2 is a finite Galois extension of k, one way to do this is to look at
the fixed field of Q2 by the Galois group of Q2 /k, which is exactly k.

However, this approach runs into problems when considering algebraic extensions such as the
algebraic closure Q of Q, which is arguably the most important extension of the rationals from an
elementary number theoretic perspective. Indeed, Q is an infinite Galois extension of Q, and its
intermediate extensions are not in bijection with subgroups of the absolute Galois group Gal(Q/Q),
as there are proper subgroups of Gal(Q/Q) whose fixed field is Q. In order to rescue the funda-
mental theorem of Galois theory for infinite Galois extensions §2/k, we restrict our attention to the

closed subgroups of the Galois group with respect to the “Krull topology”. Endowed with this topo-

logical structure, Gal(€2/k) is isomorphic as a topological group to Jim Gal(L/k) where L runs

through all finite Galois subextensions of 2/k. In other words, Gal(£2/k) is a profinite group.

1.3 Why non-abelian cohomology?

In full generality, the objects at hand when setting up a Galois descent problem are a group scheme
G acting on a functor F, both equipped with an action by the profinite group G = Gal(2/k), where
the action of G on the group scheme G is continuous. The orbit-stabilizer theorem says that for all
elements a in F'(k) there is a bijection between the set of left cosets G(€2)/Stabg(q)(a) and the

orbit of a, resulting in an exact sequence of pointed sets
1 — Stabg(a) - G — G(Q) xa — 1.

where G(2) * a denotes the orbit of a. No assumption that the groups involved in this construction
are abelian nor do subgroups need to be normal. Indeed, the orbit G(£2) * a is not a group in general.
Yet, as alluded to above, in order to “descend” back down to k, we want to take Galois fixed

points, i.e. G-invariants, of the above sequence. As is the case in standard group cohomology, the



Galois fixed point functor (—)9 need not be right exact. In fact, the failure of this functor to preserve
right exactness is the obstruction to a “positive” answer to descent problems involving the algebraic
structure a € F'(k).

Much like the case of ordinary homological algebra, there is, in fact, a way to repair the failure
of right exactness by extending the sequence 1 — Stabg(a)? — GY9 — (G(Q) * a)Y to a “long

exact” sequence of pointed sets of the form
1 — Stabg(a)? — G9 — (G(Q) * a)9 2% HY(G, Stabg(a)(Q)) — HY(G, G()).

The pointed sets H'(G, —) in the above sequence are called the “degree 1 non-abelian Galois co-
homology sets” of G. Conveniently, these sets are constructed by means of considering continuous
non-abelian valued cochains within the familiar cochain complex used to compute ordinary group
cohomology.

The continuity of cocycles in this construction yields a characterization of profinite cohomology
in terms of ordinary group cohomology when the coefficents are abelian. Specifically, for a profinite

group " and a discrete I'-module A, we have an isomorphism
H™(T, A) 2 lim He,(T/U, AY)
U

where U ranges through open normal subgroups of I', a rather desirable result as finite group coho-

mology is well understood and easier to work with.



2 Main results

This thesis provides a concise exposition on the application of non-abelian Galois cohomology to
descent problems in algebra, with a focus on classification problems of algebraic structures. Our
presentation follows closely the monograph G. Berhuy [1]. In particular, we review basic facts and
key theorems concerning: profinite Galois groups (Sec. 3.2.2), group schemes (Sec. 4), profinite
non-abelian group cohomology, as developed by A. Borel and J.-P. Serre [4] (Sec. 5.1) and twisted
forms (Sec. 6.1). Our exposition culminates with the characterization of a Galois descent problem
via the Descent Lemma (Thm. 6.11), a result of Serre. We also give a thorough treatment of the
matrix conjugacy problem via Galois descent in Sec. 8.1.

However, we provide several novel additions as well: we fill in numerous details in the proofs
given in [1], particularly those involving techniques from algebraic geometry (Section 4.1); we clar-
ify in Section 7 the relationship between the classical Hilbert’s Theorem 90 for cyclic extensions
and the more general non-abelian Hilbert’s Theorem 90, which is one of the fundamental basic
tools used in Galois cohomology. In Section 8.2 we give a complete proof that the descent prob-
lem for a finite dimensional associative k-algebra A is controlled by the Galois cohomology set
H'(Gq, Aut(A)(Q)). Finally, in Section 9 we discuss applications to finite-dimensional graded

polynomial algebras equipped with a degree +1 derivation as a possible direction for future work.



3 Preliminaries

3.1

Conventions

Throughout this thesis, we adopt the following conventions and notations:

3.2

k denotes a field of characteristic zero.
K denotes an algebraic closure of any field K.

If Q/ K is a Galois extension the Galois group Gal(€2/K) will be denoted G, whenever K is

clear from the context.
We use multiplicative notation for all groups, abelian or otherwise.
Set denotes the category whose objects are sets, and whose morphisms are functions.

Set, denotes the category whose objects are pointed sets and whose morphisms are maps of

pointed sets.

Grp denotes the category whose objects are groups and whose morphisms are group homo-
morphisms. AbGrp is the category whose objects are abelian groups and whose morphisms

are group homomorphisms.

Algy denotes the category whose objects are unital commutative k-algebras and whose mor-

phisms are unit preserving k-algebra homomorphisms.

FIdy denotes the full subcategory of Algy, whose objects are field extensions of k.

Results from elementary Galois theory

We begin by recalling standard results from elementary Galois theory. We refer to Morandi’s book

[3] for details and a more thorough introduction.

Definition 3.1. Let K and K’ be fields, let L/K and L'/ K’ be extensions. Let t.: K — K’ be a

ring homomorphism. We say that ¢: L — L’ is an extension of ¢ if and only if ¢|x = ¢.



Theorem 3.2. Let K be a field and L/K be an algebraic extension. Let E be an algebraically
closed field, and let T: K — FE be a ring homomorphism. Then there exists a ring homomorphism

o: L — E such that 0| = 7. That is, there exists an extension o: L — E of T.

Corollary 3.3. Let K and K' be fields, and let .: K — K’ be a ring homomorphism. Then there

exists an extension ¢p: K — K’ of 1.

Let €2 denote the infinite extension Q({,/p | p prime}) of Q. In the following example, we show
Q/Q s Galois, and exhibit a proper subgroup H of Gal(Q/Q) such that Q¥ = QG21(%/Q) — Q. This

shows that the fundamental theorem of Galois theory for finite extensions fails for infinite extensions.

Example 3.4. Set Q = Q({/p | p prime}). Then 2/Q is normal since € is the splitting field of
the collection of polynomials {22 — p | p prime} C Qz]. Since /Q is an algebraic extension
and char Q = 0, then 2/Q is separable. Hence €2/Q is an infinite Galois extension. Now for each
prime p, let o}, be the element of Gal(2/Q) defined by /p — —/p and v/p’ — /p/ for all p’ # p.
Now consider the subgroup H = ({0}, | p prime}) of Gal(2/Q). Note that H does not contain the
element o € Gal(£2/Q) which maps ,/p to —,/p for all prime p. Hence H # Gal(2/Q). We claim
that Q7 = Q. Since 2/Q is Galois, for any x € 2, the roots of the minimal polynomial of  belong
to 2. Hence if x = /p1, /P2, ..., /Pn are the the n distinct roots of the minimal polynomial of
x, then z is contained in the subfield £ = Q(y/p1, /P2, - - -»/Pn) C €. Since x € () is separable
over k, it follows that F£/Q is a finite Galois extension. Now suppose = € Q. Then z is fixed by

Opys--.,0p, € H,andsince Gal(E/Q) = (o, ,...,0p,) we conclude that x € Q.
Proposition 3.5. Let k be a field and Q) /k a Galois extension. Let
N :={Gal(Q/L) |k C L C Q and L/k is finite Galois}

Then the Krull topology on Gal()/Kk) is the unique topology such that for all o € Gal(§2/K) the set
{oH | H € N} is a basis of open neighborhoods of o.

Theorem 3.6 (Fundamental Theorem of Galois Theory (Thm 17.8 [3])). Let Q2/k be a Galois exten-

sion. With the Krull topology on Gal(2/k), the assignment between subfields L of Q and subgroups



of Gal(Q2/k) given by
L+— Gal(Q/L)

O g

induces a bijection between the following sets:

1. The set of subfieldsk C L C  and the set of closed subgroups of Gal(2/k).

2. The set of subfields k C L C Q such that [L: k] < oo and the set of open subgroups of
Gal(92/k).

3. The set of subfields k C L C Q such that L/k is a finite Galois extension and the set of open

normal subgroups of Gal(€2/k).
Moreover, if H is an open normal subgroup of Gal(2/k) then we have
Cal(Q /k) = Gal(/k)/H.
In particular, for any finite Galois subextensionk C L C 2 we have

Qal(Q/k)/ Gal(Q/L) = Gal(L/k).

3.2.1 Morphisms of Galois extensions

Proposition 3.7 (Prop. 1.2.9 [1]). Let K and K’ be fields, let Q) K and Q' | K' be Galois extensions,
and let 12 K — K' be a ring homomorphism. Assume that there exist extensions ¢1, ¢o: Q — Q.

Then for all 7" € Gal(Y'/K'), there exists a unique T € Gal(Q)/K) such that
o =daor.
In particular, there exists p € Gal(2/ K) such that ¢1 = ¢2 o p.

Corollary 3.8 (Cor. 1.2.10 [1]). Let K and K' be fields, let 2/ K and Q) /| K' be Galois extensions,
and let o: K — K' be a ring homomorphism. Let ¢: Q — Q' be an extension of . For all

7' € Gal(Q'/K"), let ¢(7') be the unique element of Gal(Q)/ K ) such that

Y o6=pod(r)



Then the map ¢: Gal(Y/K') — Gal(2/K) is a continuous group homomorphism. Moreover, if

¢’ is another extension of 1, then there exists p € Gal(Q)/K) such that ¢ = ¢' o p, and we have

¢’ = Inn(p) o ¢.

3.2.2 The Galois group as a profinite group

Recall that a directed set is a partially ordered set (I, <), such that for all 7, j € I, there exists k € [
such thati < k and j < k. A projective system in a category C is a collection of objects {C; }icr
indexed by a directed set I together with morphisms ¢;;: C; — C; for any 7,5 € I with¢ < 7,

satisfying the following properties:
1. ¢i; =1idg, foralli € 1.

Let ©2/k be a Galois extension. Then the set of all finite Galois subextensions of 2 /k with the partial
order relation “C” is a directed set. For any finite Galois extension L /k, set X7 = Gal(L/k), and
forany L/k, L' /k with L C L', let ¢1 1+ be the group homomorphism
o Xy — Xi
ool
Together this forms a projective system of groups.

Definition 3.9. If ((C;);cr, (¢i;)) is a projective system in a category C, the inverse limit Jim C;is

given by

@CZ = {($i)i€[ € HCZ gsz(ac]) = T; for all ¢ jj} .

i€l
If ((Cy)ier, (¢i5)) is a projective system of topological spaces (resp. groups), then the inverse
limit is also a topological space (resp. group) with respect to the topology induced by the product

topology.

Definition 3.10. A topological group I is profinite if it is isomorphic as a topological group to an

inverse limit of finite groups, each of them being endowed with the discrete topology.
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Theorem 3.11 (Thm 1.2.18 [1]). Let 2/k be a Galois extension. Then Gal(§2/k) equipped with the

Krull topology is a profinite group. In particular, there is an isomorphism of topological groups
Gal(Q2/k) = @Gal(L/k)
L

where L/k runs over all finite Galois subextensions of Q/k.

Below is a proposition which establishes nice properties of profinite groups.
Proposition 3.12 (Thm 2 [5]). The following are equivalent conditions.

1. T is a profinite group.

2. T' is a compact, Hausdor[f group in which each neighborhood of 1 contains an open normal

subgroup of T..
3. T'is a compact, totally disconnected, Hausdorf{f group.

Closed subsets of a compact Hausdorff space are compact sets, so the above proposition implies
that closed subgroups of a profinite group are again profinite. Moreover, every open subgroup of a
profinite group is closed. For all o € T, the collection {cU | U open in I'} forms a basis of open

neighborhoods of o, and the topology generated by this basis is called the profinite topology.

3.3 Category theoretic notions
Here we present tools from category theory which we appeal to throughout the thesis.

Definition 3.13. Let C be a category, let D be a subcategory of Set and let F': C — D be a functor.

A functor F’': C — D is a subfunctor of I if the following properties hold:

1. Forall A € C, we have F'(A) C F(A).

2. Forall A, B € C, and every map f € hom¢(A, B), the induced morphism F'(f): F'(A) —
F'(B) is the restriction of F'(f): F(A) — F(B). In other words, the diagram

Fa) 29 gy

|

P(4) > F(B)
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commutes.

Definition 3.14. Let C and D be categories and F, G: C = D be functors. A natural transforma-
tion of functors ©: F' — G is a rule which assigns a morphism © 4: F'(A) — G(A) of D to each
object A € C such that for every morphism f: A — B of C the diagram

F(A) 245 Ga)

F()| |ew
P(B) —5— G(B)

commutes. The collection of morphisms O 4 are called the components of ©. If every component

O 4 is an isomorphism, then © is a natural isomorphism, and we write ©: F = G

3.3.1 Representable functors

Let C be a category. Let A € C and define h4: C — Set as follows. For every object B € C set
ha(B) := hom¢(A, B) and for each morphism f: B — C of C let ha(f): ha(B) — ha(C) be
the morphism defined by
ha(f): home(A, B) — home(B, C)
¢— foo.
Let ¢ € home(A, B). Then ha(idp)(¢) = idpop = ¢, and so ha(idp) = idy,,(p). If f: B = C

and g: C' — D are morphisms of C, then
ha(ge f)(¢) =(gof)od=go(fod)
=ha(g)(f o ®) =ha(g) o ha(f)(¢).
Hence h 4 is a functor.
Definition 3.15. Let F': C — Set be a functor. We say that F’ is representable if there is a natural

isomorphism of functors F' = h 4 for some object A € Ob(C). In this case we say F is represented

by A.

Lemma 3.16 (The Yoneda Lemma (Lemma II1.7.13 [1])). Let C be a category. For every pair of

objects A, B € Ob(C), there is a one-to-one correspondence between the set of morphisms ¢: B —



A and the set of natural transformations ©: hy — hp.

Remark 3.17. The bijection in the Yoneda lemma sends ©(idy,, ) to ¢.

12
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4 Group schemes

In this section, we define algebraic group schemes, which are a main component in defining the
Galois cohomology functor in Section 5. We recall tools from algebraic geometry and use them to
obtain the representability of two main group schemes appearing in this thesis, which, for a finite
dimensional vector space V' and a finite dimensional k-algebra A, are the algebraic group GL(V')

and the algebraic group scheme Aut(A).

4.1 Representable functors from algebraic geometry

We recall some basic terminology from the algebraic geometry of affine varieties and their general-
izations. A standard reference is [0, §1]. However, here we will consider base fields k of character-
istic zero other than the complex numbers, which we do not assume to be algebraically closed, and
we allow the possibility of non-radical ideals. The best way for dealing with such spaces is via the
theory of finite-type (reduced) affine k-schemes [2, §11.2]. But this approach is overkill for the rather
unsophisticated results that we need here.

In what follows, k denotes a field not necessarily algebraically closed.

4.1.1 Affine varieties

Givenanideal I < k[zq,...,z,]and ak-algebra R € Algy, we consider [ as asubset of R[z1, ..., zy]
and define

V() (R) :={r:=(r1,7r2,...,7) € R" | g(r) =0forall g € I}. (1)

In particular, let Z := V(I)(k). Then Z C k" is, by definition, a closed subset in the Zariski

topology on affine n-space k™. Denote by k[Z] the finitely generated k-algebra
k[Z] :=k[z1,...,2n]/1.

We recall that a k-algebra R € Algy is a reduced k-algebra if it contains no nilpotent elements [6,

§2.1]. If R is finitely generated and R = k[z1,...,zy]/] with I <k[x1, ..., xy], then R is reduced
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if and only if I is a radical ideal i.e. I = rad (/) where
rad(!) := {f € k[z1,...,z,] | f* € I for some n > 0}.
Definition 4.1. Let be an ideal I < k[z1,...,z,]. We say that the Zariski closed subset
Z=V(I)k) Ck"
is an affine k-variety if [ is a radical ideal. The reduced k-algebra
k[Z] = k[z1,...,x,)/1
is called the coordinate ring of the variety Z.

Remark 4.2. If Z = V(I)(k) C k" is the zero locus of an ideal I that is not radical, then Z

corresponds to the set of geometric points of the finite-type affine k-scheme Spec(k|x1, ..., zy]/I).

The general linear group GL,, (k) as an affine variety The main example of an affine k-variety
appearing throughout this thesis is the group GL,, (k) of n x n invertible matrices with entries in a

field. Identify the set of n x n matrices with the affine space k"’
Maty, (k) = {(as;) | aij € k, 1 <i,5 <n}
— K.
Then the determinant function det: Mat,, (k) — k becomes a homogeneous degree n polynomial

in the n? variables (z;;):

det(zs;) € k[(2i;)].
In the next proposition, we analyze the zero locus of the polynomial of n2 + 1 variables y det (z; j)—
1 € k{(zi;),y].
Proposition 4.3. Denote by GL, (k) := {(a;;) € Maty(k) | det(a;;) # 0} the set of n x n

invertible matrices with entries in k.

1. The function

v GLu(k) = K™, y(ay) = (ai;, det(az) ™)
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is injective, and its image is the Zariski closed subset

Z = V((ydet(z;) —1)).

2. The above identification with Z gives GL,, (k) the structure of an affine k-variety with coordi-

nate ring

k[GL,] := Kk[(zi;), y]/{y det(z;;) — 1).
Proof.

1. Observe that the function v is just the embedding of the graph of the composition of the matrix

inverse function (a;;) — (a;;) with the determinant into R

2. We need to show k[GLy,] is a reduced k-algebra, i.c. that the ideal (g), where g := y det(z;;) —1
is radical. Since every prime ideal is a radical ideal, and a polynomial in k[GL,,] is prime if and

only if it is irreducible, it suffices to show that g is irreducible.

We first prove that det(z;;) € k[(x;;)] is an irreducible polynomial via an induction argument
on n, the number of variables in det(z;;). The base case is obvious. Let n > 1, and suppose the
polynomial det(uye) in n — 1 variables {uge}1<k¢<n—1 is irreducible. Fori,j = 1,...,n, let
Xj denote the (i, j)-minor of the matrix (x;;). Then each det X; is the determinant polynomial
in n— 1-variables and therefore irreducible by the induction hypothesis. Note further that det X;;

cannot be a multiple of det X;/; if X;; # X;/;. Now expand det(mij) across the first row
det(xij) = z11det X171 — z19det X9 + -+ - + (—1)n+11‘1n det X1,,.

The right hand side is linear in the variables x11, z12, ..., 1, none of which appear in any of
the polynomials det X;;. Hence, if det(x;;) has a non-trivial factorization, then the polynomials

det X;; have a non-trivial common divisor, which is impossible.

Now returning to g = y det(z;;) — 1, we work in the ring k[y|[x;;] of polynomials in the variables
x;; with coefficients in k[y]. Suppose f,h give a non-trivial factorization g = fh. Write f =
> a>0.fa and h = > a0 ha for the decomposition of f and h into homogeneous pieces (with

respect to degree in x;;’s). Note that g € ky|[z;;] is concentrated in homogeneous degrees n
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and 0. Then fohp = —landforl < k <n —1, Z];:O fr—ahq = 0. Substitution then shows
that the degree n term Y .,;_, fx—qha is a non-trivial factorization of y det(z;;). This contradicts

the fact that det(z;;) is irreducible. Hence g is irreducible.
O

Remark 4.4. For any field k, the vanishing ideal I(S) < k[z1,...,x,] of a subset S C k™ is the
radical ideal

I(S):={f € kl[z1,...,2,] | f(a) =0Vae S}

Clearly S C V(I(S)), and it is easy to see that V(I(.S)) the Zariski closure of S. In particular, for
any ideal J < k[z1,...,zy], we have V(J) = V(I(J)).

If k is algebraically closed, then Hilbert’s Nullstellensatz implies that rad(J) = I(V(J)) for any
ideal J < k[z1,...,2,]. If k # k, then the strict containment rad(J) C I(V(J)) is possible, e.g.

take J to be the maximal ideal (2 + 1) < Rlz].

4.1.2 The functor of points for an affine variety

A k-algebra morphism ¢: R — R’ in Algy extends uniquely to a morphism between polynomial
rings ¢: R[x1,...,2n] = R'[x1, ..., x,] with the property that ¢(f) = f forall f € k[z1,...,z].
It then follows that for any ideal I < k|x1, ..., z,], we can functorially assign to each morphism

¢: R — R’ in Algy a function between the corresponding sets in (1)
V) (R) = VI)(R), (r1,r2,.-.,mn) = (8(r1), 8(r2), - - -, (rn))-
Definition 4.5. The functor of points of an affine k-variety Z = V(I) C k" is the functor
V(I)(—): Algxk — Set, R+~ V(I)(R)
The elements of the set V(I)(R) are called the R-points of the variety Z.

Let I < k[zy,...,z,] be anideal and k[Z] = k[z1,...,z,]/I. Let mz: K[x1,...,2,] = k[Z]

denote the canonical surjection. Then for any R € Algy, we have a function induced by precompo-
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sition by 7z:
7y (R): hompyg, (k[Z], R) = hompg, (k[z1,...,2z,],R), 7z(R)(a):=mzo0a.
Proposition 4.6. Let [ < Kk[x1,...,x,]| be an ideal, and let k[Z] be the k-algebra as above.
1. Forevery R € Algy, the function ©(R): homag, (k[z1,..., 2], R) = R" defined as
O(R)(a) := (a(xl), a(za),. .., a(xn))
is a bijection of sets.
2. Forevery R € Algy, the composition of functions
O(R) oy (R): homayg, (k[Z],R) — R"

is injective with image

im(O(R) oy (R)) = V(I)(R).

In particular, for R =k, the above gives a bijection of sets

homAlgk (k[Z],k) = 7.
Proof.
1. k[x1,...,zy] is the free commutative k-algebra generated by the k-vector space
V = span{x1,z9,...,x,}. Hence, restriction of a k-algebra morphism «: k[xy, ..., z,] —

R to its generators induces a one-to-one correspondence
hompg, (k[z1, ..., 2s], R) — homy(V, R)

where homy (V, R) denotes the k-vector space of k-linear maps from V' into R. Composing the

above bijection with the canonical k-linear isomorphism
n n
homy(V, R) = homy (P kz;, R) = P homy (k, R) = R"
i=1 i=1

provides the inverse to the function O(R).
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2. To show injectivity of ©(R) o 7% (R), we only need to verify that 7*(R) is injective, which

follows immediately from the fact that 7 : k[z1, ..., x,] — k[Z] is surjective.

Next we prove im(O(R) o 7 (R)) = V(I)(R). Foreachi = 1,...,n, let Z; := mz(;). Let
g € k[x1,...,z,] be a polynomial which we write in multi-index notation

i T . n
g(x1,...,xy E a;xiwy ---xy, ic= (i, g, .. ,0,) €Ng,  ay €k

Then, since 7z is a k-algebra morphism, we have the equality

To show im (O(R) o 7 (R)) C V(I)(R), let B: k[Z] — R be a k-algebra morphism, and let

r = (O(R) omx(R))(B) = (B(z1), B(2),.... B(za)) € R".

Let g € I <Kk[z1,...,z,]. Evaluation of g with r gives:
Zaﬂ"?r? .
= ZG;B(WZ(HU?)W(WZ(%?)) < Bz ()
i
= B(rz(9(x1, 22, ..., 20)))

where the last equality follows from the fact that / = ker 7. Hence r € V(I)(R).

For the other containment, suppose r € V(I)(R), and let «: k[z1,...,x,] — R be the unique
k-algebra morphism such that a(x;) = r; foreach¢ = 1,...,n. Then g(r) = Oforallg € R
implies that «(g) = 0, since « is an algebra morphism. Hence I C ker «, and so there exists a

unique k-algebra morphism §: k[Z] — R such that 5 o 7z = «. Therefore
O(R) omz(R)(8) = O(R)(Bomz) = O(R)(e) = .

Hence, r € im(O(R) o }(R)), and this completes the proof.
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Corollary 4.7. The functor of points V(I)(—): Algx — Set of an affine k-variety Z = V(I) C k™

is represented by its coordinate ring k[ Z].

Proof. The bijective function ©(R)ony(R): homay, (k[Z], R) — V(I)(R) from Prop. 4.6 defines

a natural isomorphism of functors

O omh: hypz (=) = V(I)(-).

O
Corollary 4.8. The functor GL,,: Algy — Set defined as
GLa(R) = {(a;y) € Mat,(R) | det(as;) # 0}
is isomorphic to the functor of points of the affine k-variety GL,, (k).
Proof. Follows from combining Cor. 4.3 with Cor. 4.7. O

Theorem 4.9. Let I, J < Kk[z1,...,x,] be ideals. If F': Algxy — Set is a functor such that F(R) =
V(I)(R) N V(J)(R) for all R € Algy, then F' is represented by the finitely generated k-algebra
k[z1,...,2)/(I + J).

Proof. Theequality F'(R) = V(I)(R)NV(J)(R) for all Rimplies that F'(—) = V(I+.J)(—). Asin
the proof of Cor. 4.7, we deduce from Prop. 4.6 that F is represented by k[z1, ..., x,]/(I+J). O

Remark 4.10. Recall that if I, J < k[x1,...,x,] are radical ideals then I + .J need not be radical.
Hence, if F': Algy — Set is a functor satisfying F'(R) = V(I)(R)NV(J)(R) asin Thm. (4.9) above,

then F'(k) need not be an affine variety, even if both V(I)(k) and V(J)(k) are affine varieties.

4.2 Algebraic group schemes

Definition 4.11. Let k be a field. A group-scheme defined over k is a functor G: Algy — Grp.
An affine group-scheme defined over k is a group scheme G': Algy — Grp which is representable
as a functor Algy — Set. An algebraic group-scheme defined over k is an affine group-scheme GG
which is represented by a finitely generated k-algebra A. Furthermore, if A is reduced, we say that

G is an algebraic group defined over k.
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4.2.1 The algebraic group GL(V)

Theorem 4.12. Let V be a finite dimensional k-vector space, with dimy V' = n. The group scheme

GL(V): Algx — Grp given by GL(V)(R) := GL(V ®x R) is an algebraic group.

Proof. By choosing a basis for V' we see that GL(V') is naturally isomorphic to GL,. Hence, it

suffices to show GL,, is an algebraic group, which follows immediately from Cor. 4.8. O

The following proposition will play an important role in Sec 7 when generalizing cohomological

Hilbert’s Theorem 90 to arbitrary Galois extensions.

Proposition 4.13 (Ex I11.7.19 (2) [1]). Let A be a finite dimensional k-algebra. Then the functor
GL1(A): Algy — Grp given by GL1(A)(R) = (A ®k R)* is an algebraic group scheme.

4.2.2 The algebraic group scheme Aut(A)

Theorem 4.14. Let A be a finite dimensional (not necessarily commutative) k-algebra, with dimy A =

n. The functor Aut(A): Algy — Grp defined as
Aut(A)(R) := Autpg, (A ®x R)
is an algebraic group scheme.

Proof. Let R € Alg, andlet ¢ € Aut(A)(R). Then ¢: AQg R — A®y R is a ring homomorphism
that is also a R-module isomorphism and therefore belongs to GL(A)(R). From Thm. 4.12 we have
GL(A)(-)

12

V(I)(—), where

I = (ydet(zi;) — 1) SKkly, z4j].
In what follows, we will construct an ideal J < kly, x;;] such that for all R € Algy
Aut(A)(R) =V(J)(R)NV(I)(R).

Then Thm. 4.9 will imply that Aut(A) is an algebraic group scheme.
Solet ¢ € Aut(A)(k) = Autalg, (A). Let {e;};"; be a k-linear basis for A. Then for all
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n
)= bije;
j=1
where each b;; € k. Since ¢: A — A is a k-linear isomorphism in GL(A)(k), the matrix (b;;) is
a point in the affine variety GL(A)(k) = V(I)(k). The basis {e;}" ; for A also induces a basis

{er @ ex}) g for Ay A. Let u: A ®x A — A denote the associative product on A. For each

{,k=1,...,n wehave
per @ ey) Z ClksC€s
where each cgs € k. Since ¢ is compatible with the product p, we have foreach £,k =1,...,n
P(ulec ®ex)) — p(g(er) ® dlex)) = 0. 2)
On the other hand:

P(uler ® e)) — p(d(er) ® plex)) Z CopsP(es) (Z besbrs(es @ 65)>

s=1
n n
= Z Z Crksb sj€5 — Z bﬁsbksﬂ es ® es)
s=1 j=1
n n
= Z Z(Cﬁksbsj - szbkscssj)ej
j=1s=1
Hence, since {e;}!" ; is a basis, Eq. 2 implies that for each j = 1,...,n, the matrix (b;;) €
GL(A)(k) satisfies the equation
n
Z kasbsj - b@sbkscssj = 0.
j=1

In other words, ¢: A — A is an automorphism of k-algebras if and only if (b;;) € GL(A)(k) N
V(J)(k), where

J = <{Pfk(y, zi) | s=1,... ,n}> < kly, 4]

and { P}, } are the quadratic polynomials

n
Pék Y, xl] E CssjTpsTs — Cékswsj)
Jj=1

Finally, observe that for any R € Algy, the tensors {e; ® 1}7_, are a basis for the R-algebra A ®y R,
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and this extends to a basis on the free R-module (A®y R) ®@r (A®x R). Hence, the same calculation

as the one above shows that

Aut(4)(R) = GL(A)(R) N V(J)(R),

and this completes the proof. O
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5 Galois cohomology

In this section, we present the abstract framework needed to define Galois cohomology, beginning
with an exposition of profinite group cohomology, as developed by Serre (see [4].) We explain how
a short exact sequence 1 - H — G — S — 1 of I'-sets for a profinite group I' under certain
conditions induces a long exact sequence in cohomology, a key result which allows us to deduce
a bijection between the orbit set ST /G and the kernel of the map H(T', H) — H(T',G). The

bijection is a fundamental ingredient in the proof of the Galois descent lemma in Section 6.3.

5.1 Profinite group cohomology

T3]
.

Throughout this section we fix a profinite group I'. We will use the notation “-” to denote a I" action

and “-” to denote multiplication in a not necessarily abelian group A.
5.1.1 Cohomology sets

Definition 5.1. A left action of I" on a set A is continuous if for all ¢ € A, the set
Stabr(a) ={oc €Tl |o+a=a}

is an open subgroup of I'. Note that the definition is equivalent to asking for the assignment I' x A —
A given by (0, a) — o « a to be continuous, i.e., the usual notion of continuous action. Sets with a
continuous left action of I" are called I'-sets. A group A which is also a I'-set is called a I'-group if

I" acts by group homomorphisms, meaning
o+(ajaz) =(o+a1)-(o-az)forallo €T, a1,a2 € A.

Furthermore, if A is abelian then A is called a I'-module. We denote by Setr the category of
left I'-sets. Similarly, Grpr and Modr denote the categories of left I'-groups and left I"-modules,
respectively. In what follows, we use Cr to denote the category Setr, Grpy or Modr. A morphism

of Cr is a morphism f: A — A’ of C such that

floea)=0-f(a)foralloc €T, a € A.
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Below we give two simple examples of a I'-set, and an example of a I'-module.
Example 5.2.
1. Assume I is a finite group. Then any set A on which I" acts on the left is a I'-set.
2. Any set A on which T acts trivially is a I'-set.
3. Let 2/k be a Galois extension, and Go = Gal(2/k). Then the map

Go x Q — Q
(0,2) — o(x)

endows {2 with the structure of a Go-module.

Lemma 5.3. Let A be set equipped with a left I'-action. Then the action of I" on A is continuous if

and only if

U 4°

UeN

where N denotes the set of open normal subgroups of T

Proof. First suppose the action of I" on A is continuous and let a € A. Then by Proposition 5.1
Stabr(a) is an open subgroup of I". Since I" is profinite, all open subgroups of I are closed and
are therefore profinite. Moreover, since Stabr(a) contains 1, there exists U € N such that U C
Stabr(a). Hence a € AY. Since AV C A for all U € N, it follows that

A= U AY.

UeN

Now assume that the above equality holds, and let @ € A. Then there exists U € A such that
a € AY, and hence forallc € U we have 0 - a = a. Let 7 € Stabp(a). Then for all o € U,
7o «a = Ta = a. Therefore TU C Stabr(a) for all 7 € Stabr(a). Since 1 € U we have that
Stabr(a) € U, estaby(a) TU- Hence we have shown that
Stabr(a) = U TU.
T€Stabr(a)

Since each 7U is open it follows that Stabr(a) is open. O
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Definition 5.4.

1. Let A € Setr. We set
HOT, A) = A"

where Al is the set of fixed points of A. If A € Grpp, this is a subgroup of A. The set

HO(T, A) is called the 0th cohomology set of I" with coefficients in A.

2. Let A € Grpp. A 1-cocycle of I' with values in A is a continuous map a.: I' — A such that
alor) =a(o) - (o +a(r)) forall o, 7 € T

We denote by Z!(I', A) the set of all 1-cocycles of I with values in A. The constant map
I' — A which assigns each 0 € I' to 1 € A is an element of Z'(I", A). This map is called the

trivial cocycle. For any 1-cocycle a we have that (1) = 1.
Lemma 5.5. Let A € Grpp and let a.: I' — A be a 1-cocycle. Then for all a € A, the map
o T — A
ocr—a-a(o) (c-at)
is also a 1-cocycle.

Proof. Let o, € T. Then by definition
o/(0) - (o+a'(1)) = (a-a(0) - (o-a")) - (o+(a-alr) - (r-a"))).
Since A € Grpr, I' acts on A by group automorphisms. Hence
(@) - (c-d (1) =a-alo) (c-a(r)) - (c7-a" ) =a-alor)- (o7+a"1) =d(o7).

It remains to show that o/: T' — A is continuous. Let V' be an open subset of A. In order to show
that o/ =1 (V') is open in T" we will show that o/~!({v}) is open for all v € V, since
o7 V) = [ o ({h)
veV
If v is not in the image of o/, then o’ ~!({v}) = () is open. So we assume that o/~!({v}) is nonempty.

Therefore there exists o € T' such that o/(c) = v. Note that {1} is open in A. Then since « is a
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1-cocycle and is therefore continuous, we have that «~!({1}) is open in I". Moreover, since I acts
continuously on A, Stabr(a) is an open subgroup of I'. Hence U = a~!({1}) N Stabr(a) is open

in T, and thus oU is also open in I". Let 7 € U. Then a(7) = 1 and 7 « @ = a. Therefore

d(or)=a-a(or)-(or+a ') =a-a(o) (c-a(r)) (or-a™!)
—a-a(0)-(o7-a ) =a-a(o) (c-a"')=d (o) =v.

This shows that cU C o'~ !({v}). Since the collection {cU | U openin I'} is a basis of open

neighborhoods of ¢, it follows that o/ =1 ({v}) is open. O

Definition 5.6. Two 1-cocycles « and o are cohomologous if there exists a € A satisfying
d@)=a-a(o) (c-at)forallo € T.
In this case we write a ~ .

Since A € Grprp, then I acts on A by group automorphisms. Therefore
(0ra)t=0-(a)

so the notation o « a~! in the above definition is unambiguous. Moreover, one can easily show that

~ is an equivalence relation on Z!(T", A).

Definition 5.7. Let I be a profinite group, and let A € Grp-. We denote by H'(I", A) the quotient

set

HYT,A) =Z4T,A)) ~ .
This set is called the first cohomology set of I" with coefficients in A.
Remark 5.8.

1. For A € Grpp., pointwise multiplication of functions generally does not give Z!(I", A) a group
structure, and therefore does not induce a group structure on H'(T", A) in general. The class of
the trivial cocycle is a basepoint of H!(T", A), making it a pointed set. However, if A € Modr
then Z1(T', A) is an abelian group with respect to pointwise multiplication and induces an

abelian group structure on H'(T", A).
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2. For A € Modr, higher cohomology H"(T', A) for n > 2 are the ordinary n™ cohomology

groups of I' with coefficients in A, but with continuous cocycles.

Definition 5.9. Let I', I be profinite groups. Let A € Setr and A’ € Setr. Moreover, let ¢p: TV —
I" be a morphism of profinite groups (in particular, ¢ is continuous), and let f: A — A’ be a map. If
A and A’ are groups, we require f to be a group homomorphism. We say that f and ¢ are compatible
if
f(p(a')+a) =0« f(a) forallo’ €T',a € A
By the above definition, we have that if o € AT = HO(T', A) then f(a) € AT = HO(I", A").

Hence by restriction f induces a map of pointed sets
fo: HY(T, A) — HO(T', A').

The following proposition shows that f also induces a map on degree 1 cohomology sets.

Proposition 5.10 (Prop I1.3.19 [1]). Let T',T', A, A’ be as in Definition 5.9, and let ¢: T" — T" and

f: A — A’ be compatible maps. For any 1-cocycle oo € Z*(T', A), the map
fela): TV — A

o — f(a(s(0)))

is a 1-cocycle, and the map

fo: HYT, A) — HY(I, A"

[a] = [fi(a)]

is a well-defined map of pointed sets (resp. group homomorphism if A and A’ are abelian).

Now we give two examples of an induced map on degree 1 cohomology we obtain from Prop.

5.10 for a morphism of profinite groups with a compatible map.
Example 5.11.

1. Assume I' = T and ¢ = idr. Then a compatible map f: A — A’ is simply a morphism in
Cr and f is the map
fo: HYT', A) — HY(T, A)

[a] — [foal.
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Moreover, if g: A” — A” is a morphism in Cr then

(gofllla]) =[(go f)oa]=]go(fea)]=g.lfea])=g.(fu(la])).
Therefore in this case (g o f)« = g« 0 fs.
2. Assume ' =T". Let A € Grpp, let p € T and set ¢ = Inn(p). Define f: A — A by

fiA— A
ar— p_l - a
Then f and ¢ are compatible and the induced map f.: H'(I', A) — H*(T, A) is the identity.
Remark 5.12. From now on, if f: A — B is a morphism in Cr, then f, will denote the map on

cohomology obtained when taking ¢ = idr as in Example 1 above.

Proposition 5.13 (Prop 11.3.26 [1]). Let A; € Cr, fori =1,...,4. Suppose the diagrams

A1 L AQ Fl & FQ
f:sl lfQ ¢3T Tqﬁz
A4 _— A3 F4 A a— FS
Ja Pa
are commutative, where for eachi = 1,...,4, ¢; is a morphism of profinite groups compatible with

fi. Then the diagram

H\(T1, A1) 2 HY(T, Ay)

f3*l lf?*

HY (T4, Ay) — H'(T'3, A3)

is commutative.

The following theorem gives a useful characterization of profinite cohomology in terms of ordi-

nary group cohomology.

Theorem 5.14 (Theorem 11.3.33 [1]). Let I be a profinite group, and let A € Grpp. Then

lim H™(I'/U, AY) = H™(T, A)
UeN

is an isomorphism of pointed sets, where N is the set of open normal subgroups of T
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5.1.2 Cohomology sequences

In ordinary group cohomology, there are useful results regarding exact sequences of GG-modules,
particularly the induced long exact sequence on cohomology obtained by via connecting maps. In
this section we describe analogous results in the setting of profinite group cohomology.
Let f: A — B be a map of pointed sets. The kernel of f is the preimage the basepoint of B
f

under f. A sequence A —— B —% 4 C is called exact at B if im f = kerg. A sequence of

pointed sets

Ag Ay e A4 A; Y. PEp—
is called exact if it is exact at A; for all 4 > 1. Then the sequence
B30 —51
is exact if and only if g is surjective, and the sequence

1*>AL>B

is exact if and only if f has trivial kernel.

Remark 5.15. It is important to note that f having trivial kernel only implies f is injective if A and

B are groups.

Notation 5.16. In what follows we assume that we have an exact sequence

1 He saq-%,5 1

where G € Grpp, H is a I'-subgroup of G and S € Setr. Then S = G/ H is a bijection where G/ H

are the left cosets.

Next we will define a map of pointed sets ST — HY(I', H). Letz € S" and let ¢ € G be any

preimage of z under ¢. Since 0 - x = z for all o € I', then

¢lorg)=0-¢(g) =0-x=2=0¢(9)

and hence for all o € T there exists h € H suchthato-g = gh,i.e. h = g~ !-(0+g). Therefore
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if «: ' — A is a map, there is a unique element a(0) € H such that a(o) = g1 - (o« g).
Lemma 5.17 (Lemma 11.4.2 [1]). The map a: T' — H is a 1-cocycle, and its class in H'(T', H)

does not depend on the choice of g € G.
Therefore we have a well-defined map
6% S — HYI', H)
x +— [a]
where « is the cocycle defined by

alo)=g - (o+g)foralloc €T

for an arbitrary preimage ¢ € G of z. The map §° is called the Oth connecting map. By the
assumption that ¢ is a morphism of pointed sets, the preimage of the basepoint 2y € S under ¢ is
the identity element 15 € H. Since H is a I'-group, I' acts on H by group homomorphisms, and
soo«lg=0+(1gly)=(oc+1g)-(c+1p)forall o € I'. Then it must be that o « 17 = 1 for
all o € T, hence under 6° the basepoint zq is assigned to the trivial class. Therefore 6° is a map of

pointed sets.

Proposition 5.18 (Prop 11.4.4 [1] (due to Borel-Serre [4])). We have an exact sequence

1 v Gt %, st 2 gy, H) —— HYT,G) 3)

of pointed sets.
Next we define an action of G on S*. For § € G' and z € ST let g € G be a preimage of = under
¢, and set

grxz=0(gg) €5.
First note that if ¢’ € G is another preimage of x under ¢ then since S = G/H is a bijection of
I'-sets, there exists h € H such that ¢’ = gh. Then we have ¢(gg’) = ¢(ggh) = ¢(gg). Therefore

G x does not depend on the choice of g. Next we show that g+ = € ST. Since ¢ is a morphism of

I'-sets and G is a I'-group, then for all ¢ € I" we have that

o (§xx)=0-9(g9) = ¢(o+(39)) = d((0+9) - (0 - 9))-



31

Since § € G it follows that o « (§x x) = ¢(§ - (0 + g)) for all ¢ € T'. Moreover since x € ST we
have ¢(0+g) =0+ ¢(9) = o +x = xforall o € T'. Hence o - g is also a preimage of x under ¢.
Since g * 2 does not depend on the choice of preimage it follows that o « (§ x ) = g x x. Hence

gz € ST and so we have a well defined map
G" x ST — SF
(§,@) —> g* .

This map gives rise to an action of G on S'. We denote by S*'/ ~r the orbit set of G' in ST

Note that S¥'/ ~r is a pointed set whose basepoint is the orbit of 1.

Corollary 5.19. There is a bijection
®: SV/ ~or— ker(HY(T, H) — HY(T, @))
of pointed sets which assigns the orbit of x € S' to §°(x).

Proof. Exactness of the sequence (3) at H!(T, H) implies ker(H(T', H) — HY(T', G)) = im(8°).
So it suffices to construct a bijection ¢: S/ ~cr— im(6°). Set ®(GL « x) = 6°(x). Suppose
x,2’ € ST are in the same orbit. Therefore there exists § € G' such that 2/ = § % z. Then we
have ' = ¢(gg) for some preimage g € G of z. Note that gg is a preimage of x’. Then since
(Gg)~t - (0+(39)) = g~ (0 +g), we have 6°(x) = 6°(z’). This shows that ® is well-defined
and surjective. To prove injectivity, suppose 6°(x) = §°(2’). Then if o and o’ are the cocycles
representing 0°(z) and 6°(z') respectively, we have [a] = [o/]. Then a and o’ are cohomologous,
so there exists h € H such that o/ (¢) = h-a(c) - (o+h™1) forall o € I. Let g be a preimage of =
and ¢’ a preimage of x’. This implies ¢~ - (+¢') =h (g7 ' - (0 +g))- (o - h)~L. Tt follows that

G=g'hg~!' € GT. Therefore since H = ker ¢ we get
= <Z5(9/) _ ¢(g/h) =¢(gg) = g *x.

So z and 2’ are in the same orbit, which shows @ is injective. O
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5.2 The Galois cohomology functor

We start by proving a useful result about representable functors which we will use to deduce that

algebraic group schemes admit a continuous Galois action. First we introduce some notation.

Notation 5.20. If F': Fldy — Set is a functor, we simply write F'(K) instead of F'(K /k) for all
K € Fldg. If K — L is a morphism in Fldy, then for every x € F(K) we let x;, € F(L) denote
the image of = under the map F'(K) — F(L) as long as there is no ambiguity in the choice of the

map K — L.

Lemma 5.21 (Lemma II1.7.15 [1]). The map

Gax F(Q2) — F(2)
(0,2) — oz :=F(0)(x)
gives rise to an action of Go on F(Q). If Q/K and '/ K are Galois extensions such that Q C €,

we have
o vxq = (0|q-2)q forallx € F(Q),0" € Gy
Moreover, if F': FIdy — Grp is a group-valued functor, the above action is a group by automor-
phisms, i.e.,
o« (zy)=(o+x) - (0+y)foralo € Gq, x,y € F(Q).
Lemma 5.22. Let F': Algx — Set be a functor represented by a commutative k-algebra A. Then

the following properties hold:

1. For every Galois extension )/ K, the map F(K) — F(Q) is injective and induces a bijection

(resp. a group isomorphism if F is a group-valued functor)

F(K) = F(Q)%

2. Suppose A is finitely generated over k, and let 0/ K be a Galois extension. For every finite
intermediate Galois extension K C L C , let v, : F(L) — F(Q2) denote the map induced
by the inclusion L C Q). Then Gq acts continuously on F(Q2), and we have

FQ) = | w(F(@)

LCQ
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Proof. Lety: F' — h 4 denote the natural isomorphism. For every morphism of k-algebras ¢: R —

S the diagram
F(R) —22 ha(R)
Fo)| ha(®)
F(S) —— ha($)
commutes. Therefore if a € F'(R) and f = 9r(a) € ha(R) then ha(p) o Yr(a) = ha(p)(f) =

¢o f and hence s = F(¢)(a) = ¢ o f. We will repeatedly appeal to this observation in the proof.

1. Let Q/K be a Galois extension and let e: K < ( denote the inclusion. Let aj,as € F(K)
and suppose F'(e)(a1) = F(€¢)(a2). Then ¥q o F(€)(a1) = 1q o F(e)(az). We have 1q o
F(€)(a1) = €o f1 and g o F(e)(az) = € o fo where f1 = 1k (a1) and fo = i (az). Hence
Vi (a1) = Yk (az). Since v is a natural isomorphism, ¢k is an isomorphism. Hence a1 = as
which proves that F'(¢) is injective. Next we show that F/(K) = F(Q)92. We first show that
im(F(e)) = F(Q)9, then injectivity of F(¢) shows im(F(¢)) = F(K). Let 0 € Gg and let
a € F(Q). Set f = ¥qg(a) € ha(Q2). If a € im(F(¢)) then there exists ' € F(K) such that
F(e)(a') = a. Hence € 0 Y (a’) = g o F(e)(a') =. Let f' = i (a’) € ha(K). Then we
have eo f' = f. Let x € K. Since € denotes the inclusion K C (2, then ¢(x) € K. Since Q/K
is a Galois extension we have Q92 = K. It follows that o(e(x)) = €(z), and hence o o0 € = e.
Therefore

cgof=co(cof)=(coe)of =eof=F.

Note that 1) 0 F'(0)(a) = 0o f = f and that F'(c)(a) = o - a. Hence we have ¥q(c-a) = f =
q(a), where 1q is an isomorphism, since 1) is a natural isomorphism. Thus ¢ - @ = a, and so
a € F(Q)%. This shows that im(F(¢)) C F(Q)%2. Now let a € F(Q)9. Then o - a = a for

all o € Gq, and so Y (o - a) = Pq(a). Hence we have

f=1vala) = valo-a) = Ya(F(o)(a)) = oo f.

If z € A, then o(f(z)) = f(x) and therefore f(x) € Q9% = K. Therefore we have a well
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defined map

fliA—K
Since f € h4(2) we have that f’ is a K-algebra homomorphism. Now let a’ € F(K) be the
element so that ¢ (a’) = f'. Since f(x) € K and € is the inclusion K C €, then e(f(z)) €
K = Q9 Therefore it follows that ¢(f'(z)) = e(f(x)) = f(z) since € € Go, andsoeo f' = f.
Then we have

vala) = f=co f' =g o F(e)(d)

and injectivity of o implies @ = F(e)(a’). Hence a € im(F(¢)), which shows F(Q)9¢ C

im(F(e)).

. Leta € F(Q)let f = ¢g(a) € ha(2). By assumption A is finitely generated over k. Let

a1, ..., an be aset of generators of A. Let

K= K(f(al)v e )f(an))

Note that K C K’ C  is an intermediate extension and K’/ K is finite. Then by the Funda-
mental Theorem of Galois Theory, Gal(£2/K') is an open subgroup of Gg. Let o € Gq. By the
same argument as before, o - a = a if and only if o - f = f. By definition of K’, o - f = f if
and only if 0| g/ = id, thatis o € Gal(2/K). This shows that Stabg,, (a) = Gal(£2/K"), hence
Stabg,, (a) is an open subgroup of Gg, for all a € F'(Q2). Therefore the action of G on F'(2) is
continuous, and by Lemma 5.3 we have

F@) = J FEY

UeN
where A/ denotes the set of open normal subgroups of Gq,. The Fundamental Theorem of Galois
Theory gives a one-to-one correspondence between finite Galois subextensions of L /K of /K
and the the open normal subgroups U € N/, which assigns L to Gal(Q/L) and U to QV. It
follows that

F(Q) — U F(Q)Gal(Q/L)
LcQ

where L runs through all finite Galois subextensions of /K. For each such L, statement (1)
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implies v7,: F(L) — F(Q) is injective and ¢, (F(L)) = F(Q)G2/(®/L) Therefore

FQ) = | w(F(L)

LCQ2

which concludes the proof.

O]

Definition 5.23. A group scheme G: Fldy — Grp is a Galois functor if for every K € Fldy and

every Galois extension €2/ K, the following conditions are satisfied:

1. The map G(K) — G(Q) is injective, and induces a group isomorphism
G(K) = G(Q)%

2. G(Q) = Upcqtra(G(L)), where L/ K runs over the set of finite Galois subextensions of 2

and t1,0: G(L) — G(Q) is the map induced by the inclusion L C €.
Example 5.24. An algebraic group scheme GG: Fldy — Grp is a Galois functor by Lemma 5.22.

Proposition 5.25. Let G: Fldy — Grp be a Galois functor. Then if K € Fldg and Q/ K is Galois,

G(Q) is a Go-group. Therefore we can consider the pointed set H (G, G(f2)).

Proof. By combining condition (1) and (2) in Def. 5.23 we have

G = |J G,

LCQ
By the Galois correspondence, finite Galois subextensions L of £2/K are in bijection with open
normal subgroups Gy, of Gg. Therefore it follows from Lemma 5.3 that Gq acts continuously on
G(2) via the assignment
Ga x G(Q) — G(Q)

(0,9) —> 0 +g=G(0)(9).

Hence G(12) is a Go-set. By Lemma 5.21 the above action is an action by group automorphisms,

showing G(Q2) is a Go-group. O

By using Theorem 5.14 we obtain a characterization of Galois cohomology of Gq, in terms of

the Galois cohomology of its finite Galois subextensions in the following theorem.
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Theorem 5.26 (Thm I11.7.30 [1]). Let G: Fldx — Grp be a Galois functor. Then for every K € Fldy

and every Galois extension Q1) K

lim H"(Gr, G(L)) = H"(Ga, G(2))
LCQ)

is an isomorphism of pointed sets, where L runs through the finite Galois subextensions of 0/ K.

Next we establish some functorial properties of Galois cohomology. Let .: K — K’ be a
morphism in Fldg. Let Q/K and Q' /K’ be Galois extensions and assume that we have a morphism
¢: Q0 — Q' in Fldy which extends ¢. Let ¢: Gor — Gq be the continuous group homomorphism

associated to ¢ by Corollary 3.8. Let G: Fldy — Grp be a Galois functor.

Lemma 5.27 (Lemma I11.7.32 [1]). The maps ¢: Gor — Gq and G(¢): G(Q2) — G(Q') are com-

patible.

Proposition 5.28. Let ¢: Q — Q' be an extension of 1. Then since ¢: Gy — Gaand G(): G(Q2) —

G(§Y) are compatible, we get an induced map
Ry: H'(Go,G(Q) — H' (Gor, G())
which only depends on t.

Proof. Suppose ¢: § — €' is another extension of . We will show that R4, = Ry, in which case
R does not depend on the choice of extension of ¢, it only depends on ¢. By Corollary 3.8 there
exists p € Gq such that ¢ = ¢’ o p so that ¢ = Inn(p) o ¢. Then ¢’ = ¢ o p~!, and since G is a

functor we have

G(#)(g) = G(g0p")(9) = (G(¢) 0 Glp™"))(9) = G(&)(p™" - 9)

for all G € G(2). Hence, if p~1+: G(Q) — G(R) is the map given by g: — p~! - g, then the

diagram
G) 5 G(Q)

G(¢')l lG(¢>)

G(Y) — G(2)
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is commutative. On the other hand, since ¢’ = Inn(p) o ¢ we have the following commutative
diagram

ga Lonte) Ga

7] [

Gor Ta Gor

1

Recall that Example 5.11 shows Inn(p) and p~ "+ are compatible. Therefore the above two diagrams

satisfy the conditions of Proposition 5.13, hence the diagram

H'(Go, G(9)) 25 H'(Go, G(2)
G(¢'){ ic:w)*

H'(Gor, G(®)) — H (Gor, G())

is commutative. By definition G(¢'), = Ry and G(¢), = Ry, and Example 5.11 shows p~ -, is

the identity. Therefore it follows that Ry = Ry. U

Remark 5.29. By Proposition 5.10, the morphism Ry in Prop 5.28 is the induced map G(¢). on
the 1st cohomology sets. Hence Ry, is given by
Ry: H'(Go,G(Q)) — H'(Gar, G(Y))
[a] — [G(¢)+(a)]
where G(¢).(«) is the cocycle defined by
G(¢)s(a): Gor — G(X)
o' — G(¢)(a(e())).

Let .: K — L be a morphism in Fld,. Let K and L be algebraic closures of K and L re-
spectively. By Corollary 3.3 there exists and extension ¢: K — L of ¢. Let ¢: G — G be the

continuous group homomorphism associated to ¢ by Corollary 3.8. Then Prop. 5.28 gives us a map
Ry: H'(Gg, G(K)) — H'(G7, G(L)). )

which only depends on ¢. In the case where K = L and ¢ = idx we may take ¢ = id in which

case Ry is the identity map.
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Lemma 5.30 (Lemma II1.7.35 [1]). Let t: K — L and n: L — M be morphisms in Fldx. Let

¢: K — Land+: L — M be extensions of . and 1 respectively. Then
Ryop = Ry o Ry

Corollary 5.31 (Cor. I1L.7.36 [1]). For any K € Fldy, the set H' (G, G(K)) does not depend on

the choice of algebraic closure K, up to canonical bijection.
Definition 5.32. Let G: Alg, — Grp be a Galois functor, and K /k an extension.
1. We define the 1st Galois cohomology set of GG by
H'(K,G) = H' (G, G(K)).
If G is abelian, that is if G(R) is an abelian group for all R € Algy, then H! (K, G) is a group.

2. Lett: K — L be a morphism in Fldy. The map (4) defined from H(K,G) to HY(L,G)

corresponding to ¢ is called the restriction map and is denoted by Resy, /x.

Theorem 5.33. Let G: Algy — Grp be a Galois functor. Then
H'(—,G): Fldy — Set,

is a functor which assigns each K € Fldy to the pointed set H' (K, G) and assigns each morphism
v: K — L in Fld to the map Resy, HY(K,G) — H'(L,G) of pointed sets. In the case where

G is abelian and the restriction map is a group homomorphism, we obtain a functor
H'(—,G): Fldy — AbGrp.

Proof. If we take « = idg, then Resy /¢ is the identity. Moreover, for any field extensions K —

L — M we have
Resyr/x = Resyy/r, o Resp /i

by Lemma 5.30. O
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6 Galois descent

In this section, we state the Galois descent problem for a group scheme G: Fldy — Grp acting on
a functor F' : Fldy — Set. We then present the remaining ingredients needed to state the Galois
descent lemma, first by defining a twisted form for a fixed element a € F'(k) and obtaining a twisted
form functor F,: Fldy — Set,. We then define the Galois descent condition for a functor F', and
highlight examples of the types of functors which satisfy the condition. We introduce a key example
of a Galois functor, the stabilizer subfunctor of the group scheme (G, and conclude by giving detailed
proof of the Galois descent lemma, a fundamental result which we use as a tool in determining the

answer to Galois descent problems.

6.1 Twisted forms

Definition 6.1. Let G: FIdy — Grp be a group valued functor. An action of G on a functor

F': Fldx — Set is the assignment to each K € Fldy a group action
G(K)x F(K) — F(K)
(9,a) = gxa

which is natural in K. That is, for every morphism ¢: K — L in Fldy, the following diagram

commutes:
G(K) x F(K) —— F(K)

(©0.F ()|
G(L)x F(L) —— F(L)

or, in terms of elements
(9xa)r =gr*ar forall a € F(K), g € G(K).

Definition 6.2. Let F': Fldy — Set be a functor and GG: Fldi, — Grp be a group scheme acting on
F. For every K € Fldy we say b, b’ € F(K) are equivalent over K if there exists ¢ € G(K) such

thatb = g * b'.

We have presented all the required ingredients to state a general Galois descent problem.
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The Galois descent problem: Let F': Fldy — Set be a functor, G: Fldy — Grp be a group

scheme acting on F', and /K a Galois extension.

Suppose that ag ~q ag,. Do we have a ~x o' ?

Definition 6.3. Let a € F(k), let K € Fldk and let /K be a Galois extension. An element

a' € F(K) is called a twisted K -form of a (split by Q) if af, ~q aq.

The action of G(K) on F(K) restricts to the set of twisted K -forms of a, since if we assume
a' € F(K) is a twisted K-form of @ and a’ ~ a” then a” is also a twisted K-form of a. We have
ag ~aq aq and o’ ~g a”, hence there exists g € G(2) and ¢’ € G(K) such that a;, = g * aq
and o’ = ¢’ x a/. Since the action of G(K) on F(K) is functorial in K, then it follows that af, =

(¢' * a')a = g¢, * agy. Therefore g, g is an element of G(£2) such that
9ag * aq = go * (9 * ag) = go * ag = ag
Definition 6.4. We denote by
Fo(Q/K) = {[d] | ' € F(K), ag ~q ag}

the set of K -equivalence classes of twisted K -forms of a which split over §2. Then F,(2/K) is a

pointed set with base point [ak].

Remark 6.5. Note that F;,(2/K) is the collection of elements for which the answer to the de-

scent problem is negative. In particular the answer to the descent problem is positive if and only of

F,(Q/K) = [ak].

Theorem 6.6. We obtain a functor F,: Fldy — Set, by assigning F,(K) = F,(K/K) to each

K € Fldy and assigning the map
F.(1): Fy(K/K) — F,(K'/K")
[a] — [ak]

to each morphism v: K — K' in Fldy.
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Proof. We show that the map F(K) — F(K') induces a map F,(¢) is a well defined morphism
of pointed sets. Then the functorial properties of F, are inherited by F. Let ¢: K — K’ be an
extension of ¢ and let ' € F(K) be a twisted K-form of a. We will show that a/, is a twisted
K’-from of a. Since ¢ is an extension of ¢, we have € o1 = ¢ o€ where € and € denote the inclusions

K C K and K’ C K, respectively. Then since F is a functor it follows that

(ak) g = (F()(a)gr = F()(F()(a) = F(€ 0 1)(d)
= F(¢poe)(d) = F(¢)(F(e)(a') = (F(e)(a) 7 = (af)zr
Now since a’ is a twisted K-form of a, there exists g € G(K) such that g * a’? = az. Therefore

since the action of G(K) on F'(K) is functorial in K, we have

g7 * (a0 )57 = 977 * (a) 57 = (9 % o) zr = ()77 = agz

Hence a/, is a twisted K'-form of a, and since this does not depend on the choice of extension of
¢ of « we have shown Fj(¢) is well-defined. Fy(¢) is a morphism of pointed sets by construction,

since F([ak]) = [ak/]. O

We need a suitable condition on the functor I in order to establish a relationship between Fj,
and the Galois cohomology of a certain group-scheme which is associated to a. Below we state the

required condition.

Definition 6.7. A functor F': Fldy — Set satisfies the Galois descent condition if for every K €

Fldy and every Galois extension 2/ K the map F'(K) — F(2) is injective and induces a bijection

Now we give examples of the types of functors which satisfy the Galois descent condition.
Example 6.8.

1. M, satisfies the Galois descent condition.

2. Representable functors satisfy the Galois descent condition by Lemma 5.22.

3. By definition, Galois functors satisfy the Galois descent condition.
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6.2 Stabilizers

Definition 6.9. Let G: Fldy — Grp be a group valued functor acting on a functor F': Fldy — Set.

For a € F(k) and every K € Fldy we set
Stabg(a)(K) ={9€ G(K) | g*ax = ax}

For all extensions K € Fldg, Stabg(a)(K) C G(K). Moreover, if t: K — K’ is a morphism in
Fldg, the map G(¢): G(K) — G(K') restricts to a map Stabg(a)(K) — Stabg(a)(K'). Indeed,
if g € Stabg(a)(K) then

gr' *axr = grr * (ar)k = (9% ax) g = (ax)k = axs

showing that i € Stabg(a)(K’). Hence we have a subfunctor Stabg(a): Fldy — Grp of G

called the stabilizer of a.

Let K € Fldg, let 2/ K a Galois extension and let 0 € Gal(2/K). Then the map
Stabg(a)(o): Stabg(a)(2) — Stabg(a)(£2)

is obtained by restriction of the map G(o): G(2) — G(2). Hence the action Gg on G(€2) via

Lemma 5.21 restricts to an action on Stabg(a)(£2).

Lemma 6.10 (Lemma II1.8.13 [1]). Let G: Fldy — Grp be a Galois functor acting on a functor
F': Fldy — Set which satisfies the Galois descent condition. Then for all a € F(k), Stabg(a) is a
Galois functor. In particular, for every K € Fldy and every Galois extension )/ K, Stabg(a)(2)

is a Go-group.
Thus we obtain a Galois cohomology set
H'(Gg, Stabg(a)(€2))
for any Galois extension €2/ K and more generally a functor

H'(—,Stabg(a)): Fld, — Set, .
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6.3 Galois descent lemma

We now have all the ingredients to state the Galois descent lemma, a result which describes F, (2/ K),
the set of elements which yield a negative answer to the Galois descent problem, in terms of Galois

cohomology.

Theorem 6.11 (Galois descent lemma (due to Serre [4])). Let F': Fldy — Set be a functor satisfying
the Galois decent condition, let G : Fldy — Grp be a Galois functor acting on F, and let a € F' (k).

Then

1. Forevery K € Fldy and every Galois extension Q) K
F(Q/K) = ker(Hl (Ga, Staba(a)(Q)) 2> H (Ga, G(Q)))
is a bijection of pointed sets, where j: Stabg(a)(2) — G(R2) is the inclusion.

2. The above bijection is functorial in Q. That is, if 1: K — K’ is a morphism in Fldy, Q/K and

V' /K' are Galois extensions and ¢: Q2 — ) is an extension of 1, then the diagram

Fu(Q/K) —— ker(j,)

i lm

F,(V/K') —=— ker(5.)

is commutative. In particular, we have a natural isomorphism between functors from Fldy to
Set,

F, = ker[H'(—, Stabg(a)) — H'(—,G)].

Therefore if H'(—, G) = 1, we have a natural isomorphism of functors
F, = H'(—,Stabg(a)).

Proof.

1. The action of G on G() restricts to an action on Stabg(a)(€2), and by Lemma 6.10 this ac-
tion is continuous. Hence Stabg(a)(Q2) is a Go-subgroup of G(2), and we have a bijection

G(Q)/Stabg(a)(2) = G() * aq where G(Q) * aq denotes the orbit of ag. This bijection is
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equivalently written as a short exact sequence
1 —— Stabg(a)(2)) — G(Q) —— G(Q) xaq —— 1
of pointed sets. By Corollary 5.19 there is a one-to-one correspondence
(G(Q)  ag)% / ~gqyon +— ker(z.)

where (G(Q) * ag)92/ ~G()da is the orbit set of G(Q)9 in (G(Q) * ag)92. To prove the
first part of the theorem, it suffices to show there is a bijection between F,(2/K) and (G(Q2) *

aq)% /) ~ G()9- Recall that the assignment

G(Q)99 x (G(Q) % aq)9 — (G(Q) * aq)9?
(9,d") — gxd
gives rise to an action of G(€)92 on (G(Q) * ag)9* defined by g x a’ := (g¢’) * aq where ¢’ is
a preimage of o’ under the map G(Q) — G(2) * aq.
Now notice that
G(Q) xaq ={ad' € F(Q) | g xaq = d for some g € G()}
={d € F(Q) | ag ~q d'}.

Then since F satisfies the Galois descent condition, F'(K) = F(Q)9¢ and hence
(G(Q) *aq) = {d’ € F(N)% | aqg ~q d'} = {ag € F(K) | ag ~q aq}.

Therefore if K, = {a’ € F(K) | ag ~q aq} is the set of twisted K-forms of a, then (G () *
aq)9¢ is the image of the K, under the map F(K) — F(Q). That is to say (G(Q) * aq)9* =
(Ka)q and so elements of (G(2) * ag)9¢ are of the form ag, for ' € K,. Also, since G is
a Galois functor the map G(e): G(K) — G(f) is injective and G(K) = G(0)9 where ¢
denotes the inclusion K C ). Therefore G(¢): G(K) 5 im(G(e)) is a bijection, and since
G(K) = G(Q)% it follows that G(Q)92 = im(G(e)). That is, elements of G(Q)9¢ are of
the form g for ¢ € G(K). In view of these two observations, the orbit set of G(2)92 in

(G(Q) * ag)9 gives an equivalence relation ~(@)e On (Kq)q for which ag, ag, € (Kq)q are
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equivalent if and only if there exists go € G(02)92 such that go x af, = agy. Next recall that
the action of G(K') on F(K) restricts to the set K, of twisted K -forms of a. Hence ~ is an

equivalence relation on K,. Thus we have two surjective maps,
q1: Ka — Ka/ N = Fa(Q/K)

and
a2 (Ko)o = (Ka)o/ ~a)9e = (G(Q2) = aﬂ)gﬂ/ ~a@Q)a -

Claim: Set f = g2 0 F(¢)|k,. Thena’ ~k a” if and only if f(a’) = f(a”). We first show that if
ga € G(Q)9 and af, € (G(Q) * an)9 then gq *ap, = (g*a’)q. Since a’ is a twisted K - form
of a, then there exists ¢’ € G(£2) such that ar, = ¢’ * aq. Hence ¢’ is a preimage of af, under the

map G(Q2) — G(Q) * aq and thus

ga*ag = (9ag") * aq = ga * (¢’ x aq) = ga * an = (g% a')q.

Now let @', a” € K, and suppose a’ ~k a”. Then there exists g € G(K) such that g x @’ = a”,
and so ag) = (g * a')o = go * ag. Hence ag ~g()ea ag Which shows f(a') = ga(ag) =
a2(agy) = f(a”). Conversely, if f(a') = f(a”) then g2(ag) = g2(ag). Thatis ag ~gq)ysa ag,
so there exists go € G(2)92 such that go * af, = af. It then follows from the above argument
that (¢ * a’)o = af. Since I satisfies the Galois descent condition the map F(K) — F(Q)
is injective, so we get that g * ' = a”. Thus a’ ~ a”, which proves the claim. The forward

implication of the claim shows that f descends to the quotient. Therefore there exists a map
¢ Fu(Q/K) = (G(Q) % aa)9 ] ~gaa

such that f = ¢ogq;. Since f is surjective it follows that ¢ is also surjective. The reverse implica-
tion of the claim along with f = ¢oq; gives us that ¢ is injective. Hence ¢ is a bijection between
F,(Q/K) and the orbit set of G(2)9 in (G(Q) * an)9° which assigns a K- equivalence class

[a'] to the orbit of af in (G(Q) * ag)9e.
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Aside: The bijection between Fy,(2/K) and ker(y,) is explicitly given by

P Fo(Q/K) — ker(y.)
@] — [a]

where we pick g € G(Q) with g * ag, = aq so that « is the cocycle

a: Go — Stabg(a)(£2)
ogr—g-(a-g7").

Indeed, if [a'] € F,(Q2/K), then under ¢ the corresponding orbit of G(Q)92 in (G(Q) * ag)9®
is the orbit of ag,. Since d’ is a twisted K-form of a, by definition there exists g € G(£2) such

that g * ag, = agq. Thus

-1 1

a'Q:(g_lg)*ab:g x(g*an) =g " *aq.

So g~!

is a preimage of ag, under the map G(2) — G(Q) * aq. Then under the bijection
established in Corollary 5.19, we assign the orbit of a, to the cohomology class 6°(ag,) = [a] €

H'(Gq, Stabg(a)(2)) where « is the above cocycle.

. Lett: K — K'beamorphsim in Fldy, let /K and '/ K’ be Galois extensions and assume that
we have an extension ¢: 2 — Q' of 1. Let ¢: G — Gq be the continuous group homomorphism

associated to ¢ by Corollary 3.8. We first show that the map
Ry: H'(Gq, Stabg(a)(Q)) — H*(Gar, Stabg(a)(€))

restricts to the map

Ry: ker(y.) — ker(7),).

Let [£] € ker(«). Then ¢ is cohomologous to the trivial cocycle, and hence there exists an
element g € G(Q) such that (o) = g - (0 - g~ 1) forall ¢ € Gg. We will show that Ry([€]) is
represented by the cocycle
gQ/ — StabG(G) (Q/)
o gor - (' + g

which shows R([¢]) is represented by the trivial cocycle, and thus Ry([{]) € ker(s,). By
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definition, Ry([¢]) = [¢'] where &' is the cocycle

¢': Gor — Stabg(a) ()
o'+ Stabg(a)()(£(4(0")))-

Recall that Stabg(a)(¢) is the restriction of G(¢). Then since G(¢) is a group homomorphism

and Goy acts on G(€2) by group automorphisms, for all ¢’ € Gr we have

Since G(¢) and ¢ are compatible, it follows that

€'(0") = (G(9)(9) - (G()(d(0') - 9)) ™" = (G()(9)) - (0" - [G(&)(9)] ™) = go - (0 - ).

Therefore R4([¢]) is indeed represented by the desired cocycle. Now let [a'] € F,(£2/K) and let

g € G(Q) be an element so that g * af, = aq. Then since (a/,)or = af,, and
g * agy = gor * (ag)er = (9 * ag)ar = (ag)e = agy

we have that gor € G(') is an element so that gor * (a/s/)or = aq. Hence 9 o F,(¢)([a']) =

Y([a’]) = [B] where 3 is the cocycle
B: Gor — Stabg(a) ()
o' — gor - (0" g31).
On the other hand, Ry () ([a'])) = Re([a]), and since [o] in this case belongs to ker(y,), then

it follows from the previous calculations that Ry([a]) = [5]. Thus ¢ o F,(¢) = Ry o v, which

shows that the bijection v is functorial in 2.
O]

The following theorem draws a direct connection between Galois descent and cohomology. In
particular, we show that the failure of the Galois fixed point functor to preserve right exactness of a
short exact sequence obtained via the orbit stabilizer theorem is the obstruction to a positive answer

to a Galois descent problem.
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Theorem 6.12. Let F': Fldy — Set be a functor satisfying the Galois decent condition, let G : Fld, —
Grp be a Galois functor acting on F, and let a € F (k). Then for every K € Fldy and every Galois

extension )/ K the sequence
1 —— Stabg(a)(Q)9% —— G(Q)% T (G(Q) *aq)9? —— 1 (5)

is exact if and only if the Galois descent problem for a € F (k) has a positive answer, where T :

G(Q2) — G(Q) * agq is the natural projection.
Proof. First note that by Prop. 5.18, the sequence of pointed sets

1 — Stabg(a) ()% — G(Q)92 ™5 (G(Q) * ag)®

5 H' (G, Staba(a)() 2 H' (d0,G(2)) (6)
is exact, where & is the Oth connecting map and j : Stabg(a)(2) — G(€) is the inclusion. Next
recall that the Galois descent problem for a € F'(k) has a positive answer if and only if F},(Q/K) =
{lax]} (Remark 6.5). Hence we show the sequence (5) is exact if and only if F,(2/K) = {[ax]}.
Now suppose the sequence (5) is exact. Then G(2)92 /Stabg(a)(2)9° = (G(Q) * ag)9?, and by
exactness of the sequence (6) we have ker §° = im .. Therefore ker 6° = (G(Q) * aq)9? which
implies im §° = {[id]}, where id is the trivial 1-cocycle. Exactness of (6) implies im 6° = ker ., so
we have ker 5, = {[id]}. By Theorem 6.11, F,(Q2/K) = ker j, is a bijection of pointed sets, hence
F,(Q/K) = {lax]}. Conversely, suppose F,(2/K) = {[ax]}. Then it follows from Theorem
6.11 that im 6° = ker 7. = {[id]}. Therefore (G(Q) * a)9? = (6°)~1({[id]}) = ker §° = im .,

thus the sequence (5) is exact. L]
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7 Generalizations of Hilbert’s Theorem 90

In this section, we prove cohomological Hilbert’s Theorem 90 via Dedekind characters, and as a
corollary, we prove Hilbert’s Theorem 90 in its classic form. These results culminate in a general-
ization of cohomological Hilbert’s Theorem 90 for arbitrary Galois extensions €2 /k, from which we
deduce that H'(Ggq, GL,(2)) = 1. This is a key result used in Section 8 where we describe two
specific Galois descent problems.

Let F /k be a finite Galois extension. Recall that for @ € F, the norm of a is the product

c€GE
The norm induces a group homomorphism N : E* — k*. First, ifa € E* then N (a) € k. To show
this it suffices to show that N (a) is fixed by G, since F /k is Galois. Write N (a) as oy (a) - - - op(a),

where G = {01,...,0,}. Let 7 € Gg. Then since 7 is a ring homomorphism and Gg acts on £
7(N(a)) = 7(o(a)) - 7(on(a)) = (To1)(a) - - - (Ton)(a).
Recall that left multiplication by 7 induces an element of Autse:(Gg) = S,,. Then
7(N(a)) = 0i,(a) - -~ 0i,(a) = N(a)

since E* is an abelian group. Hence N (a) € k. If a,b € E* then

N(ab) = [] eolab) = ] o(a)o®) = | [] (e II -

c€Gp ocelg ocelp oelp
This shows that IV is a group homomorphism.

Recall that a Dedekind character on a group G is a group homomorphism x: G — E*.

Lemma 7.1 (Dedekind’s Lemma). Let G be a group and let 11, . ..,T,: G — E* be a distinct set
of characters. Then {7;} is linearly independent over E, that is, if there exist ci,...,c, € E such

that Y7, ¢;7i(g) = Oforall g € G, thenc; =0 foralli=1,...,n.

Proof. Leading to a contradiction, suppose > . ; ¢;7;(g) = Oforall g € G and that there exists ¢; #

0. Let & be the smallest positive integer such that, after relabeling indices, ¢; # 0,¢c2 #0...,cx # 0
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and Zle ¢iTi(g) = 0 for all ¢ € G. Note that £ > 2. Since {;} are distinct, there exists h € G

such that 71 (h) # 72(h). We have

k k
T1(h) Z cimi(g) = Z cim(h)ri(g) =0
i=1 i=1

and on the other hand,
k k

> emi(h)Ti(g) = eimi(hg) = 0.

1=1 i=1

This implies that Zle ci(m1(h) — 1;(h))71i(g) = 0 for all g € G. Hence we have 25;2 ¢iti(g) =0

)
for all g € G where ¢; = ¢;(m1(h) — 7;(h)). Since 71(h) # m2(h), {¢;}£_, is a collection of k — 1
coefficients not all equal to zero satisfying 25:2 ¢;7i(g) = 0. This contradicts the minimality of .

Thus {7;} are linearly independent over E. O

Theorem 7.2 (Hilbert’s Theorem 90: Cohomological). Let E/k be a finite Galois extension. Then

the degree 1 group cohomology H' (G, EX) is trivial, that is H (Gg, E*) = 1.

Proof. Let a: Gg — E* be a 1-cocycle. We show there exists a € E such that o(7) = 7(a)a™?

for all 7 € Gg. Then « is both a 1-cocycle and a 1-coboundary, which shows « is the trivial cocycle.
Note forall o € G, 0: E* — E* is a Dedekind character on Gg. Consider ) .5 a(o)o(a) € E
for any a € E. Since a(a) is nonzero and belongs to F, Dedekind’s Lemma implies there exists
a € EX suchthatb:= ) o «a(o)o(a)# 0. Let 7 € Gg. Then since 7 is a ring homomorphism
7(b) = > peg, T(a(0))To(a). Since a is a 1-cocycle, this implies that
a(r)(r(0) = Y a(r)r(a(o)ro(a) = > a(ro)ro(a) =b
c€lp o€GE

where the last equality follows by reindexing. Let @ = b~!. Then a(7) = 7(a)a™ .

O]

Corollary 7.3 (Hilbert’s Theorem 90: Classical). Let E/k is a finite cyclic Galois extension, that is
the Galois group G, is cyclic, and let o € Gy, be a generator. If u € E* is a unit, then N (u) = 1 if

and only if there exists a € E* such that u = o(a)a™".

Proof. Suppose there exists a € E* such that u = o(a)a~!. Above we proved N: E* — k* is a
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group homomorphism, and it is clear from the proof that N(o(a)) = N(a). Hence we have
N(u) = N(o(a))N(a™') = N(a)N(a™1) = 1.

Conversely, suppose N(u) = 1 and let 0 € Gg be a generator for Gg. Define a: G — E* by
a(id) = 1, a(c) = w and a(c’) = uo(u)o?(u)---o*~(u) for i < n where n = |Gg|. Let
0 <i,j < n. In the case where i + j < n,
a(o'e?) = a(c™) = uo(u) - - - o7 (u)
= (o) -+ o' (w)o (uor(u) - o7 (u))
= a(o")o'(a(a?)).

Ifi+j>nthen0<i4 75 —n < n. Hence
a(o'o?) = a(c™) = a(c™ ) = uo(u) - - - T (w).

It then follows that
a(o')o'(a(o?)) = (uo(u) -0 (u)o' (uo(u) - o7~ (u))
= (uo(u) -0 w)o ™ (o (u) - 0" ()
= a(c'o?)N(u)
= a(aiaj)
In both cases « is a 1-cocycle. Hence by the proof of Cohomological Hilbert Theorem 90, there

exists a € E* such that a(o?) = o?(a)a~? for all 4. Therefore fori = 1, u = o(a)a™". O

There is a considerable generalization of the cohomological version of Hilbert’s Theorem 90
which can be applied to the degree 1 non-abelian Galois cohomology set with coefficents in the
group of units of a nice class of k-algebras.

Recall that a finite dimensional associative k-algebra A is simple if and only if it has no non-

trivial 2-sided ideals.

Theorem 7.4 (Prop 111.8.24 [1]). Let A be a simple k-algebra and let Q)/k be a Galois extension.
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Then the degree 1 Galois cohomology set H' (Go, GL1(A)(R)) is trivial, that is
H'Y(Go,GL1(A)(Q)) = 1.

As a corollary, we obtain a useful result that will help characterize those descent problems in-

volving actions of the algebraic group GL,,.
Corollary 7.5. Let Q/k be a Galois extension. Then H'(Gq, GL,(2)) = 1.

Proof. The n x n matrix algebra M,, (k) with entries in k is a simple k-algebra. This follows from
the fact that I < M,, (k) is an ideal if and only if there exists J < k such that I = M,,(.J), thus there
are no non-trivial ideals of M,, (k). Since GL;(M,,)(2) = GL,(€2), Thm. 7.4 implies the desired

result. O
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8 Applications

We now apply the abstract formalism developed in the previous sections to two explicit examples
of interest. Specifically, we apply the Galois descent lemma and the triviality of the degree 1 co-
homology of G with coeflicients in GL,,(£2) for an arbitrary Galois extension €2/k to the matrix

conjugacy problem and a classification problem for associative k-algebras.

8.1 Conjugacy problem for matrices

Let K € Fldk and let 2/ K a Galois extension. A natural descent question then arises: If My, M €
M,,(K) are conjugate by an element in GL,,(£2) (resp. SL,(f2)), are My and M conjugate by an
element of GL,,(K) (resp. SL,,(K))? This question may be framed as a Galois descent problem.
Let F = M,, and G C GL,, be an algebraic group scheme viewed as a functor from Fldy to Grp.
Then since F': Fld, — Set is representable F' satisfies the Galois descent condition, and since
G': Fldx — Grp is an algebraic group scheme G is a Galois functor. For every extension K € Fldy
the assignment
G(K) x F(K) — F(K)
(A,B) —— A% B:= ABA™!

gives rise to an action of G(K) on the set F(K). Indeed, for every A,B € G(K) and C €
F(K), I, +C =IL,CI;' = C and

Ax(BxC)=Ax(BCB™')= ABCB 1A' = (AB)C(AB)™' = (AB) % C.

This group action is functional in K. If :: K — L is a morphism in Fldy, and A € G(K), B €

F(K), then
F(1)(A* B) = F(1)(ABA™") = F()((aij)(bij)(ai;) ™)

= 1((ai;) (bij)(ais) ") = ((aiz)) (e(bi)) (e(aiz) "
= 1((ai5)) * t((bij)) = G(1)((aiz)) * F(e)((bij))
= G()(A) x F(¢)(B)
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Therefore G acts on F'. Now let My € M, (k). Then by Theorem 6.11, for every field extension

K € Fldg and every Galois extension €2/ K, we have a bijection of pointed sets
Fary (U K) —> ker (Hl(gg, Stabe (Mo)(22)) — H' (Ga, G(Q))) %)
Now we consider the case when G = SL,,.
Corollary 8.1. Let Q/k be a Galois extension. Then H'(Gq, SL,(2)) = 1.

Proof. Consider the exact sequence of G, -groups

1 —— SL,(Q) — GL,(Q) —%y 0 1.
Then by Proposition 5.18 we have an exact sequence
GLn(Q)9 —2, (x)9a 5 (G, SL,(Q)) —= H'(Ga, GL,(Q))

of pointed sets. Note that since GL1 (M,,) is a Galois functor, GL,, (Q)9? = GL, (k) and (Q*)92 =~

k>, and by Corollary 7.5 we have H'(Gq, GL,(£2)) = 1. Therefore we have an exact sequence

GLy (k) —2 k< — H'(Go,SL,(Q)) —— 1

of pointed sets. Observe that the determinant map det is surjective. Then exactness at k> gives
k* = im det = ker §°. Hence 0" is the trivial map, and so im 6 = 1. Exactness at H'(Gq, SL,(2))
then implies that the kernel of the surjective map H'(Gq,SL,(Q2)) — 1 is trivial. Therefore

H'(Gq,SL,(Q)) = 1. O
From Corollary 8.1 and (7) we have a bijection of pointed sets
Far, (2/K) = H'(Gq, Stabsr,, (M) (2)).

Let ¢ denote this bijection. If [M] € Fy, (2/K) is the K-equivalence class of a twisted K-form

of My which splits over €2, then there exists ) € SL,,(Q) such that QM Q™' = M. In this case
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#([M]) = [a?] where a¥ is the cocycle

a®: Gg — Stabgy,, (M) ()
oc— Qo+ Qfl).

By definition,
Fro(Q/K) ={[M] | M € F(K)and 3Q € SL,(Q) s.t. QMQ ™" = My}

The equivalence class [Mp] is the base point of the pointed set iz, (£2/ K), and therefore corresponds
to the class of the trivial cocycle in the pointed set H'(Gq, Stabsy,, (Mo)(£2)). Moreover, for any
M € [My) the pair (M, M) gives a positive answer to the conjugacy problem. Hence the bijection
between Fi, (2/K) and H(Gg, Stabsy,, (My)(£2)) tells us the answer to the conjugacy problem
for a given pair (M, M) is positive if and only if [«?] is the trivial class.

We now give an example which yields a negative answer to the conjugacy problem in this case

of SLy with Galois extension Q/Q.

Example 8.2. Let M, and M be the following matrices in M2 (Q)

0 -2 0 2
My = , M =
1 0 -1 0
1 0 _
Then Q = is a matrix in SL2(Q) with the property that QM Q! = M. Note that a@ is
0 —i

cohomologous to the trivial cocycle if for all o € Gy there exists a matrix C' € Stabsr,, (Mo)(Q)
such that
(o) = Cal(o)(o-C)=Clo-C7h).

Let o € Gg denote complex conjugation. Then the above equality is a®(c) =C(o-C™1) = cc ',

. . . ——1 .
which is equivalently written C' = —C' ~ since
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_ 21 %
Note that C' € Stabg,, (My)(Q) means CMy = MyC. Now let C' = Y 7| be a matrix

Z3 24
in GL2(Q). Then the two conditions C' = —C " and CMy = MyC are satisfied if and only if
w —2
C= for some u, v € R such that (u,v) # (0,0). Therefore det C' = —(u?+2v?) < 0
W
and hence C' cannot belong to SLy(Q). This shows that [a?] is not the trivial class, and therefore

we conclude My and M are not conjugate by a matrix in SLo(Q).

8.2 C(lassification problem for associative k-algebras

Here we use the Galois descent lemma to classify isomorphism classes of finite dimensional asso-
ciative k-algebras A in terms of the Galois cohomology set of G with coefficients in Aut(A)(£2).
Fix an n-dimensional k-vector space V. For K € Fldy, let F'(K') denote the set of associative

(not necessarily commutative) K -algebra structures on the vector space V' ® K. That is:
F(K) := {,u: (Ver K) @k (Veg K)— (Vg K) | assoc(u) = O} (8)
where assoc(): (V @, K)®3 — (V ® K) is the K-linear map
assoc(p) == po (u®id) — po (id @u)
Extension of scalars then gives us a functor
F: Fldy — Set

Proposition 8.3. The functor F': Fldy — Set satisfies the Galois descent condition.

Proof. By Lemma 5.22, it suffices to show that F'is representable. Hence, by Prop. 4.6, it suffices to
exhibit an ideal I < k[z1,..., 2] such that we have a natural isomorphism F' = V(I)(—), where
F: Algy — Set is the obvious extension of (8) to the category of commutative k-algebras. Choose a
k-linear basis {e; } for the vector space V. Let R € Algy, and foreachi =1,...,nleté, :=¢; @ 1.

Then {é;} is a basis for the free R-module V' ®y R.
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Suppose 1 € F(R), and let ¢;;s € R be elements of R such that

(e @ é;) = Zcijsés

s

foreachi,j =1,...,m. Then assoc(u) = 0 if and only if for all 4,5,/ = 1,...,n
assoc(p)(€; ®é; ®eép) =0V @ R.

The latter equality then holds if and only if

n

Z(lescist —cijscspr) =0 fort=1,..., n.

s=1
Hence, we deduce that y is an associative algebra structure on V' ®y R if and only if {c;;,} €
V(I)(R) € R™ where I < klxi;s] is the ideal generated by the polynomials {Pf]g} where

n

t ._2 :
Pij@ = (fL"jlsﬁUz‘st - xz'jsivset)-
s=1

O]

There is natural conjugation-like action of the algebraic group scheme GL(V') on the functor

F': Fldgx — Set. Given g € GL(V)(K) and p € F(K) define
grp: (Ve K)®g (VoK)= (Ve K), grp=gopo(g ' ®g ') ()

By construction, the fact that y is associative implies that assoc(g * u) = 0 as well. Furthermore,

the K- linear map g: V ®x K — V ®g K is automatically an isomorphism of K-algebras
9: (Vex K,gxp) — (Ve K, p).

In particular, the stabilizer of a fixed k-algebra A := (V, i), with o € F'(k) under the above GL(V)
action is

Stabgrv)(A) (k) = Aut(4)(k),

where Aut(A): Fldy — Grp is the Galois functor of algebra automorphisms introduced in Sec.
42.2.

The Galois descent lemma Thm. 6.11 combined with Cor. 7.5 implies the following characteri-
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zation of the Galois descent problem for isomorphism classes of finite-dimensional k-algebras

Theorem 8.4 (Prop. I11.9.1 [1]). Let K/k be a field extension, and let 1/ K be Galois. For any

k-algebra A € F(k), the pointed set
H'(Ga, Aut(A)())

classifies the isomorphism classes of K -algebras which become isomorphic to A over §). In partic-

ular, the class of the trivial cocycle corresponds to the isomorphism class of A Qi K.
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9 Future work

In this section we describe possible directions for future work. A particular problem of interest,
inspired by rational homotopy theory, is to set up a Galois descent problem as described here for
finite-dimensional graded polynomial algebras equipped with a degree +1 derivation.

Non graded polynomial rings k[x1, z2, . . ., T, ] in m > 0 variables are examples of finitely gen-
erated, but infinite-dimensional k-algebras. As aresult, the automorphism group Autag, (k[z1, 2, ..., 2y))
is not a subgroup of GL,, for any n. Hence, our results from Section 4.2.2 concerning representablity,
etc. do not apply in this case. Indeed, we easily obtain an infinite number of k-algebra automorphisms
of the ungraded k-algebra k[z, y] as follows. Let f(y) € k[y] and define ¢;: k[z,y] — k[z,y] on

generators by

or(z) =x+ f(y), orly) =y
Then ¢ is a k-algebra isomorphism with inverse s : k[z, y] — klx,y] givenby ¥ ¢(x) = x — f(y),
and ¢ (y) = .

However, in some nontrivial cases, the graded commutative k-algebra k|[x,y] is finite dimen-
sional, in which case Autgalg, (k[z,y]) is a subgroup of GL,. For example, suppose |z| = 1 and
ly| = 3 where |z| and |y| denote the degree of = and y respectively. Then since k[z, y] is graded
commutative, we have

zy = (—1)1Wlyg

which shows zyy = —ya. It then follows that 22 = 0 and > = 0 since k is a field of characteristic

zero. Hence
k[ZE, y} = Span]k{la x,Yy, .ny}

is an isomorphism of k-vector spaces, and therefore
Autaig, (kfz, y]) (k) € GLa(k).

An interesting descent problem within this framework is the following: Let A := k[z1, 22, ..., zy]
be a finite-dimensional graded k-algebra. Let D: A — A be a degree 1 deriviation. For any F' €

Autgeaig, (4)(Kk), itis easy to show that D’ := Fo Do F~! is also a degree 1 derivation. This gives
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an action of Autgmnig, (4)(k) on Der(A)(k), the set of k-linear degree 1 derivations of A. Now fix
two derivations D, D" € Der(A)(k) and suppose §2/k is a Galois extension such that D and D’
are equivalent, as elements in Der(A)(2), via the action of Autgaig, (4)(2). Are D and D’ then

equivalent as derivations over k?
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