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Abstract

We give a concise exposition on the application of non-abelian Galois cohomology to descent prob-

lems in algebra, as developed by A. Borel, J.-P. Serre, and others in the late fifties and early sixties.

Although its origins lie in algebraic number theory, this abstract framework allows one to formalize

and address a very general question: If two algebraic objects defined over a field k are found to be

isomorphic over a field extension Ω/k, are they also isomorphic over k?

In this thesis, we focus on explicit descent problems over a field of characteristic zero in which

the algebraic objects involved can be described as points in Zariski closed subsets of affine space,

and whose automorphism groups are subgroups of the algebraic group GLn. In our cases of interest,

the action of the automorphism group arises by the conjugation action of GLn on various spaces of

k-linear maps.

Our presentation follows closely the 2010 monograph G. Berhuy. Our contribution is that we

fill in numerous details in the proofs found there, in particular those involving techniques from al-

gebraic geometry. We clarify the relationship between the classical Hilbert’s Theorem 90 for cyclic

extensions and the more general non-abelian Hilbert’s Theorem 90, which is one of the fundamental

basic tools used in Galois cohomology. Finally, we give a complete proof that the descent prob-

lem for a finite dimensional associative k-algebra A is controlled by the Galois cohomology set

H1(GΩ,Aut(A)(Ω)).
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1 Introduction

1.1 What is descent?

Most problems in algebra either begin or end with finding solutions to a system of polynomial equa-

tions. Finding an explicit formula for solutions is often impossible, even in the single variable case,

as was famously demonstrated by the work of É. Galois. For this reason we must step back and take

a more coarse-grained approach. In particular, we can instead ask if the system of equations have

at least one solution, never mind what the solution is. The answer to this simpler question is also

quite subtle, and can depend on the kinds of numbers we allow as valid solutions. For example, the

polynomial equation

x4 − x2 − 2 = 0

of degree 4 has either four solutions, two solutions, or no solutions depending on whether or not we

consider real and imaginary numbers, only real numbers, or only rational numbers, respectively, as

valid candidates for solutions. More abstractly, if an algebraic problem defined over a field k has a

solution in a larger field Ω containing k, we would like to know whether or not it also has a solution

over k.

Questions of this kind are called Galois descent problems, and they often arise when one is

trying to classify algebraic structures relative to some fixed initial k-linear data. For instance, sup-

pose we are interested in classifying, up to conjugacy, linear endomorphisms on an n-dimensional

vector space over an infinite field k. Then we fix a square matrix M0 ∈ Matn(k) and suppose

M ∈ Matn(k) is another matrix which we deduce is conjugate toM0 after passing to the algebraic

closure k. That is, there exists a n × n invertible matrix P ∈ GLn(k) with entries in k such that

M = PM0P
−1. (Perhaps we needed to exploit certain techniques to verify this which only hold

over algebraically closed fields.) However, we are actually interested in whether or notM is equiv-

alent toM0 over the original field k. That is, does there exist an invertible matrix R ∈ GLn(k) with

entries in k that conjugatesM andM0?

It is important to note that above we are not asking for – nor do we need – P and R to be the

same matrix in order to verify that M and M0 are equivalent over k. We only need to determine

whether or not such a R exists given the existence of P . It turns out that the answer to this descent
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problem is “yes” for any fixed matrixM0. The proof is a well known exercise in linear algebra.

On the other hand, if we adjust the problem by requiring P and the desired R to instead be

invertible matrices with determinant equal to 1, the answer to the descent problem depends on the

matrixM0 and is “no” in general. The reason why is closely related to the problem we began with:

finding solutions of polynomial equations. The constraint on the determinant of the conjugating

matrix in this case turns a linear problem into a non-linear polynomial one, which may or may not

have solutions depending on the field extension we work over.

1.1.1 The basic ingredients of a descent problem

There are several takeaways from the above matrix conjugation problem that become reoccurring

themes in the kinds of descent problems that we consider in this thesis.

• First, there is the set F (k) of algebraic structures over k which we would like to classify,

and we have an “extension of scalars” operation, which provides a way of interpreting these

structures as elements of a set F (Ω) over any extension field Ω of k.

• Next, we can characterize the symmetries of the algebraic structures via a group action of a

subgroup G(k) of the general linear group GLn(k), which gives us an equivalence relation

on F (k) the corresponding “orbit space”. Two algebraic structures are considered equivalent

if they lie in the same orbit of this group action. Furthermore, the group action by G(k) is

naturally compatible with the action of an analogous group G(Ω) on F (Ω) via the extension

of scalars.

• The descent problem is characterized by fixing one algebraic structure A0 ∈ F (k) and then

considering the so-called “twisted forms” of A0 that “split” over a field extension Ω/k. These

are isomorphism classes of algebraic structures A ∈ F (k) which become isomorphic to A0

as objects in F (Ω) via the action of G(Ω).

• Finally, the Galois group of any Galois extension Ω/k acts on the set of structures F (Ω) and

the group of symmetries G(Ω) in a functorial way. The way we determine whether or not

the descent problem has a “positive” or “negative” solution is by checking to see if a twisted
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form split over Ω “descends” back down to F (k) by taking the fixed points of the Galois group

action.

1.2 Why profinite groups?

In order to determine whether or not a descent problem for Ω/k has a positive answer, we need a

way to get from Ω down to k. If Ω is a finite Galois extension of k, one way to do this is to look at

the fixed field of Ω by the Galois group of Ω/k, which is exactly k.

However, this approach runs into problems when considering algebraic extensions such as the

algebraic closure Q of Q, which is arguably the most important extension of the rationals from an

elementary number theoretic perspective. Indeed, Q is an infinite Galois extension of Q, and its

intermediate extensions are not in bijection with subgroups of the absolute Galois group Gal(Q/Q),

as there are proper subgroups of Gal(Q/Q) whose fixed field is Q. In order to rescue the funda-

mental theorem of Galois theory for infinite Galois extensions Ω/k, we restrict our attention to the

closed subgroups of the Galois group with respect to the “Krull topology”. Endowed with this topo-

logical structure, Gal(Ω/k) is isomorphic as a topological group to lim←−L Gal(L/k) where L runs

through all finite Galois subextensions of Ω/k. In other words, Gal(Ω/k) is a profinite group.

1.3 Why non-abelian cohomology?

In full generality, the objects at hand when setting up a Galois descent problem are a group scheme

G acting on a functor F , both equipped with an action by the profinite group G = Gal(Ω/k), where

the action of G on the group scheme G is continuous. The orbit-stabilizer theorem says that for all

elements a in F (k) there is a bijection between the set of left cosets G(Ω)/StabG(Ω)(a) and the

orbit of a, resulting in an exact sequence of pointed sets

1→ StabG(a)→ G→ G(Ω) ∗ a→ 1.

where G(Ω) ∗ a denotes the orbit of a. No assumption that the groups involved in this construction

are abelian nor do subgroups need to be normal. Indeed, the orbitG(Ω)∗a is not a group in general.

Yet, as alluded to above, in order to “descend” back down to k, we want to take Galois fixed

points, i.e. G-invariants, of the above sequence. As is the case in standard group cohomology, the
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Galois fixed point functor (−)G need not be right exact. In fact, the failure of this functor to preserve

right exactness is the obstruction to a “positive” answer to descent problems involving the algebraic

structure a ∈ F (k).

Much like the case of ordinary homological algebra, there is, in fact, a way to repair the failure

of right exactness by extending the sequence 1 → StabG(a)G → GG → (G(Ω) ∗ a)G to a “long

exact” sequence of pointed sets of the form

1→ StabG(a)G → GG → (G(Ω) ∗ a)G
δ0−→ H1(G, StabG(a)(Ω))→ H1(G, G(Ω)).

The pointed sets H1(G,−) in the above sequence are called the “degree 1 non-abelian Galois co-

homology sets” of G. Conveniently, these sets are constructed by means of considering continuous

non-abelian valued cochains within the familiar cochain complex used to compute ordinary group

cohomology.

The continuity of cocycles in this construction yields a characterization of profinite cohomology

in terms of ordinary group cohomology when the coefficents are abelian. Specifically, for a profinite

group Γ and a discrete Γ-module A, we have an isomorphism

Hn(Γ, A) ∼= lim−→
U

Hn
Grp(Γ/U,AU )

where U ranges through open normal subgroups of Γ, a rather desirable result as finite group coho-

mology is well understood and easier to work with.



5

2 Main results

This thesis provides a concise exposition on the application of non-abelian Galois cohomology to

descent problems in algebra, with a focus on classification problems of algebraic structures. Our

presentation follows closely the monograph G. Berhuy [1]. In particular, we review basic facts and

key theorems concerning: profinite Galois groups (Sec. 3.2.2), group schemes (Sec. 4), profinite

non-abelian group cohomology, as developed by A. Borel and J.-P. Serre [4] (Sec. 5.1) and twisted

forms (Sec. 6.1). Our exposition culminates with the characterization of a Galois descent problem

via the Descent Lemma (Thm. 6.11), a result of Serre. We also give a thorough treatment of the

matrix conjugacy problem via Galois descent in Sec. 8.1.

However, we provide several novel additions as well: we fill in numerous details in the proofs

given in [1], particularly those involving techniques from algebraic geometry (Section 4.1); we clar-

ify in Section 7 the relationship between the classical Hilbert’s Theorem 90 for cyclic extensions

and the more general non-abelian Hilbert’s Theorem 90, which is one of the fundamental basic

tools used in Galois cohomology. In Section 8.2 we give a complete proof that the descent prob-

lem for a finite dimensional associative k-algebra A is controlled by the Galois cohomology set

H1(GΩ,Aut(A)(Ω)). Finally, in Section 9 we discuss applications to finite-dimensional graded

polynomial algebras equipped with a degree +1 derivation as a possible direction for future work.
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3 Preliminaries

3.1 Conventions

Throughout this thesis, we adopt the following conventions and notations:

• k denotes a field of characteristic zero.

• K denotes an algebraic closure of any fieldK.

• If Ω/K is a Galois extension the Galois group Gal(Ω/K) will be denoted GΩ wheneverK is

clear from the context.

• We use multiplicative notation for all groups, abelian or otherwise.

• Set denotes the category whose objects are sets, and whose morphisms are functions.

• Set∗ denotes the category whose objects are pointed sets and whose morphisms are maps of

pointed sets.

• Grp denotes the category whose objects are groups and whose morphisms are group homo-

morphisms. AbGrp is the category whose objects are abelian groups and whose morphisms

are group homomorphisms.

• Algk denotes the category whose objects are unital commutative k-algebras and whose mor-

phisms are unit preserving k-algebra homomorphisms.

• Fldk denotes the full subcategory of Algk whose objects are field extensions of k.

3.2 Results from elementary Galois theory

We begin by recalling standard results from elementary Galois theory. We refer to Morandi’s book

[3] for details and a more thorough introduction.

Definition 3.1. Let K and K ′ be fields, let L/K and L′/K ′ be extensions. Let ι : K → K ′ be a

ring homomorphism. We say that φ : L→ L′ is an extension of ι if and only if φ|K = ι.
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Theorem 3.2. Let K be a field and L/K be an algebraic extension. Let E be an algebraically

closed field, and let τ : K → E be a ring homomorphism. Then there exists a ring homomorphism

σ : L→ E such that σ|K = τ . That is, there exists an extension σ : L→ E of τ .

Corollary 3.3. Let K and K ′ be fields, and let ι : K → K ′ be a ring homomorphism. Then there

exists an extension φ : K → K ′ of ι.

Let Ω denote the infinite extensionQ({√p | p prime}) ofQ. In the following example, we show

Ω/Q is Galois, and exhibit a proper subgroupH ofGal(Ω/Q) such thatΩH = ΩGal(Ω/Q) = Q. This

shows that the fundamental theorem of Galois theory for finite extensions fails for infinite extensions.

Example 3.4. Set Ω = Q({√p | p prime}). Then Ω/Q is normal since Ω is the splitting field of

the collection of polynomials {x2 − p | p prime} ⊆ Q[x]. Since Ω/Q is an algebraic extension

and char Q = 0, then Ω/Q is separable. Hence Ω/Q is an infinite Galois extension. Now for each

prime p, let σp be the element of Gal(Ω/Q) defined by√p 7→ −√p and
√
p′ 7→

√
p′ for all p′ 6= p.

Now consider the subgroup H = 〈{σp | p prime}〉 of Gal(Ω/Q). Note that H does not contain the

element σ ∈ Gal(Ω/Q) which maps√p to−√p for all prime p. HenceH 6= Gal(Ω/Q). We claim

that ΩH = Q. Since Ω/Q is Galois, for any x ∈ Ω, the roots of the minimal polynomial of x belong

to Ω. Hence if x =
√
p1,
√
p2, . . . ,

√
pn are the the n distinct roots of the minimal polynomial of

x, then x is contained in the subfield E = Q(
√
p1,
√
p2, . . . ,

√
pn) ⊆ Ω. Since x ∈ Ω is separable

over k, it follows that E/Q is a finite Galois extension. Now suppose x ∈ ΩH . Then x is fixed by

σp1 , . . . , σpn ∈ H , and since Gal(E/Q) = 〈σp1 , . . . , σpn〉 we conclude that x ∈ Q.

Proposition 3.5. Let k be a field and Ω/k a Galois extension. Let

N := {Gal(Ω/L) | k ⊂ L ⊂ Ω and L/k is finite Galois}

Then the Krull topology on Gal(Ω/k) is the unique topology such that for all σ ∈ Gal(Ω/k) the set

{σH | H ∈ N} is a basis of open neighborhoods of σ.

Theorem 3.6 (Fundamental Theorem of Galois Theory (Thm 17.8 [3])). Let Ω/k be a Galois exten-

sion. With the Krull topology on Gal(Ω/k), the assignment between subfields L of Ω and subgroups
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of Gal(Ω/k) given by

L 7−→ Gal(Ω/L)

ΩH ←− [ H

induces a bijection between the following sets:

1. The set of subfields k ⊂ L ⊂ Ω and the set of closed subgroups of Gal(Ω/k).

2. The set of subfields k ⊂ L ⊂ Ω such that [L : k] < ∞ and the set of open subgroups of

Gal(Ω/k).

3. The set of subfields k ⊂ L ⊂ Ω such that L/k is a finite Galois extension and the set of open

normal subgroups of Gal(Ω/k).

Moreover, if H is an open normal subgroup of Gal(Ω/k) then we have

Gal(ΩH/k) ∼= Gal(Ω/k)/H.

In particular, for any finite Galois subextension k ⊂ L ⊂ Ω we have

Gal(Ω/k)/Gal(Ω/L) ∼= Gal(L/k).

3.2.1 Morphisms of Galois extensions

Proposition 3.7 (Prop. I.2.9 [1]). LetK andK ′ be fields, let Ω/K and Ω′/K ′ be Galois extensions,

and let ι : K → K ′ be a ring homomorphism. Assume that there exist extensions φ1, φ2 : Ω → Ω′.

Then for all τ ′ ∈ Gal(Ω′/K ′), there exists a unique τ ∈ Gal(Ω/K) such that

τ ′ ◦ φ1 = φ2 ◦ τ.

In particular, there exists ρ ∈ Gal(Ω/K) such that φ1 = φ2 ◦ ρ.

Corollary 3.8 (Cor. I.2.10 [1]). LetK andK ′ be fields, let Ω/K and Ω′/K ′ be Galois extensions,

and let ι : K → K ′ be a ring homomorphism. Let φ : Ω → Ω′ be an extension of ι. For all

τ ′ ∈ Gal(Ω′/K ′), let φ(τ ′) be the unique element of Gal(Ω/K) such that

τ ′ ◦ φ = φ ◦ φ(τ ′).
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Then the map φ : Gal(Ω′/K ′) → Gal(Ω/K) is a continuous group homomorphism. Moreover, if

φ′ is another extension of ι, then there exists ρ ∈ Gal(Ω/K) such that φ = φ′ ◦ ρ, and we have

φ′ = Inn(ρ) ◦ φ.

3.2.2 The Galois group as a profinite group

Recall that a directed set is a partially ordered set (I,�), such that for all i, j ∈ I , there exists k ∈ I

such that i � k and j � k. A projective system in a category C is a collection of objects {Ci}i∈I

indexed by a directed set I together with morphisms φij : Cj → Ci for any i, j ∈ I with i � j,

satisfying the following properties:

1. φii = idCi for all i ∈ I .

2. φij ◦ φjk = φik for all i, j, k ∈ I with i � j � k.

Let Ω/k be a Galois extension. Then the set of all finite Galois subextensions of Ω/kwith the partial

order relation “⊆” is a directed set. For any finite Galois extension L/k, set XL = Gal(L/k), and

for any L/k, L′/k with L ⊂ L′, let φLL′ be the group homomorphism

φLL′ : XL′ −→ XL

σ 7→ σ|L.

Together this forms a projective system of groups.

Definition 3.9. If ((Ci)i∈I , (φij)) is a projective system in a category C, the inverse limit lim←−Ci is

given by

lim←−Ci =

{
(xi)i∈I ∈

∏
i∈I

Ci

∣∣∣∣∣ φij(xj) = xi for all i � j

}
.

If ((Ci)i∈I , (φij)) is a projective system of topological spaces (resp. groups), then the inverse

limit is also a topological space (resp. group) with respect to the topology induced by the product

topology.

Definition 3.10. A topological group Γ is profinite if it is isomorphic as a topological group to an

inverse limit of finite groups, each of them being endowed with the discrete topology.
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Theorem 3.11 (Thm I.2.18 [1]). Let Ω/k be a Galois extension. Then Gal(Ω/k) equipped with the

Krull topology is a profinite group. In particular, there is an isomorphism of topological groups

Gal(Ω/k) ∼= lim←−
L

Gal(L/k)

where L/k runs over all finite Galois subextensions of Ω/k.

Below is a proposition which establishes nice properties of profinite groups.

Proposition 3.12 (Thm 2 [5]). The following are equivalent conditions.

1. Γ is a profinite group.

2. Γ is a compact, Hausdorff group in which each neighborhood of 1 contains an open normal

subgroup of Γ.

3. Γ is a compact, totally disconnected, Hausdorff group.

Closed subsets of a compact Hausdorff space are compact sets, so the above proposition implies

that closed subgroups of a profinite group are again profinite. Moreover, every open subgroup of a

profinite group is closed. For all σ ∈ Γ, the collection {σU | U open in Γ} forms a basis of open

neighborhoods of σ, and the topology generated by this basis is called the profinite topology.

3.3 Category theoretic notions

Here we present tools from category theory which we appeal to throughout the thesis.

Definition 3.13. Let C be a category, let D be a subcategory of Set and let F : C → D be a functor.

A functor F ′ : C → D is a subfunctor of F if the following properties hold:

1. For all A ∈ C, we have F ′(A) ⊂ F (A).

2. For all A,B ∈ C, and every map f ∈ homC(A,B), the induced morphism F ′(f) : F ′(A)→

F ′(B) is the restriction of F (f) : F (A)→ F (B). In other words, the diagram

F ′(A) F ′(B)

F (A) F (B)

F ′(f)

F (f)
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commutes.

Definition 3.14. Let C and D be categories and F,G : C ⇒ D be functors. A natural transforma-

tion of functors Θ: F → G is a rule which assigns a morphism ΘA : F (A) → G(A) of D to each

object A ∈ C such that for every morphism f : A→ B of C the diagram

F (A) G(A)

F (B) G(B)

ΘA

F (f) G(f)

ΘB

commutes. The collection of morphisms ΘA are called the components of Θ. If every component

ΘA is an isomorphism, then Θ is a natural isomorphism, and we write Θ: F ∼= G

3.3.1 Representable functors

Let C be a category. Let A ∈ C and define hA : C → Set as follows. For every object B ∈ C set

hA(B) := homC(A,B) and for each morphism f : B → C of C let hA(f) : hA(B) → hA(C) be

the morphism defined by

hA(f) : homC(A,B) −→ homC(B,C)

φ 7−→ f ◦ φ.

Let φ ∈ homC(A,B). Then hA(idB)(φ) = idB ◦φ = φ, and so hA(idB) = idhA(B). If f : B → C

and g : C → D are morphisms of C, then

hA(g ◦ f)(φ) = (g ◦ f) ◦ φ = g ◦ (f ◦ φ)

= hA(g)(f ◦ φ) = hA(g) ◦ hA(f)(φ).

Hence hA is a functor.

Definition 3.15. Let F : C → Set be a functor. We say that F is representable if there is a natural

isomorphism of functors F ∼= hA for some objectA ∈ Ob(C). In this case we say F is represented

by A.

Lemma 3.16 (The Yoneda Lemma (Lemma III.7.13 [1])). Let C be a category. For every pair of

objectsA,B ∈ Ob(C), there is a one-to-one correspondence between the set of morphisms φ : B →
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A and the set of natural transformations Θ: hA → hB .

Remark 3.17. The bijection in the Yoneda lemma sends Θ(idhA) to φ.
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4 Group schemes

In this section, we define algebraic group schemes, which are a main component in defining the

Galois cohomology functor in Section 5. We recall tools from algebraic geometry and use them to

obtain the representability of two main group schemes appearing in this thesis, which, for a finite

dimensional vector space V and a finite dimensional k-algebra A, are the algebraic group GL(V )

and the algebraic group scheme Aut(A).

4.1 Representable functors from algebraic geometry

We recall some basic terminology from the algebraic geometry of affine varieties and their general-

izations. A standard reference is [6, §1]. However, here we will consider base fields k of character-

istic zero other than the complex numbers, which we do not assume to be algebraically closed, and

we allow the possibility of non-radical ideals. The best way for dealing with such spaces is via the

theory of finite-type (reduced) affine k-schemes [2, §II.2]. But this approach is overkill for the rather

unsophisticated results that we need here.

In what follows, k denotes a field not necessarily algebraically closed.

4.1.1 Affine varieties

Given an ideal I E k[x1, . . . , xn] and a k-algebraR ∈ Algk, we consider I as a subset ofR[x1, . . . , xn]

and define

V(I)(R) := {r := (r1, r2, . . . , rn) ∈ Rn | g(r) = 0 for all g ∈ I}. (1)

In particular, let Z := V(I)(k). Then Z ⊆ kn is, by definition, a closed subset in the Zariski

topology on affine n-space kn. Denote by k[Z] the finitely generated k-algebra

k[Z] := k[x1, . . . , xn]/I.

We recall that a k-algebra R ∈ Algk is a reduced k-algebra if it contains no nilpotent elements [6,

§2.1]. IfR is finitely generated andR = k[x1, . . . , xn]/I with I E k[x1, . . . , xn], thenR is reduced
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if and only if I is a radical ideal i.e. I = rad(I) where

rad(I) := {f ∈ k[x1, . . . , xn] | fn ∈ I for some n > 0}.

Definition 4.1. Let be an ideal I E k[x1, . . . , xn]. We say that the Zariski closed subset

Z = V(I)(k) ⊆ kn

is an affine k-variety if I is a radical ideal. The reduced k-algebra

k[Z] = k[x1, . . . , xn]/I

is called the coordinate ring of the variety Z.

Remark 4.2. If Z = V(I)(k) ⊆ kn is the zero locus of an ideal I that is not radical, then Z

corresponds to the set of geometric points of the finite-type affine k-scheme Spec(k[x1, . . . , xn]/I).

The general linear group GLn(k) as an affine variety The main example of an affine k-variety

appearing throughout this thesis is the group GLn(k) of n× n invertible matrices with entries in a

field. Identify the set of n× n matrices with the affine space kn2 :

Matn(k) = {(aij) | aij ∈ k, 1 ≤ i, j ≤ n}

= kn
2
.

Then the determinant function det : Matn(k) → k becomes a homogeneous degree n polynomial

in the n2 variables (xij):

det(xij) ∈ k[(xij)].

In the next proposition, we analyze the zero locus of the polynomial of n2 +1 variables y det(xij)−

1 ∈ k[(xij), y].

Proposition 4.3. Denote by GLn(k) := {(aij) ∈ Matn(k) | det(aij) 6= 0} the set of n × n

invertible matrices with entries in k.

1. The function

γ : GLn(k)→ kn
2+1, γ(aij) :=

(
aij , det(aij)

−1
)
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is injective, and its image is the Zariski closed subset

Z := V(〈 y det(xij)− 1 〉).

2. The above identification with Z gives GLn(k) the structure of an affine k-variety with coordi-

nate ring

k[GLn] := k[(xij), y]/
〈
y det(xij)− 1

〉
.

Proof.

1. Observe that the function γ is just the embedding of the graph of the composition of the matrix

inverse function (aij) 7→ (aij) with the determinant into kn2+1.

2. We need to show k[GLn] is a reduced k-algebra, i.e. that the ideal
〈
g
〉
, where g := y det(xij)−1

is radical. Since every prime ideal is a radical ideal, and a polynomial in k[GLn] is prime if and

only if it is irreducible, it suffices to show that g is irreducible.

We first prove that det(xij) ∈ k[(xij)] is an irreducible polynomial via an induction argument

on n, the number of variables in det(xij). The base case is obvious. Let n > 1, and suppose the

polynomial det(uk`) in n − 1 variables {uk`}1≤k,`≤n−1 is irreducible. For i, j = 1, . . . , n, let

Xij denote the (i, j)-minor of the matrix (xij). Then each detXij is the determinant polynomial

in n−1-variables and therefore irreducible by the induction hypothesis. Note further that detXij

cannot be a multiple of detXi′j′ if Xij 6= Xi′j′ . Now expand det(xij) across the first row

det(xij) = x11 detX11 − x12 detX12 + · · ·+ (−1)n+1x1n detX1n.

The right hand side is linear in the variables x11, x12, . . . , x1n none of which appear in any of

the polynomials detXij . Hence, if det(xij) has a non-trivial factorization, then the polynomials

detXij have a non-trivial common divisor, which is impossible.

Now returning to g = y det(xij)−1, we work in the ring k[y][xij ] of polynomials in the variables

xij with coefficients in k[y]. Suppose f, h give a non-trivial factorization g = fh. Write f =∑
d≥0 fd and h =

∑
d≥0 hd for the decomposition of f and h into homogeneous pieces (with

respect to degree in xij’s). Note that g ∈ k[y][xij ] is concentrated in homogeneous degrees n
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and 0. Then f0h0 = −1 and for 1 ≤ k ≤ n − 1,
∑k

d=0 fk−dhd = 0. Substitution then shows

that the degree n term
∑n

d=0 fk−dhd is a non-trivial factorization of y det(xij). This contradicts

the fact that det(xij) is irreducible. Hence g is irreducible.

Remark 4.4. For any field k, the vanishing ideal I(S) E k[x1, . . . , xn] of a subset S ⊆ kn is the

radical ideal

I(S) := {f ∈ k[x1, . . . , xn] | f(a) = 0 ∀a ∈ S}

Clearly S ⊆ V(I(S)), and it is easy to see that V(I(S)) the Zariski closure of S. In particular, for

any ideal J E k[x1, . . . , xn], we have V(J) = V(I(J)).

If k is algebraically closed, then Hilbert’s Nullstellensatz implies that rad(J) = I(V(J)) for any

ideal J E k[x1, . . . , xn]. If k 6= k̄, then the strict containment rad(J) ( I(V(J)) is possible, e.g.

take J to be the maximal ideal
〈
x2 + 1

〉
E R[x].

4.1.2 The functor of points for an affine variety

A k-algebra morphism φ : R → R′ in Algk extends uniquely to a morphism between polynomial

rings φ̃ : R[x1, . . . , xn]→ R′[x1, . . . , xn]with the property that φ̃(f) = f for all f ∈ k[x1, . . . , xn].

It then follows that for any ideal I E k[x1, . . . , xn], we can functorially assign to each morphism

φ : R→ R′ in Algk a function between the corresponding sets in (1)

V(I)(R)→ V(I)(R′), (r1, r2, . . . , rn) 7→ (φ(r1), φ(r2), . . . , φ(rn)).

Definition 4.5. The functor of points of an affine k-variety Z = V(I) ⊆ kn is the functor

V(I)(−) : Algk → Set, R 7→ V(I)(R)

The elements of the set V(I)(R) are called the R-points of the variety Z.

Let I E k[x1, . . . , xn] be an ideal and k[Z] = k[x1, . . . , xn]/I . Let πZ : k[x1, . . . , xn]→ k[Z]

denote the canonical surjection. Then for any R ∈ Algk, we have a function induced by precompo-



17

sition by πZ :

π∗Z(R) : homAlgk(k[Z], R)→ homAlgk(k[x1, . . . , xn], R), π∗Z(R)(α) := πZ ◦ α.

Proposition 4.6. Let I E k[x1, . . . , xn] be an ideal, and let k[Z] be the k-algebra as above.

1. For every R ∈ Algk, the function Θ(R) : homAlgk(k[x1, . . . , xn], R)→ Rn defined as

Θ(R)(α) :=
(
α(x1), α(x2), . . . , α(xn)

)
is a bijection of sets.

2. For every R ∈ Algk, the composition of functions

Θ(R) ◦ π∗Z(R) : homAlgk(k[Z], R)→ Rn

is injective with image

im(Θ(R) ◦ π∗Z(R)) = V(I)(R).

In particular, for R = k, the above gives a bijection of sets

homAlgk(k[Z], k) ∼= Z.

Proof.

1. k[x1, . . . , xn] is the free commutative k-algebra generated by the k-vector space

V := spank{x1, x2, . . . , xn}. Hence, restriction of a k-algebra morphism α : k[x1, . . . , xn] →

R to its generators induces a one-to-one correspondence

homAlgk(k[x1, . . . , xn], R)
∼=−→ homk(V,R)

where homk(V,R) denotes the k-vector space of k-linear maps from V into R. Composing the

above bijection with the canonical k-linear isomorphism

homk(V,R) = homk
( n⊕
i=1

kxi, R
) ∼= n⊕

i=1

homk(k, R) ∼= Rn

provides the inverse to the function Θ(R).
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2. To show injectivity of Θ(R) ◦ π∗Z(R), we only need to verify that π∗(R) is injective, which

follows immediately from the fact that πZ : k[x1, . . . , xn]→ k[Z] is surjective.

Next we prove im
(
Θ(R) ◦ π∗Z(R)

)
= V(I)(R). For each i = 1, . . . , n, let x̄i := πZ(xi). Let

g ∈ k[x1, . . . , xn] be a polynomial which we write in multi-index notation

g(x1, . . . , xn) =
∑
~i

a~i x
i1
1 x

i2
2 · · ·x

in
n , ~i := (i1, i2, . . . , in) ∈ Nn0 , a~i ∈ k.

Then, since πZ is a k-algebra morphism, we have the equality

πZ(g) =
∑
~i

a~i x̄
i1
1 x̄

i2
2 · · · x̄

in
n .

To show im
(
Θ(R) ◦ π∗Z(R)

)
⊆ V(I)(R), let β : k[Z]→ R be a k-algebra morphism, and let

r =
(
Θ(R) ◦ π∗Z(R)

)
(β) = (β(x̄1), β(x̄2), . . . , β(x̄n)) ∈ Rn.

Let g ∈ I E k[x1, . . . , xn]. Evaluation of g with r gives:

g(r) =
∑
~i

a~i r
i1
1 r

i2
2 · · · r

in
n

=
∑
~i

a~i β(πZ(xi11 ))β(πZ(xi22 )) · · ·β(πZ(xinn ))

= β
(
πZ
(
g(x1, x2, . . . , xn)

))
= 0,

where the last equality follows from the fact that I = kerπZ . Hence r ∈ V(I)(R).

For the other containment, suppose r ∈ V(I)(R), and let α : k[x1, . . . , xn] → R be the unique

k-algebra morphism such that α(xi) = ri for each i = 1, . . . , n. Then g(r) = 0 for all g ∈ R

implies that α(g) = 0, since α is an algebra morphism. Hence I ⊆ kerα, and so there exists a

unique k-algebra morphism β : k[Z]→ R such that β ◦ πZ = α. Therefore

Θ(R) ◦ π∗Z(R)(β) = Θ(R)(β ◦ πZ) = Θ(R)(α) = r.

Hence, r ∈ im
(
Θ(R) ◦ π∗Z(R)

)
, and this completes the proof.
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Corollary 4.7. The functor of points V(I)(−) : Algk → Set of an affine k-variety Z = V(I) ⊆ kn

is represented by its coordinate ring k[Z].

Proof. The bijective functionΘ(R)◦π∗Z(R) : homAlgk(k[Z], R)→ V(I)(R) from Prop. 4.6 defines

a natural isomorphism of functors

Θ ◦ π∗Z : hk[Z](−)
∼=−→ V(I)(−).

Corollary 4.8. The functor GLn : Algk → Set defined as

GLn(R) := {(aij) ∈ Matn(R) | det(aij) 6= 0}

is isomorphic to the functor of points of the affine k-variety GLn(k).

Proof. Follows from combining Cor. 4.3 with Cor. 4.7.

Theorem 4.9. Let I, J E k[x1, . . . , xn] be ideals. If F : Algk → Set is a functor such that F (R) =

V(I)(R) ∩ V(J)(R) for all R ∈ Algk, then F is represented by the finitely generated k-algebra

k[x1, . . . , xn]/(I + J).

Proof. The equalityF (R) = V(I)(R)∩V(J)(R) for allR implies thatF (−) = V(I+J)(−). As in

the proof of Cor. 4.7, we deduce from Prop. 4.6 that F is represented by k[x1, . . . , xn]/(I+J).

Remark 4.10. Recall that if I, J E k[x1, . . . , xn] are radical ideals then I + J need not be radical.

Hence, ifF : Algk → Set is a functor satisfyingF (R) = V(I)(R)∩V(J)(R) as in Thm. (4.9) above,

then F (k) need not be an affine variety, even if both V(I)(k) and V(J)(k) are affine varieties.

4.2 Algebraic group schemes

Definition 4.11. Let k be a field. A group-scheme defined over k is a functor G : Algk → Grp.

An affine group-scheme defined over k is a group scheme G : Algk → Grp which is representable

as a functor Algk → Set. An algebraic group-scheme defined over k is an affine group-scheme G

which is represented by a finitely generated k-algebra A. Furthermore, if A is reduced, we say that

G is an algebraic group defined over k.
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4.2.1 The algebraic group GL(V )

Theorem 4.12. Let V be a finite dimensional k-vector space, with dimk V = n. The group scheme

GL(V ) : Algk → Grp given by GL(V )(R) := GL(V ⊗k R) is an algebraic group.

Proof. By choosing a basis for V we see that GL(V ) is naturally isomorphic to GLn. Hence, it

suffices to show GLn is an algebraic group, which follows immediately from Cor. 4.8.

The following proposition will play an important role in Sec 7 when generalizing cohomological

Hilbert’s Theorem 90 to arbitrary Galois extensions.

Proposition 4.13 (Ex III.7.19 (2) [1]). Let A be a finite dimensional k-algebra. Then the functor

GL1(A) : Algk → Grp given by GL1(A)(R) = (A⊗k R)× is an algebraic group scheme.

4.2.2 The algebraic group scheme Aut(A)

Theorem 4.14. LetA be a finite dimensional (not necessarily commutative) k-algebra, withdimkA =

n. The functor Aut(A) : Algk → Grp defined as

Aut(A)(R) := AutAlgR(A⊗k R)

is an algebraic group scheme.

Proof. LetR ∈ Algk and let φ ∈ Aut(A)(R). Then φ : A⊗kR→ A⊗kR is a ring homomorphism

that is also aR-module isomorphism and therefore belongs to GL(A)(R). From Thm. 4.12 we have

GL(A)(−) ∼= V(I)(−), where

I =
〈
y det(xij)− 1

〉
E k[y, xij ].

In what follows, we will construct an ideal J E k[y, xij ] such that for all R ∈ Algk

Aut(A)(R) = V(J)(R) ∩ V(I)(R).

Then Thm. 4.9 will imply that Aut(A) is an algebraic group scheme.

So let φ ∈ Aut(A)(k) = AutAlgk(A). Let {ei}ni=1 be a k-linear basis for A. Then for all
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i = 1, . . . , n

φ(ei) =
n∑
j=1

bijej

where each bij ∈ k. Since φ : A → A is a k-linear isomorphism in GL(A)(k), the matrix (bij) is

a point in the affine variety GL(A)(k) = V(I)(k). The basis {ei}ni=1 for A also induces a basis

{e` ⊗ ek}n`,k=1 for A ⊗k A. Let µ : A ⊗k A → A denote the associative product on A. For each

`, k = 1, . . . , n we have

µ(e` ⊗ ek) =
n∑
s=1

c`kses

where each c`ks ∈ k. Since φ is compatible with the product µ, we have for each `, k = 1, . . . , n

φ(µ(e` ⊗ ek))− µ(φ(e`)⊗ φ(ek)) = 0. (2)

On the other hand:

φ(µ(e` ⊗ ek))− µ(φ(e`)⊗ φ(ek)) =

n∑
s=1

c`ksφ(es)− µ

(
n∑
s=1

b`sbks(es ⊗ es)

)

=
n∑
s=1

n∑
j=1

c`ksbsjej −
n∑
s=1

b`sbksµ(es ⊗ es)

=
n∑
j=1

n∑
s=1

(c`ksbsj − b`sbkscssj)ej .

Hence, since {ei}ni=1 is a basis, Eq. 2 implies that for each j = 1, . . . , n, the matrix (bij) ∈

GL(A)(k) satisfies the equation

n∑
j=1

c`ksbsj − b`sbkscssj = 0.

In other words, φ : A → A is an automorphism of k-algebras if and only if (bij) ∈ GL(A)(k) ∩

V(J)(k), where

J =
〈
{P s`k(y, xij) | s = 1, . . . , n}

〉
E k[y, xij ]

and {P s`k} are the quadratic polynomials

P s`k(y, xij) := −
n∑
j=1

(
cssjx`sxks − c`ksxsj

)
Finally, observe that for anyR ∈ Algk, the tensors {ei⊗1}ni=1 are a basis for theR-algebraA⊗kR,
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and this extends to a basis on the freeR-module (A⊗kR)⊗R (A⊗kR). Hence, the same calculation

as the one above shows that

Aut(A)(R) = GL(A)(R) ∩ V(J)(R),

and this completes the proof.
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5 Galois cohomology

In this section, we present the abstract framework needed to define Galois cohomology, beginning

with an exposition of profinite group cohomology, as developed by Serre (see [4].) We explain how

a short exact sequence 1 → H → G → S → 1 of Γ-sets for a profinite group Γ under certain

conditions induces a long exact sequence in cohomology, a key result which allows us to deduce

a bijection between the orbit set SΓ/GΓ and the kernel of the map H1(Γ, H) → H1(Γ, G). The

bijection is a fundamental ingredient in the proof of the Galois descent lemma in Section 6.3.

5.1 Profinite group cohomology

Throughout this section we fix a profinite group Γ. We will use the notation “•” to denote a Γ action

and “·” to denote multiplication in a not necessarily abelian group A.

5.1.1 Cohomology sets

Definition 5.1. A left action of Γ on a set A is continuous if for all a ∈ A, the set

StabΓ(a) = {σ ∈ Γ | σ • a = a}

is an open subgroup of Γ. Note that the definition is equivalent to asking for the assignment Γ×A→

A given by (σ, a) 7→ σ • a to be continuous, i.e., the usual notion of continuous action. Sets with a

continuous left action of Γ are called Γ-sets. A group A which is also a Γ-set is called a Γ-group if

Γ acts by group homomorphisms, meaning

σ • (a1a2) = (σ • a1) · (σ • a2) for all σ ∈ Γ, a1, a2 ∈ A.

Furthermore, if A is abelian then A is called a Γ-module. We denote by SetΓ the category of

left Γ-sets. Similarly, GrpΓ and ModΓ denote the categories of left Γ-groups and left Γ-modules,

respectively. In what follows, we use CΓ to denote the category SetΓ, GrpΓ or ModΓ. A morphism

of CΓ is a morphism f : A→ A′ of C such that

f(σ • a) = σ • f(a) for allσ ∈ Γ, a ∈ A.
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Below we give two simple examples of a Γ-set, and an example of a Γ-module.

Example 5.2.

1. Assume Γ is a finite group. Then any set A on which Γ acts on the left is a Γ-set.

2. Any set A on which Γ acts trivially is a Γ-set.

3. Let Ω/k be a Galois extension, and GΩ = Gal(Ω/k). Then the map

GΩ × Ω −→ Ω

(σ, x) 7−→ σ(x)

endows Ω with the structure of a GΩ-module.

Lemma 5.3. Let A be set equipped with a left Γ-action. Then the action of Γ on A is continuous if

and only if ⋃
U∈N

AU

where N denotes the set of open normal subgroups of Γ.

Proof. First suppose the action of Γ on A is continuous and let a ∈ A. Then by Proposition 5.1

StabΓ(a) is an open subgroup of Γ. Since Γ is profinite, all open subgroups of Γ are closed and

are therefore profinite. Moreover, since StabΓ(a) contains 1, there exists U ∈ N such that U ⊆

StabΓ(a). Hence a ∈ AU . Since AU ⊂ A for all U ∈ N , it follows that

A =
⋃
U∈N

AU .

Now assume that the above equality holds, and let a ∈ A. Then there exists U ∈ N such that

a ∈ AU , and hence for all σ ∈ U we have σ • a = a. Let τ ∈ StabΓ(a). Then for all σ ∈ U ,

τσ • a = τa = a. Therefore τU ⊆ StabΓ(a) for all τ ∈ StabΓ(a). Since 1 ∈ U we have that

StabΓ(a) ⊆
⋃
τ∈StabΓ(a) τU . Hence we have shown that

StabΓ(a) =
⋃

τ∈StabΓ(a)

τU.

Since each τU is open it follows that StabΓ(a) is open.
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Definition 5.4.

1. Let A ∈ SetΓ. We set

H0(Γ, A) := AΓ

where AΓ is the set of fixed points of A. If A ∈ GrpΓ, this is a subgroup of A. The set

H0(Γ, A) is called the 0th cohomology set of Γ with coefficients in A.

2. Let A ∈ GrpΓ. A 1-cocycle of Γ with values in A is a continuous map α : Γ→ A such that

α(στ) = α(σ) · (σ • α(τ)) for all σ, τ ∈ Γ.

We denote by Z1(Γ, A) the set of all 1-cocycles of Γ with values in A. The constant map

Γ→ A which assigns each σ ∈ Γ to 1 ∈ A is an element of Z1(Γ, A). This map is called the

trivial cocycle. For any 1-cocycle α we have that α(1) = 1.

Lemma 5.5. Let A ∈ GrpΓ and let α : Γ→ A be a 1-cocycle. Then for all a ∈ A, the map

α′ : Γ −→ A

σ 7−→ a · α(σ) · (σ • a−1)

is also a 1-cocycle.

Proof. Let σ, τ ∈ Γ. Then by definition

α′(σ) · (σ • α′(τ)) = (a · α(σ) · (σ • a−1)) · (σ • (a · α(τ) · (τ • a−1))).

Since A ∈ GrpΓ , Γ acts on A by group automorphisms. Hence

α′(σ) · (σ • α′(τ)) = a · α(σ) · (σ • α(τ)) · (στ • a−1) = a · α(στ) · (στ • a−1) = α′(στ).

It remains to show that α′ : Γ → A is continuous. Let V be an open subset of A. In order to show

that α′−1(V ) is open in Γ we will show that α′−1({v}) is open for all v ∈ V , since

α′−1(V ) =
⋃
v∈V

α′−1({v}).

If v is not in the image of α′, then α′−1({v}) = ∅ is open. So we assume that α′−1({v}) is nonempty.

Therefore there exists σ ∈ Γ such that α′(σ) = v. Note that {1} is open in A. Then since α is a
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1-cocycle and is therefore continuous, we have that α−1({1}) is open in Γ. Moreover, since Γ acts

continuously on A, StabΓ(a) is an open subgroup of Γ. Hence U = α−1({1}) ∩ StabΓ(a) is open

in Γ, and thus σU is also open in Γ. Let τ ∈ U . Then α(τ) = 1 and τ • a = a. Therefore

α′(στ) = a · α(στ) · (στ • a−1) = a · α(σ) · (σ • α(τ)) · (στ • a−1)

= a · α(σ) · (στ • a−1) = a · α(σ) · (σ • a−1) = α′(σ) = v.

This shows that σU ⊆ α′−1({v}). Since the collection {σU | U open in Γ} is a basis of open

neighborhoods of σ, it follows that α′−1({v}) is open.

Definition 5.6. Two 1-cocycles α and α′ are cohomologous if there exists a ∈ A satisfying

α′(σ) = a · α(σ) · (σ • a−1) for all σ ∈ Γ.

In this case we write α ∼ α′.

Since A ∈ GrpΓ, then Γ acts on A by group automorphisms. Therefore

(σ • a)−1 = σ • (a−1)

so the notation σ • a−1 in the above definition is unambiguous. Moreover, one can easily show that

∼ is an equivalence relation on Z1(Γ, A).

Definition 5.7. Let Γ be a profinite group, and let A ∈ GrpΓ. We denote by H1(Γ, A) the quotient

set

H1(Γ, A) = Z1(Γ, A)/ ∼ .

This set is called the first cohomology set of Γ with coefficients in A.

Remark 5.8.

1. ForA ∈ GrpΓ, pointwise multiplication of functions generally does not giveZ1(Γ, A) a group

structure, and therefore does not induce a group structure onH1(Γ, A) in general. The class of

the trivial cocycle is a basepoint ofH1(Γ, A), making it a pointed set. However, ifA ∈ ModΓ

then Z1(Γ, A) is an abelian group with respect to pointwise multiplication and induces an

abelian group structure on H1(Γ, A).
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2. For A ∈ ModΓ, higher cohomology Hn(Γ, A) for n ≥ 2 are the ordinary nth cohomology

groups of Γ with coefficients in A, but with continuous cocycles.

Definition 5.9. Let Γ,Γ′ be profinite groups. Let A ∈ SetΓ and A′ ∈ SetΓ′ . Moreover, let φ : Γ′ →

Γ be a morphism of profinite groups (in particular, φ is continuous), and let f : A→ A′ be a map. If

A andA′ are groups, we require f to be a group homomorphism. We say that f and φ are compatible

if

f(φ(σ′) • a) = σ′ • f(a) for all σ′ ∈ Γ′, a ∈ A

By the above definition, we have that if a ∈ AΓ = H0(Γ, A) then f(a) ∈ A′Γ′ = H0(Γ′, A′).

Hence by restriction f induces a map of pointed sets

f∗ : H0(Γ, A)→ H0(Γ′, A′).

The following proposition shows that f also induces a map on degree 1 cohomology sets.

Proposition 5.10 (Prop II.3.19 [1]). Let Γ,Γ′, A,A′ be as in Definition 5.9, and let φ : Γ′ → Γ and

f : A→ A′ be compatible maps. For any 1-cocycle α ∈ Z1(Γ, A), the map

f∗(α) : Γ′ −→ A′

σ 7−→ f(α(φ(σ)))

is a 1-cocycle, and the map

f∗ : H1(Γ, A) 7−→ H1(Γ′, A′)

[α] 7−→ [f∗(α)]

is a well-defined map of pointed sets (resp. group homomorphism if A and A′ are abelian).

Now we give two examples of an induced map on degree 1 cohomology we obtain from Prop.

5.10 for a morphism of profinite groups with a compatible map.

Example 5.11.

1. Assume Γ = Γ′ and φ = idΓ. Then a compatible map f : A → A′ is simply a morphism in

CΓ and f∗ is the map

f∗ : H1(Γ, A) −→ H1(Γ, A′)

[α] 7−→ [f ◦ α].
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Moreover, if g : A′ → A′′ is a morphism in CΓ then

(g ◦ f)∗([α]) = [(g ◦ f) ◦ α] = [g ◦ (f ◦ α)] = g∗([f ◦ α]) = g∗(f∗([α])).

Therefore in this case (g ◦ f)∗ = g∗ ◦ f∗.

2. Assume Γ = Γ′. Let A ∈ GrpΓ, let ρ ∈ Γ and set φ = Inn(ρ). Define f : A→ A by

f : A −→ A

a 7−→ ρ−1 • a

Then f and φ are compatible and the induced map f∗ : H1(Γ, A)→ H1(Γ, A) is the identity.

Remark 5.12. From now on, if f : A → B is a morphism in CΓ, then f∗ will denote the map on

cohomology obtained when taking φ = idΓ as in Example 1 above.

Proposition 5.13 (Prop II.3.26 [1]). Let Ai ∈ CΓi for i = 1, . . . , 4. Suppose the diagrams

A1 A2 Γ1 Γ2

A4 A3 Γ4 Γ3

f1

f3 f2

φ1

f4

φ3

φ4

φ2

are commutative, where for each i = 1, . . . , 4, φi is a morphism of profinite groups compatible with

fi. Then the diagram

H1(Γ1, A1) H1(Γ2, A2)

H1(Γ4, A4) H1(Γ3, A3)

f1∗

f3∗ f2∗

f4∗

is commutative.

The following theorem gives a useful characterization of profinite cohomology in terms of ordi-

nary group cohomology.

Theorem 5.14 (Theorem II.3.33 [1]). Let Γ be a profinite group, and let A ∈ GrpΓ. Then

lim−→
U∈N

Hn(Γ/U,AU ) ∼= Hn(Γ, A)

is an isomorphism of pointed sets, where N is the set of open normal subgroups of Γ.
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5.1.2 Cohomology sequences

In ordinary group cohomology, there are useful results regarding exact sequences of G-modules,

particularly the induced long exact sequence on cohomology obtained by via connecting maps. In

this section we describe analogous results in the setting of profinite group cohomology.

Let f : A → B be a map of pointed sets. The kernel of f is the preimage the basepoint of B

under f . A sequence A B C
f g is called exact at B if im f = ker g. A sequence of

pointed sets

A0 A1 · · · Ai−1 Ai Ai+1 · · ·

is called exact if it is exact at Ai for all i ≥ 1. Then the sequence

B C 1
g

is exact if and only if g is surjective, and the sequence

1 A B
f

is exact if and only if f has trivial kernel.

Remark 5.15. It is important to note that f having trivial kernel only implies f is injective if A and

B are groups.

Notation 5.16. In what follows we assume that we have an exact sequence

1 H G S 1
φ

whereG ∈ GrpΓ,H is a Γ-subgroup ofG and S ∈ SetΓ. Then S ∼= G/H is a bijection whereG/H

are the left cosets.

Next we will define a map of pointed sets SΓ → H1(Γ, H). Let x ∈ SΓ and let g ∈ G be any

preimage of x under φ. Since σ • x = x for all σ ∈ Γ, then

φ(σ • g) = σ • φ(g) = σ • x = x = φ(g).

and hence for all σ ∈ Γ there exists h ∈ H such that σ • g = gh, i.e. h = g−1 · (σ • g). Therefore
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if α : Γ→ A is a map, there is a unique element α(σ) ∈ H such that α(σ) = g−1 · (σ • g).

Lemma 5.17 (Lemma II.4.2 [1]). The map α : Γ → H is a 1-cocycle, and its class in H1(Γ, H)

does not depend on the choice of g ∈ G.

Therefore we have a well-defined map

δ0 : SΓ −→ H1(Γ, H)

x 7−→ [α]

where α is the cocycle defined by

α(σ) = g−1 · (σ • g) for all σ ∈ Γ

for an arbitrary preimage g ∈ G of x. The map δ0 is called the 0th connecting map. By the

assumption that φ is a morphism of pointed sets, the preimage of the basepoint x0 ∈ SΓ under φ is

the identity element 1H ∈ H . Since H is a Γ-group, Γ acts on H by group homomorphisms, and

so σ • 1H = σ • (1H1H) = (σ • 1H) · (σ • 1H) for all σ ∈ Γ. Then it must be that σ • 1H = 1H for

all σ ∈ Γ, hence under δ0 the basepoint x0 is assigned to the trivial class. Therefore δ0 is a map of

pointed sets.

Proposition 5.18 (Prop II.4.4 [1] (due to Borel-Serre [4])). We have an exact sequence

1 HΓ GΓ SΓ H1(Γ, H) H1(Γ, G)
φ∗ δ0

(3)

of pointed sets.

Next we define an action of GΓ on SΓ. For g̃ ∈ GΓ and x ∈ SΓ let g ∈ G be a preimage of x under

φ, and set

g̃ ? x = φ(g̃g) ∈ S.

First note that if g′ ∈ G is another preimage of x under φ then since S ∼= G/H is a bijection of

Γ-sets, there exists h ∈ H such that g′ = gh. Then we have φ(g̃g′) = φ(g̃gh) = φ(g̃g). Therefore

g̃ ? x does not depend on the choice of g. Next we show that g̃ ? x ∈ SΓ. Since φ is a morphism of

Γ-sets and G is a Γ-group, then for all σ ∈ Γ we have that

σ • (g̃ ? x) = σ • φ(g̃g) = φ(σ • (g̃g)) = φ((σ • g̃) · (σ • g)).



31

Since g̃ ∈ GΓ it follows that σ • (g̃ ? x) = φ(g̃ · (σ • g)) for all σ ∈ Γ. Moreover since x ∈ SΓ we

have φ(σ • g) = σ • φ(g) = σ • x = x for all σ ∈ Γ. Hence σ • g is also a preimage of x under φ.

Since g̃ ? x does not depend on the choice of preimage it follows that σ • (g̃ ? x) = g̃ ? x. Hence

g̃ ? x ∈ SΓ and so we have a well defined map

GΓ × SΓ −→ SΓ

(g̃, x) 7−→ g̃ ? x.

This map gives rise to an action of GΓ on SΓ. We denote by SΓ/ ∼GΓ the orbit set of GΓ in SΓ.

Note that SΓ/ ∼GΓ is a pointed set whose basepoint is the orbit of 1.

Corollary 5.19. There is a bijection

Φ: SΓ/ ∼GΓ→ ker(H1(Γ, H)→ H1(Γ, G))

of pointed sets which assigns the orbit of x ∈ SΓ to δ0(x).

Proof. Exactness of the sequence (3) atH1(Γ, H) implies ker(H1(Γ, H)→ H1(Γ, G)) = im(δ0).

So it suffices to construct a bijection φ : SΓ/ ∼GΓ→ im(δ0). Set Φ(GΓ ? x) = δ0(x). Suppose

x, x′ ∈ SΓ are in the same orbit. Therefore there exists g̃ ∈ GΓ such that x′ = g̃ ? x. Then we

have x′ = φ(g̃g) for some preimage g ∈ G of x. Note that g̃g is a preimage of x′. Then since

(g̃g)−1 · (σ • (g̃g)) = g−1 · (σ • g), we have δ0(x) = δ0(x′). This shows that Φ is well-defined

and surjective. To prove injectivity, suppose δ0(x) = δ0(x′). Then if α and α′ are the cocycles

representing δ0(x) and δ0(x′) respectively, we have [α] = [α′]. Then α and α′ are cohomologous,

so there exists h ∈ H such that α′(σ) = h · α(σ) · (σ • h−1) for all σ ∈ Γ. Let g be a preimage of x

and g′ a preimage of x′. This implies g′−1 · (σ • g′) = h · (g−1 · (σ • g)) · (σ • h)−1. It follows that

g̃ = g′hg−1 ∈ GΓ. Therefore since H = kerφ we get

x′ = φ(g′) = φ(g′h) = φ(g̃g) = g̃ ? x.

So x and x′ are in the same orbit, which shows Φ is injective.
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5.2 The Galois cohomology functor

We start by proving a useful result about representable functors which we will use to deduce that

algebraic group schemes admit a continuous Galois action. First we introduce some notation.

Notation 5.20. If F : Fldk → Set is a functor, we simply write F (K) instead of F (K/k) for all

K ∈ Fldk. If K → L is a morphism in Fldk, then for every x ∈ F (K) we let xL ∈ F (L) denote

the image of x under the map F (K) → F (L) as long as there is no ambiguity in the choice of the

mapK → L.

Lemma 5.21 (Lemma III.7.15 [1]). The map

GΩ × F (Ω) −→ F (Ω)

(σ, x) 7→ σ • x := F (σ)(x)

gives rise to an action of GΩ on F (Ω). If Ω/K and Ω′/K are Galois extensions such that Ω ⊂ Ω′,

we have

σ′ • xΩ′ = (σ′|Ω • x)Ω′ for all x ∈ F (Ω), σ′ ∈ GΩ′ .

Moreover, if F : Fldk → Grp is a group-valued functor, the above action is a group by automor-

phisms, i.e.,

σ • (xy) = (σ • x) · (σ • y) for all σ ∈ GΩ, x, y ∈ F (Ω).

Lemma 5.22. Let F : Algk → Set be a functor represented by a commutative k-algebra A. Then

the following properties hold:

1. For every Galois extension Ω/K, the map F (K)→ F (Ω) is injective and induces a bijection

(resp. a group isomorphism if F is a group-valued functor)

F (K) ∼= F (Ω)GΩ

2. Suppose A is finitely generated over k, and let Ω/K be a Galois extension. For every finite

intermediate Galois extension K ⊂ L ⊂ Ω, let ιL : F (L) → F (Ω) denote the map induced

by the inclusion L ⊂ Ω. Then GΩ acts continuously on F (Ω), and we have

F (Ω) =
⋃
L⊂Ω

ιL(F (L))
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Proof. Letψ : F → hA denote the natural isomorphism. For everymorphism of k-algebras φ : R→

S the diagram

F (R) hA(R)

F (S) hA(S)

ψR

F (φ) hA(φ)

ψS

commutes. Therefore if a ∈ F (R) and f = ψR(a) ∈ hA(R) then hA(φ) ◦ ψR(a) = hA(φ)(f) =

φ ◦ f and hence ψS = F (φ)(a) = φ ◦ f . We will repeatedly appeal to this observation in the proof.

1. Let Ω/K be a Galois extension and let ε : K ↪→ Ω denote the inclusion. Let a1, a2 ∈ F (K)

and suppose F (ε)(a1) = F (ε)(a2). Then ψΩ ◦ F (ε)(a1) = ψΩ ◦ F (ε)(a2). We have ψΩ ◦

F (ε)(a1) = ε ◦ f1 and ψΩ ◦ F (ε)(a2) = ε ◦ f2 where f1 = ψK(a1) and f2 = ψK(a2). Hence

ψK(a1) = ψK(a2). Since ψ is a natural isomorphism, ψK is an isomorphism. Hence a1 = a2

which proves that F (ε) is injective. Next we show that F (K) ∼= F (Ω)GΩ . We first show that

im(F (ε)) = F (Ω)GΩ , then injectivity of F (ε) shows im(F (ε)) ∼= F (K). Let σ ∈ GΩ and let

a ∈ F (Ω). Set f = ψΩ(a) ∈ hA(Ω). If a ∈ im(F (ε)) then there exists a′ ∈ F (K) such that

F (ε)(a′) = a. Hence ε ◦ ψK(a′) = ψΩ ◦ F (ε)(a′) =. Let f ′ = ψK(a′) ∈ hA(K). Then we

have ε ◦ f ′ = f . Let x ∈ K. Since ε denotes the inclusion K ⊂ Ω, then ε(x) ∈ K. Since Ω/K

is a Galois extension we have ΩGΩ = K. It follows that σ(ε(x)) = ε(x), and hence σ ◦ ε = ε.

Therefore

σ ◦ f = σ ◦ (ε ◦ f ′) = (σ ◦ ε) ◦ f ′ = ε ◦ f = f.

Note that ψΩ ◦F (σ)(a) = σ ◦f = f and that F (σ)(a) = σ ·a. Hence we have ψΩ(σ ·a) = f =

ψΩ(a), where ψΩ is an isomorphism, since ψ is a natural isomorphism. Thus σ · a = a, and so

a ∈ F (Ω)GΩ . This shows that im(F (ε)) ⊆ F (Ω)GΩ . Now let a ∈ F (Ω)GΩ . Then σ · a = a for

all σ ∈ GΩ, and so ψΩ(σ · a) = ψΩ(a). Hence we have

f = ψΩ(a) = ψΩ(σ · a) = ψΩ(F (σ)(a)) = σ ◦ f.

If x ∈ A, then σ(f(x)) = f(x) and therefore f(x) ∈ ΩGΩ = K. Therefore we have a well
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defined map

f ′ : A −→ K

x 7−→ f(x).

Since f ∈ hA(Ω) we have that f ′ is a K-algebra homomorphism. Now let a′ ∈ F (K) be the

element so that ψK(a′) = f ′. Since f(x) ∈ K and ε is the inclusion K ⊂ Ω, then ε(f(x)) ∈

K = ΩGΩ . Therefore it follows that ε(f ′(x)) = ε(f(x)) = f(x) since ε ∈ GΩ, and so ε◦f ′ = f .

Then we have

ψΩ(a) = f = ε ◦ f ′ = ψΩ ◦ F (ε)(a′)

and injectivity of ψΩ implies a = F (ε)(a′). Hence a ∈ im(F (ε)), which shows F (Ω)GΩ ⊆

im(F (ε)).

2. Let a ∈ F (Ω) let f = ψΩ(a) ∈ hA(Ω). By assumption A is finitely generated over k. Let

α1, . . . , αn be a set of generators of A. Let

K ′ := K(f(α1), . . . , f(αn)).

Note that K ⊂ K ′ ⊂ Ω is an intermediate extension and K ′/K is finite. Then by the Funda-

mental Theorem of Galois Theory, Gal(Ω/K ′) is an open subgroup of GΩ. Let σ ∈ GΩ. By the

same argument as before, σ · a = a if and only if σ · f = f . By definition of K ′, σ · f = f if

and only if σ|K′ = id, that is σ ∈ Gal(Ω/K). This shows that StabGΩ
(a) = Gal(Ω/K ′), hence

StabGΩ
(a) is an open subgroup of GΩ for all a ∈ F (Ω). Therefore the action of GΩ on F (Ω) is

continuous, and by Lemma 5.3 we have

F (Ω) =
⋃
U∈N

F (Ω)U

whereN denotes the set of open normal subgroups of GΩ. The Fundamental Theorem of Galois

Theory gives a one-to-one correspondence between finite Galois subextensions of L/K of Ω/K

and the the open normal subgroups U ∈ N , which assigns L to Gal(Ω/L) and U to ΩU . It

follows that

F (Ω) =
⋃
L⊂Ω

F (Ω)Gal(Ω/L)

where L runs through all finite Galois subextensions of Ω/K. For each such L, statement (1)
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implies ιL : F (L)→ F (Ω) is injective and ιL(F (L)) = F (Ω)Gal(Ω/L). Therefore

F (Ω) =
⋃
L⊂Ω

ιL(F (L))

which concludes the proof.

Definition 5.23. A group scheme G : Fldk → Grp is a Galois functor if for every K ∈ Fldk and

every Galois extension Ω/K, the following conditions are satisfied:

1. The map G(K)→ G(Ω) is injective, and induces a group isomorphism

G(K) ∼= G(Ω)GΩ

2. G(Ω) =
⋃
L⊂Ω ιL,Ω(G(L)), where L/K runs over the set of finite Galois subextensions of Ω

and ιL,Ω : G(L)→ G(Ω) is the map induced by the inclusion L ⊂ Ω.

Example 5.24. An algebraic group scheme G : Fldk → Grp is a Galois functor by Lemma 5.22.

Proposition 5.25. Let G : Fldk → Grp be a Galois functor. Then if K ∈ Fldk and Ω/K is Galois,

G(Ω) is a GΩ-group. Therefore we can consider the pointed set H1(GΩ, G(Ω)).

Proof. By combining condition (1) and (2) in Def. 5.23 we have

G(Ω) =
⋃
L⊂Ω

G(Ω)GL .

By the Galois correspondence, finite Galois subextensions L of Ω/K are in bijection with open

normal subgroups GL of GΩ. Therefore it follows from Lemma 5.3 that GΩ acts continuously on

G(Ω) via the assignment

GΩ ×G(Ω) −→ G(Ω)

(σ, g) 7−→ σ • g = G(σ)(g).

Hence G(Ω) is a GΩ-set. By Lemma 5.21 the above action is an action by group automorphisms,

showing G(Ω) is a GΩ-group.

By using Theorem 5.14 we obtain a characterization of Galois cohomology of GΩ in terms of

the Galois cohomology of its finite Galois subextensions in the following theorem.
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Theorem 5.26 (Thm III.7.30 [1]). LetG : Fldk → Grp be a Galois functor. Then for everyK ∈ Fldk

and every Galois extension Ω/K

lim−→
L⊂Ω

Hn(GL, G(L)) ∼= Hn(GΩ, G(Ω))

is an isomorphism of pointed sets, where L runs through the finite Galois subextensions of Ω/K.

Next we establish some functorial properties of Galois cohomology. Let ι : K → K ′ be a

morphism in Fldk. Let Ω/K and Ω′/K ′ be Galois extensions and assume that we have a morphism

φ : Ω → Ω′ in Fldk which extends ι. Let φ : GΩ′ → GΩ be the continuous group homomorphism

associated to φ by Corollary 3.8. Let G : Fldk → Grp be a Galois functor.

Lemma 5.27 (Lemma III.7.32 [1]). The maps φ : GΩ′ → GΩ and G(φ) : G(Ω) → G(Ω′) are com-

patible.

Proposition 5.28. Letφ : Ω→ Ω′ be an extension of ι. Then sinceφ : GΩ′ → GΩ andG(Ω): G(Ω)→

G(Ω′) are compatible, we get an induced map

Rφ : H1(GΩ, G(Ω))→ H1(GΩ′ , G(Ω′))

which only depends on ι.

Proof. Suppose φ : Ω → Ω′ is another extension of ι. We will show that Rφ = Rφ′ , in which case

Rφ does not depend on the choice of extension of ι, it only depends on ι. By Corollary 3.8 there

exists ρ ∈ GΩ such that φ = φ′ ◦ ρ so that φ′ = Inn(ρ) ◦ φ. Then φ′ = φ ◦ ρ−1, and since G is a

functor we have

G(φ′)(g) = G(φ ◦ ρ−1)(g) = (G(φ) ◦G(ρ−1))(g) = G(φ)(ρ−1 • g)

for all G ∈ G(Ω). Hence, if ρ−1 • : G(Ω) → G(Ω) is the map given by g : → ρ−1 • g, then the

diagram

G(Ω) G(Ω)

G(Ω′) G(Ω′)

ρ−1 •

G(φ′) G(φ)

id
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is commutative. On the other hand, since φ′ = Inn(ρ) ◦ φ we have the following commutative

diagram

GΩ GΩ

GΩ′ GΩ′

Inn(ρ)

φ′

id

φ

Recall that Example 5.11 shows Inn(ρ) and ρ−1 • are compatible. Therefore the above two diagrams

satisfy the conditions of Proposition 5.13, hence the diagram

H1(GΩ, G(Ω)) H1(GΩ, G(Ω))

H1(GΩ′ , G(Ω′)) H1(GΩ′ , G(Ω′))

ρ−1 •∗

G(φ′)∗ G(φ)∗

id

is commutative. By definition G(φ′)∗ = Rφ′ and G(φ)∗ = Rφ, and Example 5.11 shows ρ−1 •∗ is

the identity. Therefore it follows that Rφ′ = Rφ.

Remark 5.29. By Proposition 5.10, the morphism Rφ in Prop 5.28 is the induced map G(φ)∗ on

the 1st cohomology sets. Hence Rφ is given by

Rφ : H1(GΩ, G(Ω)) −→ H1(GΩ′ , G(Ω′))

[α] 7−→ [G(φ)∗(α)]

where G(φ)∗(α) is the cocycle defined by

G(φ)∗(α) : GΩ′ −→ G(Ω′)

σ′ 7−→ G(φ)(α(φ(σ′))).

Let ι : K → L be a morphism in Fldk. Let K and L be algebraic closures of K and L re-

spectively. By Corollary 3.3 there exists and extension φ : K → L of ι. Let φ : GL → GK be the

continuous group homomorphism associated to φ by Corollary 3.8. Then Prop. 5.28 gives us a map

Rφ : H1(GK , G(K))→ H1(GL, G(L)). (4)

which only depends on ι. In the case where K = L and ι = idK we may take φ = idK in which

case Rφ is the identity map.
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Lemma 5.30 (Lemma III.7.35 [1]). Let ι : K → L and η : L → M be morphisms in Fldk. Let

φ : K → L and ψ : L→M be extensions of ι and η respectively. Then

Rψ◦φ = Rψ ◦Rφ

Corollary 5.31 (Cor. III.7.36 [1]). For any K ∈ Fldk, the set H1(GK , G(K)) does not depend on

the choice of algebraic closureK, up to canonical bijection.

Definition 5.32. Let G : Algk → Grp be a Galois functor, andK/k an extension.

1. We define the 1st Galois cohomology set of G by

H1(K,G) = H1(GK , G(K)).

IfG is abelian, that is ifG(R) is an abelian group for allR ∈ Algk, thenH1(K,G) is a group.

2. Let ι : K → L be a morphism in Fldk. The map (4) defined from H1(K,G) to H1(L,G)

corresponding to ι is called the restriction map and is denoted by ResL/K .

Theorem 5.33. Let G : Algk → Grp be a Galois functor. Then

H1(−, G) : Fldk → Set∗

is a functor which assigns each K ∈ Fldk to the pointed set H1(K,G) and assigns each morphism

ι : K → L in Fldk to the map ResL/K : H1(K,G) → H1(L,G) of pointed sets. In the case where

G is abelian and the restriction map is a group homomorphism, we obtain a functor

H1(−, G) : Fldk → AbGrp .

Proof. If we take ι = idK , then ResL/K is the identity. Moreover, for any field extensions K →

L→M we have

ResM/K = ResM/L ◦ ResL/K

by Lemma 5.30.
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6 Galois descent

In this section, we state the Galois descent problem for a group scheme G : Fldk → Grp acting on

a functor F : Fldk → Set. We then present the remaining ingredients needed to state the Galois

descent lemma, first by defining a twisted form for a fixed element a ∈ F (k) and obtaining a twisted

form functor Fa : Fldk → Set∗. We then define the Galois descent condition for a functor F , and

highlight examples of the types of functors which satisfy the condition. We introduce a key example

of a Galois functor, the stabilizer subfunctor of the group schemeG, and conclude by giving detailed

proof of the Galois descent lemma, a fundamental result which we use as a tool in determining the

answer to Galois descent problems.

6.1 Twisted forms

Definition 6.1. Let G : Fldk → Grp be a group valued functor. An action of G on a functor

F : Fldk → Set is the assignment to eachK ∈ Fldk a group action

G(K)× F (K)→ F (K)

(g, a) 7→ g ∗ a

which is natural in K. That is, for every morphism ι : K → L in Fldk, the following diagram

commutes:
G(K)× F (K) F (K)

G(L)× F (L) F (L)

(G(ι),F (ι))

or, in terms of elements

(g ∗ a)L = gL ∗ aL for all a ∈ F (K), g ∈ G(K).

Definition 6.2. Let F : Fldk → Set be a functor and G : Fldk → Grp be a group scheme acting on

F . For every K ∈ Fldk we say b, b′ ∈ F (K) are equivalent over K if there exists g ∈ G(K) such

that b = g ∗ b′.

We have presented all the required ingredients to state a general Galois descent problem.
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The Galois descent problem: Let F : Fldk → Set be a functor, G : Fldk → Grp be a group

scheme acting on F , and Ω/K a Galois extension.

Suppose that aΩ ∼Ω a′Ω. Do we have a ∼K a′ ?

Definition 6.3. Let a ∈ F (k), let K ∈ Fldk and let Ω/K be a Galois extension. An element

a′ ∈ F (K) is called a twistedK-form of a (split by Ω) if a′Ω ∼Ω aΩ.

The action of G(K) on F (K) restricts to the set of twisted K-forms of a, since if we assume

a′ ∈ F (K) is a twisted K-form of a and a′ ∼K a′′ then a′′ is also a twisted K-form of a. We have

a′Ω ∼Ω aΩ and a′ ∼K a′′, hence there exists g ∈ G(Ω) and g′ ∈ G(K) such that a′Ω = g ∗ aΩ

and a′′ = g′ ∗ a′. Since the action of G(K) on F (K) is functorial in K, then it follows that a′′Ω =

(g′ ∗ a′)Ω = g′Ω ∗ a′Ω. Therefore g′Ωg is an element of G(Ω) such that

g′Ωg ∗ aΩ = g′Ω ∗ (g ∗ aΩ) = g′Ω ∗ a′Ω = a′′Ω

Definition 6.4. We denote by

Fa(Ω/K) = {[a′] | a′ ∈ F (K), a′Ω ∼Ω aΩ}

the set of K-equivalence classes of twisted K-forms of a which split over Ω. Then Fa(Ω/K) is a

pointed set with base point [aK ].

Remark 6.5. Note that Fa(Ω/K) is the collection of elements for which the answer to the de-

scent problem is negative. In particular the answer to the descent problem is positive if and only of

Fa(Ω/K) = [aK ].

Theorem 6.6. We obtain a functor Fa : Fldk → Set∗ by assigning Fa(K) = Fa(K/K) to each

K ∈ Fldk and assigning the map

Fa(ι) : Fa(K/K) −→ Fa(K ′/K
′)

[a′] 7−→ [a′K′ ]

to each morphism ι : K → K ′ in Fldk.
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Proof. We show that the map F (K) → F (K ′) induces a map Fa(ι) is a well defined morphism

of pointed sets. Then the functorial properties of Fa are inherited by F . Let φ : K → K ′ be an

extension of ι and let a′ ∈ F (K) be a twisted K-form of a. We will show that a′K′ is a twisted

K ′-from of a. Since φ is an extension of ι, we have ε′ ◦ ι = φ◦ εwhere ε and ε′ denote the inclusions

K ⊂ K andK ′ ⊂ K ′, respectively. Then since F is a functor it follows that

(a′K′)K′ = (F (ι)(a′))K′ = F (ε′)(F (ι)(a′)) = F (ε′ ◦ ι)(a′)

= F (φ ◦ ε)(a′) = F (φ)(F (ε)(a′)) = (F (ε)(a′))K′ = (a′
K

)K′

Now since a′ is a twisted K-form of a, there exists g ∈ G(K) such that g ∗ a′
K

= aK . Therefore

since the action of G(K) on F (K) is functorial inK, we have

gK′ ∗ (a′K′)K′ = gK′ ∗ (a′
K

)K′ = (g ∗ a′
K

)K′ = (aK)K′ = aK′

Hence a′K′ is a twisted K
′-form of a, and since this does not depend on the choice of extension of

φ of ι we have shown Fa(ι) is well-defined. Fa(ι) is a morphism of pointed sets by construction,

since F ([aK ]) = [aK′ ].

We need a suitable condition on the functor F in order to establish a relationship between Fa

and the Galois cohomology of a certain group-scheme which is associated to a. Below we state the

required condition.

Definition 6.7. A functor F : Fldk → Set satisfies the Galois descent condition if for every K ∈

Fldk and every Galois extension Ω/K the map F (K)→ F (Ω) is injective and induces a bijection

F (K) ∼= F (Ω)GΩ .

Now we give examples of the types of functors which satisfy the Galois descent condition.

Example 6.8.

1. Mn satisfies the Galois descent condition.

2. Representable functors satisfy the Galois descent condition by Lemma 5.22.

3. By definition, Galois functors satisfy the Galois descent condition.
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6.2 Stabilizers

Definition 6.9. Let G : Fldk → Grp be a group valued functor acting on a functor F : Fldk → Set.

For a ∈ F (k) and everyK ∈ Fldk we set

StabG(a)(K) = {g ∈ G(K) | g ∗ aK = aK}

For all extensions K ∈ Fldk, StabG(a)(K) ⊆ G(K). Moreover, if ι : K → K ′ is a morphism in

Fldk, the map G(ι) : G(K) → G(K ′) restricts to a map StabG(a)(K) → StabG(a)(K ′). Indeed,

if g ∈ StabG(a)(K) then

gK′ ∗ aK′ = gK′ ∗ (aK)K′ = (g ∗ aK)K′ = (aK)K′ = aK′

showing that gK′ ∈ StabG(a)(K ′). Hence we have a subfunctor StabG(a) : Fldk → Grp of G

called the stabilizer of a.

LetK ∈ Fldk, let Ω/K a Galois extension and let σ ∈ Gal(Ω/K). Then the map

StabG(a)(σ) : StabG(a)(Ω)→ StabG(a)(Ω)

is obtained by restriction of the map G(σ) : G(Ω) → G(Ω). Hence the action GΩ on G(Ω) via

Lemma 5.21 restricts to an action on StabG(a)(Ω).

Lemma 6.10 (Lemma III.8.13 [1]). Let G : Fldk → Grp be a Galois functor acting on a functor

F : Fldk → Set which satisfies the Galois descent condition. Then for all a ∈ F (k), StabG(a) is a

Galois functor. In particular, for every K ∈ Fldk and every Galois extension Ω/K, StabG(a)(Ω)

is a GΩ-group.

Thus we obtain a Galois cohomology set

H1(GΩ,StabG(a)(Ω))

for any Galois extension Ω/K and more generally a functor

H1(−, StabG(a)) : Fldk → Set∗ .
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6.3 Galois descent lemma

Wenowhave all the ingredients to state theGalois descent lemma, a result which describesFa(Ω/K),

the set of elements which yield a negative answer to the Galois descent problem, in terms of Galois

cohomology.

Theorem 6.11 (Galois descent lemma (due to Serre [4])). Let F : Fldk → Set be a functor satisfying

the Galois decent condition, let G : Fldk → Grp be a Galois functor acting on F , and let a ∈ F (k).

Then

1. For everyK ∈ Fldk and every Galois extension Ω/K

Fa(Ω/K)
∼=−→ ker

(
H1
(
GΩ, StabG(a)(Ω)

) ∗−→ H1
(
GΩ, G(Ω)

))
is a bijection of pointed sets, where  : StabG(a)(Ω)→ G(Ω) is the inclusion.

2. The above bijection is functorial in Ω. That is, if ι : K → K ′ is a morphism in Fldk, Ω/K and

Ω′/K ′ are Galois extensions and φ : Ω→ Ω′ is an extension of ι, then the diagram

Fa(Ω/K) ker(∗)

Fa(Ω
′/K ′) ker(′∗)

∼=

Rφ

∼=

is commutative. In particular, we have a natural isomorphism between functors from Fldk to

Set∗

Fa ∼= ker[H1(−,StabG(a))→ H1(−, G)].

Therefore if H1(−, G) = 1, we have a natural isomorphism of functors

Fa ∼= H1(−,StabG(a)).

Proof.

1. The action of GΩ on G(Ω) restricts to an action on StabG(a)(Ω), and by Lemma 6.10 this ac-

tion is continuous. Hence StabG(a)(Ω) is a GΩ-subgroup of G(Ω), and we have a bijection

G(Ω)/StabG(a)(Ω) ∼= G(Ω) ∗ aΩ where G(Ω) ∗ aΩ denotes the orbit of aΩ. This bijection is
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equivalently written as a short exact sequence

1 StabG(a)(Ω) G(Ω) G(Ω) ∗ aΩ 1

of pointed sets. By Corollary 5.19 there is a one-to-one correspondence

(G(Ω) ∗ aΩ)GΩ/ ∼G(Ω)GΩ

∼=←→ ker(∗)

where (G(Ω) ∗ aΩ)GΩ/ ∼G(Ω)GΩ is the orbit set of G(Ω)GΩ in (G(Ω) ∗ aΩ)GΩ . To prove the

first part of the theorem, it suffices to show there is a bijection between Fa(Ω/K) and (G(Ω) ∗

aΩ)GΩ/ ∼G(Ω)GΩ . Recall that the assignment

G(Ω)GΩ × (G(Ω) ∗ aΩ)GΩ −→ (G(Ω) ∗ aΩ)GΩ

(g, a′) 7−→ g ? a′

gives rise to an action of G(Ω)GΩ on (G(Ω) ∗ aΩ)GΩ defined by g ? a′ := (gg′) ∗ aΩ where g′ is

a preimage of a′ under the map G(Ω)→ G(Ω) ∗ aΩ.

Now notice that

G(Ω) ∗ aΩ = {a′ ∈ F (Ω) | g ∗ aΩ = a′ for some g ∈ G(Ω)}

= {a′ ∈ F (Ω) | aΩ ∼Ω a′}.

Then since F satisfies the Galois descent condition, F (K) ∼= F (Ω)GΩ and hence

(G(Ω) ∗ aΩ)GΩ = {a′ ∈ F (Ω)GΩ | aΩ ∼Ω a′} = {a′Ω ∈ F (K) | a′Ω ∼Ω aΩ}.

Therefore if Ka = {a′ ∈ F (K) | a′Ω ∼Ω aΩ} is the set of twisted K-forms of a, then (G(Ω) ∗

aΩ)GΩ is the image of the Ka under the map F (K) → F (Ω). That is to say (G(Ω) ∗ aΩ)GΩ =

(Ka)Ω and so elements of (G(Ω) ∗ aΩ)GΩ are of the form a′Ω for a′ ∈ Ka. Also, since G is

a Galois functor the map G(ε) : G(K) → G(Ω) is injective and G(K) ∼= G(Ω)GΩ where ε

denotes the inclusion K ⊂ Ω. Therefore G(ε) : G(K)
∼=→ im(G(ε)) is a bijection, and since

G(K) ∼= G(Ω)GΩ it follows that G(Ω)GΩ ∼= im(G(ε)). That is, elements of G(Ω)GΩ are of

the form gΩ for g ∈ G(K). In view of these two observations, the orbit set of G(Ω)GΩ in

(G(Ω) ∗ aΩ)GΩ gives an equivalence relation ∼G(Ω)GΩ on (Ka)Ω for which a′Ω, a′′Ω ∈ (Ka)Ω are
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equivalent if and only if there exists gΩ ∈ G(Ω)GΩ such that gΩ ? a′Ω = a′′Ω. Next recall that

the action of G(K) on F (K) restricts to the set Ka of twisted K-forms of a. Hence ∼K is an

equivalence relation onKa. Thus we have two surjective maps,

q1 : Ka → Ka/ ∼K := Fa(Ω/K)

and

q2 : (Ka)Ω → (Ka)Ω/ ∼G(Ω)GΩ := (G(Ω) ∗ aΩ)GΩ/ ∼G(Ω)GΩ .

Claim: Set f = q2 ◦F (ε)|Ka . Then a′ ∼K a′′ if and only if f(a′) = f(a′′). We first show that if

gΩ ∈ G(Ω)GΩ and a′Ω ∈ (G(Ω) ∗ aΩ)GΩ then gΩ ? a
′
Ω = (g ∗ a′)Ω. Since a′ is a twistedK- form

of a, then there exists g′ ∈ G(Ω) such that a′Ω = g′ ∗ aΩ. Hence g′ is a preimage of a′Ω under the

map G(Ω)→ G(Ω) ∗ aΩ and thus

gΩ ? a
′
Ω = (gΩg

′) ∗ aΩ = gΩ ∗ (g′ ∗ aΩ) = gΩ ∗ a′Ω = (g ∗ a′)Ω.

Now let a′, a′′ ∈ Ka and suppose a′ ∼K a′′. Then there exists g ∈ G(K) such that g ∗ a′ = a′′,

and so a′′Ω = (g ∗ a′)Ω = gΩ ? a′Ω. Hence a′Ω ∼G(Ω)GΩ a′′Ω which shows f(a′) = q2(a′Ω) =

q2(a′′Ω) = f(a′′). Conversely, if f(a′) = f(a′′) then q2(a′Ω) = q2(a′Ω). That is a′Ω ∼G(Ω)GΩ a′′Ω,

so there exists gΩ ∈ G(Ω)GΩ such that gΩ ? a
′
Ω = a′′Ω. It then follows from the above argument

that (g ∗ a′)Ω = a′′Ω. Since F satisfies the Galois descent condition the map F (K) → F (Ω)

is injective, so we get that g ∗ a′ = a′′. Thus a′ ∼K a′′, which proves the claim. The forward

implication of the claim shows that f descends to the quotient. Therefore there exists a map

φ : Fa(Ω/K)→ (G(Ω) ∗ aΩ)GΩ/ ∼G(Ω)GΩ

such that f = φ◦q1. Since f is surjective it follows that φ is also surjective. The reverse implica-

tion of the claim along with f = φ◦q1 gives us that φ is injective. Hence φ is a bijection between

Fa(Ω/K) and the orbit set of G(Ω)GΩ in (G(Ω) ∗ aΩ)GΩ which assigns a K- equivalence class

[a′] to the orbit of a′Ω in (G(Ω) ∗ aΩ)GΩ .
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Aside: The bijection between Fa(Ω/K) and ker(∗) is explicitly given by

ψ : Fa(Ω/K) −→ ker(∗)

[a′] 7−→ [α]

where we pick g ∈ G(Ω) with g ∗ a′Ω = aΩ so that α is the cocycle

α : GΩ −→ StabG(a)(Ω)

σ 7−→ g · (σ • g−1).

Indeed, if [a′] ∈ Fa(Ω/K), then under φ the corresponding orbit of G(Ω)GΩ in (G(Ω) ∗ aΩ)GΩ

is the orbit of a′Ω. Since a′ is a twisted K-form of a, by definition there exists g ∈ G(Ω) such

that g ∗ a′Ω = aΩ. Thus

a′Ω = (g−1g) ∗ a′Ω = g−1 ∗ (g ∗ a′Ω) = g−1 ∗ aΩ.

So g−1 is a preimage of a′Ω under the map G(Ω) → G(Ω) ∗ aΩ. Then under the bijection

established in Corollary 5.19, we assign the orbit of a′Ω to the cohomology class δ0(a′Ω) = [α] ∈

H1(GΩ,StabG(a)(Ω)) where α is the above cocycle.

2. Let ι : K → K ′ be a morphsim in Fldk, letΩ/K andΩ′/K ′ be Galois extensions and assume that

we have an extensionφ : Ω→ Ω′ of ι. Letφ : GΩ′ → GΩ be the continuous group homomorphism

associated to φ by Corollary 3.8. We first show that the map

Rφ : H1(GΩ,StabG(a)(Ω))→ H1(GΩ′ , StabG(a)(Ω′))

restricts to the map

Rφ : ker(∗)→ ker(′∗).

Let [ξ] ∈ ker(∗). Then ξ is cohomologous to the trivial cocycle, and hence there exists an

element g ∈ G(Ω) such that ξ(σ) = g · (σ • g−1) for all σ ∈ GΩ. We will show that Rφ([ξ]) is

represented by the cocycle

GΩ′ −→ StabG(a)(Ω′)

σ′ 7−→ gΩ′ · (σ′ • g−1
Ω′ )

which shows Rφ([ξ]) is represented by the trivial cocycle, and thus Rφ([ξ]) ∈ ker(′∗). By
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definition, Rφ([ξ]) = [ξ′] where ξ′ is the cocycle

ξ′ : GΩ′ −→ StabG(a)(Ω′)

σ′ 7−→ StabG(a)(φ)(ξ(φ(σ′))).

Recall that StabG(a)(φ) is the restriction of G(φ). Then since G(φ) is a group homomorphism

and GΩ′ acts on G(Ω) by group automorphisms, for all σ′ ∈ GΩ′ we have

ξ′(σ′) = G(φ)(ξ(φ(σ′))) = G(φ)(g · (φ(σ′) • g−1)) = (G(φ)(g)) · (G(φ)(φ(σ′) • g))−1.

Since G(φ) and φ are compatible, it follows that

ξ′(σ′) = (G(φ)(g)) · (G(φ)(φ(σ′) • g))−1 = (G(φ)(g)) · (σ′ • [G(φ)(g)]−1) = gΩ′ · (σ′ • g−1
Ω′ ).

ThereforeRφ([ξ]) is indeed represented by the desired cocycle. Now let [a′] ∈ Fa(Ω/K) and let

g ∈ G(Ω) be an element so that g ∗ a′Ω = aΩ. Then since (a′K′)Ω′ = a′Ω′ and

gΩ′ ∗ a′Ω′ = gΩ′ ∗ (a′Ω)Ω′ = (g ∗ a′Ω)Ω′ = (aΩ)Ω′ = aΩ′

we have that gΩ′ ∈ G(Ω′) is an element so that gΩ′ ∗ (a′K′)Ω′ = aΩ′ . Hence ψ ◦ Fa(ι)([a′]) =

ψ([a′K′ ]) = [β] where β is the cocycle

β : GΩ′ −→ StabG(a)(Ω′)

σ′ 7−→ gΩ′ · (σ′ • g−1
Ω′ ).

On the other hand, Rφ(ψ([a′])) = Rφ([α]), and since [α] in this case belongs to ker(∗), then

it follows from the previous calculations that Rφ([α]) = [β]. Thus ψ ◦ Fa(ι) = Rφ ◦ ψ, which

shows that the bijection ψ is functorial in Ω.

The following theorem draws a direct connection between Galois descent and cohomology. In

particular, we show that the failure of the Galois fixed point functor to preserve right exactness of a

short exact sequence obtained via the orbit stabilizer theorem is the obstruction to a positive answer

to a Galois descent problem.
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Theorem 6.12. LetF : Fldk → Set be a functor satisfying theGalois decent condition, letG : Fldk →

Grp be a Galois functor acting on F , and let a ∈ F (k). Then for everyK ∈ Fldk and every Galois

extension Ω/K the sequence

1 StabG(a)(Ω)GΩ G(Ω)GΩ (G(Ω) ∗ aΩ)GΩ 1
π∗ (5)

is exact if and only if the Galois descent problem for a ∈ F (k) has a positive answer, where π :

G(Ω)→ G(Ω) ∗ aΩ is the natural projection.

Proof. First note that by Prop. 5.18, the sequence of pointed sets

1→ StabG(a)(Ω)GΩ → G(Ω)GΩ
π∗−→ (G(Ω) ∗ aΩ)GΩ

δ0

−→ H1(GΩ, StabG(a)(Ω))
∗−→ H1(GΩ, G(Ω)) (6)

is exact, where δ0 is the 0th connecting map and  : StabG(a)(Ω) → G(Ω) is the inclusion. Next

recall that the Galois descent problem for a ∈ F (k) has a positive answer if and only if Fa(Ω/K) =

{[aK ]} (Remark 6.5). Hence we show the sequence (5) is exact if and only if Fa(Ω/K) = {[aK ]}.

Now suppose the sequence (5) is exact. Then G(Ω)GΩ/StabG(a)(Ω)GΩ = (G(Ω) ∗ aΩ)GΩ , and by

exactness of the sequence (6) we have ker δ0 = imπ∗. Therefore ker δ0 = (G(Ω) ∗ aΩ)GΩ which

implies im δ0 = {[id]}, where id is the trivial 1-cocycle. Exactness of (6) implies im δ0 = ker ∗, so

we have ker ∗ = {[id]}. By Theorem 6.11, Fa(Ω/K) ∼= ker ∗ is a bijection of pointed sets, hence

Fa(Ω/K) = {[aK ]}. Conversely, suppose Fa(Ω/K) = {[aK ]}. Then it follows from Theorem

6.11 that im δ0 = ker ∗ = {[id]}. Therefore (G(Ω) ∗ aΩ)GΩ = (δ0)−1({[id]}) = ker δ0 = imπ∗,

thus the sequence (5) is exact.
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7 Generalizations of Hilbert’s Theorem 90

In this section, we prove cohomological Hilbert’s Theorem 90 via Dedekind characters, and as a

corollary, we prove Hilbert’s Theorem 90 in its classic form. These results culminate in a general-

ization of cohomological Hilbert’s Theorem 90 for arbitrary Galois extensions Ω/k, from which we

deduce that H1(GΩ,GLn(Ω)) = 1. This is a key result used in Section 8 where we describe two

specific Galois descent problems.

Let E/k be a finite Galois extension. Recall that for a ∈ E, the norm of a is the product

N(a) :=
∏
σ∈GE

σ(a).

The norm induces a group homomorphismN : E× → k×. First, if a ∈ E× thenN(a) ∈ k. To show

this it suffices to show thatN(a) is fixed by GE , sinceE/k is Galois. WriteN(a) as σ1(a) · · ·σn(a),

where GE = {σ1, . . . , σn}. Let τ ∈ GE . Then since τ is a ring homomorphism and GE acts on E×

τ(N(a)) = τ(σ(a)) · · · τ(σn(a)) = (τσ1)(a) · · · (τσn)(a).

Recall that left multiplication by τ induces an element of AutSet(GE) ∼= Sn. Then

τ(N(a)) = σi1(a) · · ·σin(a) = N(a)

since E× is an abelian group. Hence N(a) ∈ k. If a, b ∈ E× then

N(ab) =
∏
σ∈GE

σ(ab) =
∏
σ∈GE

σ(a)σ(b) =

 ∏
σ∈GE

σ(a)

 ∏
σ∈GE

σ(b)

 .

This shows that N is a group homomorphism.

Recall that a Dedekind character on a group G is a group homomorphism χ : G→ E×.

Lemma 7.1 (Dedekind’s Lemma). Let G be a group and let τ1, . . . , τn : G → E× be a distinct set

of characters. Then {τi} is linearly independent over E, that is, if there exist c1, . . . , cn ∈ E such

that
∑n

i=1 ciτi(g) = 0 for all g ∈ G, then ci = 0 for all i = 1, . . . , n.

Proof. Leading to a contradiction, suppose
∑n

i=1 ciτi(g) = 0 for all g ∈ G and that there exists ci 6=

0. Let k be the smallest positive integer such that, after relabeling indices, c1 6= 0, c2 6= 0 . . . , ck 6= 0
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and
∑k

i=1 ciτi(g) = 0 for all g ∈ G. Note that k ≥ 2. Since {τi} are distinct, there exists h ∈ G

such that τ1(h) 6= τ2(h). We have

τ1(h)
k∑
i=1

ciτi(g) =
k∑
i=1

ciτ1(h)τi(g) = 0

and on the other hand,
k∑
i=1

ciτi(h)τi(g) =
k∑
i=1

ciτi(hg) = 0.

This implies that
∑k

i=1 ci(τ1(h)− τi(h))τi(g) = 0 for all g ∈ G. Hence we have
∑k

i=2 c̃iτi(g) = 0

for all g ∈ G where c̃i = ci(τ1(h) − τi(h)). Since τ1(h) 6= τ2(h), {c̃i}ki=2 is a collection of k − 1

coefficients not all equal to zero satisfying
∑k

i=2 c̃iτi(g) = 0. This contradicts the minimality of k.

Thus {τi} are linearly independent over E.

Theorem 7.2 (Hilbert’s Theorem 90: Cohomological). Let E/k be a finite Galois extension. Then

the degree 1 group cohomology H1(GE , E×) is trivial, that is H1(GE , E×) = 1.

Proof. Let α : GE → E× be a 1-cocycle. We show there exists a ∈ E such that α(τ) = τ(a)a−1

for all τ ∈ GE . Then α is both a 1-cocycle and a 1-coboundary, which shows α is the trivial cocycle.

Note for all σ ∈ GE , σ : E× → E× is a Dedekind character on GE . Consider
∑

σ∈GE α(σ)σ(a) ∈ E

for any a ∈ E. Since α(a) is nonzero and belongs to E, Dedekind’s Lemma implies there exists

a ∈ E× such that b :=
∑

σ∈GE α(σ)σ(a) 6= 0. Let τ ∈ GE . Then since τ is a ring homomorphism

τ(b) =
∑

σ∈GE τ(α(σ))τσ(a). Since α is a 1-cocycle, this implies that

α(τ)(τ(b)) =
∑
σ∈GE

α(τ)τ(α(σ))τσ(a) =
∑
σ∈GE

α(τσ)τσ(a) = b

where the last equality follows by reindexing. Let a = b−1. Then α(τ) = τ(a)a−1.

Corollary 7.3 (Hilbert’s Theorem 90: Classical). Let E/k is a finite cyclic Galois extension, that is

the Galois group GE is cyclic, and let σ ∈ GE be a generator. If u ∈ E× is a unit, thenN(u) = 1 if

and only if there exists a ∈ E× such that u = σ(a)a−1.

Proof. Suppose there exists a ∈ E× such that u = σ(a)a−1. Above we proved N : E× → k× is a
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group homomorphism, and it is clear from the proof that N(σ(a)) = N(a). Hence we have

N(u) = N(σ(a))N(a−1) = N(a)N(a−1) = 1.

Conversely, suppose N(u) = 1 and let σ ∈ GE be a generator for GE . Define α : GE → E× by

α(id) = 1, α(σ) = u and α(σi) = uσ(u)σ2(u) · · ·σi−1(u) for i < n where n = |GE |. Let

0 ≤ i, j < n. In the case where i+ j < n,

α(σiσj) = α(σi+j) = uσ(u) · · ·σi+j−1(u)

= (uσ(u) · · ·σi−1(u))σi(uσ(u) · · ·σj−1(u))

= α(σi)σi(α(σj)).

If i+ j ≥ n then 0 ≤ i+ j − n < n. Hence

α(σiσj) = α(σi+j) = α(σi+j−n) = uσ(u) · · ·σi+j−n−1(u).

It then follows that

α(σi)σi(α(σj)) = (uσ(u) · · ·σi−1(u))σi(uσ(u) · σj−1(u))

= (uσ(u) · · ·σi+j−n−1(u))σi+j−n(uσ(u) · · ·σn−1(u))

= α(σiσj)N(u)

= α(σiσj)

In both cases α is a 1-cocycle. Hence by the proof of Cohomological Hilbert Theorem 90, there

exists a ∈ E× such that α(σi) = σi(a)a−1 for all i. Therefore for i = 1, u = σ(a)a−1.

There is a considerable generalization of the cohomological version of Hilbert’s Theorem 90

which can be applied to the degree 1 non-abelian Galois cohomology set with coefficents in the

group of units of a nice class of k-algebras.

Recall that a finite dimensional associative k-algebra A is simple if and only if it has no non-

trivial 2-sided ideals.

Theorem 7.4 (Prop III.8.24 [1]). Let A be a simple k-algebra and let Ω/k be a Galois extension.
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Then the degree 1 Galois cohomology set H1(GΩ,GL1(A)(Ω)) is trivial, that is

H1(GΩ,GL1(A)(Ω)) = 1.

As a corollary, we obtain a useful result that will help characterize those descent problems in-

volving actions of the algebraic group GLn.

Corollary 7.5. Let Ω/k be a Galois extension. Then H1(GΩ,GLn(Ω)) = 1.

Proof. The n× n matrix algebra Mn(k) with entries in k is a simple k-algebra. This follows from

the fact that I E Mn(k) is an ideal if and only if there exists J E k such that I = Mn(J), thus there

are no non-trivial ideals of Mn(k). Since GL1(Mn)(Ω) = GLn(Ω), Thm. 7.4 implies the desired

result.
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8 Applications

We now apply the abstract formalism developed in the previous sections to two explicit examples

of interest. Specifically, we apply the Galois descent lemma and the triviality of the degree 1 co-

homology of GΩ with coefficients in GLn(Ω) for an arbitrary Galois extension Ω/k to the matrix

conjugacy problem and a classification problem for associative k-algebras.

8.1 Conjugacy problem for matrices

LetK ∈ Fldk and let Ω/K a Galois extension. A natural descent question then arises: IfM0,M ∈

Mn(K) are conjugate by an element in GLn(Ω) (resp. SLn(Ω)), are M0 and M conjugate by an

element of GLn(K) (resp. SLn(K))? This question may be framed as a Galois descent problem.

Let F = Mn and G ⊂ GLn be an algebraic group scheme viewed as a functor from Fldk to Grp.

Then since F : Fldk → Set is representable F satisfies the Galois descent condition, and since

G : Fldk → Grp is an algebraic group scheme G is a Galois functor. For every extension K ∈ Fldk

the assignment

G(K)× F (K) −→ F (K)

(A,B) 7−−−→ A ∗B := ABA−1

gives rise to an action of G(K) on the set F (K). Indeed, for every A,B ∈ G(K) and C ∈

F (K), In ∗ C = InCI
−1
n = C and

A ∗ (B ∗ C) = A ∗ (BCB−1) = A(BCB−1)A−1 = (AB)C(AB)−1 = (AB) ∗ C.

This group action is functional in K. If ι : K → L is a morphism in Fldk, and A ∈ G(K), B ∈

F (K), then

F (ι)(A ∗B) = F (ι)(ABA−1) = F (ι)((aij)(bij)(aij)
−1)

= ι((aij)(bij)(aij)
−1) = (ι(aij))(ι(bij))(ι(aij))

−1

= ι((aij)) ∗ ι((bij)) = G(ι)((aij)) ∗ F (ι)((bij))

= G(ι)(A) ∗ F (ι)(B)
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Therefore G acts on F . Now let M0 ∈ Mn(k). Then by Theorem 6.11, for every field extension

K ∈ Fldk and every Galois extension Ω/K, we have a bijection of pointed sets

FM0(Ω/K)
∼=−→ ker

(
H1
(
GΩ, StabG(M0)(Ω)

)
→ H1

(
GΩ, G(Ω)

))
(7)

Now we consider the case when G = SLn.

Corollary 8.1. Let Ω/k be a Galois extension. Then H1(GΩ,SLn(Ω)) = 1.

Proof. Consider the exact sequence of GΩ -groups

1 SLn(Ω) GLn(Ω) Ω× 1.det

Then by Proposition 5.18 we have an exact sequence

GLn(Ω)GΩ (Ω×)GΩ H1(GΩ,SLn(Ω)) H1(GΩ,GLn(Ω))det δ0 i∗

of pointed sets. Note that since GL1(Mn) is a Galois functor, GLn(Ω)GΩ ∼= GLn(k) and (Ω×)GΩ ∼=

k×, and by Corollary 7.5 we have H1(GΩ,GLn(Ω)) = 1. Therefore we have an exact sequence

GLn(k) k× H1(GΩ, SLn(Ω)) 1det δ0

of pointed sets. Observe that the determinant map det is surjective. Then exactness at k× gives

k× = im det = ker δ0. Hence δ0 is the trivial map, and so im δ0 = 1. Exactness atH1(GΩ, SLn(Ω))

then implies that the kernel of the surjective map H1(GΩ, SLn(Ω)) → 1 is trivial. Therefore

H1(GΩ,SLn(Ω)) = 1.

From Corollary 8.1 and (7) we have a bijection of pointed sets

FM0(Ω/K)
∼=−→ H1(GΩ,StabSLn(M0)(Ω)).

Let φ denote this bijection. If [M ] ∈ FM0(Ω/K) is the K-equivalence class of a twisted K-form

of M0 which splits over Ω, then there exists Q ∈ SLn(Ω) such that QMQ−1 = M0. In this case
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φ([M ]) = [αQ] where αQ is the cocycle

αQ : GΩ → StabSLn(M0)(Ω)

σ 7−→ Q(σ • Q−1).

By definition,

FM0(Ω/K) = {[M ] |M ∈ F (K) and ∃Q ∈ SLn(Ω) s.t. QMQ−1 = M0}

The equivalence class [M0] is the base point of the pointed setFM0(Ω/K), and therefore corresponds

to the class of the trivial cocycle in the pointed set H1(GΩ,StabSLn(M0)(Ω)). Moreover, for any

M ∈ [M0] the pair (M,M0) gives a positive answer to the conjugacy problem. Hence the bijection

between FM0(Ω/K) and H1(GΩ,StabSLn(M0)(Ω)) tells us the answer to the conjugacy problem

for a given pair (M,M0) is positive if and only if [αQ] is the trivial class.

We now give an example which yields a negative answer to the conjugacy problem in this case

of SL2 with Galois extension Q/Q.

Example 8.2. LetM0 andM be the following matrices in M2(Q)

M0 =

0 −2

1 0

 ,M =

 0 2

−1 0



Then Q =

i 0

0 −i

 is a matrix in SL2(Q) with the property that QMQ−1 = M0. Note that αQ is

cohomologous to the trivial cocycle if for all σ ∈ GQ there exists a matrix C ∈ StabSL2(M0)(Q)

such that

αQ(σ) = CαI(σ)(σ • C−1) = C(σ • C−1).

Let σ ∈ GQ denote complex conjugation. Then the above equality is αQ(σ) = C(σ •C−1) = CC
−1,

which is equivalently written C = −C−1 since

αQ(σ) = Q(σ • Q−1) = QQ
−1

=

i 0

0 −i


i 0

0 −i

 =

−1 0

0 −1

 = −I.
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Note that C ∈ StabSL2(M0)(Q) means CM0 = M0C. Now let C =

z1 z2

z3 z4

 be a matrix

in GL2(Q). Then the two conditions C = −C−1 and CM0 = M0C are satisfied if and only if

C =

iu −2iv

iv iu

 for some u, v ∈ R such that (u, v) 6= (0, 0). Therefore detC = −(u2+2v2) < 0

and hence C cannot belong to SL2(Q). This shows that [αQ] is not the trivial class, and therefore

we concludeM0 andM are not conjugate by a matrix in SL2(Q).

8.2 Classification problem for associative k-algebras

Here we use the Galois descent lemma to classify isomorphism classes of finite dimensional asso-

ciative k-algebras A in terms of the Galois cohomology set of GΩ with coefficients in Aut(A)(Ω).

Fix an n-dimensional k-vector space V . For K ∈ Fldk, let F (K) denote the set of associative

(not necessarily commutative)K-algebra structures on the vector space V ⊗k K. That is:

F (K) :=
{
µ : (V ⊗k K)⊗K (V ⊗k K)→ (V ⊗k K) | assoc(µ) = 0

}
(8)

where assoc(µ) : (V ⊗k K)⊗3 → (V ⊗k K) is theK-linear map

assoc(µ) := µ ◦ (µ⊗ id)− µ ◦ (id⊗µ)

Extension of scalars then gives us a functor

F : Fldk → Set

Proposition 8.3. The functor F : Fldk → Set satisfies the Galois descent condition.

Proof. By Lemma 5.22, it suffices to show that F is representable. Hence, by Prop. 4.6, it suffices to

exhibit an ideal I E k[x1, . . . , xm] such that we have a natural isomorphism F ∼= V(I)(−), where

F : Algk → Set is the obvious extension of (8) to the category of commutative k-algebras. Choose a

k-linear basis {ei} for the vector space V . LetR ∈ Algk, and for each i = 1, . . . , n let ẽi := ei⊗1K .

Then {ẽi} is a basis for the free R-module V ⊗k R.
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Suppose µ ∈ F (R), and let cijs ∈ R be elements of R such that

µ(ẽi ⊗ ẽj) =
∑
s

cijsẽs

for each i, j = 1, . . . ,m. Then assoc(µ) = 0 if and only if for all i, j, ` = 1, . . . , n

assoc(µ)(ẽi ⊗ ẽj ⊗ ẽ`) = 0 ∈ V ⊗k R.

The latter equality then holds if and only if

n∑
s=1

(cjlscist − cijscs`t) = 0 for t = 1, . . . , n.

Hence, we deduce that µ is an associative algebra structure on V ⊗k R if and only if {cijs} ∈

V(I)(R) ⊆ Rn3 where I E k[xijs] is the ideal generated by the polynomials {P tij`} where

P tij` :=
n∑
s=1

(xjlsxist − xijsxs`t).

There is natural conjugation-like action of the algebraic group scheme GL(V ) on the functor

F : Fldk → Set. Given g ∈ GL(V )(K) and µ ∈ F (K) define

g ∗ µ : (V ⊗k K)⊗K (V ⊗k K)→ (V ⊗k K), g ∗ µ := g ◦ µ ◦ (g−1 ⊗ g−1) (9)

By construction, the fact that µ is associative implies that assoc(g ∗ µ) = 0 as well. Furthermore,

theK- linear map g : V ⊗k K → V ⊗k K is automatically an isomorphism ofK-algebras

g : (V ⊗k K, g ∗ µ)
∼=−→ (V ⊗k K,µ).

In particular, the stabilizer of a fixed k-algebra A := (V, µ), with µ ∈ F (k) under the above GL(V )

action is

StabGL(V )(A)(k) = Aut(A)(k),

where Aut(A) : Fldk → Grp is the Galois functor of algebra automorphisms introduced in Sec.

4.2.2.

The Galois descent lemma Thm. 6.11 combined with Cor. 7.5 implies the following characteri-
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zation of the Galois descent problem for isomorphism classes of finite-dimensional k-algebras

Theorem 8.4 (Prop. III.9.1 [1]). Let K/k be a field extension, and let Ω/K be Galois. For any

k-algebra A ∈ F (k), the pointed set

H1(GΩ,Aut(A)(Ω))

classifies the isomorphism classes ofK-algebras which become isomorphic to A over Ω. In partic-

ular, the class of the trivial cocycle corresponds to the isomorphism class of A⊗k K.
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9 Future work

In this section we describe possible directions for future work. A particular problem of interest,

inspired by rational homotopy theory, is to set up a Galois descent problem as described here for

finite-dimensional graded polynomial algebras equipped with a degree +1 derivation.

Non graded polynomial rings k[x1, x2, . . . , xm] inm > 0 variables are examples of finitely gen-

erated, but infinite-dimensionalk-algebras. As a result, the automorphism groupAutAlgk(k[x1, x2, . . . , xn])

is not a subgroup ofGLn for any n. Hence, our results from Section 4.2.2 concerning representablity,

etc. do not apply in this case. Indeed, we easily obtain an infinite number of k-algebra automorphisms

of the ungraded k-algebra k[x, y] as follows. Let f(y) ∈ k[y] and define φf : k[x, y] → k[x, y] on

generators by

φf (x) := x+ f(y), φf (y) := y

Then φf is a k-algebra isomorphism with inverse ψf : k[x, y]→ k[x, y] given by ψf (x) = x−f(y),

and ψf (y) = y.

However, in some nontrivial cases, the graded commutative k-algebra k[x, y] is finite dimen-

sional, in which case AutgrAlgk(k[x, y]) is a subgroup of GLn. For example, suppose |x| = 1 and

|y| = 3 where |x| and |y| denote the degree of x and y respectively. Then since k[x, y] is graded

commutative, we have

xy = (−1)|x||y|yx

which shows xy = −yx. It then follows that x2 = 0 and y2 = 0 since k is a field of characteristic

zero. Hence

k[x, y] ∼= spank{1, x, y, xy}

is an isomorphism of k-vector spaces, and therefore

AutAlgk(k[x, y])(k) ⊆ GL4(k).

An interesting descent problem within this framework is the following: Let A := k[x1, x2, . . . , xn]

be a finite-dimensional graded k-algebra. Let D : A → A be a degree 1 deriviation. For any F ∈

AutgrAlgk(A)(k), it is easy to show thatD′ := F ◦D ◦F−1 is also a degree 1 derivation. This gives
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an action of AutgrAlgk(A)(k) on Der(A)(k), the set of k-linear degree 1 derivations of A. Now fix

two derivations D,D′ ∈ Der(A)(k) and suppose Ω/k is a Galois extension such that D and D′

are equivalent, as elements in Der(A)(Ω), via the action of AutgrAlgk(A)(Ω). Are D and D′ then

equivalent as derivations over k?
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