
University of Nevada, Reno

Consensus, Cooperative Learning, and Flocking for Multi-agent Predator
Avoidance

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in

Computer Science and Engineering

by

Zachary Young

Dr. Hung M. La - Thesis Advisor
May 2020

i

Abstract

Multi-agent coordination is highly desirable with many uses in a variety of tasks. In

nature the phenomenon of coordinated �ocking is highly common with applications

related to defending or escaping from predators. In this thesis a hybrid multi-agent

system that integrates consensus, cooperative learning, and �ocking control to de-

termine the direction of attacking predators and learn to �ock away from them in a

coordinated manner is proposed. This system is entirely distributed requiring only

communication between neighboring agents. The fusion of consensus and collab-

orative reinforcement learning allows agents to cooperatively learn in a variety of

multi-agent coordination tasks, but this thesis focuses on �ocking away from attack-

ing predators. The results of the �ocking show that the agents are able to e�ectively

�ock to a target without collision with each other or obstacles. Multiple reinforce-

ment learning methods are evaluated for the task with cooperative learning utilizing

function approximation for state space reduction performing the best. The results of

the proposed consensus algorithm show that it provides quick and accurate transmis-

sion of information between agents in the �ock. Simulations are conducted to show

and validate the proposed hybrid system in both one and two predator environments

resulting in an e�cient cooperative learning behavior. In the future the system of

using consensus to determine the state and reinforcement learning to learn the states

can be applied to additional multi-agent tasks.

ii

Acknowledgments

I would like to thank my advisor, Dr. Hung La, who provided me with the guidance

and assistance needed for my research. Without him and his advice this thesis would

not have been possible. I would also like to thank my committee members Dr. Sushil

Louis and Dr. Jun Zhang for their advice and time taken to review this thesis. Lastly

a thanks to my family who made my education possible.

This material is based upon work partially supported by the National Aeronautics

and Space Administration (NASA) Grant RRR No. 80NSSC19M0170, and Grant No.

NNX15AI02H issued through the NVSGC-RI program under sub-award No. 19-21,

the RID program under sub-award No. 19-29, and the NVSGC-CD program under

sub-award No. 18-54.

iii

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Review . 2

1.2.1 Flocking Background . 2

1.2.2 Reinforcement Learning Background 3

1.2.3 Consensus Background . 3

1.3 Contributions . 4

1.4 Thesis Organization . 5

2 Flocking Control 6

2.1 Flocking Control . 6

2.2 Results of Flocking Algorithm . 8

2.3 Summary . 10

3 Multi-agent Learning 11

3.1 Learning Model . 11

3.1.1 State . 11

3.1.2 Action . 12

3.1.3 Reward . 12

3.2 Cooperative Learning . 13

iv

3.3 Action Selection . 14

3.4 Function Approximation . 15

3.4.1 Radial Basis Function . 16

3.4.2 Function Approximation Learning 16

3.5 Comparison of Learning Algorithms 18

3.6 Summary . 19

4 Consensus for Multi-agent State Approximation 20

4.1 Predator Sensing . 21

4.2 Consensus . 23

4.3 Validation . 24

4.4 Summary . 29

5 Simulation and Results 31

5.1 Simulation Environment . 31

5.1.1 Learning Con�guration . 32

5.2 Results . 33

5.2.1 Single Direction State . 33

5.2.2 Single Predator . 34

5.2.3 Two Predators . 37

5.3 Summary . 40

6 Conclusion and Future Work 42

6.1 Conclusion . 42

6.2 Future Work . 43

v

List of Tables

4.1 The iterations to converge and number of incorrect directions found

over 900 iterations.cm = 2 produces the best results. 25

vi

List of Figures

1.1 Block diagram of the hybrid system. 5

2.1 50 agents �ocking to the green target. 9

2.2 50 agents �ocking to the green target while avoiding the red obstacle. 10

3.1 Visualization of the direction classi�cations. The large red circle rep-

resents the predator while the triangle represents the agent. The blue

circle represents the best target, green circles are good targets, yellow

circles are average targets, orange circles are bad targets and the small

red circle is the worst target in this scenario. 13

3.2 Comparison of convergence between RBF and Q learning with and

without cooperative learning. All four algorithms were run 10 times

for 20 episodes and the results were averaged. Over the course of these

runs cooperative RBF was able to converge within four episodes while

cooperative Q learning was unsuccessful in fully converging within 20

episodes. Both independent algorithms were not able to learn. 19

4.1 Direction and associated information values for an agent observing a

predator. Each color corresponds to an information value 1 through 8

with 1 representing east, 3 representing north, and so forth. 22

vii

4.2 Predator moving in circle around �ock with consensus updating the

state of the agents based on the direction of the predator. 25

4.3 The number of agents in the same state(the sameinfo i) for each iter-

ation. For all positions of the predator the agents are able to converge

to the same state. 26

4.4 The number of consensus iterations for all agents to converge to the

same state. 26

4.5 The averageinfo i for the agents in each iteration. Some states occur

for longer durations due to the shape of the �ock. 27

4.6 The number of agents in the same state whencm is in�nite. There are

multiple predator positions that result in the agents not fully converg-

ing even given 40 iterations. 27

4.7 The convergence of the agents state whencm is in�nite. Given 40

consensus iterations it is not able to fully converge. 28

4.8 The cause of error of the consensus algorithm. Despite the predator

being east of the �ock as a whole the only agent in range senses it as

north east causing the error seen in Tab. 4.1. 28

5.1 Initialization of an episode with agents randomly distributed. 32

5.2 The number of agents choosing the same action for each episode for a

single direction state by episode. The agents are able to fully converge

by 4 episodes. 33

5.3 The number of agents choosing the same action for each episode for

a single direction state by iteration with the dashed lines representing

the start of an episode. It can be seen that most learning is done in

the beginning of an episode while the �ock is connected. 34

viii

5.4 The number of agents choosing the same action for each episode for a

single predator environment averaged over 6 runs. It can be seen that

the agents converge by each direction being encountered 6 times. . . . 35

5.5 50 agents �ocking away from one predator before learning the same

target. 35

5.6 50 agents �ocking away from one predator after learning the same target. 36

5.7 Trajectory the agents take in the last episode where the triangles are

the initial position of the agents. The Flocking can be seen to be

smooth to the target after agents get into �ocking formation despite

the � -greedy random action selection. 37

5.8 Number of agents choosing the same action for two predators over 216

episodes. It can be seen that after 180 episodes all agents choose the

same action for each state. 38

5.9 50 agents �ocking away from two predators before learning the same

target. 39

5.10 50 agents �ocking away from two predators after learning the same

target. 40

1

Chapter 1

Introduction

1.1 Motivation

Multi-agent cooperative learning has been and continues to be a large research interest

in the �eld of robotics with a wide range of applications. Tracking wild�res by

using multiple agents communicating together to better handle the �re so it doesn't

destroy as much is one such possibility [1, 2]. Another is using multiple agents to

better map the structure of a pipeline that if it structurally fails could cause large

damage and loss of money [3]. An additional possibility is mapping and exploring

unknown environments [4]. This thesis aims to solve the task of multi-agent predator

avoidance [5,6] with an intelligent hybrid system.

Most current multi-agent research incorporates some form of consensus, movement

control, or reinforcement learning but a combination of all three to achieve an e�cient

cooperative learning behavior is largely unexplored. Some uses of consensus are to

determine the location of obstacles [7] or to make measurements in a scalar �eld [8] [9]

[10]. Movement control of multi-agent systems can come in the form of cooperatively

2

doing path planning as in [11] and [12]. Alternatively there are means of control

through �ocking in varying formations [13] [14] [15] to achieve a variety of tasks

[16] [17]. Reinforcement learning has been implemented cooperatively in a variety of

ways for multi-agent environments such as a Grid World [18] [19] and box pushing

[20]. Although all of these uses for consensus, movement control, and reinforcement

learning are good in their own right, this thesis aims to make a more intelligent hybrid

system.

In nature �ocking has long been observed in many environments [21�23] with one

possible goal being to defend from predators as can be seen with schools of �sh. Even

simulated environments [24,25] that reward individuals for their own survival result

in �ocking like formations of the agents. It is thus clear that �ocking for survival has

clear bene�ts in both natural and simulated environments. The goal of this thesis is

then to create a hybrid system that combines consensus, �ocking, and multi-agent

reinforcement learning into one intelligent system that can sense and learn to escape

from attacking predators.

1.2 Literature Review

1.2.1 Flocking Background

Methods of ensuring agents �ocking have been proposed and studied in [26�28]. In-

spired by the natural world of birds and �sh �ocking together [29] �ocking algorithms

have been formed. The algorithms allow for agents to �ock in di�erent patterns in a

distributed manner that requires on communication between direct neighbors rather

than the entire �ock. The main rules that de�ne �ocking are that �ockmates main-

tain a distance from each other without getting to close or far from each other and

3

match the velocity of the other �ockmates. Reinforcement learning approaches have

also been applied to �ocking in which agents individually or cooperatively learn to

�ock without the use of speci�c algorithms [30, 31]. There are also cases in which

reinforcement learning is implemented to teach agents to go to speci�c targets but

in cases where learning fails to then use a �ocking algorithm to avoid obstacles [32].

Flocking by itself is not particularly useful if the agents �ock directly to a predator so

this work aims to combine learning with �ocking to e�ectively escape from predators.

1.2.2 Reinforcement Learning Background

Cooperation is an important part of a �ock learning to do a task together. In [33]

agents are not necessarily �ocking together but through cooperation they are complet-

ing their task e�ectively. Cooperation is already a large part of �ocking algorithms so

that they can be done in a distributed manner. Cooperation must also be used to ef-

fectively learn in a distributed manner. Using simple Q-learning [34] does not achieve

the necessary amounts of cooperation required so a more cooperative approach [6,35]

is required. Unfortunately as the number of agents increases the state space grows

and requires longer and longer amounts of training to e�ectively learn to �ock to-

gether to the same destination. For this, function approximation techniques [36, 37]

are useful. However in current research function approximation in combination with

cooperative learning is largely unexplored [38] [39].

1.2.3 Consensus Background

Partial observability of the state space is another issue for purposes of escaping at-

tacking predators. For a school of �sh, not all �sh will be able to see an attacking

predator yet they manage to utilize �ocking to maximize their safety anyway. For

4

our agents this is the same case in that only agents on the outside of a �ock will be

able to see an oncoming predator. A method of communicating to the other agents

that a predator is approaching is thus necessary. This can be seen as a sort of event

triggered consensus such as that proposed in [40]. Algorithms have been proposed

to allow multi-agent systems to come to a consensus on measurements from multiple

agents that do not necessarily agree with each other [41,42]. Many uses of consensus

however are for estimating some kind of measurement [43]. This work intends to

use consensus in combination with reinforcement learning to make a more intelligent

system. Some works such as [38] and [39] implement a hybrid system of consensus

and reinforcement learning but they use consensus to determine the global reward of

the system. This work uses consensus to determine the state relying on local rewards

instead.

1.3 Contributions

In this thesis we intend to combine the bene�ts of consensus, �ocking, and reinforce-

ment learning to create a hybrid system shown in Fig. 1.1. This system assumes

partial observability in that only agents on the outside of the �ock near an approach-

ing predator are able to see the attacking direction of the predator. They must use

consensus to inform the rest of the �ock about the attacking direction of the preda-

tor which is then used with reinforcement learning to learn a target(a safe place) to

move towards. That target is then used by a �ocking algorithm to give each agent

a control input to move each agent towards the target in a �ocking formation. The

contributions of this thesis are then as follows:

ˆ Utilization of consensus between agents for state approximation in reinforcement

learning.

5

Figure 1.1: Block diagram of the hybrid system.

ˆ Cooperative learning with a large number of agents.

ˆ Implementation of function approximation to reduce state space for the large

number of agents used.

ˆ Integration of reinforcement learning and �ocking to learn where to �ock.

ˆ A fast and accurate consensus algorithm for a large number of agents.

ˆ An entirely distributed system.

1.4 Thesis Organization

The organization of the remainder of this thesis is as follows. In Chapter 2 a method

for �ocking is introduced. Chapter 3 goes over the multi-agent learning used to

ensure the agents �ock together to the same target. Chapter 4 details a method of

state approximation called consensus for the agents. This is followed by Chapter 5

which details the combination of �ocking, reinforcement learning, and consensus into a

hybrid system for the agents to learn to �ock away from a predator. Lastly, Chapter 6

covers the conclusion with analysis and potential future development.

6

Chapter 2

Flocking Control

2.1 Flocking Control

In this section the �ocking algorithm used for the hybrid system is presented. In

order to learn to avoid predators the agents must be able to �ock together. Using

�ocking methodologies presented in [26] a network topology consisting of a graphG

that is a pair (V; E) with a set of verticesV = f 1; 2; :::; ng and edgesE � f (i; j) :

i; j 2 V; j 6= ig. In this graph the robots are considered vertices and the edges are

communication links between neighboring robots. Using robots modeled as particles

the equations of motion are given by

8
>><

>>:

_qi = pi

_pi = ui

(2.1)

whereqi is the position of robot i , pi is the velocity, andui is the acceleration or the

control input.

7

The neighbors of an agent can be determined by

N i = f j 2 V : jjqj � qi jj < r g (2.2)

wherejj :jj is the Euclidean norm andr is the interaction range of an agent.

There are many formations �ocking can take but the formation used here is an

� -lattice formation in which

jjqj � qi jj = d 8j 2 N i (q): (2.3)

for desired distanced whered = r=k for a scale factork.

In �ocking each agent determines its control input with a gradient-based termf g
i

given by [26]

f g
i = c1

X

j 2 N i

� � (jjpj � pi jj �)nij) (2.4)

wherenij = � � (qj � qi) = (qj � qi)=
p

1 + � jjqj � qi jj 2 and � � (:) is a pair-wise attrac-

tive/repulsive force to maintain the desired distanced between robots. With� -norm,

jj :jj � given by jjxjj � = 1=�[
p

1 + � jjxjj 2 � 1] that is di�erentiable everywhere for � > 0.

An obstacle avoidance term given byf o
i that is the repulsive force off g

i using points

on obstacles as virtual neighborsN �
i given by

f o
i =

X

j 2 N �
i

bij (q)(pj � pi): (2.5)

A velocity consensus termf d
i given by

f d
i = c2

X

j 2 N i

aij (q)(pj � pi) (2.6)

8

whereaij (q) = ph(jjqj � qi jj � =jj r jj �) is an adjacency matrix over the interval [0,1) and

c2 is some positive constant.ph(:) is a bump function that smoothly varies between

0 and 1. One possible de�nition is given by

ph(z) =

8
>>>>>><

>>>>>>:

1 z 2 [0; h)

1
2 [1 + cos(� (z� h)

(1� h))] z 2 [h; 1]

0 otherwise

(2.7)

whereh 2 (0; 1). A navigational term, f

i , that determines the direction the agents

should be moving towards, given by

f

i = � c1t (qi � qt) � c2t (pi � pt) (2.8)

wherec1t and c2t are positive constants, andqt and pt are the position and velocity of

the target. These equations can be combined to �nd the control input for each agent

ui given by

ui = f g
i + f d

i + f

i + f o

i : (2.9)

This method allows the agents �ock together in an� -lattice formation towards a

target location.

2.2 Results of Flocking Algorithm

The results of this �ocking algorithm can be seen in Fig. 2.1 where the agents are

�ocking to the green circle without an obstacle and in Fig. 2.2 with an obstacle. The

agents are initialized randomly over a 120x120 area and �ock towards the green target.

The blue lines represent communication links between agents. It can be seen that the

9

agents maintain their distance from each other without getting too far away from each

other and eventually converging to an� -lattice formation. In the case of an obstacle

the agents manage to avoid colliding with it. This �ocking algorithm thus provides

a viable method of escaping from predators as well as provides a communication

structure between agents to use for communications required to cooperatively learn.

Figure 2.1: 50 agents �ocking to the green target.

10

Figure 2.2: 50 agents �ocking to the green target while avoiding the red obstacle.

2.3 Summary

In this chapter a �ocking algorithm was described that allows numerous agents to

�ock together to speci�ed locations using a random position initialization. The al-

gorithm enables agents to �ock in an� -lattice formation that is capable of avoiding

collisions with obstacles on the way to the speci�ed target though it slightly disrupts

the connection of the network. For this reason the algorithm alone is not su�cient

for avoiding predators so reinforcement learning is used to determine targets to go to

that avoids getting near predators.

11

Chapter 3

Multi-agent Learning

In this chapter an entirely decentralized reinforcement learning method for a net-

work to learn to �ock together to speci�ed targets is presented. Independent and

cooperative learning methods are presented. In addition to this a method of cooper-

ative learning with function approximation is evaluated against standard cooperative

learning.

3.1 Learning Model

The model of the learning algorithm is similar to that proposed in [6]. Using a State,

Action, Reward model for an agenti , let current state, action, and reward besi , ai ,

and r i with the next state and next action as�si and �ai respectively.

3.1.1 State

The state can be de�ned assi = [dir p; jN a
i j] wheredir p is the direction of a predator

if detected andjN i j is the number of neighbors in range for agenti . The state dir p is

12

set to 1, 2, 3, 4, 5, 6, 7, or 8 for the directions east, northeast, north, northwest, west,

southwest, south, and southeast respectively. The directions can further be divided

into a larger space or smaller space if desired. In the case of multiple predators this

state space can be expanded by adding adir p state for each predator.

3.1.2 Action

For actions the agents want to move in one of eight cardinal directions to escape a

predator depending on the directions that the predator is coming from. These actions

can be encoded as 1, 2, 3, 4, 5, 6, 7, and 8 mirroring the possible directions in the

state de�ned above. The action list can then be de�ned asA i = [1; 2; 3; 4; 5; 6; 7; 8].

These actions interact with the �ocking algorithm in that the actions are targets in

the respective direction that the agents then �ock towards if chosen. If no predator

is detected the agents perform no action and stay where they are. The actions are

represented as targets that an agent can choose to �ock towards.

3.1.3 Reward

The �ocking algorithm used provides �ocking in an � -lattice formation. This for-

mation ensures agents on the inside of the formation have up to six neighbors while

agents on the outside have one to �ve neighbors. To match this formation the reward

is then de�ned as

r i =

8
>><

>>:

jN a
i j � D r jN a

i j < 6

6 � D r otherwise
(3.1)

so that the max reward that an agent can get is 6 if it has all six neighbors to

encourage �ocking.

The reward is then scaled depending on the direction of the predator. The scaling

13

Figure 3.1: Visualization of the direction classi�cations. The large red circle repre-
sents the predator while the triangle represents the agent. The blue circle represents
the best target, green circles are good targets, yellow circles are average targets, or-
ange circles are bad targets and the small red circle is the worst target in this scenario.

factor D r is split into �ve categories consisting of the best target, good targets, average

targets, bad targets, and the worst target which can be visualized in Fig. 3.1. Agents

choosing the action corresponding to the best target have their reward equal to the

reward de�ned in (3.1). Actions corresponding to good targets are scaled down to 75

percent of the reward above, average targets to 50 percent, bad targets to 25 percent

and the worst target to 0 percent. This is done to encourage the agents to learn the

optimal target to go towards while maintaining the importance of �ocking together.

The addition of more predators multiplicatively scales the reward. For example if

there are two predators and an agent chooses an action that is a good direction for

both of them the reward will be scaled down by 75 percent twice or 56.25 percent.

This would fail if there are eight predators with one in each direction but in that case

there is no safe space for the agents to go.

3.2 Cooperative Learning

In order to learn to �ock to the same target together a cooperative learning method

is implemented. Agents learning independently in this environment will take many

learning episodes to converge or never converge at all which can be seen in [6]. How-

ever, to cooperatively learn each agent must �rst do independent learning [34] for an

14

individual table, Qi , as follows:

Qk+1
i (si ; ai) Qk

i (si ; ai) + � [r k
i +
 max

�ai 2 A i

Qk
i (�si ; �ai) � Qk

i (si ; ai)] (3.2)

where � is a learning rate and
 is a discounting factor. This independent learning

is not capable of converging in any reasonable amount of time for this application

so cooperative learning must be used. After preforming independent learning the

Q-table of each agent is further updated by communicating with its neighbors using

the following [6]:

Qk+1
i (si ; ai) wQk

i (si ; ai) + (1 � w)

P jN i j
j =1 Qk

j (sj ; ai)

jN i j
(3.3)

wherew is a weight such that0 � w � 1 to determine how much an agent should

trust neighbors versus itself. It can be seenw = 1 would mean the agent only trusts

itself and w = 0 would mean the agent only trusts its neighbors. The weight chosen

can either be a static value or in this application the weight is de�ned asw = 1
jN a

i j+1 so

that each agent equally trusts each other agent. Dividing the sum byjN i j is required

so that over the course of the learning the Q-values do not converge to in�nity too

quickly. Note that the update from the neighbors is based on the neighbors statesj

and the agents own actionai

3.3 Action Selection

The action selection of an agent is based on the maximum Q-value approach [35] [44]

in which the action with the highest Q-value for a given state is the action chosen.

This method of choosing the action is highly exploitative with no exploration. To

introduce exploration we use� -greedy [34]. We use a small probability0 � � g � 1

15

in which to ignore the highest Q-value and instead select an action at random. This

can be modeled as follows

ai =

8
>><

>>:

amax 2 A i � g < random (0; :::; 1)

arandom 2 A i otherwise
(3.4)

This random action selection allows a agent to explore a new action that might return

a higher reward. The same action selection can be used for function approximation

learning replacing the Q-value with the� parameter vector.

3.4 Function Approximation

Despite the cooperative Q learning algorithm preforming better than independent

learning as seen in [6] it still can be improved upon to get better results and faster

convergence. The direction of the predatordir p is already discretized into eight direc-

tions however the number of neighborsjN i j grows in size with the number of agents

used. Due to the random initialization of agents at the start of each episode it is

possible for each agent to be a neighbor of each other agent. However as the episode

progresses and the� -lattice formation is achieved this state will have one of seven

values for either no neighbor or one to six neighbors. This state size is not par-

ticularly large but the Q values for higher neighbor amounts are ideally found to

ensure smooth �ocking to the target. A radial basis function (RBF) method of func-

tion approximation is used to achieve quicker learning. A �xed sparse representation

method was explored but RBF was found to perform better. The state, action, and

reward representations remain the same but the number of neighborsjN i j is now

being approximated using RBF.

16

3.4.1 Radial Basis Function

Function approximation allows to approximate a state space rather than just dis-

cretize it. There are many methods of doing function approximation but the method

that seemed most applicable was a simple RBF approach. The RBF scheme maps

the original Q table to a parameter vector� as [37] [36]:

Qi (si ; ai) =
X

� l (si ; ai)� i;l = � T (si ; ai)� i (3.5)

where the RBF kernel� is a column vector of lengthl � jf Agj. The output of the l th

RBF kernel is given as

� l (s) = e
�

jj s� �sl jj 2

2� 2
l (3.6)

wheres is the current state, �sl is the center of the RBF kernell , � l is the radius of

the RBF kernel l producing the shape of a Gaussian bell. A larger� l thus produces

a �atter RBF.

3.4.2 Function Approximation Learning

The cooperative learning algorithm from equation 3.2 and 3.3 is still used to learn

however it is modi�ed to account for the parameter vector� and RBF kernel � in

equation 3.6 [36] rather than Q-values. The independent part of RBF learning is then

given as

� k+1
i � k

i + � [r k
i +
 max

�ai 2 A i

(� T (�si ; �ai)� k
i) � (� T (si ; ai)� k

i]� (si ; ai) (3.7)

17

with the same learning rate� and discount factor
 as before. The cooperative

portion follows as

� k+1
i = w� k

i + (1 � w)

P jN i j
j =1 � k

j

jN i j
: (3.8)

The main key di�erence here is that each agent must now communicate a� vector

rather than just a single Q table value since the entire� vector approximates the

state. In standard reinforcement learning the learning is conducted over multiple

Algorithm 1: Function Approximated Distributed Cooperative Learning

1 Initialization
2 Set parameters� ,
 , � g

3 Initialize � and position of static targets
4 for each episodedo
5 Initialize position of agents and predator
6 for each iteration k do
7 for each agent ido
8 Initialization Phase : Observe current statesi

9 Select action based on equ. (3.4)
10 Action Phase : Each agent performs it's action updating the

states by equ. (2.9)
11 Update Phase : Observe next state (�si)
12 Select next action (�ai) based on max� i

13 Compute Reward (r i)
14 Compute � i value using equ. (3.7)
15 Update � i based on its neighbors using equ. (3.8)
16 end
17 The number of iterations k is determined by the number of iterations

required for the agents to �ock to a target.
18 end
19 Training is terminated after all agents choose the same target for all

predator directions.
20 end
21 Output a learned � table that agents use to know which target to go to

depending on the direction of the predator.

episodes. The episodes here consist of iterations of agents �ocking towards the targets

corresponding to their actions. Learning is concluded when the agents all learn the

same action for each given state. After learning all states the agents will have a

18

learned� table that can be used to guide the agents in a �ock to safe locations away

from predators. The Algorithm for this learning is then given in Alg. 1.

3.5 Comparison of Learning Algorithms

If we use 50 agentsn = 50 with 8 discrete directionsjdir pj = 8 and 8 actions corre-

sponding to those directionsjf Agj = 8, the Q table would be of size50� 8 � 50� 8 =

1:6 � 105. Since the directions are already discretized and the number of actions and

agents cant be reduced only the neighbor dimensionjN i j can be reduced. For this

application 8 RBF kernels were used to approximate the space although less or more

will probably perform similarly. The � table is then of size50 � 8 � 8 � 8 = 2:56 � 104

which is approximately 1
6 the original size. In a state space in which the direction of

predators is ignoredjdir pj = 1 the Q size is2 � 104 while � is 3:2 � 103. The results of

this learning in this state space is shown in Fig. 3.2. It is clear that by using coop-

erative learning with function approximation the performance is signi�cantly better

than without in both space and training time required. Because of this large gap in

learning e�ectiveness, only cooperative learning with function approximation is used

for the larger state space wherejdir pj = 8.

19

Figure 3.2: Comparison of convergence between RBF and Q learning with and without
cooperative learning. All four algorithms were run 10 times for 20 episodes and the
results were averaged. Over the course of these runs cooperative RBF was able to
converge within four episodes while cooperative Q learning was unsuccessful in fully
converging within 20 episodes. Both independent algorithms were not able to learn.

3.6 Summary

In this chapter a method of learning targets to �ock towards was proposed. Previous

research has shown the bene�t of cooperative learning over independent learning to

greatly improve the learning time. This was taken a step further here by applying

function approximation methods to approximate the state space providing even better

results. Now that there is a method of �ocking to a target and a way of learning a

target to �ock to, a way of sensing predators is required to learn to �ock away from

them.

20

Chapter 4

Consensus for Multi-agent State

Approximation

In this chapter a way of sensing and communicating the direction of a predator is

presented. Each agent has a predator sensing radiusrp that allows them to sense

a predator. If a predator is within that radius then the agent is able to know its

relative angle to the predator. These angles can be used to determine the direction

the predator is coming from. However not every agent will be in range of the predator

to see the direction it is coming from and not every agent that is in range will agree

on which direction the predator is coming from. To solve this a weighted voting

method is introduced for agents to share and achieve a consensus on the direction of

the predator.

21

4.1 Predator Sensing

A means of agents achieving consensus proposed in [43] was the start point for this

weighted voting used here. The algorithm is split into two components, a measure-

ment step and a consensus step. For the measurement step, if an agent is in range of

the predator then it performs a measurement of the relative direction of the preda-

tor. For the purposes of this paper the direction is discretized into eight directions

evenly split directions as mentioned previously. These directions are assigned to an

information vector info i as

info i =

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

1 0 � wp � 22:5; 337:5 � wp � 360

2 22:5 � wp � 67:5

3 67:5 � wp � 112:5

4 112:5 � wp � 157:5

5 157:5 � wp � 202:5

6 202:5 � wp � 247:5

7 247:5 � wp � 292:5

8 292:5 � wp � 337:5

(4.1)

wherewp is the angle between the agent and the predator such that0 � wp � 360.

These directions are visualized in Fig. 4.1. These directions do not have to be

symmetrical or positioned as have been positioned here. There can also be more or

less directions as desired. However the directions for this application were chosen as

eight evenly divided directions such that they are all 45 degrees in width,360=8 = 45,

and they are aligned to the cardinal directions.

Each agents information vector is assigned a weight or a belief factorweighti;d .

22

Figure 4.1: Direction and associated information values for an agent observing a
predator. Each color corresponds to an information value 1 through 8 with 1 repre-
senting east, 3 representing north, and so forth.

This weight vector is of size number of agents by number of directionsn � jdir pj and

is determined from an agent's measurement given by

weighti;d =

8
>>>>>>>>>><

>>>>>>>>>>:

(1 � jj qp � qi jj
r p

) � (wm � wp +45
45) jjqp � qi jj < r p; d = info i

(1 � jj qp � qi jj
r p

) � (1 � wm � wp +45
45) jjqp � qi jj < r p; d = info i + 1; wp > w m

(1 � jj qp � qi jj
r p

) � (1 � wp � wm +45
45) jjqp � qi jj < r p; d = info i � 1; wp < w m

0 otherwise

(4.2)

wherewm is the middle angle of the direction measured,info i +1 is the next direction

clockwise, andinfo i � 1 is the next direction in the counterclockwise. For example

if info i = 1 then info i � 1 = 8. The scale factorwm � wp +45
45 splits the distance weight

1 � jj qp � qi jj
r p

into two directions of the weight vector. This scale factor is between zero

and one and is determined by where the measured angle is relative to the center of the

direction. For example the center of direction onewm is 0 degrees and if the measured

angle wp is 0 degrees thenwm � wp +45
45 = 1. Thus the weighti; 1 = (1 � jj qp � qi jj

r p
) � 1. If

the measured anglewp was 22.5 thenwm � wp +45
45 = 0:5 and 1 � wm � wp +45

45 = 0:5. Thus

23

weighti; 1 = weighti; 2 = 1 � jj qp � qi jj
r p

) � 0:5. The idea here is to assign weight based

on closeness to the predator and closeness to the center of the directions. Once the

information and weight has been found for all agents we can then run a consensus

based on weighted voting.

4.2 Consensus

For consensus each agent updates its informationinfo i and weight weighti;d based

on its neighborsN i . The goal is for all agents to agree on the sameinfo i and for that

info i to be as accurate as possible thus achieving consensus on the direction of the

predator. To do this a weighted voting method is implemented where the weights for

an agent and its neighbors are summed together into the weighted direction vector

weighti such that weighti = weighti +
P jN i j

j =1 weightj . The info i is then set to the

direction that has a maximum weight info i = maxd(weighti;d). The weight and

information is updated for all agents for a set amount of iterationscm in this manner

then the weight for each agent is updated to the maximum weight amongst itself

and its neighbors such thatweighti = maxweight (weightN i [weighti). Sharing the

maximum weight after the set amount of iterations allows for all agents to converge

to the same predator direction in a quick manner. The measurement and consensus

steps can be combined as seen in Algorithm 2.

By using this algorithm info i is found for each agent and given enough enough

iterations, the proposed consensus will converge to the same value for all agents. This

value is used to determine the statedir p in the reinforcement learning component.

24

Algorithm 2: Consensus on Direction of Predator

1 Initialize rp

2 Initialize cm

3 Measurement Phase :
4 for Each agent ido
5 if jjqp � qi jj < r p then
6 Find info i from equ.(4.1)
7 Find weighti;d from equ. (4.2)
8 else
9 weighti = 0

10 end
11 end
12 Consensus Phase :
13 for Each Consensus Iteration cdo
14 for Each agent ido
15 Update the weighted direction vector
16 if c � cm then
17 weighti = weighti +

P jN i j
j =1 weightj

18 else
19 weighti = maxweight (weightN i [weighti)
20 end
21 Update the info i

22 info i = maxd(weighti;d)
23 end
24 end

4.3 Validation

Algorithm 2 is tested in an environment where 50 agents are �ocking to a static

position while seeing a predator, denoted by a large red circle, moving in a circle

around the �ock over 900 iterations as can be seen in Fig. 4.2. Visually the agents

that are represented by the triangles change color in association with the direction

they perceive the predator to be in after consensus. The consensus component was

allowed to run for 20 consensus iterations and was found that all agents converged

to the sameinfo i within that duration which can be seen in Fig. 4.3. One run of

the average time it took to converge for each of the 900 iterations can be seen in 4.4.

25

Figure 4.2: Predator moving in circle around �ock with consensus updating the state
of the agents based on the direction of the predator.

E�ects of change incm

cm = 0 cm = 1 cm = 2 cm = 3
Iterations to Converge 8.2 8.8 9.8 10.6
Incorrect Directions 114(12.7%) 75.2(8.4%) 68.6(7.6%) 73.8(8.2%)

Table 4.1: The iterations to converge and number of incorrect directions found over
900 iterations. cm = 2 produces the best results.

Fig. 4.5 shows the comparison of the state found through consensus to the actual

state relative to the center of mass of the �ock. It can be seen that it is not always

perfectly accurate but this can be attributed to lack of full observability and lack of

symmetry in the �ock. It was always able to fully converge for varying values ofcm

which can be seen in Tab. 4.1. However, if one does not do the maximum weight

sharing by settingcm to in�nity the algorithm will not fully converge even given up

to 40 iterations as can be seen in Fig. 4.6 and 4.7.

By using Tab. 4.1 we can learn that if the largest measured weight is spread from

one side of the �ock to the other,cm = 0, it takes 8.2 iterations to completely reach

every agent in the �ock. That amount of iterations to achieve a consensus is thus not

able to be made smaller due to the network communication limitations and size of

the �ock. By adding additional weighted voting iterations cm we can see that it takes

about one additional iteration to converge for each weighted voting iteration added. It

26

Figure 4.3: The number of agents in the same state(the sameinfo i) for each iteration.
For all positions of the predator the agents are able to converge to the same state.

Figure 4.4: The number of consensus iterations for all agents to converge to the same
state.

27

Figure 4.5: The averageinfo i for the agents in each iteration. Some states occur for
longer durations due to the shape of the �ock.

Figure 4.6: The number of agents in the same state whencm is in�nite. There are
multiple predator positions that result in the agents not fully converging even given
40 iterations.

28

Figure 4.7: The convergence of the agents state whencm is in�nite. Given 40 con-
sensus iterations it is not able to fully converge.

Figure 4.8: The cause of error of the consensus algorithm. Despite the predator being
east of the �ock as a whole the only agent in range senses it as north east causing the
error seen in Tab. 4.1.

29

is also clear that adding more weighted voting iterations does not necessarily increase

the accuracy of the consensus as can be seen by comparingcm = 2 and cm = 3. The

error in accuracy can be attributed to the formation of the �ock as can be seen in Fig.

4.8. Despite the predator being east of the �ock as a whole the agents will converge

to northeast due to only one agent being in range of the predator to sense it. Using

this data going forward to the hybrid system we letcm = 2 and let the number of

consensus iterations be 12 to allow some margin of error to account for a poor �ocking

structure.

Through testing alternate consensus methods one method was able to achieve a

higher accuracy. This method involved using consensus to determine the center of

mass of the �ock and absolute position of the predator. When each agent has that

center of mass position and the position of the predator it can then determine for

itself the direction of the predator but this approach is not used for a few reasons.

First and foremost is the time it takes to reach a consensus is at least two to three

times the number of iterations that the proposed approach uses thus making it take

much longer to both learn and later use practically for predator detection. Secondly

it requires that each agent has an absolute coordinate for itself and the predator

rather than relative directions for those agents in range of the predator. In many

environments this may not be known or if it is may have a large amount of noise

associated with it so this approach was not used.

4.4 Summary

In this chapter a way of detecting and sharing the direction of a predator in a partially

observable environment. This is done in a relatively accurate manner subject to

the structure of the �ock that takes very few iterations more than the amount of

30

iterations required to transmit data from one edge of the �ock to the other. Now

we can develop an intelligent hybrid system given a method of �ocking to a target, a

method of learning a target to �ock towards, and a method of learning the direction

of predators to �ock away from.

31

Chapter 5

Simulation and Results

In this chapter we go over implementation details and results found for the hybrid

learning system. We use consensus to determine the direction of the predatordir p.

This state is then used in the multi-agent learning for the� table. The multi-agent

learning then produces an action which is a target to �ock towards that is used by the

�ocking algorithm for the agents. Finally the �ocking algorithm produces a control

input for each agent to �ock to its chosen target. Using this system we can teach

agents to detect and �ock away from predators.

5.1 Simulation Environment

The learning environment is set up in a manner shown in Fig. 5.1. As before the

triangles represent the agents and the large red circle represents the predator. The

eight smaller green circles around the edge represent the eight static targets for the

eight actions. Each episode begins by randomly initializing 50 agents in a 120x120

area and the predator in one of eight directions. The predator then moves towards

the center of mass of the agents. The predator is placed far enough away that the

32

Figure 5.1: Initialization of an episode with agents randomly distributed.

agents will be fully connected to each other but not necessarily in perfect �ocking

formation by the time the predator gets in range. This is done to ensure each agent

is able to get the direction of the predator through consensus so that an agent does

not get left behind due to being initialized too far away from the rest of the agents.

5.1.1 Learning Con�guration

For the single predator environment, the direction of the predator is initially east

then northeast and so on in a counter clockwise rotation so that ideally every possible

state dir p is encountered once every eight episodes. The learning is conducted over

56 episodes and the results can be seen below. For the two predator environment

the learning is conducted over 216 episodes with the reason explained below. For

the epsilon greedy action selection in (3.4) an� value of 0.1 is chosen to to allow the

agents to explore other actions more quickly while not hindering the smoothness of

�ocking too extremely.

33

5.2 Results

5.2.1 Single Direction State

We �rst look at a scenario in which all agents are in the same direction state with

the use of consensus. The average results of 10 runs over 8 episodes can be seen in

Fig. 5.2 and 5.3. We can see that the agents are able to fully converge for a single

direction state in 4 episodes. Thus the theoretical number of episodes required to

learn is 8 directions times 4 episodes required or 32. However due to the nature of

�ocks not being perfect it is possible for each direction to not be seen 4 times within

those 32 episodes so 56 episodes are used to learn for the single predator and 216 for

the two predator environment to account for slower learning due to consensus.

Figure 5.2: The number of agents choosing the same action for each episode for a
single direction state by episode. The agents are able to fully converge by 4 episodes.

34

Figure 5.3: The number of agents choosing the same action for each episode for a
single direction state by iteration with the dashed lines representing the start of an
episode. It can be seen that most learning is done in the beginning of an episode
while the �ock is connected.

5.2.2 Single Predator

Six runs were run for the single predator environment with averages taken over the

runs. In Fig. 5.4 it can be seen that by episode 32, or the predator coming from

each direction four times, the agents have mostly converged to the same target but

there are a few cases in which it is not fully converged until approximately episode

48 or each direction occurring six times which is expected due to potential consensus

inaccuracies.

The position of agents during the �rst learning episode can be seen in Fig. 5.5.

Some agents are in di�erent states and the agents in the same state have not learned

to go to the same target yet. This produces the messy �ocking shape that can be

seen. In Fig. 5.5 the agents are all in the same state and have learned to go to the

same target in an� -lattice formation.

In Fig. 5.7 we have the trajectory the agents take in the �nal learning episode

where the pink triangles are the random initialization of the agents. By the last

35

Figure 5.4: The number of agents choosing the same action for each episode for a
single predator environment averaged over 6 runs. It can be seen that the agents
converge by each direction being encountered 6 times.

Figure 5.5: 50 agents �ocking away from one predator before learning the same target.

36

Figure 5.6: 50 agents �ocking away from one predator after learning the same target.

37

Figure 5.7: Trajectory the agents take in the last episode where the triangles are the
initial position of the agents. The Flocking can be seen to be smooth to the target
after agents get into �ocking formation despite the� -greedy random action selection.

episode it can be seen that all agents have converged to the same target �ocking in a

relatively smooth manner despite the random action selection of� -greedy.

5.2.3 Two Predators

Two predators have also been tested to perform well with an expanded information

vector to account for the extra predator and thus a larger state space as well. The

addition of a second predator increases the number of predator starting positions by

a factor of eight from 8 positions to 64. In addition to longer computation times

for handling a second predator there is now 8 times the amount of episodes that

must be performed for all direction combinations to be encountered. Unfortunately

this can not be reduced, without reducing the problem size, by applying a function

approximation approach to the learning process. However there is a way to lower

the amount of direction combinations. Instead of learning the direction of the two

predators separately we treat both predators as the same predator. This way if the

�rst predator is detected in direction 1 and the second predator is detected in direction

38

Figure 5.8: Number of agents choosing the same action for two predators over 216
episodes. It can be seen that after 180 episodes all agents choose the same action for
each state.

2 it is the same as if the �rst predator is in direction 2 and the second predator is in

direction 1. Thus the system learns two state combinations simultaneously. However

there are 8 direction combinations where both predators are detected in the same

direction which is not reducible. This reduces the number of direction combinations

from 64 down to 36. Which reduces the number of episodes and thus the time it takes

to learn from 8 times that of a single predator to 4.5 times. For this reason the two

predator learning is done over 216 episodes the results of which can be seen in one

run in Fig. 5.8. It can be seen that by 144 episodes, or all combinations of directions

being encountered 4 times the agents have almost converged. By 180 episodes or each

direction being seen 5 times the agents have completely converged to the same action

for each state.

The movement of the agents �ocking away from the two predators before they have

learned and after they have learned to �ock away from the predators can be seen in

Fig. 5.9 and 5.10 respectively which looks similar to that of the single predator.

39

Figure 5.9: 50 agents �ocking away from two predators before learning the same
target.

	Introduction
	Motivation
	Literature Review
	Flocking Background
	Reinforcement Learning Background
	Consensus Background

	Contributions
	Thesis Organization

	Flocking Control
	Flocking Control
	Results of Flocking Algorithm
	Summary

	Multi-agent Learning
	Learning Model
	State
	Action
	Reward

	Cooperative Learning
	Action Selection
	Function Approximation
	Radial Basis Function
	Function Approximation Learning

	Comparison of Learning Algorithms
	Summary

	Consensus for Multi-agent State Approximation
	Predator Sensing
	Consensus
	Validation
	Summary

	Simulation and Results
	Simulation Environment
	Learning Configuration

	Results
	Single Direction State
	Single Predator
	Two Predators

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

