
University of Nevada, Reno

Think Smart, Play Dumb: A Game Theoretic Approach to Study
Deception in Hardware Trojan Testing

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in

Computer Science and Engineering

by

Tapadhir Das

Dr. Shamik Sengupta - Thesis Advisor
May 2020

Copyright by Tapadhir Das 2020
All Rights Reserved

THE GRADUATE SCHOOL

We recommend that the thesis

prepared under our supervision by

Entitled

be accepted in partial fulfillment of the
requirements for the degree of

, Advisor

, Committee Member

, Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

TAPADHIR DAS

Think Smart, Play Dumb:
A Game Theoretic Approach to Study Deception in Hardware

Trojan Testing

MASTER OF SCIENCE

Shamik Sengupta, Ph.D.

Haoting Shen, Ph.D.

Sankar Mukhopadhyay, Ph.D.

May, 2020

i

Abstract

In recent years, integrated circuits (ICs) have become a significant part in the op-

erations for various industries and have given hardware security a greater priority,

specifically in the supply chain where malicious manufacturers could insert hardware

trojans (HT) to corrupt them. Due to budget constraints, many IC designers send

ICs to offshore factories for manufacturing. When the designer gets the manufactured

ICs back, it is imperative that they test for potential threats. In this thesis, a novel

multi-level game-theoretic framework is introduced to analyze the interactions be-

tween a hardware manufacturer, who may be an attacker, and an IC designer, acting

as defender, in terms of how they navigate the area of hardware testing. In particu-

lar, the game is formulated as a non-cooperative, zero-sum, repeated game using the

mathematical framework of prospect theory (PT), which allows capturing the play-

ers’ different rationalities when faced by uncertainty. The repeated game is separated

into a learning stage, in which the defender learns about the attacker’s strategy and

an actual game stage, in which it acts accordingly. The thesis shows that there is a

great incentive for the attacker to deceive the defender about their actual rationality

by “playing dumb" in the learning stage. This scenario is captured by extending the

game into a higher level in which hypergame theory is used to model the attacker’s

view of the game. To this end, the optimal deception rationality of the attacker is

analytically derived to maximize the attacker’s outcome from the deception process.

For the defender, a first-step deception mitigation process is proposed to thwart the

effects of deception. Simulation results show that the attacker can profit from the

deception as it can successfully insert HTs in the manufactured ICs without being

detected.

ii

Dedication

This thesis project is wholeheartedly dedicated to my family: My dad, who has taught

me that life is cold and unfair, and whatever happens, we must persevere and stand

back up when we get knocked down. My mom, who has sacrificed immensely for the

family, and frequently calls me to make sure I am doing well. My sister, who is one

of the most psychologically resilient individuals I have ever known, inspires me every

day.

I also would like to dedicate this project to all the wonderful friends I have made in

graduate school. Whether it is for moral support, or we just need someone to talk to

at 4 AM, having quality peers made my time here much more enjoyable.

Lastly, I would like to dedicate this thesis project to myself. If someone asked me five

and a half years ago, when I was a freshman at Oregon Tech, “Where do you see

yourself in five years?”; finishing my master’s degree and starting my doctorate

would have been the last thought on my mind. But, here I am. I am immensely

fortunate and proud of the person I have become and am becoming.

iii

Acknowledgments

Firstly, I would like to give immense thanks to my family: my dad, mom, and sis-

ter. They are my support system, and without their love, understanding, care, and

sacrifices, I would not be in this situation.

I also am expressing my gratitude to my thesis advisor and soon-to-be doctoral advi-

sor, Dr. Shamik Sengupta, who accepted me in his lab and gives me constructive and

productive advice regarding my academic and professional life. I am also grateful

to my TA supervisor, Dr. Candice Bauer, who is one of the most optimistic and

knowledgeable individuals I know. Working as a Teaching Assistant under her has

been a tremendous learning opportunity and has been extremely fulfilling. I would

also like to thank Dr. AbdelRahman Eldosouky (Unfortunately, this doesn’t count

as a citation) for his immense patience with me. I learned a lot from him, and I

wish him the best for his future endeavors.

Lastly, no journey is worth the experience, unless you have good peers and friends

who are embarking on it with you. I would like to thank all my friends and colleagues

from the Computer Vision Lab, Trustworthy Systems Lab, and ENGR 301, as well

as my friends Sanjeevan, Shuvo, Dusty, and Pourya. Lastly, a special thanks to my

best friends: Michael, Jack, and Jonathan, who have been there for me since my high

school and undergraduate days.

iv

Table of Contents

1 Introduction 1

1.1 Related Works . 2

1.2 Contributions . 5

2 Background on Game Theory 9

2.1 Game Theory . 9

2.2 Classification of Games . 10

2.2.1 Cooperative vs Non-cooperative 10

2.2.2 Complete vs Incomplete Information Game 11

2.2.3 Pure vs Mixed strategy . 11

2.2.4 Static vs Repeated Games . 11

2.3 Nash Equilibria . 11

3 System Model 13

4 Game Formulation 16

4.1 Static Game . 17

4.2 Repeated Game . 21

5 Hypergame Model for Deception in Hardware Trojan Games 24

5.1 Hypergame Theory . 25

v

5.2 Hypergame Model . 26

5.3 Deception Mitigation . 30

6 Simulation Results and Analysis 33

7 Conclusion and Future Work 42

vi

List of Tables

6.1 Static Game Table . 34

vii

List of Figures

3.1 Attacker-Defender Game Scenario . 14

4.1 Player objective probability vs their subjective rationality evaluation

of a strategy . 20

5.1 The attacker’s and the defender’s different views of the game 27

5.2 Flowchart of the framework . 30

6.1 Rate of Convergence for Attacker Equilibrium Probability of choosing

Trojan D . 35

6.2 Defender strategic profile when the defender’s rationality αd = 0.5

against attacker’s rationalities of αaL = 0.1 and αaL = 0.5. 36

6.3 Attacker strategic profile when the defender’s rationality αd = 0.5

against attacker’s rationalities of αaL = 0.1 and αaL = 0.5. 37

6.4 The attacker’s and the defender’s utilities under no deception when

αaL = αaA . 38

6.5 The attacker’s and the defender’s utilities under deception when αaL 6=

αaA and under no deception when αaL = αaA 39

6.6 Attacker’s utility gain under different defender’s rationalities when the

optimal deception rationality is played for each type. 40

viii

6.7 The utility gain of each attacker’s type when they play different de-

ception rationalities αaL in the learning stage. 41

1

Chapter 1

Introduction

The recent years have seen a tremendous and unprecedented growth in technology.

Innovations such as the Internet of Things, artificial intelligence, big data, and au-

tonomous vehicles have taken over cyberspace. The evolution of these technologies

has also led to the growth of electronic systems related to the ascent of these de-

velopments. One of the most impressive growths recorded in the past years is the

manufacturing and usage of integrated circuits (ICs) in the field of technology. From

the automotive and aerospace industry to the field of consumer electronics, trans-

portation, and robotics, ICs are vital and an integral part of engineering systems [1].

Due to the rising cost of manufacturing, many prominent chip makers are outsourcing

their designs elsewhere to help reduce the costs [2].

Outsourcing the manufacturing of ICs to third party vendors helps make manufac-

turing cost-effective for designers, but it also introduces serious security risks and

threats [3]. Today, ICs constitute an integral part of manufacturing systems, con-

sumer electronics, vehicular technology, communication systems, transportation sys-

tems, military technology, etc. As these are important aspects of a nation’s economy,

2

protection of ICs and hardware security have been given a larger priority than ever

before. One serious threat faced in the field of hardware security and IC manufactur-

ing is hardware trojans (HTs) [4]. A HT is a malicious design that can be added to

the existing circuitry of an IC in order to corrupt its functionality.

HTs come with varying degrees of impact to an IC. Some HTs can cause error detec-

tion modules to accept inputs that should be rejected while some can downgrade the

performance by intentionally corrupting a device’s operational parameters. Certain

trojans can leak sensitive data through both covert and overt channels or by creating

a backdoor for malicious hackers into the IC [5]. Certain trojans can also generate a

Denial-of-Service attack by targeting modules to exhaust scarce resources like band-

width, computation, and battery power [6]. In short, hardware trojans are a serious

security risk to an IC, and considering how important ICs are to most technological

systems, it is of utmost importance to ensure their safety. The impacts of HTs are

exacerbated even more when the infected ICs are used in devices connected to the

Internet, which can facilitate cyber-physical attacks. Examples of these applications

include hardware-dependent cognitive radios [7], IoT health systems [8], robotics [9],

and time-sensitive unmanned aerial vehicles applications [10] and [11].

1.1 Related Works

HTs are designed to be stealthy, meaning that they cannot be easily found, and they

might not be activated until a certain time, current, temperature, voltage, or logical

factor is met [12]. Therefore, once the manufactured ICs are brought back to the

designer, testing these circuits for potential security hazards is of foremost priority.

There are multiple strategies that can be employed to test the prevalence of hardware

trojans in an IC [4] [13]. In [4], the authors discuss two types of trojan detection

3

techniques: destructive and non-destructive. Destructive techniques include gaining

samples of the manufactured IC and completely de-metallizing them to compare be-

fore and after circuits, which is expensive and time consuming. On the other hand,

non-destructive techniques involve side-channel analysis and logic testing. Due to the

large area on an IC where trojans can be inserted, it is infeasible to generate all logical

test benches to detect all types of potential trojans on the same IC. In [13], the au-

thors used localized current analysis on certain portions of an IC to detect hardware

trojans. As HTs require a power supply and a ground to function, any fluctuation

from the normal operational current could be a sign for a potential HT. However,

the methods in [4] and [13] rely heavily on the availability of adequate resources for

testing and may be hindered by the lack of resources for effective testing. This raises

the need for efficient testing strategies that can assist the tester to detect the most

trojans under limited resources.

In order to combat the issues revolving around lack of testing resources, a promising

approach that is recently being explored is studying the strategic interactions that

may take place between an ICs manufacturer and a designer (tester). This can help

the tester to efficiently use its resources to detect the most trojans. One effective

method to carefully study the interactions between agents in a given situation is

by using game theory. Game theory [14] provides a powerful mathematical tool

to study such interactions and enables each party to achieve its best outcome in

light of its opponents’ actions. For instance, the works in [15] and [16] attempt to

solve this hardware trojan testing scenario using game theory. In [15], the authors

develop a “Trust Game" to illustrate the value of both the iterated elimination of

dominated strategies (IEDS) and Nash equilibrium solution concepts. This work has

been extended in [16] by computing multiple mixed strategy Nash equilibria which

allows to effectively identify the optimal testing strategies to detect hardware trojans

4

in a given IC.

The main assumption behind these game-theoretic frameworks is that the players

involved are fully rational and are looking to maximize their expected utility against

their opponent. In the real-world, players who face these situations rarely act ratio-

nally [17]. It was observed that players play irrationally when faced with obstacles

or uncertainty, and they tend to deviate from their most rational choices. This phe-

nomenon is best modeled using prospect theory (PT) [18]. The authors in [18] studied

different applications of PT in the fields of finance, insurance, consumption-savings

effect, industrial organization, labor supply, etc. They were able to show that users

in all these domains were not fully rational under uncertainty.

PT can also be used with game theory in strategic decision making [19] and [20].

For instance, the authors in [19] applied PT to a zero-sum game between an attacker

and a vendor of a drone delivery system in order to capture the subjective nature

of the players with respect to attack success probabilities. In [20], PT was used to

encapsulate the “user-centric" approach on microgrid power trading.

This use of PT was adopted in literature to study the HT problem under the case of

limited rationality [12]. In particular, the authors in [12] formulated and analyzed a

hardware trojan game, using a weighting effect of PT, in order to provide a subjec-

tive understanding of the interactions between the attacker and the defender. This

application of prospect theory to the scenario of effective hardware trojan detection

opened new doors into the research behind subjective human perceptions. However,

one limitation of the work in [12] as well as the works [15] and [16] is that they do

not take into consideration the concept of deceit. Deception, especially in security

games, have attracted a lot of attention recently [21].

Deception refers to the act of intentionally behaving in a manner that is not consistent

5

with one’s true behavior. Deception is used in an effort to learn new information

about other people or opponents. The idea of deception is based on the concept of

misrepresentation. [22]. Misrepresentation of one’s true intentions or capabilities are

common in real world strategic interactions. The goal for this is to deceive one’s

opponent in order to have different perceptions about them than that are far from

the truth. Multiple examples of this interaction can be found in [23] and [24]. For

instance, the authors in [24], studied the impact of tactics and deception in chess.

A player may deliberately sacrifice pieces at the start to see what their opponent’s

favorite piece is, or to see how calculative their opponent is. Then, they use this

misrepresentation to their advantage during the endgame. Misrepresentation occurs

in a multitude of other situations: wars, job applications, romantic courtships, etc.

To this end, the problem of deception in HT games is a promising novel research

direction that we are exploring in this thesis.

1.2 Contributions

The main contribution of this thesis is a general multi-level game-theoretic framework

to study and model deception in hardware trojan detection systems. Unlike the prior

work of [12], [15] and [16], our framework is used to model and analyze the possible

deception actions of an attacker in HT testing games. The framework is built on

different levels based on the players’ rationalities and the deception strategy.

In the proposed framework, we use game theory to model a non-cooperative, zero-

sum game between the attacker and the defender, based on the available strategies

for each player. This game theory model represents the first level of the framework

and is based on the works of [16] and [12]. In the proposed game, we assume that the

attacker is aiming to maximize its expected utility by inflicting maximum possible

6

damage using hardware trojans. The defender, on the other hand, is trying to limit

this damage by developing effective testing strategies to thwart the attacker’s trojans.

If the attacker is successful, it receives a utility based on the type of trojan used. If

the defender is successful, a fine is imposed on the attacker.

The next level of the game accounts for the players’ rationalities. In particular, the

players’ strategic profiles are weighted according to the players’ rationalities. Note

that, unlike the work in [12], which proposes a HT game solution using prospect

theory, our framework uses PT utilities and the weighting effect as a step towards

studying the deception. In this level of the game, prospect theory is used to capture

the players’ strategic deviations and subjectivity under uncertainty and risk.

The whole game is, then, formulated as a repeated game where the static game,

previously defined, is played over multiple stages. The repeated game resembles

the idea of ICs returning from the manufacturer in different batches, and each batch

contains multiple ICs that need to be tested. Due to the massive IC space and limited

resources, it is impossible for the defender to test for every single potential trojan type

on every IC in every batch. We propose that in such scenarios, a promising approach

for the defender is to learn about the attacker’s strategies in order to develop strategic

testing patterns and apply this learning to subsequent stages of the game. Because

of this, our whole game is broken down into two separate stages: the learning stage

and the actual game stage. The learning stage is where the defender learns about the

attacker’s inclinations and preferences. This knowledge is then applied to the rest of

the actual game stage.

However, due to having different stages in the repeated game, it becomes motivating

for the attacker to try to deceive the defender. Here, we propose a new type of

deception called rationality deception attacks. In this type of attack, the attacker will

7

play with a lower rationality than its true rationality during the learning stage. In a

sense, it will be “playing dumb" in order to deceive the defender during the learning

stage. That makes the defender think that the attacker has a lower rationality, and

thus, their actions are not aligned with its interests. The defender will then focus on

that respective attacker strategy profile, which allows the attacker to play at a higher

rationality (actual rationality) than what the defender is expecting during the actual

game stage. To the best of our knowledge, this is the first work to consider deception

through manipulating the rationality levels in PT.

Subsequently, to capture this misrepresentation and deception in game scenarios, an

additional level of the game is presented. In particular, the framework of “hypergame

theory" is used [22]. Hypergame theory is an expansion on traditional game theory.

In these circumstances, there are additional levels of game play and utilities on top

of a base level. The base level of the game can be any common game theory situation

like the classifications discussed in Sections 2.2. However, the additional levels and

their associated utilities are only aware to a subsection of the total number of players.

This is a framework used to create an unbalanced game scenario, so not all players

have the same view of the game being played. Hypergame theory is structured as

a hierarchical game where certain players have an extended view of the game being

played from their opponents. The opponents, in this case, may or may not have any

idea about this extended view of the game and have a perceived partial view of the

same game. In this thesis, hypergame theory is used to analytically derive the optimal

deception rationality of the attacker, i.e., the lower rationality that the attacker will

pretend it has.

Finally, we propose a first-step defense technique for the defender to mitigate the

effects of the deception in case it is unaware of the occurrence of the deception. More

effective techniques are referred to but are left for future work. We show through

8

simulations that the attacker can benefit from the proposed deception attack as it

can insert HTs into the manufactured ICs without being detected. Simulation results

are also used to study the attacker’s deception utilities under different combinations

of the attacker’s and defender’s rationalities.

The rest of this thesis is organized as follows: Chapter 2 provides a basic under-

standing and overview about the concepts involved in this thesis including a brief

introduction to game theory, types of games, nash equilibrium, and mixed and pure

strategies. The system model is highlighted in Chapter 3. Chapter 4 demonstrates

the first two levels of the game, which are the non-cooperative zero-sum static game

and the extended game formulation using prospect theory utilities. In Chapter 5, the

deception attack is introduced along with the third level of the game using hypergame

theory. This Chapter concludes by introducing a basic defense mechanism to thwart

a deceptive attacker. Numerical results and simulations are presented and analyzed

in Chapter 6. Finally, conclusions are drawn in Chapter 7.

9

Chapter 2

Background on Game Theory

Game theory is a popular approach that is employed by many fields in order to

study effective and strategic communications and interactions between agents in a

scenario. This assist involved parties to understand the best outcomes or the best

way to manipulate the strategies at hand to optimize their outcomes. Game theory

is prominently used in computer science for situational study. In this chapter, we

present a basic overview of game theory and its associated concepts.

2.1 Game Theory

Game theory is a robust algorithmic framework that is utilized to study situations

and circumstances where agents are interacting with each other and every agent is

attempting to optimize their utility in light of the other agent’s actions. [25], [14], [26].

This field can be used to model situations where players are in conflict with one

another or try to cooperate with one another to find a productive result [27]. Game

theory can be and has been used in various disciplines expanding from political science

10

and economics, to social science and psychology [28], [29], and [30]. In the field

of computer science, game theory has shown to have a wide variety of applications

including decision making in cybersecurity, networking, resource allocation, electronic

commerce, artificial intelligence, multi-agent systems, information sharing, etc [31].

A game consists of players, their associated strategies, and the corresponding utilities

to said strategies. The utility functions for each player is based on a mathematical

function that represents the rewards received or costs incurred by the player based

upon their played strategy vs the opponent’s strategies. All players in a game sce-

nario are assumed to be completely rational, meaning that they are always trying to

optimize their utility [32].

2.2 Classification of Games

This section showcases common classification of game types.

2.2.1 Cooperative vs Non-cooperative

A prominent classification of game types in game theory is cooperative vs non-

cooperative games [33]. In non-cooperative games, players play a game scenario

against one another where each player is trying to optimize their utility considering

their opponent’s strategies. On the other hand, cooperative games involve players

playing or “cooperating" with one another to optimize the collective utility of the

players. Cooperative game theory studies player coalitions and resource sharing and

tries to find fair outcomes of these games [34].

11

2.2.2 Complete vs Incomplete Information Game

Games can also be classified as complete vs incomplete information games. In com-

plete information game scenarios, all players have complete information about every

other players’ strategies and utilities [35]. In incomplete information games, this

framework is not followed, and players don’t have all information regarding other

players’ strategies and utilities [36].

2.2.3 Pure vs Mixed strategy

Pure strategy is a strategic profile for a player if the player plays a certain strategy

with a probability of 1.0, which means this particular strategy is the absolute strategy

that will be played. On the other hand, a player plays a mixed strategy when they

play a probability distribution over their available strategies.

2.2.4 Static vs Repeated Games

A static, or one-shot, game is a game format where players can only make decisions

once. The players play simultaneously together, so that there is no “learning" that

can be achieved from either player’s perspective unlike a repeated game. A repeated,

or dynamic, game is a game scenario where an original static game is repeated N

times. The mixed strategies of players in a repeated game stage may be dependent

on previous strategies that their opponents played.

2.3 Nash Equilibria

In standard game theory, Nash equilibria is defined as a joint-action strategy for all

players in the game from which it is not possible for any player to unilaterally deviate

12

and further optimize their utility. It is also referred to as the stable solution of the

game. Nash equilibria are usually represented as the steady state of a game scenario

and are most times, the predicted solution of the game [37].

13

Chapter 3

System Model

Consider an integrated circuit (IC) manufacturing company, referred to as the “at-

tacker", that has an incentive to attack a designing company, which is labeled as the

“defender" from here. We assume that the attacker can insert one trojan t from a

set of T trojan types. Each trojan t ∈ T leads to a certain damage and in turn,

provides a respective utility, Vt, to the attacker if the trojan was not detected by the

defender. Due to the unique operational parameters of each trojan t like voltage,

current, power, access to certain modules , etc., every trojan can only be inserted in

a unique partition on the IC.

After getting the designed ICs back from the manufacturing company (the attacker),

the defender’s job is to test the ICs for potential threats like hardware trojans. As

modern day ICs are extremely complex, it is demanding and very resource expensive

to test for every kind of potential trojan on every single IC. Due to being limited by

testing resources, the defender can only test for a certain number of trojans per IC,

which is a common assumption in literature [12] and [16]. To this end, let A be the

tester’s subset of trojans that can be tested at a time, such that A ⊂ T . This subset

14

Set of trojan types
T

Set of testing
strategies

A ⊂ T

A B

Attacker

Defender

IC with multiple partitions for
different trojan types

Figure 3.1: Attacker-Defender Game Scenario

will include all different combinations of trojans that can be tested simultaneously,

based on the tester’s capacity.

If the defender successfully detects the presence of a hardware trojan (HT), the at-

tacker incurs a fine of Ft where t refers to a trojan type and t ∈ T . The magnitude

of the fine could be represented as legal consequences for trying to infect an IC with

a certain trojan type. Types of legal consequences and fines could range from paying

a monetary amount for damages to the termination of the contract between designer

and manufacturer [12]. In this model, we limit Ft to monetary fines as in a real-life

scenario, it will take the designer a long time to terminate the contract and to shift

the production to another manufacturer.

Fig. 3.1 shows an illustration of the game model in which each IC is partitioned into

different sectors and trojans can be inserted into these sectors. Both the attacker

and the defender have their own sets of strategies that correspond to attacking and

defending against specific trojans, respectively, where each trojan is unique for a

specific sector.

To understand the interactions between the attacker and the defender, we use game

theory to study the interactivity. The goal is to mathematically model the interactions

15

between the players to find methods or strategies that can be used to insert certain

trojans inside an IC, and how these attack strategies can help the defender develop

testing patterns and strategies to impact the overall damage to the system. Using

this approach, optimal testing strategies for the defender can be solved to the various

attacking strategies from the attacker.

16

Chapter 4

Game Formulation

In this game, all players are attempting to gain the upper hand against their oppo-

nents. For the attacker, it is trying to play its best strategy based on its perception

of the kind of testing strategy the defender will try to employ. For the defender, it

is trying to play its best testing strategy based on its perception of the attacker’s

tendencies and potential strategies that it may employ. The strategies that are em-

ployed by both players end up leading to either corrupting the integrated circuit (IC)

or levying a fine for the attacker. Here, the game can be modeled as a non-cooperative

game. We will also consider both a single shot game, i.e., a static game, and the case

where this static game is repeated over a certain number of batches. This represents

a scenario where manufacturer is supplying the chips back to the designer in multiple

batches.

17

4.1 Static Game

We consider two players: the attacker a and the defender d in a set NP such that

NP := {a, d}. Let the set S represent the strategy space, Sd and Sa, of the defender

and the attacker, respectively. These strategy spaces represent all the possible actions

for the players. Let the set U represent the utility functions of the players, Ud and Ua,

for the defender and the attacker, respectively. Finally, let the game G = {NP ,S,U}.

For the attacker, the strategy space consists of all the different kind of trojans that can

be played in this game, i.e, Sa = T . Here, every strategy in the attacker’s strategy

space , sa ∈ Sa, refers to a corresponding trojan type where t ∈ T . We assume

that the attacker is always inserting a trojan from the corresponding set of available

trojans. Thus, we can capture the maximum damage an attacker can cause to the

defender.

The defender, on the other hand, will select a subset of trojan types to test simulta-

neously per stage of the game due to the limited resources and the large number of

trojan types that can be tested for. Let the number of trojans, that the defender can

test at once, be K types of trojans. The value of K is proportional to the amount of

resources available at the defender’s disposal for trojan testing. The strategy space of

the defender can then be Sd, defined as all the possible subsets of T with the size of

K, i.e, Sd =
(T
K

)
. Here, every subset possibility is present in the defender’s strategy

space ,sd ∈ Sd.

Players’ utilities can be determined using the strategy selection for the attacker, sa,

and the corresponding strategy selection of the defender sd such that:

Ua(sa, sd) =

−Fsa if sa ∈ sd,

Vsa otherwise,
(4.1)

18

where Vsa is the attacker’s gain for playing a certain strategy sa that was not detected

by the defender strategy, sd. −Fsa is the attacker’s fine for playing a certain strategy

sa that was detected by the defender strategy sd. The magnitude of Vsa reflects the

monetary reward gain by the attacker, which also corresponds to the type of damage

that the trojan sa can cause, if the attack is successful. On the other hand, the at-

tacker’s fine −Fsa reflects the penalty that the attacker incurs if sa is detected. The

magnitude of the fine could represent consequences ranging from paying a monetary

amount for damages to the termination of the contract between designer and manu-

facturer [12]. However in this model, we limit Fsa to monetary fines as in a real-life

scenario, it will take the designer long time to terminate the contract and to shift the

production to another manufacturer. We notice that the outcome of the game will be

either a fine Fsa charged from the attacker and paid to the defender, or the attacker’s

gain Vsa , which represents the defender’s loss. In this case, the utilities are exactly

opposite to one another, meaning, that the exact reward which the attacker receives

is the exact amount the defender loses, and vice-versa. Thus, the game will feature a

zero-sum characteristic and the defender’s utility can then be given as:

Ud(sa, sd) = −Ua(sa, sd). (4.2)

Finally, let P = {pa, pd} represent the mixed strategy for the attacker and the defender

respectively, which represents the players’ objective probabilities of selecting actions

from their strategy spaces to maximize their expected utility.

In addition to the utilities defined in equations (4.1) and (4.2), we also focus on

the concept of prospect theory (PT) [18]. Under normal expected utilities, players

tend to play their most optimal strategy to increase their expected utility. However,

according to PT, players deviate from their most rational strategies and maximized

19

utility potentials when faced with uncertainty regarding strategies, or if there are

limitations to playing a certain strategy that is not taken into account during the

game. Under PT, players have a subjective rationality of the opponent’s strategies,

and hence, change the expected utilities from an objective to a subjective one.

In this particular game, both players are facing uncertainty when it comes to their

opponent’s strategies. For the attacker, they are not completely sure of the testing

strategy that the defender will employ. Therefore, the attacker may tend to under-

weight or overweight a particular strategy of their opponent. As per the defender’s

point of view, they are not sure of the attacker’s tendencies and actual preference in

trojan types, so the defender may underweight or overweight certain attacker strate-

gies as referred in [12]. Also, as both players are human, there could be multiple

reasons for the subjective rationality of the opponents: company regulations, require-

ment of more resources to play a certain trojan, not enough resources to test for

certain trojans, lack of knowledge on opponent’s strategies, etc.

In order to capture the deviation from the optimal strategy for each player, a weight-

ing effect w is incorporated. Under this weighting effect w, players give a subjective

weight to their opponent’s strategies for more relevance. Another incorporated pa-

rameter is the rationality parameter α, which judges a player’s subjective perception

based on their objective probability between 0 < α ≤ 1 where a player’s rationality of

1 means they are playing with full rationality, i.e., complete objectivity. This ratio-

nality level captures the nature of human subjectivity when faced with uncertainty.

In this case, the Prelec function [38] can be used to capture the weighting effect for

every player’s observed strategies and is defined as:

wi(pi, αi) = exp(−(− ln pi)
αi), 0 < αi ≤ 1. (4.3)

20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Objective Probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
bj

ec
tiv

e
Ra

tio
na

lit
y

Ev
al

ua
tio

n

 = 0.2
 = 0.4
 = 0.6
 = 0.8
 = 1.0

Figure 4.1: Player objective probability vs their subjective rationality evaluation of
a strategy

The Prelec or Probability Weighting Function is used to highlight human subjectivity,

where players assign a subjective weight to the likelihood or objective probability that

an event may occur. This weight is based on player rationality αi, which is integral

in calculating the weighted probability distribution from an objective probability

distribution. This turns an objective probability distribution into a subjective one,

depending on the player’s rationality αi. Fig. 4.1 shows the impact of αi on the

distortion of the player and highlights how rational player i is by measuring the

uncertainty and risk faced by the player regarding the opponent’s probability.

Using the Prelec function, the utility for every player can then be updated with

respect to their perceived rationality about their opponent’s probabilities as follows:

UPT
i (pi, pj, αi, αj) =

∑
s=S

(
pi(si)wi

(
pj(sj)|αj , αi

))
ui(si, sj), (4.4)

where i and j correspond to both players. Equation (4.4) states that each player will

use the Prelec function to weigh their opponent’s probabilities, which in turn was

21

calculated using their opponent’s rationalities. The players gradually learn about

their opponent’s rationality during the learning stage of the game.

Based on the defined utilities in (4.4), each player will take actions by selecting a

trojan or a subset of trojans to maximize its utility given the actions of the other

player. However, as one player maximizes its utility, it will hurt the other player’s

utility, which will result in changing their actions to improve their utility. This will

continue unless the players are able to find an equilibrium solution [14]. Equilibrium

solutions, in game theory, are referred to as Nash equilibrium, which occurs when

no player can improve its utility by unilaterally changing its actions, and hence,

Nash equilibrium presents a stable solution for the game [39]. Nash equilibrium can

either be pure Nash equilibrium when every player chooses only one action, or mixed-

strategy Nash equilibrium, which is a probability distribution over the player’s set of

actions. Here, we focus on mixed-strategy Nash equilibrium as it presents a general

solution for the equilibrium. Each finite game, like the game defined in this section,

is known to have at least one Nash equilibrium solution. We study this equilibrium

solution in Chapter 6. The sensitivity of this resultant Nash equilibrium solution to

other variable parameters in the game scenario is not studied in this thesis. However,

this analysis can be left for future work, and it can be done similar to the work in

[12].

4.2 Repeated Game

Here, we consider the case where the manufacturer provides the ICs to the designer

in different batches. Each batch consists of multiple identical ICs. Checking all the

ICs in one batch, for all types of HTs, is a time consuming and expensive process for

the defender. Therefore, a promising approach for the defender is to learn about the

22

attacker’s strategies in order to develop strategic testing patterns and, then, apply

this learning to subsequent batches. This means that it would be beneficial for the

defender to check every single IC for every possible HT, in the initial set of batches,

to figure out the attacker’s probabilistic preferences for choosing HTs. Then, the

defender can use this knowledge to test for HTs in subsequent batches after learning

about the attacker’s preferences. This scenario can then be modeled as a repeated

game [14]. Here, we propose that the game can be divided into two separate stages:

the learning stage and the actual game stage.

During the learning stage, the defender will check every single IC in each batch.

This will help the defender to update its belief about the attacker’s strategies, which

correspond to its rationality level. In the game stage, the defender will use this belief

to save time and to check a few ICs, instead of all the ICs, per batch. The defender

will focus on checking the types of trojans that correspond to the attacker’s strategy

that was learned from the learning stage. The number of batches of the learning

stage will depend on the defender’s choice based on the defender’s confidence about

the belief update.

Note that, under this scenario, each player will take actions twice. Once at the

beginning of each game stage. These actions will affect the player’s outcome from

all the subsequent batches after taking these actions. Let N be the total number of

batches in the game, which corresponds to the number of the batches that will be

delivered by the manufacturer. For every batch in the learning stage, the defender

is going to check all ICs per batch for hardware trojans, which is denoted by CL.

In the game stage, the defender will randomly select a few ICs per batch to test for

hardware trojans, denoted by CA such that CA < CL. In every IC, the defender will

look for the same number of HTs, given by K. The defender will choose NL to be the

number of learning batches and NA to be the number of batches in the game phase,

23

where NA = N −NL. The utility in the learning stage , UL, will be computed by:

ULi = CLU
PT
i (pi, pj, αi, αj), (4.5)

Similarly, the utility in the actual game stage will be given by:

UAi = CAU
PT
i (pi, pj, αi, αj). (4.6)

The total utility UTi of the entire game will be given by:

UTi = ULi + UAi . (4.7)

where i denotes a player in this game: attacker or defender. The equilibrium of this

repeated game is discussed in details in Chapter 5.

24

Chapter 5

Hypergame Model for Deception in

Hardware Trojan Games

Many cybersecurity games follow the concept of repeated games. Many of these

scenarios involve a learning stage and an actual game stage. Players assume that their

opponent is letting out their truest intentions and are consistent with an observed

strategy and, in turn, will continue to play this strategy in subsequent stages of the

game. Cunning players, however, can try to exploit this assumption by deceiving

their opponent between game stages.

Here, we notice from Fig. 4.1 that according to a player’s rationality, it will weigh the

probabilities in a different order between low and high probabilities. The inflection

probability from Fig. 4.1 is about 0.37. For instance, a probability of 0.1 will be

weighted higher for low rationality levels, e.g., 0.2 than for a rationality of 0.8. On

the opposite side, a probability of 0.7 will be weighted higher for a rationality of 0.8

than for a rationality of 0.2. This gives an incentive for the attacker to misrepresent

25

itself and play a different rationality during the learning stage to deceive the defender

and play its actual rationality in the rest of the game. In this case, the attacker can try

to deceive the defender by playing a lower rationality or , “acting dumb", during the

learning stage, and then playing its actual rationality in the actual game stage. This

misrepresentation of one’s true tendencies is prevalent in the world of interaction, and

capturing it is the focus of this thesis. Here, we propose to use hypergame theory [40]

as a prominent framework to model such deceptive interactions.

5.1 Hypergame Theory

A prominent section of game theoretic scenarios deals with complete information.

This means that all players are aware of all strategies, for themselves and their op-

ponents, and the respective utilities associated with said strategies. However, in the

case of deception, we assume an additional level of utilities. One available only to the

player who is misrepresenting and attempting to deceive.

To model this, we will use the framework of hypergame theory described in [40]. In

hypergame theory, we assume that players involved are not seeing the same view of

the game. In our case, the defender assumes that the attacker is continuing with

the same rationality that it played during the learning stage when in reality, the

attacker’s rationality has changed. This change in rationality allows the attacker to

improve its expected utility without the defender’s awareness. This gives the attacker

an extended view of the game while the defender gets only a partial perceived view

of the game.

26

5.2 Hypergame Model

In this thesis, we assume the attacker has the option of using different rationalities

between the learning and game stages. In the learning stage, the attacker can use

a rationality level of αaL . Then use αaA , which is its actual rationality, during the

actual game stage such that αaL < αaA , as the attacker is attempting to “play dumb".

‘̀Playing dumb" means that the attacker is trying to misrepresent themselves in front

of the defender and is playing a lower rationality than their intended rationality.

This way, the defender is expecting a lower rationality for the entirety of the game.

However, once the learning stage is complete, the attacker changes their rationality

to their actual intended rationality, deceiving the defender in the process.

Here, we model the game as a first level hypergame [22] such that the players have

different views of the game. In the basic game, both players are assumed to have the

same level of information. Thus, they have the same view of the game. However,

under the considered deception, only the attacker has the option to deceive the de-

fender, and the defender is assumed not to be aware of this deception. Therefore, the

attacker will have the complete view of the defender’s strategies while the defender

has a limited view of the attacker’s strategies. Let Gd be the defender’s view of the

attacker’s strategy. This view will be as follows:

Gd =

αaA , under no deception ,

αaL , under deception,
(5.1)

such that under a normal game without deception, the defender will perceive the

attacker’s actual rationality, which will be the same during both the learning phase

and the actual game phase, i.e., αaA . However, under the deception case, the defender

will only perceive the attacker’s rationality during the learning phase, and it will not

27

Perceived Game

Extended Game

Defender's Game
View

Attacker's Game
View

Figure 5.1: The attacker’s and the defender’s different views of the game

be aware of the rationality change in the actual game. Similarly, the attacker’s view

of the game can be given by Ga, which will equal the defender’s actual rationality

αd, i.e., Ga = {αd}. The hypergame H can then be given by all players’ views of the

game, i.e., H = {Gd, Ga}.

Since the defender is unaware of the deception, its utility in the game will be given by

(4.7). On the other hand, the attacker, as being the deceiver, will have an extended

view of the game which represents its outcome from the deception process. These

different views of the same game are depicted in Fig. 5.1. The expected utility of the

attacker, due to deception, can then be given as the difference between its utilities in

the actual game phase with and without deception as follows:

UH
a = CA(U

PT
a (pa, pd, αaA , αd)

− UPT
a (pa, pd, αaL , αd)). (5.2)

Equation (5.2) highlights the deception taking place in this game. After the learning

stage, the defender is expecting the attacker to play the strategic profile that corre-

28

sponds to the rationality level αaL . However, instead the attacker is playing with its

actual rationality , αaA , which is a higher rationality. The defender only gets to see

a partial view of the entire game, which is the game defined in Section 4.2. Thus,

the defender will check for the trojans corresponding to the probability distributions

of the attacker when its rationality is αaL . In fact, this utility will not reflect the

actual status of the game as the attacker will be able to insert other trojans with-

out being detected. The attacker, on the other hand, wants to maximize its utility,

which is unknown to the defender. Based on its actual rationality αaA , the attacker

wants to choose the deception rationality , αaL , from a set of rationalities Aα under

which its utility in (5.2) will be maximized. This can be done by solving the following

optimization problem:

argmax
αaL∈Aα

CA(U
PT
a (pa, pd, αaA , αd)

− UPT
a (pa, pd, αaL , αd)), (5.3)

which is equivalent to solving the difference between the two utilities:

argmax
αaL∈Aα

UPT
a (pa, pd, αaA , αd)− UPT

a (pa, pd, αaL , αd). (5.4)

Substituting (4.4) into (5.4), we get:

argmax
αaL∈Aα

(
pd(sd)wd

(
pa(sa)|αaL , αd

))
ua(sd, sa)

−
(
pd(sd)wd

(
pa(sa)|αaA , αd

))
ua(sd, sa), (5.5)

29

which can be simplified by omitting the common terms as:

argmax
αaL∈Aα

e(−(−pa(sa)|αaL)αd) − e(−(−pa(sa)|αaA)αd), (5.6)

which can be further simplified as:

argmax
αaL∈Aα

e(−pa(sa)|αaA)αd−(−pa(sa)|αaL)αd . (5.7)

From (5.7), we can see that an attacker can maximize its utility by choosing a ratio-

nality level that maximizes the difference between its probability distribution under

this rationality level and the probability distribution under its actual rationality level

when both probability distributions are weighted with the defender’s rationality level.

Proposition 1 The Nash equilibrium of the game, G, along with the solution of (5.7)

constitute a hyper Nash equilibrium to the game, H.

A strategy profile represents a hyper Nash equilibrium iff it belongs to the Nash equi-

librium profile for each player’s perceived game [41]. Since the defender’s perceived

game is only G, the defender will have the same Nash equilibrium in H as G. On the

other hand, the solution to (5.7) represents the attacker’s optimal solution based on

its perceived game. Applying this solution to G will result in an equilibrium strategy

for the attacker, for it will represent its best outcome based on its perceived game.

Finally, we summarize the steps of our deception mechanism in Fig. 5.2.

30

Attacker

Solving (14) to
calculate optimal

deception rationality

Learning Stage:

Attacker plays dummy
rationality. Defender's utility

calculated by (5)

Game Stage:

Attacker plays actual rationality.
Defender's perceives dummy

rationality

Attacker's utility
calculated by (9)

Defender's utility
calculated by (7)

Deception

End

Hypergame Defender's Perceived Game

Figure 5.2: Flowchart of the framework

5.3 Deception Mitigation

The discrepancy between the expected utility of the attacker and its actual utility after

deception is a massive incentive for the attacker to continue its deception. Without

a proper deception countermeasure, the attacker will continue to deceive by using

the same deception strategies on all subsequent batches to achieve higher payoffs. In

this proposed scenario, as the defender is unaware of the deception, it needs some

mechanism to mitigate the impacts of any potential deception, if any, in the actual

31

game stage.

Here, we propose that the defender can run the learning stage again during the actual

game stage to update its beliefs about the opponent’s rationality. Since the attacker

will be unaware of this update, it will keep playing the same strategies over and over,

and it will incur losses as the defender will be able to detect the trojans. Note that,

the premise behind the learning stage is to check every single integrated circuit (IC)

in the batch to form an accurate belief about the attacker’s strategies. Since this will

consume a lot of time and will delay the production stage, the defender will be limited

by the number of times it can re-run the learning stage. The defender’s decision to

run the learning stage again will then be based on the available resources and the time

available for successful completion of checking. Let T be the total time by which all

the batches need to be checked and delivered to the next production stage. Let TL be

the time taken to perform the learning stage on a single batch of ICs. Similarly, let TA

be the time taken to perform the actual game stage, i.e., checking CA ICs on a single

batch of ICs. Similar to 4.2, N is the total number of batches that are being tested.

Let NL be the number of batches that the defender will dedicate to the learning

stages. Let NA be the number of actual game batches, such that NA = N −NL. The

maximum number of learning batches can then be given by solving the inequality:

TL ·NL + TA ·NA ≤ T, (5.8)

such that the total time used for both the learning and the actual game stages is less

than or equal to T . From (5.8), the value of NL can be given as:

NL ≤
T − TA ·N
TL − TA

,

NL =

⌊
T − TA ·N
TL − TA

⌋
. (5.9)

32

Depending on the value of NL, the defender can distribute its learning stages uni-

formly during the extent of this game. This will allow the defender to not be com-

pletely dependent on the initial learning stage, but instead, it will allow them to run

this learning stage multiple times during the course of the entire game in order to

avoid the possibility of being deceived.

Note that, once the defender repeats its learning stage and takes new actions, the

game theory analysis, discussed earlier, will not hold. This is because the attacker

will not be able to observe the defender’s actions nor take actions itself.

One way to model this situation is by using higher or additional levels of hypergame

theory in which the defender is aware there is a different game being played [22] or

that the defender realizes the attacker is being deceptive. The attacker, in return,

will not be aware of the deception mitigation, which creates a new view of the game

available to the defender only. The equilibrium for all these various views of the game

will need to be considered in detail. However, this requires its own analysis and is left

for future work. Here, this mitigation technique can be seen as a first step towards

thwarting the effects of deception. Other future directions, that can be explored, is to

use the frameworks of game-theoretic moving target defense [42] and [43] to model the

case where the defender can randomize its defense strategies based on the attacker’s

expected strategies.

33

Chapter 6

Simulation Results and Analysis

To simulate this game situation, the following discrete values were assigned to the

essential variables. We assumed that the attacker has access to 4 kinds of trojans,

so T = A, B, C, D. Then, the strategy space of the attacker SA = T = {A,B,C,D}.

Every trojan type has a corresponding utility for a successful attack. In this game,

the utilities for each trojan are as follows: VA = 1, VB = 2, VC = 4, and VD = 12.

The severity for the utilities is directly proportional to the magnitude of damage that

can be done with that corresponding trojan. For the defender, it is assumed that

K = 2. The value of K can be altered based on adequate resources available to the

defender in order to effectively test for hardware trojans. Based on the value ofK, the

defender’s strategy space, SD, consists of
(
4
2

)
= 6 possible testing strategies. Then,

SD = {AB, AC, AD, BC, BD, CD}. The attacker’s fine FSA = F, ∀Sa ∈ SA. Here,

we let F = [8,6,2,4] to signify the penalty for the attacker on successful detection.

As this game is modeled in the fashion of a zero-sum game, Table 6.1 accurately

portrays the desired static game scenario. Here, we can see the expected utilities for

the attacker and the defender on successful detection or successful attack. When the

34

Table 6.1: Static Game Table

Defender
Att-
acker AB AC AD BC BD CD

A -8,8 -8,8 -8,8 1,-1 1,-1 1,-1
B -6,6 2,-2 2,-2 -6,6 -6,6 2,-2
C 4,-4 -2,2 4,-4 -2,2 4,-4 -2,2
D 12,-12 12,-12 -4,4 12,-12 -4,4 -4,4

attacker chooses a trojan and the defender does not check for this specific trojan,

the attacker’s outcome will be positive while the defender’s outcome will be negative

and vice versa. Since the outcomes are alternating positively and negatively for each

player based on the opponent’s selection, there is no dominant strategy for any player.

To initiate the simulation, we start by executing the fictitious play algorithm, which

requires initializing the strategic probabilities of both players. Here, we use the same

initial probabilities as in [12]. For the attacker, the initial strategic profile pa =

[0.2083, 0.1667, 0.3333, 0.2917] and for the defender, the initial strategic profile pd =

[0.2051, 0.2564, 0.2564, 0.0513, 0.0513, 0.1795].

To study the effect of these initialization probabilities on the final equilibrium results

in Fig. 6.1, we show the effect of different initialization probabilities on final equilib-

rium probabilities. Fig. 6.1 highlights the attacker’s probability of playing trojan D

under six different attacker’s initialization mixed strategy probability vectors. Note

that, we only show the probability of choosing trojan D as it turned out to be the

attacker’s preferred strategy when it has a rationality of 0.3. Also, each curve in Fig.

6.1 starts at a different initialization probability while the attacker’s rationality is

fixed for all the initialization vectors at 0.3. Fig. 6.1 shows the probability of choos-

ing trojan D as it evolves over the steps of executing the fictitious play algorithm.

We can see that the initial mixed strategy probability distributions do not affect the

final equilibrium probability as all the curves converge to the same value. However,

35

0 10 20 30 40 50 60 70 80 90
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
er

 E
qu

ilib
riu

m
 P

ro
ba

bi
lit

y
of

 c
ho

os
in

g
Tr

oj
an

 D
Attacker Probability Initialization 1
Attacker Probability Initialization 2
Attacker Probability Initialization 3
Attacker Probability Initialization 4
Attacker Probability Initialization 5
Attacker Probability Initialization 6

Figure 6.1: Rate of Convergence for Attacker Equilibrium Probability of choosing
Trojan D

the effect of the initialization probabilities can be seen in the number of iterations

needed for the convergence to occur, which varies from one initialization probability

to another. We can then conclude that no matter which initialization probabilities

are used in the following results, the equilibrium mixed strategy probability vectors

will always be the same at convergence.

For the attacker, we let its actual rationality, αaA , to be 0.5. Then, we apply the

deception problem in (5.7) to compute the deception rationality, i.e., the rationality

the attacker will use in the actual game. In this case, it was shown that the attacker

can maximize its utility in the hypergame if it uses the learning dummy rationality

of αaL = 0.1. Therefore, the attacker will set αaL = 0.1.

Then, to study the utilities of both players in the learning stage, we run the fictitious

play algorithm when αd = 0.5 and when αaL equals both 0.1 and 0.5. Fig. 6.2 shows

the defender’s strategic profile, at equilibrium, for both the the attacker’s rationalities.

These probability distributions represent the defender’s probability of selecting each

of its potential strategies in SD. From Fig. 6.2, we can see that when αaL = 0.1, the

36

AB AC AD BC BD CD
Defender Strategy

0.0

0.2

0.4

0.6

0.8

1.0

De
fe

nd
er

 P
ro

ba
bi

lit
y

d = 0.5, aL = 0.1
d = 0.5 , aL = 0.5

Figure 6.2: Defender strategic profile when the defender’s rationality αd = 0.5 against
attacker’s rationalities of αaL = 0.1 and αaL = 0.5.

defender will choose the strategy AD with high probability. However, this changes

when the attacker’s rationality changes to αaL = 0.5 as the defender will have a more

distributed probability vector in which it will choose strategy CD with a probability

around 0.87 and use other strategies with some small probabilities.

Similarly, Fig. 6.3 shows the attacker’s strategic profile when αd = 0.5 and when αaL

equals both 0.1 and 0.5. We can see that for αaL = 0.1, the attacker chooses the

strategy D with high probability. This corroborates with the defender’s choice of AD

with high probability as the strategy D is common between both player’s strategies.

Similarly, when αaL = 0.5, the attacker has a more distributed probability vector in

which it will choose strategy C with a probability of around 0.5 and other strategies

with smaller probabilities.

We then study the players’ utilities based on the equilibrium strategies shown in Figs.

6.2 and 6.3. These utilities are calculated using (4.7) where each player will have the

exact same utility for each batch of the game, and their total utility will be the batch

utility multiplied by the number of the batches. Therefore, in Fig. 6.4, we show both

37

A B C D
Attacker Strategy

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
er

 P
ro

ba
bi

lit
y

aL = 0.1
aL = 0.5

Figure 6.3: Attacker strategic profile when the defender’s rationality αd = 0.5 against
attacker’s rationalities of αaL = 0.1 and αaL = 0.5.

players’ utilities for a single batch.

Fig. 6.4 shows, that when the attacker has a rationality of αaL = 0.1 in both the learn-

ing stage and the actual game stage and the defender has a rationality of αd = 0.5, the

attacker incurs a utility hit of −3.9614854 per IC. Meanwhile, the defender receives

a utility of 3.9614854 per IC. In retrospect, when the attacker plays a rationality of

αaL = 0.5 in both the learning stage and the actual game stage, the attacker receives

a utility hit of −0.4984252 per IC. The zero-sum nature continues, and the defender

receives a utility of 0.4984252 per IC. This shows that the attacker will incur a neg-

ative outcome when it plays the same rationality in both the game stages, no matter

whether it played high or low rationalities. This is because the defender random-

izes over its actions, and it will be able to detect the hardware trojans with high

probability.

Next, we study the effect of deception to the attacker’s utility. In this case, during the

learning stage of the game, the attacker decides to deceive the defender by playing

a lower rationality level, αaL . The defender will receive the attacker’s probability

38

4

3

2

1

0

1

2

3

4

Ex
pe

ct
ed

 U
til

iti
es

No Deception
Attacker Utility, aL = 0.1
Attacker Utility, aL = 0.5
Defender Utility, aL = 0.1
Defender Utility, aL = 0.5

Figure 6.4: The attacker’s and the defender’s utilities under no deception when αaL =
αaA .

distribution corresponding to αaL = 0.1 in Fig. 6.3, and thus, will be playing the

corresponding profile from Fig. 6.2. This means the defender will mainly be adopting

the strategy AD. However, in the actual game stage, the attacker will change its

strategy as it will play its actual rationality of αaA = 0.5.

The outcome of this deception case is shown in Fig. 6.5. From Fig. 6.5, we can see

that when the attacker plays αaL = 0.1 during learning and then αaA = 0.5 during

the actual game stage, while the defender is playing αd = 0.5 assuming the attacker

is playing αaA = 0.1, the defender receives a utility hit of −1.3090019 per integrated

circuit (IC) while the attacker receives a utility gain of 1.3090019 per IC. The previous

no deception case is also included in Fig. 6.4 for reference, in which the attacker gets

detected and paying a fine for the defender.

Note that, while Fig. 6.5 shows the defender with a negative utility, the defender in

fact will not be aware of these losses. From a practical point of view, the defender will

focus on the profile AD, as discussed earlier, and it will not detect most of the trojans.

Thus, it will lose the utility corresponding to each undetected trojan. Similarly, the

attacker will gain this value for every single IC in each batch of the actual game stage.

39

4

3

2

1

0

1

2

3

4

Ex
pe

ct
ed

 U
til

iti
es

Deception
Attacker Utility, aL = 0.1
Attacker Utility, aL = 0.5
Defender Utility, aL = 0.1
Defender Utility, aL = 0.5

Figure 6.5: The attacker’s and the defender’s utilities under deception when αaL 6=
αaA and under no deception when αaL = αaA .

The accumulated utility of the attacker from the hypergame model, as defined in

(5.2), will , however, be different. This utility represents the goal of the attacker

of maximizing its utility between playing its actual rationality and playing “dumb"

in the learning stage. Since this utility depends both on the attacker’s deception

rationality and its actual rationality, in Fig. 6.6, we study different scenarios for the

attacker’s original rationality and how they affect its accumulated utility. Moreover,

we study these cases for different defender’s perceptions, i.e., defenders with different

rationalities.

From Fig. 6.6, we can see that irrespective of the attacker’s actual rationality, the

attacker’s utility will always be higher when faced with a defender with a lower

rationality. For instance, when the attacker’s actual rationality is 0.5, its highest

deception utility gain is when the defender’s rationality is 0.5. Similarly, when the

attacker’s actual rationality of 0.6, its highest deception utility gain is when it faces

defenders of rationalities, 0.5 and 0.6. However, if the defender’s rationality is higher

than 0.6 , the attacker will still achieve a positive utility, but the order becomes less

predictable. For instance, when the attacker’s actual rationality is 0.5, its utility

40

0.5 0.6 0.7 0.8 0.9 1.0
Attacker Actual rationality

3750000

4000000

4250000

4500000

4750000

5000000

5250000

At
ta

ck
er

 U
til

ity
 G

ai
n

wi
th

 D
ec

ep
tio

n d = 0.5
d = 0.6
d = 0.7
d = 0.8
d = 0.9

Figure 6.6: Attacker’s utility gain under different defender’s rationalities when the
optimal deception rationality is played for each type.

will be higher when it faces a defender with the rationality of 0.8, than when it

faces a defender with the rationality of 0.6. The same happens for the attacker’s

rationalities of 0.6 and 0.7, as the attacker achieves a higher utility when the defender

has rationality of 0.9 compared to when the defender has a rationality of 0.8.

Another interesting finding in Fig. 6.6 is that an attacker with a higher actual ra-

tionality does not have to gain more than an attacker with a lower rationality. For

instance, when facing a defender with a rationality of 0.7, the best possible utility

will be achieved by an attacker with an actual rationality of 0.6. Similarly, against

a defender with a rationality of 0.6 , the best possible utility will be achieved by

an attacker with a rationality of 1.0. This, in fact, corroborates the importance of

hypergame theory as the maximum achievable utility for the attacker depends on the

deception rationality, which may differ for each actual rationality.

Finally, Fig. 6.7 studies the utility of different attacker’s, based on their actual

rationalities αaA . Fig. 6.7 shows the utility of each attacker’s type based on their

choice of the deception rationalities, αaL . Each curve represents a type of attacker, and

it extends from the lower possible rationality up to the attacker’s actual rationality,

41

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Attacker Deception Rationality aL

0

250000

500000

750000

1000000

1250000

1500000

1750000

At
ta

ck
er

 U
til

ity
 G

ai
n

wi
th

 D
um

m
y

Ra
tio

na
lit

y

aA = 0.1
aA = 0.3
aA = 0.5
aA = 0.7
aA = 0.9

Figure 6.7: The utility gain of each attacker’s type when they play different deception
rationalities αaL in the learning stage.

for an attacker cannot play a higher rationality than its actual rationality. We can

see that the deception rationality of αaL = 0.1 achieves the highest utility of any

attacker when its actual rationality is greater than 0.3. Another important finding

from Fig. 6.7, is that an attacker with a lower rationality, for e.g., 0.3 will not be

able to benefit well from the deception as its utility will remain comparatively very

small. Similarly, an attacker with high rationality will maximize its utility if it plays

a deception rationality lower than or equal to 0.3. This corroborates the findings

from Fig. 4.1 about the inflection point of 0.37 and its effect on flipping the order

of a player’s strategies. Note, in Fig. 6.7, the optimal deception rationality for all

the players is 0.1; however, this is not a general case in deception scenarios, and the

solution of (5.7) should be used to compute the optimal deception rationality based

on each game’s parameters.

42

Chapter 7

Conclusion and Future Work

In this thesis, we have proposed a novel framework for deception in hardware trojan

detection systems. Prospect theory has been used to model the basic players’ utilities,

without deception, in order to account for different players’ rationalities. These ratio-

nalities represent the nature of human subjectivity when faced with uncertainty. We

then formulated a repeated game in which the defender learns about the attacker’s

strategies in the learning stage and then applies this learning knowledge to the sub-

sequent actual game stage of the game. The incentive behind deception has been

carefully discussed, which is built on the premise of the Prelec function’s effect on

flipping the order of evaluation between low and high probabilities. Thus, an attacker

will find it motivating to use different rationality levels in both the learning and the

actual game stage of the repeated game. We have then formulated an extended view

of the game using a hypergame model in which the attacker has a complete view of the

game while the defender has a partial perceived view of the game. The hypergame

model allows the attacker to optimally determine its deceiving rationality level to

maximize its utility. We have also proposed a first-step defense against the deception

43

by allowing the defender, while resources permit, to repeat the learning stage in order

to mitigate the effects of deception. Finally, we have tested the proposed framework

using simulations. The results have shown that the attacker can successfully insert

hardware trojans without being detected. Results have also shown the attacker’s

gain in utility under different combinations of rationalities of the attacker and the

defender. For future work, we will focus on building more rigor defense mechanisms

using moving target defense and higher levels of hypergame theory.

One promising direction for future work is to study the deception game when the

attacker has the option of “no trojan", i.e., it chooses not to insert a trojan. Similarly,

the strategy of “no test" can be considered for the defender when it chooses not to test

the current integrated circuit for hardware trojans. These strategies were considered

in [16] for the static game scenario, and they represent a good extension for the

hypergame considered in this thesis. Lastly, another potential research extension on

this research can be analyzing the game scenario, assuming the attacker can insert

more than one trojan per trojan.

44

Bibliography

[1] M. Haselman and S. Hauck, “The future of integrated circuits: A survey of

nanoelectronics,” Proceedings of the IEEE, vol. 98, no. 1, pp. 11–38, jan 2010.

[2] B. N. Hwang, T. T. Chen, and J. T. Lin, “3PL selection criteria in integrated

circuit manufacturing industry in Taiwan,” Supply Chain Management, vol. 21,

no. 1, pp. 103–124, 2016.

[3] J. Dofe, Q. Yu, H. Wang, and E. Salman, “Hardware security threats and po-

tential countermeasures in emerging 3D ICs,” in Proceedings of the ACM Great

Lakes Symposium on VLSI, GLSVLSI, 2016.

[4] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan: Threats

and emerging solutions,” in Proceedings - IEEE International High-Level Design

Validation and Test Workshop, HLDVT, 2009.

[5] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy Hard-

ware: Identifying and Classifying Hardware Trojans,” Computer, vol. 43, no. 10,

pp. 39–46, October 2010.

[6] T. Boraten and A. K. Kodi, “Mitigation of denial of service attack with hardware

trojans in noc architectures,” in 2016 IEEE international parallel and distributed

processing symposium (IPDPS). IEEE, 2016, pp. 1091–1100.

45

[7] S. Sengupta, K. Hong, R. Chandramouli, and K. P. Subbalakshmi, “Spiderradio:

A cognitive radio network with commodity hardware and open source software,”

IEEE Communications Magazine, vol. 49, no. 3, pp. 101–109, 2011.

[8] A. Eldosouky and W. Saad, “On the cybersecurity of m-health iot systems with

led bitslice implementation,” in 2018 IEEE International Conference on Con-

sumer Electronics (ICCE). IEEE, 2018, pp. 1–6.

[9] T. Brodeur, P. Regis, D. Feil-Seifer, and S. Sengupta, “Search and rescue opera-

tions with mesh networked robots,” in 2018 9th IEEE Annual Ubiquitous Com-

puting, Electronics & Mobile Communication Conference (UEMCON). IEEE,

2018, pp. 6–12.

[10] A. N. Patra, P. A. Regis, and S. Sengupta, “Dynamic self-reconfiguration of un-

manned aerial vehicles to serve overloaded hotspot cells,” Computers & Electrical

Engineering, vol. 75, pp. 77–89, 2019.

[11] A. French, M. Mozaffari, A. Eldosouky, and W. Saad, “Environment-aware de-

ployment of wireless drones base stations with google earth simulator,” in 2019

IEEE International Conference on Pervasive Computing and Communications

Workshops (PerCom Workshops). IEEE, 2019, pp. 868–873.

[12] W. Saad, A. Sanjab, Y. Wang, C. A. Kamhoua, and K. A. Kwiat, “Hardware

Trojan Detection Game: A Prospect-Theoretic Approach,” IEEE Transactions

on Vehicular Technology, 2017.

[13] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic, “Hardware Trojan

detection and isolation using current integration and localized current analysis,”

in Proceedings - IEEE International Symposium on Defect and Fault Tolerance

in VLSI Systems, 2008.

46

[14] Z. Han, D. Niyato, W. Saad, T. Başar, and A. Hjørungnes, Game theory in wire-

less and communication networks: theory, models, and applications. Cambridge

university press, 2012.

[15] J. Graf, “Trust games: How game theory can guide the development of hard-

ware Trojan detection methods,” in Proceedings of the 2016 IEEE International

Symposium on Hardware Oriented Security and Trust, HOST 2016, 2016.

[16] C. A. Kamhoua, H. Zhao, M. Rodriguez, and K. A. Kwiat, “A Game-Theoretic

Approach for Testing for Hardware Trojans,” IEEE Transactions on Multi-Scale

Computing Systems, 2016.

[17] X. D. He and X. Y. Zhou, “Portfolio choice under cumulative prospect theory:

An analytical treatment,” Management Science, 2011.

[18] N. C. Barberis, “Thirty years of prospect theory in economics: A review and

assessment,” 2013.

[19] A. Sanjab, W. Saad, and T. Başar, “Prospect theory for enhanced cyber-physical

security of drone delivery systems: A network interdiction game,” in 2017 IEEE

International Conference on Communications (ICC). IEEE, 2017, pp. 1–6.

[20] L. Xiao, N. B. Mandayam, and H. Vincent Poor, “Prospect theoretic analysis of

energy exchange among microgrids,” IEEE Transactions on Smart Grid, 2015.

[21] E. S. Al-Shaer, J. Wei, K. W. Hamlen, and C. Wang, Autonomous Cyber Decep-

tion: Reasoning, Adaptive Planning, and Evaluation of HoneyThings. Springer,

2019.

[22] N. S. Kovach, A. S. Gibson, and G. B. Lamont, “Hypergame theory: a model for

conflict, misperception, and deception,” Game Theory, vol. 2015, 2015.

[23] D. Sklansky, The theory of poker. Two Plus Two Publishing LLC, 1999.

47

[24] A. Petrovic, I. Markovic, V. Koprivica, and B. Bokan, “Tactics factors in chess:

Theoretical-empirical aspects.”

[25] E. Rasmusen, Games and information: An introduction to game theory. Black-

well Oxford, 1989, no. 519.3/R22g.

[26] T. Roughgarden, “Algorithmic game theory,” Communications of the ACM,

vol. 53, no. 7, pp. 78–86, 2010.

[27] D. Jiang and J. Hu, “Research of key technology in game theory,” in 2010 The 2nd

Conference on Environmental Science and Information Application Technology,

vol. 2. IEEE, 2010, pp. 639–642.

[28] V. N. Kolokoltsov and O. Malafeyev, “Understanding game theory: introduc-

tion to the analysis of many agent systems with competition and cooperation,”

UNDERSTANDING GAME THEORY, 2010.

[29] A. M. Colman, Game theory and its applications: In the social and biological

sciences. Psychology Press, 2013.

[30] D. E. Charilas and A. D. Panagopoulos, “A survey on game theory applications

in wireless networks,” Computer Networks, vol. 54, no. 18, pp. 3421–3430, 2010.

[31] Y. Shoham, “Computer science and game theory,” in Proceedings of the Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems, AA-

MAS, 2008.

[32] O. Morgenstern and J. Von Neumann, Theory of games and economic behavior.

Princeton university press, 1953.

[33] O. Chatain, Cooperative and Non-cooperative Game Theory. London:

Palgrave Macmillan UK, 2016, pp. 1–3. [Online]. Available: https:

//doi.org/10.1057/978-1-349-94848-2_468-1

https://doi.org/10.1057/978-1-349-94848-2_468-1
https://doi.org/10.1057/978-1-349-94848-2_468-1

48

[34] S. Sengupta, “An economic framework for resource management and pricing in

wireless networks with competitive service providers,” 2007.

[35] P. Bajari, H. Hong, and S. P. Ryan, “Identification and estimation of a discrete

game of complete information,” Econometrica, vol. 78, no. 5, pp. 1529–1568,

2010.

[36] X. Deng and J. Deng, “A study of prisoner’s dilemma game model with incom-

plete information,” Mathematical Problems in Engineering, vol. 2015, 2015.

[37] J. O. Neel, J. H. Reed, and R. P. Gilles, “Convergence of cognitive radio net-

works,” in 2004 IEEE Wireless Communications and Networking Conference

(IEEE Cat. No. 04TH8733), vol. 4. IEEE, 2004, pp. 2250–2255.

[38] D. Prelec, “The Probability Weighting Function,” Econometrica, vol. 66, no. 3,

p. 497, 1998.

[39] S. Sengupta, M. Chatterjee, and K. Kwiat, “A game theoretic framework for

power control in wireless sensor networks,” IEEE Transactions on Computers,

vol. 59, no. 2, pp. 231–242, 2009.

[40] P. G. Bennett, “Hypergames: Developing a model of conflict,” Futures, 1980.

[41] Y. Sasaki, N. Kobayashi, and K. Kijima, “Mixed extension of hypergames and

its applications to inspection games,” in Proceedings of the 51st Annual Meeting

of the ISSS-2007, Tokyo, Japan, vol. 51, no. 2, 2007.

[42] Q. Zhu and T. Başar, “Game-theoretic approach to feedback-driven multi-stage

moving target defense,” in International Conference on Decision and Game The-

ory for Security. Springer, 2013, pp. 246–263.

[43] A. Eldosouky, W. Saad, and D. Niyato, “Single controller stochastic games for

optimized moving target defense,” in 2016 IEEE International Conference on

49

Communications (ICC). IEEE, 2016, pp. 1–6.

	Introduction
	Related Works
	Contributions

	Background on Game Theory
	Game Theory
	Classification of Games
	Cooperative vs Non-cooperative
	Complete vs Incomplete Information Game
	Pure vs Mixed strategy
	Static vs Repeated Games

	Nash Equilibria

	System Model
	Game Formulation
	Static Game
	Repeated Game

	Hypergame Model for Deception in Hardware Trojan Games
	Hypergame Theory
	Hypergame Model
	Deception Mitigation

	Simulation Results and Analysis
	Conclusion and Future Work

