Overview

Forward Osmosis (FO) Membrane Processes
• Osmotic pressure used as driving force across semi-permeable, non-porous membrane
• Favored over hydraulic pressure gradients for wastewater treatment due to increased energy efficiency and economic advantages
• Biofilm is formed due to bacterial adherence and production of extracellular polymer matrix
• Biofouling causes lower water flux, leading to loss in efficiency and higher operating costs

Objectives
• Mitigate biofouling in a FO membrane bioreactor (MBR)
• Observe difference in flux between control and antibiotic (AB) draw solution
• Analyze changes in biofouling on membranes and water flux using sodium metabisulfite (SM) and chloramphenicol (CAM)
• Determine if AB draw is an effective solution for mitigating biofouling and improving water flux

Materials and Methods

Materials
• 3-cell FO-MBR system (Figs. 1 and 2)
• Cellulose triacetate FO membranes
• Control draw solution: 75 g/L NaCl
• SM draw solution: 75 g/L NaCl and 378 mg/L SM
• CAM draw solution: 75 g/L NaCl and 52.5 mg/L CAM
• E. coli JW 3818-1 ΔrfaH in LB broth with 50 mg/L kanamycin

Methods
• Two independent FO loops exposed to same feed conditions
 o Did not use third cell to avoid killing bacteria with AB
• Water flux measurements calculated using mass of liquid in overflow containers
• Draw solutions monitored by conductivity
 o Conductivity kept constant via dosing of 5M NaCl solution and respective concentration of AB (378 mg/L SM or 52.5 mg/L CAM)

Results

Fouling on FO Membranes
• No noticeable biofouling on SM draw membrane at end of the experiment
• Biofouling on CAM draw membrane was present after experiment

Acknowledgements
This work was funded by the Nevada Undergraduate Research Award. Thank you to Jack Griffin for his support, oversight, and input. These experiments would not have been able to be completed without his efforts.