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Abstract 

As video games steadily increase in complexity and detail, game engines must also improve 

to be able to support both rapid and modular development while still maintaining high 

performance.  Component-based architectures have been shown to be effective for allowing 

developers to rapidly create stunning games with modular components, but unfortunately come 

with a performance cost over traditional call-and-return systems.  This thesis proposes a method 

that modifies existing component-based game engine architectures to automatically distribute and 

synchronize work in order to improve performance. 
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1 Introduction 

 

Every year video games become more complex and more demanding on hardware.  Massive 

efforts are made by game development companies to maximize performance with limited 

resources.  Game companies strive to minimize their effort in developing each game by either 

developing or buying game engines that contain many of the reusable parts of a game. 

When developing these game engines, it is important to maximize both performance and 

flexibility.  Performance is important because it will allow the complexity of games to increase 

without affecting user experience.  Flexibility is important because the more times that a game 

engine can be used, the more cost effective it will be.  If a game engine can be used for a long 

time and with many different types of games, it will represent a smaller cost for each game that it 

is used for.   

Unfortunately, the two needs of performance and flexibility are often opposed to one 

another.  In order to maximize performance, it is often necessary to make assumptions about the 

type of game being developed and the platform being developed for.  These assumptions limit the 

applicability of the game engine and thus reduce its effectiveness.  On the other hand, when 

maximizing flexibility it becomes difficult to apply the specialized algorithms and structures that 

have been developed for many years for games [10].  There is no accepted best practice for 

solving this interdependence of performance and flexibility, and it is an area that calls for further 

research [14]. 

One method that is currently being explored to balance the needs of performance and 

flexibility is component based architectures [9, 11].  In these architectures, each entity in a game 

world is composed of many pluggable components, and all components interact with a central 

system instead of directly with each other.  With this kind of decoupling between the different 
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components of a game, it is possible to provide default components to accomplish very common 

tasks, but it is also possible to change out components to accomplish more specialized tasks [11].   

With the flexibility of these component-based engines, however, there comes the cost of the 

overhead of having all components talk to each other through an intermediate system layer [11].  

In this thesis we propose a method by which a component based game engine can be modified to 

automatically run the different components in parallel while still keeping all of their interactions 

synchronized.  There are two implementations of this method covered. 

The first implementation simply takes the simulation and splits it up into several independent 

simulations, with each simulation processing its own subset of the overall task set and 

synchronizing its state with that of its peers.  This method has a thick management layer that does 

all synchronization and distribution across the network and keeps all nodes working together.  

Unfortunately, the performance of this system was not good because of the complexity of this 

synchronization and because of the lack of explicit data flow between the different processing 

units on different nodes. 

The second implementation addresses the shortcomings of the first by minimizing the impact 

of the communication layer on performance while still maintaining the independence of the 

different components in the system.  This implementation also addresses the issue of 

synchronization encountered between the different nodes of the first implementation by creating 

an explicit data flow that can be controlled and optimized within the central system.  This system 

has only been developed to a proof-of-concept level so far, but has shown great promise and is 

proven to perform the basic tasks of task distribution and data synchronization much better than 

the first synchronization and also better than a simple procedural game engine. 

By looking at the state of the game industry, finding a method that could be used and 

improved, and iteratively approaching an effective solution, we have made significant steps 

towards the development of an automatically parallel game engine.  With the ever-increasing 
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trend towards massively parallel computation both in home computers and game consoles, this is 

the area that will have to be exploited soon in order to keep game and simulation performance 

moving forward.  This engine represents an iterative step towards the goal of a fully parallel game 

engine. 

The rest of this thesis will examine the development of two parallel game engines.  Each are 

based on the component-based game engine architecture and expand on that architecture to run in 

parallel.  The first implementation, SDSE, is a modification of the EVA system developed our 

Chris Miles and runs in networked parallel.  The second implementation, SimQ, is a 

multithreaded application with a game-oriented task queuing system. 
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2 Background 

 

Video games have become a huge part of modern culture.  Each year games make millions 

of dollars and influence millions of people.  In addition to being a huge market, video games are 

also a rapidly changing one.  Games must be innovative in order to be competitive, and in order 

to be competitive they must be rapidly developed in order to beat competitors to market.  Many 

years ago, games were small programs developed by one or sometimes two people.  Recently, 

however, games have become enormous multi-million dollar projects requiring hundreds of 

people and years of work.  Any effort to reduce this huge demand for resources is bound to 

reduce cost and improve the productivity of developers. 

To this end, game engines have been developed.  In short, a game engine is middleware 

that exists to simplify game development by taking care of the mundane tasks required for most 

games.  In practice, this definition can mean almost anything.  Some will tell you that a game 

engine is a software layer that abstracts away graphics rendering code, while others will tell you 

that it handles basic scene entity management.  At the other end of the spectrum, large 

commercial game engines seem to be able to handle anything and everything, including graphics, 

physics, AI, scripting, sound, networking, scene management, animation, and a host of other 

tasks.  From a software engineering point of view, the flexibility of a general solution to the 

problem of developing a game engine is one of the factors that makes it most interesting. 

In addition to providing a wider area of applicability, flexibility also has the advantage of 

providing maintainability in a software project.  This maintainability is provided by the 

decoupling of the different components of the system and the ease with which a developer can 

replace or redesign any component [15, 18].  Since computer games are constantly evolving and 
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becoming more complex [16], this is a very important consideration when developing a computer 

game. 

Consider the example of a game being developed over a long period with many complex 

components.  The graphics part of this engine is finished early on, but it takes longer than 

expected to develop the artificial intelligence parts of the game and delivery is pushed back.  Due 

to the constantly advancing nature of computer graphics, it is necessary to improve the visual 

display of the game before shipping.  If the graphics code is deeply rooted, this change can 

involve even further delays and huge development cost.  On the other hand, if the graphics code 

is modular and doesn’t affect other components of the game, it can be easily redesigned without 

having to rebuild other components. 

The other key factor that must be considered when developing a game engine is 

performance.  At their very core, video games are interactive real-time simulations of one quality 

or another.  This means that at the end of the day what a game does is take input from the user, 

pass it through the model of the interactive game-world, and report the result back to the user.  

This core of immediate interactivity drives the need for performance in games.  Indeed, many of 

the primary advances in game technology haven't been for things such as novel input methods or 

engaging gameplay, but instead have focused on squeezing every last drop of blood from 

overstressed processors.  This has led to a plethora of specialized algorithms and techniques for 

everything one needs to make a game, including graphics rendering, scene management, AI, and 

a variety of other time or memory-intense problems. 

The twin challenges of flexibility and performance are directly opposed to one another.  In 

order to get a high amount of one, it is necessary to sacrifice part of the other.  To this end, many 

different game engine architectures have been explored in the past and many will be explored in 

the future.  By examining what challenges have arisen in the past and what solutions have been 
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proposed for those challenges, it is possible to form a coherent idea of a comprehensive solution 

to the problem of game engine design. 

It is true that Console and PC system architectures are also steadily increasing to meet 

performance needs.  But the direction of the development of this hardware is towards parallel-

processing systems such as the one discussed in [12]. 

2.1 Motivation 

In the thesis, "Power and Peril of Teaching Game Programming" [6], two examples of 

teaching game programming in a classroom environment are given.  In the first example, students 

are presented with the idea of learning about game design during the first half of a semester and 

implementing a game in the second half.  Unfortunately, this approach does not go well.  This is 

for various reasons, but the primary reason is that the students were presented with the abstract 

concepts of game design instead of being taught practical skills, and then were faced with 

developing an actual game.  With no practical skills or knowledge about how to go about this 

project, the games that they developed were far from complete.  On the other hand, these games 

were constructed around solid, playable ideas and had great potential. 

In the second example of this paper, the authors describe an intensive summer program 

during which students received a crash-course in the practical aspects of game development and 

developed a game.  This course produced more polished projects than the first, but the creative 

drive from the first class was unfortunately missing.  It is clear from these two examples that it is 

very difficult to teach the creative and practical skills necessary to develop a complete game to 

students within one semester.  In order to prevent these issues from arising, it would be ideal to 

minimize the technical knowledge necessary to construct a game so that students could learn 

sufficiently the creative skills they needed and then quickly pick up the technical abilities 

necessary to bring those dreams to reality. 
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A game engine, and specifically a flexible and learnable game engine, is an ideal solution 

to this problem.  With an intuitive data-driven framework, as will be discussed later, many of the 

technical difficulties of implementing a game can be hidden from the user and automated to a 

maximum extent. 

The paper "Game Engines in Scientific Research" [7] shows how commercial game 

engines are transforming the world of scientific research and simulation.  In the past, scientific 

institutions paid large sums of money in order to have the latest and greatest in computational 

power.  While it is still true that in order to do very high-fidelity simulations it is still necessary to 

have a state-of-the-art visualization system and a supercomputer in the back room, many 

scientific research projects can be improved through the use of existing game engines.  These 

engines offer several advantages over ground-up design of software.  The most important of these 

advantages is the reduction of implementation costs.  By implementing a research simulation on 

the existing platform of a game engine a project can save many months of effort [7]. 

Another benefit gained from the use of a game engine in the implementation of a scientific 

simulation is that of performance.  Game engines have been evolved over many years to have the 

highest performance possible, and the algorithms and techniques used to accomplish this are non-

trivially complex.  By using a game engine it is possible for a researcher to have his or her 

simulation run much faster than if it were developed in-house, and that reduction in run time can 

improve the quality of research results and allow greater exploration of the topic being 

researched. 

In the thesis "Multi-threaded Rendering and Physics Simulation" [8], a method useful for 

decoupling and multithreading the processing of physics and graphics for a simple simulation is 

shown.  Even in the very simple simulation of spheres bouncing in a box shown in this thesis, the 

development required to accomplish a multithreaded implementation is considerable.  In order to 

have the simulation and rendering be independent, the author is forced to use many locks and 
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other cumbersome multithreading techniques.  To the average programmer these techniques are 

counter-intuitive, and to the average game creator they are completely indecipherable.   

This is a serious problem and highlights the tradeoff between flexibility and performance 

when designing a game engine.  In order to have higher performance, it is useful to use a parallel 

solution in order to take advantage of today's common multi-core computers.  On the other hand, 

the current technology available for accomplishing multithreading is difficult to learn and use, 

making it inaccessible to any but specialized programmers.  An ideal solution to the problem 

would be a game engine that allowed developers to declare the data and interactions of their game 

and used that data to automatically create a parallel implementation of the game.  This would 

maximize both performance and learnability. 

2.2 Method 

It is shown in [13] that the general processing steps of a game can be broken down and 

expressed as a cyclic dependency graph.  Furthermore, this thesis shows that this graph can be 

theoretically parallelized with a performance improvement.   

In order to address the needs of game engines, it is clear that performance and flexibility 

must be maximized.  There is a known tradeoff between these, but with a clever implementation 

it should be possible to minimize the compromises made between the two primary concerns of 

game engine development.  In order to accomplish high performance, it is necessary to implement 

a parallel architecture that will work well on today's multi-core machines.   

This kind of parallelization takes two primary forms: task parallelism and data parallelism.  

In task parallelism, a large group of tasks is broken up as much as possible, and within the various 

dependencies between those tasks the tasks are executed in parallel.  In data parallelism, on the 

other hand, a simulation is broken up into many pieces of data that are acted upon by processes, 

and those processes are executed in parallel within the interdependencies of the data.  Both of 

these approaches have their difficulties, and both call for unique solutions. 
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2.3 Task Parallelism 

In order to accomplish task parallelism, it is necessary to accomplish three things.  First, 

the overall task at hand must be broken up into as many atomic tasks as possible.  Next, the 

dependencies between those tasks must be defined.  This means that if one task A requires the 

output of task B to execute, then task B must execute before task A.  Finally, a pool of workers 

will take tasks as they become available for immediate execution and run them, filing the results.  

This is a common method for doing parallel processing, and has been adapted by several authors 

to game engine design. 

The paper "Multi-threaded Game Engine Design" [4] describes a method for adapting the 

tasks performed by a game engine to a multi-threaded environment.  In order to do this, a system 

is used where the various tasks are enumerated into a "task tree", as shown in Figure 2-1. 

 
Figure 2‐1 An example of task parallelism.  [4] 

In this tree, all tasks are broken up into sub-tasks until non-ambiguous atomic units are 

reached at the leaf nodes.  These tasks include many things such as gathering input, updating 

game-world objects, and rendering graphics.  By splitting all actions up into a tree, actions are 
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implicitly grouped by dependency.  This means that all update actions must take place before 

render actions and so on.  To process this tree, a thread pool is created that holds a list of worker 

threads that take actions from the currently processing group of leaf nodes and process those 

nodes before moving on to the next group of leaf nodes.  This method works well for parallelizing 

tasks, and is shown by the author to be adaptable to the application of game engines. 

The thesis "A Game Engine on Distributed Systems using CORBA" describes a method by 

which the Awe component of a chess program can be parallelized.  CORBA is an accepted 

parallel processing architecture where objects are represented “location agnostic”, so that they 

can be accessed from anywhere on the network transparently [20].  This approach to the problem 

of chess Awe is classical and uses the negamax algorithm to search the possible space of board 

states.  The novel part of his solution, however, is the use of parallel processing to speed up the 

exploration of the game tree.  In order to do this, the author breaks the processing of the state tree 

into discrete tasks and processes them with the use of the CORBA parallel processing system.  

This application, while showing that task parallelism is applicable to game engine design, is 

limited in its implementation to a specifically chess game engine [5].  Please note that there are 

many different implementations of task parallelism, but that this is a fairly  

2.4 Data Parallelism 

The idea of parallelism is that some tasks are composed of the same operation being 

performed to many different parts of a large group of data.  This idea is very applicable to game 

engines since game engines operate on spatial, partitionable data and perform many repetitive 

update, physics, and rendering computations on that data. 

One example of this is shown in the thesis "Scalable Multi-threaded Game Engines using 

Transactional Memory" [3].  In this thesis, the author describes a method where the update step of 

a game engine is broken up into many multithreaded processes through the use of spatial 

partitioning [3].  An example of this is shown in Figure 2-2.  In this example the world is 
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partitioned into several different sections, and each of those sections is executed on a separate 

thread. 

 

Figure 2‐2 An example of data parallelism.  [3] 

 In such a system, the number of threads that the system is to use is defined at runtime and 

the world is broken up using a spatial partitioning method such as a quadtree or kd-tree.  Each of 

the spatial sections of the world and all of its contained game entities are then given to a thread to 

be processed.  In this way, multithreading is accomplished and is limited not by the number of 

reasonable tasks that the processing of the game can be broken down into, such as in task 

parallelism, but instead is only limited by the number of the cores and the complexity of the 

scene. 

Because of their greater scalability and applicability, data-parallel game engines are the 

more ideal multi-threading solution for game engines.  They do, however, have the great 

disadvantage of requiring that all of the state data for the game be synchronized between multiple 

cores or machines.  This is a difficult problem, and has had much research done on it in the 

context of game engines. 
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2.5 Data Synchronization 

In order to have multiple threads or machines working on the same set of data, such as in a 

data-parallel game engine, that data must be synchronized between all clients.  This is a difficult 

problem, and presents many unique challenges.  There have been many techniques explored in 

this area that seek to provide maximum data coherence while still maximizing performance and 

not hindering the overall system. 

The paper "A Realistic Distributed Interactive Application Testbed for Static and Dynamic 

Entity State Data Acquisition" [2] proposes that one way to greatly improve the performance of 

existing data-synchronization methods is through predictive algorithms.  In most games today, the 

local client application will use "dead reckoning", or a best guess, to try to guess what the future 

position of objects will be in absence of information from the server.  The author proposes 

another method which would interpolate the information on the client by using a predictive 

algorithm that would anticipate what the future state of objects in simulation would be based on 

their prior behavior. 

This method is interesting, and if implemented well it could greatly reduce the amount of 

information needed to be sent between different clients in order to synchronize data.  

Unfortunately, this thesis only describes a hypothesis and preliminary work on the subject and 

does not advance a fully developed implementation.   

The thesis "An Efficient Synchronization Mechanism for Mirrored Game Architectures" 

describes a more fully-fleshed method for synchronizing the data between multiple game clients 

and servers.  This is an optimistic method that lets all clients execute instructions until a conflict 

between the states of two clients is detected.  When such a conflict is detected, the state of the 

trailing client is rolled back and brought back into sync with the leading client [1].   

Such a system is very useful because it allows all clients to run optimistically and transfer 

the minimum amount of data between each other.  Only when a conflict is detected does full 
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synchronization take place, increasing the overall efficiency of the system.  This kind of 

algorithm could be very useful in the implementation of a data-parallel game engine in order to 

minimize the overhead of keeping multiple clients synchronized and maximize the gains of 

parallel processing. 
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3 SDSE: An Implicit Processing Model 

 

SDSE, or the Sinking Duck Simulation Engine, was our initial implementation of a parallel 

simulation system for this project.  It was derived from the Entity-Variable-Aspect system 

developed by Chris Miles [9], with additional features to allow for processing in a networked 

parallel environment.  These modifications took the aspect processing model already in the 

system and load-balanced that processing across a heterogeneous network of computers using a 

greedy algorithm.  Communication was automatically handled so that the variables of entities and 

messages appeared to be handled locally, but were actually synchronized across the network 

when needed. 

3.1  EVA 

The original EVA system, as developed by Chris Miles [9], was a way of organizing a 

game or simulation.  It was developed at the Evolutionary Computing Systems Lab at the 

University of Nevada, Reno for the naval training simulation and Awe research platform Lagoon.  

The three basic components in this model are entities, variables, and aspects. 

An entity is the basic object of a simulation, and represents something in the virtual world.  

This could be anything from a building to a car to a bullet.  An entity contains a collection of 

variables and a collection of aspects.  The variables represent the state of the entity for such 

things as size, color, and velocity.  The aspects represent different behaviors or natures that can 

be assigned to an entity, such as making it a physical object, making it graphically represented, 

making it generate sounds, or having it react intelligently to its surroundings.  On the technical 

side, aspects can be thought of as pieces of code that can be attached to entities.  There are many 

hooks that an aspect provides for code to be attached to, including update calls based on timers, 

initialization and destruction of the entity, variable updates, and messages that are passed between 
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entities in simulation.  The composition relationship between these three aspects is shown in 

Figure 3-1: 

 

Figure 3‐1 The composition model of EVA [9]. 

The power of the EVA processing model comes from the decoupled way that different 

aspects can be put together.  Since aspects communicate through variables, they are agnostic as to 

where those variables are coming from or going to.  As an example of this, consider a design to 

represent a ship.  In this design, we have a basic physical aspect for the ship entity.  This physical 

aspect receives data via the throttle and rudder variables of the ship, and outputs variables in the 

form of velocity, rotation, and position.  Above this physical aspect, we can have two alternatives 

for how to create the input variables of throttle and rudder.  One alternative here would be to 

create an aspect that looks at the state of an external hardware interface and sets the control 

values directly, allowing the user to drive the ship.  Another option would be to create an Awe 

aspect that inspects the state of the world, uses a set of goals, and generates the appropriate rudder 

and throttle values.  Because of the modular nature of aspect processing, the physical part of the 

ship entity doesn't need to be recreated for each ship implementation.  This control loop is shown 

in Figure 3-2: 
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Figure 3‐2 The simple interaction model of EVA. 

3.2 EVA as AOP 

AOP, or aspect oriented programming, is a programming paradigm that is derived from the 

visitor design pattern.  The visitor design pattern is an object oriented pattern with data objects 

built to accept generalized visitor classes [17].  This can be a very useful way to decouple data 

and the operations on that data, because visitor classes can be changed without requiring any 

changes in data classes. 

AOP takes the visitor one step further by describing a method of programming where 

classes can have some functionality defined by aspects that are attached to those objects [19].  By 

using these generalized aspects, it is possible to maximize reusability and maintainability.   

For an example of AOP, consider a financial application with many different classes to 

represent things such as customers, accounts, and transactions.  All of these classes need to 

implement logging functionality to record their actions. 

One option for implementing this system would be to implement the functionality of 

logging for each object inside of that object.  This is the obvious design and will work well 
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initially.  However, the downside of this design will become apparent when a change needs to be 

made to the logging system.  In order to change the logging system, it is necessary to change 

every class that features logging functionality.  This represents a huge cost of development time. 

Another option for implementing this system is to implement the functionality of logging 

in a generalized logging aspect.  This aspect can then be attached to many different objects 

without modifying those objects.  This is a good design because if there are changes necessary for 

the logging system, only the logging aspect needs to be changed. 

AOP is not cited as a direct inspiration for EVA in [9], but the two methods have many 

common characteristics.  Each system seeks to maximize modularity and maintainability by 

dynamically mapping aspects to objects.  In this way, EVA can be seen as an application of AOP 

to games. 

3.3 EVA as a System of Systems 

In [15], Plummer discusses an architecture for computer games known as a system of 

systems.  In this architecture, the different systems that make up a game such as graphics, 

physics, and input, are separated into strongly decoupled components.  Maintainability is greatly 

improved through the use of this architecture, because components can be added and removed 

without affecting each other. 

Consider the example of a game that uses one library, such as Bullet, for physics.  If the 

developer later decides to use a different physics library, this can represent a lot of work in 

dealing with repairing dependencies broken by the change.  If, on the other hand, the developer 

has used a system of systems architecture, the maintenance development cost and time are greatly 

reduced because there is no need to modify any system but the one being changed. 

Consider a group of aspects in EVA that does one task, such as graphics rendering.  This 

group of aspects is analogous to a system in Plummer’s system of systems architecture.  To 

change how any task like graphics or physics is accomplished, it is possible to change out the 
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group of aspects that accomplishes that task without affecting any other systems.  In this way, 

EVA can be seen as one implementation of the system of systems architecture. 

In addition to the benefit of modularity, Plummer notes that another benefit of this system 

of systems architecture is the possibility of parallel execution.  He notes that if it is possible to 

analyze the dependencies between the different systems, it will be possible to dynamically 

separate the execution of the separate systems into different threads.  In the next section, the 

SDSE system is describe which does just this.  SDSE analyzes and exploits the dependencies 

between aspects in EVA to speed up execution through parallel execution. 

3.4 SDSE-EVA 

The original design of EVA was modified in SDSE in order to work in parallel.  The basic 

design lends itself fairly well to this adaptation, and only a few modifications were required.  

First, the aspects of the system, which represent the central processing of game logic, were set up 

to be distributed over the network.  In order to accomplish this several other changes were 

required.  The state of the game, in the form of variables, had to be synchronized on demand 

across the network.  Also, any messaging had to distributed transparently across the network.   

The first part of the changes made to EVA for SDSE, the distribution of aspects, is the 

most intuitive part.  If we can distribute the processing of these aspects, then we have distributed 

the processing of the simulation logic.  In order to facilitate this distribution, a server was 

developed that kept track of all working clients in the network and which aspects each client was 

capable of running.  This heterogeneous nature of the network was useful for many applications 

where the machines doing processing were heterogeneous such as a headless cluster running Awe 

for a simulation with graphics being run on a desktop head.  When any client on the network 

requested an aspect to be run on an object, a message would be sent to the server requesting that 

aspect to be run.  The server would then look through the registered clients and their current work 
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loads and determine the most idle client to run the aspect.  This accomplished a naive greedy load 

balancing which proved adequate but could be improved.   

The overall architecture of this system is shown in Figure 3-3: 

 

Figure 3‐3 The modified interaction model of SDSE‐EVA. 

Consider that in the original EVA design, communication between aspects happens 

through the variables in entities.  In order for aspects running on different machines across the 

network to communicate, the variables that they read and set must also be synchronized.  Several 

methods were developed to efficiently deal with this system, and the solution that was eventually 

arrived at was an on-demand system because this system minimalized communication through the 

high-cost sockets. 

This on-demand variable synchronization system operated on the principal that a client 

only needed to be notified about a variable's value changing if any aspects running on that client 

read that variable.  In order to implement this, the server kept a list of requested variables.  These 

requested variables were those variables that had been read on each client.  The flow of work on a 
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client was that it was always notified about the initial value of a variable, and on the first read of 

that variable it would get that initial value.  On that first read, the server would be notified that the 

client was interested in that variable, and all subsequent variable updates would be propagated to 

that client.  This system meant that variables were sometimes out of date on initial reads, but that 

most of the time they were up to date and that only important information was generating traffic 

on the network. 

Another optimization to the variable synchronization was similar to the first, but applied 

to clients setting variables.  The first time that a client set a variable, that value would be 

propagated across the network.  The client would then wait for that variable to be requested 

before it sent update values to the server again.  This meant that when another client requested 

updates for that variable by reading it, the server would notify the setting client that the variable 

should be sent when locally updated.  By combining both of these variable synchronization 

optimizations, both traffic from clients notifying the server of variable updates and traffic from 

the server notifying clients of variable updates was drastically reduced.   

In SDSE, an asynchronous messaging system and a message publish-subscribe system 

were also added.  These features were added because in addition to the synchronous 

communication offered by variables, it is also sometimes necessary to have asynchronous 

communication for things such as user input and network communication.  Also, when working 

with different aspects on different machines across a network, it is impossible to have one aspect 

simply call a function on another, since the target aspect may not be on the same machine.  

Instead, the messaging system can be used to call a managed aspect hook that may be anywhere 

on the network. 
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3.5 Other SDSE Features 

So far the description of SDSE has been at the high level of the system architecture, but 

there were many systems developed within it to develop it into something approaching a 

workable game engine.  These included a scripting interface, graphics, physics, input, and a GUI. 

The scripting interface of SDSE was developed using Boost Python [21] and presented a 

rich python environment where the user could easily control all aspects of the engine. This 

interface was controlled such that all functionality was exposed, but in such a way so to not 

confuse script developers with the higher level of functionality offered by the core engine. 

The graphics of the system used Ogre [22].  Ogre, the Object Oriented Graphics Rendering 

Engine, is an open source graphics engine that provides many cutting edge graphics capabilities 

such as scene-management, shaders, post-effects, etc.  It was incorporated using the aspect 

system, with aspects developed for a graphics server and various scene objects. 

The purpose of the graphics server is to provide access to the central Ogre objects.  These 

include the overall scene, global settings such as light and fog, graphics resource management, 

etc.  When a graphics aspect is created, it looks for the graphics server in order to create the 

underlying Ogre object that it will use such as a model or particle effect. 

There are many graphics aspects implemented, including different primitive shapes such as 

spheres, boxes, and planes, as well as more complex objects such as meshes, lights, and particle 

effects.  All of these aspects expose the main settings of each of their underlying graphics objects 

to the game system through variables.  This allows settings such as the filename a mesh is loaded 

from or the material of a sphere to be set from files or scripts.  These aspects also implement 

listener functionality that listens to many values such as position, orientation, and scale and 

updates those values immediately to the underlying graphics framework.  This means that these 

aspects are consumers, that is, they sit and listen for values to be set on their entity, and use those 

values to do work.   
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The end result of this system is that when these aspects are created on objects, any other 

aspect, file, or script can come along and set the properties for the graphics and have those 

changes reflected to the display on screen.  This is very useful because it decouples the graphics 

from having to know where the values are coming from, and allows anything to feed the graphics 

information from a physics system to an Awe system to a user at an interactive python prompt.   

The physics system in SDSE is implemented using Bullet Physics [23].  This is a cutting-

edge physics system that can simulate many different bodies, joints, and constraints.  The 

wrapper used to encapsulate this library is similar to the wrapper used for Ogre: it consists of a 

physics server and body aspects. 

The physics server is the central connection to the bullet physics library, and holds all the 

bullet-specific objects necessary for managing the physics world.  This includes the collision and 

dynamics world, and all of their settings including gravity and calculation constants.  The physics 

server also monitors collisions between bodies and broadcasts a message when one occurs.  This 

is all implemented as an aspect.   

There are several physics bodies implemented that connect to the physics server.  The 

physics bodies connect to the physics world to create underlying constructs, and connect through 

the variable and message systems to allow control over various properties such as size and mass.  

Each time tick, all physics bodies are updated through bullet, which then sends the updated values 

for position and rotation for each body.  These values are propagated up through to the engine 

using physics listeners known as MotionStates.  Each body aspect has one of these motionstates 

registered into the physics server for its body, and sets the appropriate variables in the object 

when that motion state changes.  These values can then be used by any other aspects, such as 

graphics. 
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3.6  Application Programmer Interface 

With all of these modifications, it was possible to run an EVA-style simulation in 

networked parallel.  The process of creating a simulation for this system was largely similar to 

that of creating a simulation for EVA.  The user would create an XML file that described entities 

in the simulation in terms of variables, scripts, and aspects.  The system would then take these 

files and combine them with the structure of the network in order to run the simulation in parallel.  

If the entire simulation was run on a single node, the networking would be optimized away and 

the simulation would run in a way very similar to and almost as fast as the original EVA.  There 

are four main components that make up an application in SDSE.  These are the aspects, scripts, 

definitions, and external resources.   The basic structure of the definition of a simulation is shown 

in Figure 3-4. 

 



24 
 

 

Figure 3‐4 The layout of a simulation declaration in SDSE. 

Aspects are implemented as C++ classes that inherit from the base SDSE::Aspect class.  

This base class exposes all the functionality of the system to the developer.  This includes basic 

start and stop methods that are run when the aspect is added and removed from an entity.  The 

developer is also provided with functions to subscribe to variables getting set on the attached 

entity.  This is useful for aspects that consume variables, such as a graphics aspect that would 

want to update the graphics representation whenever a variable such as position or color is set.  

Finally, it is possible for aspects to register callbacks for the asynchronous messaging system.  

This allows application developers to react to events, such as game logic reacting to a button 

being pressed on the keyboard. 
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The build environment is constructed such that build meta-tags can be inserted in aspect 

source files to notify the system of many things such as how the aspect will be registered into the 

system, what libraries it depends on, etc.  At compile time the system discovers all aspects 

available and registers them into the system, making them available to be added by name from 

any source including other C++ code, python scripts, or xml files.  Aspects are useful for 

implementing functionality that must be high-performance, or that will be reused frequently.   

Scripts fulfill much the same role as aspects in the SDSE system, but in a more portable 

way.  While the addition or modification of an aspect requires a full recompile of the system, a 

script can be modified without any recompiling.  The script environment provides almost all of 

the functionality that the C++ system does, excluding direct access to aspects in code.  The script 

developer communicates with the rest of the system using variables, asynchronous messaging, 

and object and aspect management.  Scripts are a useful way to define application code without 

requiring the implementation overhead of implementing a full aspect and with the fast, intuitive 

interface that python provides. 

Aspects and scripts provide behavior for the objects in a simulation, but the objects in 

that simulation have to be created through data files.  This is done through xml files using a 

modifiable, extensible format.  All parts of an object can be described through these files, 

including aspects, variables, and scripts.  These data files represent the simulation itself. 

The final part of an application defined for SDSE is external resources.  This is a catchall 

category, and includes everything from graphics files used by the rendering engine to sound files 

used by the sound engine.   

All of these files are discovered at runtime and provided through a file service in the 

engine.  This allows paths to various files to be specified absolutely, relatively, or searched for by 

name or type.  This increases the ease by which applications can be developed and reduces expert 

knowledge required of the application developer.  Through all of these systems, a simulation for 
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SDSE can be described concisely and intuitively without reducing the expressiveness of the 

interface.   

 



27 
 

4  SimQ: An Explicit Processing Model 

 

4.1 Overview 

SimQ, short for simulation processing queue, was developed as an improvement on SDSE.  

The lesson learned from SDSE was that an implicit model for transporting information from one 

processing unit to another worked but was not optimal.  The solution that was found for this 

problem was to move into a multi-threaded model of processing, with an explicitly structured 

queue of operations waiting to be processed by each component of the system.  By creating this 

flow of information through the system, it is possible to ensure that each component only acts on 

an entity when it is required and work is never repeated. 

This system is currently not fully developed, but the core scheduling and automatic 

parallelization system is already in place.  In this system, a simulation object represents a 

complete simulation with all processing components, or services, and all game entities.  There is 

also a many-to-many relationship between services and entities that shows which entities are 

acted on by which services.  Services are structured to accept an incoming stream of entity update 

packets.  These packets tell the service which entity needs to be updated and why.  This 

framework is designed to be extensible so that if a new type of communication or state update is 

added to the system, services will be able to easily adapt to react to it.  The overall structure of 

this system is shown in Figure 4-1: 
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Figure 4‐1 The processing model of SimQ. 

Services represent components of the system that do various forms of work such as 

graphics, physics, AI, etc.  The primary difference to note between services and SDSE aspects is 

that while an aspect is attached to and works on a single entity, a service represents a processing 

filter that entities are constantly passing through.  This passing through is a vital part of the 

parallelization of the system, and allows a pipe-and-filter architecture to be established for the 

processing of entities. 

4.2 Advantages 

An example of a simulation built on this system consists of a physics service and a 

graphics service.  The physics service is driven by timer tick messages at a fixed interval, and 

 



29 
 

produces state update messages that are consumed by the graphics service.  This way, the 

graphics service is only receiving messages when it needs to update its internal information on 

entities.  Each time the physics driving timer fires, an entity is passed through the physics service 

to be updated and passed to the graphics service.  While this first entity is being processed by the 

graphics service, a second entity can be updated by the physics service.  This pipe-and-filter style 

of parallelization is scalable, and the message passing style of synchronization between services 

allows the processing path of entities to be explicit and deterministic.   

By explicitly designing this flow into the structure of the system, services are prevented 

from doing redundant work.  Consider the case of SDSE-style processing, where the graphics and 

physics are both allowed to constantly update entities as fast as they can.  If our hypothetical 

physics service is much faster than our graphics service, there are going to be many physics 

updates that are not propagated to the user for each graphics update.  This is wasted processing, 

because the user doesn't see these updates.  Even worse, consider the opposite case where the 

physics is much slower than the graphics.  In this case, the graphics will render the same frame 

several times for each physics update.  This is wasted effort because there is no new information 

for the graphics to display.  In SimQ, this kind of imbalance is prevented by having entities pass 

through each service before the next service is notified that the entity even needs to be updated. 

4.3 Drawbacks 

Although there is a gain in performance by using this system over SDSE, there is also a 

trade off of performance for flexibility.  While the application developer can still use the same 

declarative methods for creating a simulation as SDSE, developers working to create new 

services or working to adapt existing libraries will have a harder task than the creation of aspects 

in SDSE.   

The first reason for this is that the structure of services in SimQ is less intuitive than the 

structure of aspects in SDSE.  Aspects follow the conceptual model of game creation, allowing a 
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small amount of code to be added to an object to have that object fill some role.  This code is 

concise, intuitive, and has its own state.  On the other hand, when creating a service for SimQ, the 

developer must implement all functionality associated with that service in one centralized 

location.  It is important to note that this centralization of functionality is not exposed to the end 

application developer because in both cases the user simply connects aspects or services to 

entities in the simulation.  Only the interface that the service developer implements must be 

different. 

Another reason that service development for SimQ is more difficult than aspect 

development for SDSE is that SimQ uses a non-standard programming paradigm in the form of 

raw message passing.  It is worth noting that message passing is sometimes used by libraries such 

as the Message Passing Interface, or MPI, but this technology is not often used for game engines 

[24].  This is not a standard way of developing game engine components, and requires a shift in 

mind-set.  The main thing that could be a problem with this message passing interface is that 

initialization is always implied, meaning that the service is expected to always be in a valid state.  

This is very difficult to program to because it vastly limits the number of assumptions that can be 

made about the initialization order of different entities and variables.   

This lack of ordered initialization could be a problem for adapting existing libraries to 

work in SimQ.  Consider a physics engine that requires the world to be created with a set of 

arguments before any objects are created.  It is impossible to know when all arguments for the 

world have been received, and some will have to be set to default values in order to proceed with 

object creation requests.  This might result in unexpected behavior for the user, and is 

undesirable.  There are possible workarounds for this that might patch some functionality, but the 

asynchronous nature of the message passing system prevents any universal solution from being 

found at this time.   
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Despite these minor disadvantages, SimQ is still a promising architecture and has a 

potential for pushing simulation performance very far. 
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5 Experimental Results 

 

5.1 SDSE 

SDSE performed well as a standalone game engine because of the shortcut methods 

implemented to avoid networking when possible.  When run across several nodes, however, 

performance was only average.  The test simulation that was used to stress SDSE is described 

next.  This simulation featured a floor plane and many bodies that were all dropped onto the floor 

in a pile.  All physics was processed by a node running Bullet and all graphics were rendered on a 

node running Ogre.  The entire simulation was defined using one xml file to define the world and 

one python file to define the object dropping behavior.  The same definition files could be used to 

drive either the standalone version of the simulation or the version running in networked parallel.  

A screenshot from this test is shown in Figure 5-1. 
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Figure 5‐1 A screenshot of the SDSE stress test. 

This simulation was tested on a laptop with a dual-core athlon CPU and an nvidia 6800 

graphics card. The standalone line represents performance on one core, while the multithreaded 

performance represents the simulation running on two cores. It is also important to note that the 

term fps for the parallel graphics and physics nodes refers to the speed at which each of those 

nodes processes the complete list of entities in the simulation. The actual throughput of the entire 

system is the fps of the graphics node.  The results of these tests are shown in Figure 5-2. 
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Number of 

Bodies 
10 100 200 300 400 

Standalone 

FPS 
952 635 322 187 116 

Parallel 

Graphics FPS 
160 61 33 30 25 

Parallel 

Physics FPS 
284 155 82 66 41 

Figure 5‐2 SDSE test framerates. 

 

Figure 5‐3 A graph of the performance of SDSE 

 

From the data in Figures 5-2 and 5-3, it is possible to draw several conclusions about 

SDSE's performance.  First, it is obvious that the goal of increasing performance by running tasks 
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in parallel hasn't been accomplished.  In fact, running with one node runs with about a 4x speedup 

over running with two nodes.  This is due mostly to communication overhead.  This overhead was 

reduced as much as possible, but in the end it was still a full-time synchronization problem and 

would never have perfect performance.  This explains most of the difference between the 

standalone and networked performance of the engine, but it is still worthwhile to note that there 

was a significant difference between the speed of the graphics and physics nodes in the parallel 

application. 

This difference between the performance of the graphics and physics nodes is very telling 

about the problems in the distribution of work in this engine.  Every time the physics node 

processes an entity, it sends an updated variable packet across the network to the graphics node.  

Every tick of the engine on the graphics node, the system processes all incoming messages before 

trying to render out a graphics frame.  This processing of input messages might involve much 

redundant work, as a variable can be sent across the network several times before it is possible for 

the graphics node to go through its queue of incoming messages.  This redundant processing is a 

significant cause of the reduction of performance in the system. 

One obvious solution to this problem would be to only process the latest update to any 

given variable in the update queue, but unfortunately the asynchronous nature of the processing 

of the incoming network stream prevents the engine from having any easily-definable point 

where the queue of variable updates could be optimized to prevent redundant work from being 

done. 

5.2 SimQ 

The two problems of communication overhead and worker synchronization were addressed 

with the design of SimQ.  This new system moves into a shared memory multithreaded system, 

greatly reducing the cost of communication overhead.  It also strives to alleviate the problem of 
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worker synchronization by creating explicit queues of pending tasks for each service that can be 

optimized without affecting the processing done by the service. 

The communication of SDSE was done through UDP sockets.  This is very slow, and 

SimQ improves on it by moving to a more standard managed multithreaded environment.  

Synchronization still has some performance cost because of the necessity to synchronize access to 

entities and variables through locks, but it is possible to optimize this still further through the use 

of many cutting-edge technologies.  This is a large gain of performance for SimQ over SDSE. 

Another way that SimQ improves its performance over SDSE is by having explicit task 

queues for each service.  These queues represent all of the pending work for a given service, and 

can be optimized to prevent redundant work in a way that wasn't possible in SDSE due to its 

asynchronous architecture.   

Both of these optimizations were designed to specifically address the problems evident in 

SDSE, and were shown to be effective in the test case shown below.  This test was run using a 

stubs for a producer-consumer model of parallel processing similar to the graphics and physics 

nodes used to test SDSE.  In the test, there are a number of entities that are processed by a 

producer service as fast as possible.  This producer service sets a variable on each entity which 

triggers a setVar entity update event which is then queued and processed by a consumer service.  

The consumer service then gets the set value from the entity.  Each processing step in the 

producer and consumer services takes 0.1 seconds.  This means that for n entities, there is a 

baseline linear programming runtime of n * 0.1 * 2 seconds.  Keep in mind that the system used 

to generate these tests had all of the high-cost core features of the engine, including task and 

variable synchronization.  As Figure 5-4 shows, SimQ showed a nearly linear speedup over 

sequential execution. The simulation is run on three hardware threads, with one for the producer, 

one for the consumer, and one for the game server. The experiment was run on two cores, and the 

average overhead of parallel is 5%. 
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Number of Entities 100 200 300 400 500 

Single Threaded Time 2 4 6 8 10 

Multithreaded Time 1.04 2.09 3.14 4.24 5.33 

 

 

Figure 5‐4 SimQ Performance
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6 Conclusions and Future Work 

6.1 Conclusions 

SimQ performed much better than SDSE.  This was because of the synchronization and 

communication overhead of a networked engine.  The improved performance of SimQ, however, 

does come at a cost.  This cost is the increased difficulty of developing services for SimQ as 

compared to SDSE. 

In SDSE it is very easy to develop services for features such as graphics and physics.  This 

is because a processing node in SDSE is run in almost exactly the same way as a standalone 

application.  A programmer developing a service for this system can assume that they are 

developing for a standalone application and still have that service function perform perfectly well 

in the parallelized system of SDSE. 

In SimQ, on the other hand, the service developer must be very aware of the parallel 

platform for which they are developing.  The service must be designed to respond to 

asynchronous events coming from the overall system and from other services.  At the surface 

level, this seems similar to the interface of SDSE.  After all, in both systems services are 

developed to respond to timer ticks, broadcast events, and variable updates.  The key difference, 

however, is that there are no guarantees for packet ordering and delivery in SimQ. 

A service in SimQ, such as a physics service, might look for several variables in each 

entity to determine how to process that entity.  These variables could include things like body 

shape, mass, momentum, etc.  Many external physics libraries require that this information be 

provided all at once in order that the library can create appropriate constructs.  In SimQ, however, 

there is no time when it is possible to say that all data has arrived, and the service must be written 
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in a sufficiently flexible way that any data can arrive at any time and be processed coherently.  

This is a daunting task to face a service developer with. 

The experience of developing SDSE and SimQ has shown the importance of choosing an 

appropriate architecture for the problem at hand. The architecture used for SDSE was a modified 

version of the AOP-inspired EVA system, while the architecture used by SimQ was more 

complex. The logical structure that SimQ provides to programmers and application developers is 

very similar to that of SDSE, and is expressed in terms of entities, variables, and aspects. Behind 

the scenes, however, this structure is translated into a pipe-and-filter style processing which is 

handled by the entity update queues in each service. 

This mixed architecture has proven to be effective in SimQ so far, and holds promise for 

future development. By creating a system that uses an intuitive simulation representation and a 

powerful background processing architecture, this system is poised to become a very powerful 

and full featured game engine. 

As we can see from the examples of SDSE and SimQ, there exists a tradeoff between ease-

of-development of services and service synchronization in parallel game engines.  When writing a 

naive system such as SDSE, it is possible to provide an environment that is transparent and 

effectively the same as a procedural application from the service developer's point of view.  On 

the other hand, it is possible to write a fairly specialized system such as SimQ that goes to great 

lengths to provide an environment where the speedup from parallel execution will be maximized, 

but where the development of services will have to make significant concessions to the overall 

system architecture in order to work properly. 

This tradeoff between ease of development and performance must be carefully considered 

when considering the use of or developing a parallel game engine. For example, if a project 

requires the use of existing physics and graphics libraries, SimQ will not be a good choice 

because of the difficulty in adapting existing libraries to work in the system. 
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6.2 Future Work 

In the future we would like to develop SimQ into a full-fledged game engine.  As the 

previous chapter concluded, this would be a difficult task because of the interface that services 

must be developed to work in the engine.  we don't believe that these are insurmountable 

challenges, however, and would like to move forward to try to get a fully featured game engine 

up and working.   

Since SimQ is implemented in C#, we plan on working on adapting it to the XNA 

framework.  XNA is a proven platform and will open the door for the possibility of applying 

these techniques to the Xbox platform.  XNA provides functionality for graphics, sound, and 

input.  we will also be incorporating physics via the JigLibX library. 

Looking into the distant future, we would like to create a WYSIWYG editor in the style of 

the Unity engine.  This editor would be built in the game engine, and would allow a drag-and-

drop style of game creation.  This would relatively straightforward thanks to the declarative 

nature of simulation creation using this engine. 

With these improvements, we believe that SimQ could become a powerful force for the 

parallelization of games with minimum effort on the part of application developers.  This could 

be a powerful tool for development on modern console platforms which feature multiple 

processors and greatly improve game performance for end users. 
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