
University of Nevada, Reno

Serial Logger for Offshore Data Collection

A thesis submitted in partial fulfillment
of the requirements for the degree of

BACHELOR OF ENGINEERING, COMPUTER
SCIENCE AND ENGINEERING

By

Brian Goga

Sergiu Dascalu, Ph.D, Internal Thesis Advisor
Trevor Kavanaugh, BS, External Thesis Advisor

May, 2016

UNIVERSITY

1

OF NEVADA THE HONORS PROGRAM
RENO

We recommend that the thesis

prepared under our supervision by

BRIAN GOGA

entitled

SLODC: Serial Logger for Offshore Data Collection

be accepted in partial fulfillment of the
requirements for the degree of

BACHELORS OF ENGINEERING

__
 Dr. Sergiu Dascalu, Computer Science and Engineering

__
Tamara Valentine, Ph.D., Director, Honors Program

May 2016

2

Table of Contents
Abstract
Introduction
Requirements

Requirements Workshop Summary
Software Requirements

Functional Requirements:
Non-Functional Requirements:

Design Models
Architecture Design
Class Diagrams
Program Units

Methods:
Detailed Design

Data Design
User Interface Design
Hardware Design

Components
Glossary of Terms
References

Table of Contents
3
3
4
4
4
4
5
6
6
7

10
10
14
16
18
25
26
29
31

3

Abstract
Mechanical parts in machinery are prone to vibration damage. Software is often used to keep
track of data regarding the frequency and magnitude of these vibrations. General Electric
currently has to bring out expensive equipment to log and convert the data from the software into
relevant and readable data, risking the equipment in the process.

The goal of this project was to use a Renesas Embedded GUI board to create a device that no
longer requires bringing out expensive equipment to read the data. The board logs the data and
makes it possible for the information to be saved onto a USB stick. The data then is sent to a
remote computer and converted into usable data.

Introduction
One of the biggest problems with any machinery that moves, is vibrations. Vibrations can be very
dangerous since they can cause cracks in the machinery and can cause parts of the machine to
come loose. These parts may cause serious damage to the structure that houses the machine or to
personal nearby. In order to prevent these things from happening measurements of the vibrations
can be made; but this has its challenges. Equipment size, environmental factors, etc. can make it
difficult to get an accurate reading, or a reading at all. One place this is very apparent is on an
offshore oil rigs.

The Serial Logger for Offshore Data Collection (SLODC) measures the vibrations and saves the
data so it can be examined later. It is secure and works on most of the General Electric machines;
while also making sure the data is in the correct format so employees can use it. The reason the
SLODC is better than what is currently used to measure the vibrations is because it is small,
inexpensive, and portable; it is easily moved from one machine to another, if conditions get too
severe it can be stored, and it can be replaced if it were to become damaged or lost.

Over the course of this project several changes and choices were made to produce SLODC as a
product. First, only one of the serial ports on the device will be used. It has also been determined
that modifications to the board may be necessary to fully connect the top half of the board’s serial
port to the bottom half of the board’s USB port. Second, it has been decided that the data will be
stored on the board’s local memory via bulk transfer methods instead of control or interrupt based
methods. Next, the project will use a program to generate serial serial communication for the
purpose of debugging and demoing. Lastly, Renesas has advised alternate compilation techniques
be used in order to get around licensing issues that have occurred when using their IDE which
prevent compilation and debugging.

Requirements
Requirements Workshop Summary
The entire team met with Trevor Kavanaugh on the 2nd of March in the Knowledge
center at UNR to capture requirements for the project. This brainstorming session lasted

4

for a little over an hour and had Tarrayna acting as an engineering technician who would
be used to operate the device. The first half of the brainstorming session focussed on
what the device should or could do, while the second half focused on ideas for the
embedded device’s user interface. From this session, the most important points discussed
were that the device could read and categorize serial data information and that the device
was as easy to use as possible. Secondary concerns from the session included showing
users the progress of SLODC as it was working and possible extensions towards
increased connectivity through bluetooth and an app or through ethernet. The least
important requirements generally involved follow up work for the project which included
security features, code style (convert to a more readable C++ style of coding as opposed
to C for readability), and automatically update time through an internet connection.

The operational requirements agreed upon are as follows. Serial data should be labeled as
being incoming or outgoing and have a timestamp for easier referencing. The
timestamped data can be stored either byte by byte or through packets. SLODC should
also be relatively configurable; mainly for different baud rates of data transfer and for
different handshaking requirements. That would help the device to be as one-size-fits-all
as possible.

The user interface requirements agreed upon are as follows. Each main module should
have a separate screen for the user. Limit each screen to have only a handful of options
due to the size of the screen and legibility of the device. Display data progress through a
progress bar as data is being spooled or read in so that the user knows the machine is still
working. The device should also notify the user when it is complete or an error has
occurred. (This was probably the biggest point since errors could develop from reading,
writing, or failure to detect USB or serial devices.)

Software Requirements
Functional Requirements:
Priority 1 Requirement
F01 SLODC shall warn users when overriding previous data
F02 SLODC shall allow users to set/update date and time
F03 SLODC shall let the user know when importing/exporting data is complete
F04 SLODC shall timestamp data that is imported
F05 SLODC shall allow users to select features using touch screen
F06 SLODC shall show the user progression of importing/exporting data
F07 SLODC shall show the user when an error has occurred

Priority 2 Requirements
F8 SLODC shall allow users to configure serial ports

5

F9 SLODC shall show the user instructions on how to use system
F10 SLODC shall allow the user to stop/restart importing/exporting data

F11 SLODC shall identify the direction data is traveling as incoming or
outgoing data

Priority 3 Requirements
F12 SLODC shall protect data by having users log in to use the system
F13 SLODC shall allow user to show importing data on screen

F14 SLODC shall create an error correction system to handle noise in
the imported data

Non-Functional Requirements:
Priority 1 Requirements
NF01 SLODC shall be written in C
NF02 SLODC shall save data to USB stick

NF03 SLODC shall have interrupt priorities. First for cancel. Second for
getting info to/from the server.Third for display

NF05 SLODC shall have a simple UI
NF06 SLODC shall use the Renesas Embedded GUI Board
NF07 SLODC shall use the Micrium real time operating system

Priority 2 Requirements
NF08 SLODC shall format data to CSV
NF09 SLODC shall respond to user inputs within 0.5 seconds

Priority 3 Requirements
NF09 SLODC shall send data over ethernet
NF10 SLODC shall send data over bluetooth-to-phone

Hardware Requirements
Functional Requirements:
Priority 1 Requirement
F01 SLODC shall warn use the Micrum operating system
F02 SLODC shall allow use e2 Studios

Non-Functional Requirements:
Priority 1 Requirements

6

NF01 SLODC shall use the USB port to export data
NF02 SLODC shall use the touch screen to get input from the user
NF03 SLODC shall use the serial ports to read data from the machines

Design Models
Architecture Design

Fig. 1 Structural Diagram for SLODC

SLODC

<<Subsyst

<<Subsyst

 E

<<Subsyst

<<Subsyst

<<Subsyst

High Level Structural
Di f SLODC

7

Fig. 2 Behavior Diagram for SLODC

Class Diagrams

Fig.3 Class diagram for the USB subsystem

S tti Us
Ex

Connect

ed to

Im

 U

High Level

8

Fig.4 Class diagram for the User Interface subsystem

Fig.5 Class diagram for the Data subsystem

9

Fig.6 Class diagram for the Error subsystem

10

Program Units

Fig 7. Program Units of SLODC

Methods:

Method Description

getUserName Used to acquire the username the user has
input into the device.

getPassword Used to acquire the password the user has
input into the device.

verifyUser Verifies the user based on the username and

11

password that was acquired from
getUserName and getPassword.

detectInterrupt This will be constantly checking for an
interrupt from the user.

processInterrupt This will determine the priority of the
interrupt that was detected, and execute the
interrupt based on its priority.

setMonth This will set the month so that it can be used
for the timestamp for the collected data.

setRTS This will send an RTS signal between SLODC
and the machine to verify that data transfer
can occur

setCTS This will send a CTS signal between SLODC
and the machine to begin data transfer once
both parties are ready

storeMessageRawData This will store the raw data gathered.

setBaudRate This will allow serial ports to be configured to
communicate across different baud rates.

salt This will help us further encrypt the
passwords, keeping our system secure.

setEndianness This will allow serial ports to be configured to
accept data packets as either big endian or
little endian.

setParity This will allow serial ports to be configured to
accept either even or odd parity bits for data
transfer error detection.

setPortID This will set the serial port that is used to
communicate with the machine.

writeToUSB This will write the stored data onto the USB.

setState This will update the SLODC system state
based on user input. Each state will only allow
certain actions to prevent race conditions.

updateDisplay This will update the display as new
information needs to be displayed.

openCommunications This will open communications to be able to

12

sniff transmitting data.

closeCommunications This will close the communications so the
device doesn’t try to sniff data that it doesn’t
have the ability to.

updateProgress This will update the progress display when
transferring data to the USB.

drawButton This will draw a button on the display with a
given location and size.

drawBox This will draw a Box on the display with a
given location and size.

setMainMenuScreen This will set the Main Menu Screen on the
display

setLogErrorScreen This will set the Error that will be displayed
when there is a log error

setUSBErrorScreen This will set the Error that will be displayed
when there is an USB error

setYear This will set the year so that it can be used for
the timestamp for the collected data.

goHome Returns the user to the main menu screen.

getState Determines what state the program is in.

storeMessagePreview Displays information colled from data
collection process.

clearCache Clears the cache before data collection to
create space for future data storage.

configCache Configures the memory space used to store
data

setSize Sets the dimensions of the objects being
displayed on the screen.

setColor Sets the color of the objects being displayed
on the screen.

setTime This will set the time so that it can be used for
the timestamp for the collected data.

setDate This will set the date so that it can be used for
the timestamp for the collected data.

13

setUSBNotFoundScreen Displays warning to user that USB is not
connected.

setFailedLoginScreen Displays warning to user that login credentials
were incorrect.

setLogDataWarningScreen Displays warning to user that data logging is
taking place and that devices need to remained
plugged in.

setLogCompleteScreen Displays success screen after data logging is
complete.

setUSBCompleteScreen Displays success screen after data export is
complete.

Detailed Design

Fig. 8: After the transfer option on the main menu is selected, the device search is initialized.

Transf

Device Search

Device
Begin File
Transfer

Return Home

Search

No

N

14

Fig. 9: When a device is successfully found after the search. The Transfer protocol is initialized.

Fig. 10: Shows the process the device follows when an error is detected during file transfer.

Transfer Data

Transf Return Home

Initialize Error

Transf

Return
to Main

G T

Error
Error

Display

Display

Display

Return

Display

Return to Main Menu

15

Fig. 11: Shows the process the program follows when Log is selected at the main menu.

Data Design

Data Structure: Purpose:

Back This class allows for the user to return the device to the previous page. For
example the user want to return to the previous menu after finishing data
logging.

Home This class allows users to return to the home screen.

State This class allows for the device to be put into a specific state. This can vary
from login, data transfer to data import.

Data Collection This class allows for the data collection to take place. Data is stored in the
cache.

Cache This class allows for the data storage to occur in the cache. It contains
operations to modify saved data.

Data Spooling This class allows for the data to be collected and stored into the cache.

Login This class allows for users to login to the system for security purposes.

Admin Login This class allows for admins to add other normal users and admins to the

Log Data

Over Log Data

Return Home

No

Log Return Home

Initialize
Error

Log

No

Go To
E

Return To

16

system

Display This class allows for objects to be added to the screen for display purposes.

Display Settings This class allows for manipulation of the Display so that objects are more
readable.

Configure Time This class allows for there to be a time used by the the device for
timestamping data imports.

Configure USB This class allows for the USB device to be used and for the USB’s file path
to be displayed

Configure Serial Port This class allows for the ports that will be used by the device to be
configured.

Screens This class takes advantage of the Display and determines what will be
shown during different states.

Errors This class allows for errors to be displayed to the user as well as methods to
correct errors.

Memory Manager This class initializes the flash memory of the board for read/write use and
provides information about the free memory available.

Realtime Clock Manager This class is used to reset the clock (if necessary) and keep track of all the
different timekeeping registers.

USB Port Manager This class initializes the USB port to allow SLODC to transfer data to a
USB memory device. It also contains the means to refresh the connection
to check for devices that may have been plugged in before SLODC was
turned on.

Serial Port Manager This class initializes the serial port. It also updates the registers to allow for
different serial port configurations.

Serial Generator This class contains functions to send data from a PC’s USB ports to the
embedded device via the serial port.

17

User Interface Design

Fig. 12: This will be what the menu screen for the serial logger will look like. The gear will give
the user access to settings for this application.The left rectangle will initiate the logging phase
when pressed. The right rectangle will initiate the data transfer phase when pressed.

Fig. 13: This screen will appear when the user chooses to log new data. The date and time of the
most recent log will be displayed and warn users it will be overridden. This is because the device
will only hold a single log at a time. The left rectangle will override the data and start logging
when pressed. The right rectangle will send the user back to the menu screen.

18

Fig. 14: This screen will show the progress of the log. The goal is to display both a progress bar
and the percentage of the logging process that has been completed. The cancel button will allow
the user to cancel the logging process and return them to the menu screen

Fig. 15: This screen will display when the log is complete. The data and time of the completed
log will be displayed. Tapping on the screen will bring the user back to the menu.

19

Fig. 16: If there is an error while the data is being logged this screen will display (The error
screen while transferring will be identical). The error number associated with the problem will be
displayed. The left rectangle will send the user back to the logging screen when pressed. The right
rectangle will send the user back to the menu screen when pressed.

Fig. 17: This screen will display when the user selects the transfer rectangle at the menu screen.
The goal is to add an indicator so the user isn’t just looking at text when waiting for a device to
be found.

20

Fig. 18: If a device is not found for the data transfer the program will ask the user if they would
like to search again. Pressing yes will send the user back to the search screen. Pressing no will
send the user back to the menu screen.

Fig. 19: This is the screen that will display after a transfer device has been successfully located.
Similar to the logging screen, a progress bar and percentage is what will be displayed while the
data is being transferred. The cancel button will allow the user to cancel the transfer process and
return them to the menu screen

21

Fig. 20: This screen will display when the transfer is complete. The data and time of the
completed transfer will be displayed. Tapping on the screen will bring the user back to the menu.

Fig. 21: If there is an error while the data is being transferred this screen will display (The error
screen while transferring will be identical). The error number associated with the problem will be
displayed. The left rectangle will send the user back to the transfer screen when pressed. The right
rectangle will send the user back to the menu screen when pressed.

22

Fig. 22: This is an example of what the expected program output will look like. The data includes
the a date/time slot, the port the data was received to, and the measurement of the data. More
columns are expected to be added later as the limits of this project become better understood.

23

Fig. 23: The data is expected to be easily converted into a excel file. The original final format is
CSV.

24

Hardware Design

Fig. 24: This is a diagram of the hardware block diagram for the Renesas Embedded GUI and

Communication Solution Kit.

25

Fig. 25: This is the hardware block diagram for the SIM 225, Renesas Embedded GUI Solution

Kit.

Components

● 4.3” WQVGA 480 x 272 color TFT display - Touch panel with color display.
● RS232 Serial Port - Operates as a UART transceiver. It has high speed serial port

capability and requires no CTS/RTS hardware handshaking support.
● RS485 Serial Port - Operates as a UART transceiver. It can operate at half or full duplex

and is capable of working in point-to-point and multi-drop networks.
● USB Mini-B Device connector/USB A Host connector - Used to export collected data.

USB 2.0 full speed/Embedded host port capable of supplying up to 150mA
● RoHS TTL-232RG serial Cables - Allows the embedded device to communicate to a

third party device.

26

Fig. 26: This is the touch screen of the Renesas Embedded GUI and Communication Solution Kit.
This is the main feature that the user will use to input and receive information.

Fig. 27: This is a side shot of the board. The top board has the USB port that our group will be
using the most to save the transmitted data. The bottom board has the power barrel jack and the
serial ports. It also contains the ethernet port, which our group may use later in the project, to
transmit data over the internet.

27

Fig. 28: This is how the two boards will be connected together. They will use a 26 pin board to
board (shown at the top middle of the left board). It will also use a 24 pin flex cable that will be
connected into the FPC connector(White flat cord shown connecting both boards together).

Fig. 29: Here is another shot of the bottom board. The black box at the bottom, center right, is the
power barrel jack. When both boards are connected, they both cannot be powered with a USB so
we must use a 9-25VDC 1W power supply connected to the power barrel jack

28

Glossary of Terms

● ADC - Analog to Digital Converter; a device that converts an inputted physical quantity
(generally voltage signals) to a digital representation of that quantity

● Baud Rate - rate at which data is exported in a communication channel (represented as
bits per second)

● Byte-By-Byte Timestamping - timestamping method in which each byte is individually
processed and labeled as it comes; can be faster, but is less readable than packet
timestamping

● CTS - Clear To Send; a signal between computers that indicates that the transmission can
proceed

● Data Logger - an electronic device that records data over time through built in
instruments, programs, or sensors

● Duplex System - a system in which two devices can communicate with each other; a full
duplex allows both devices to communicate with each other simultaneously while a half
duplex only allows communication in one direction at a time

● E2 Studio - the IDE that will be used to develop the SLODC project; the IDE is based off
of the eclipse IDE, but is specialized for debugging and testing on Renesas boards

● Embedded System - computer system with dedicated functionality within a larger
mechanical or electrical system

● Endianness - a type of data transmission style in which dictates where the most
significant byte of data is located within a transmission; the sender and receiver need to
be in agreement

● Error Detection - techniques that are used to ensure reliable data flow over channels that
may be subject to noise or other data transmission problems

● Flow Control - the process of managing the transmission data rate in order to prevent a
fast sender from overwhelming a slow receiver and creating a bottleneck in their
communications

● Interrupt - signal to the processor that an event has occurred that requires immediate
action

● Micrium - a C based RTOS that supports user interface interrupts, timers, and serial port
monitoring

● MicroEJ - a software tool used to emulate the Renesas board used in the project; it allows
for a java-based development of the embedded system

● Output Port - the port in which data is sent during serial communication
● Packet - a small piece of a larger data item that is designed for more efficient

transmission
● Packet timestamping - grouping and then labeling a series of incoming data; tends to be

more readable than byte-by-byte timestamping, but may be subject to performance issues
● Parity Bit - a simple type of error detection in which a bit is added to transmissions to

create an even or odd count of 1’s in order to ensure that a message is valid

29

● Pin - a part of an embedded system that exists either as a physical connection to a board
or as a register; pins can be used to determine the states of an embedded system

● Polling - process of actively sampling the status of an external device by a client program
● Receive Port- the port of incoming data from transferring data over a serial connection
● RTOS - Real Time Operating System; an operating system that serves data as it is entered
● RTS - Request To Send; a signal sent by a communicator to verify that the other device is

ready for data transmission
● Salting - a security feature in which additional input is added to a password to aid in its

encryption
● SCI - Serial Communications Interface; controls the configuration settings and operation

of the serial ports
● SCMR - Smart Card Mode Register; used to identify the direction of data travelling on

the serial port
● Serial Port - a physical interface through which data enters or exits one bit at a time
● SMR - Serial Mode Register; register controlling the configuration of the serial port’s

parity, stop bits, communication mode and message length
● Spooling - process in which data is sent from one device to another device for

intermediate storage
● Stop Bit - a pattern of bits that is used to indicate the end of a transmission
● Timestamping - adding a sequence of characters to data logs to identify the time that the

data was processed as well as identifying whether the data was incoming or exitting
● Time Sharing - the act of splitting up the computer resources through multitasking; a

service may request to use computing power, but only be given a limited amount of time
to use its allocated resources

● UART - Universal Asynchronous Receiver/Transmitter; device that translates between
serial and parallel data forms

● Widget - object used in the Micrium Operating System to handle user interface features;
widgets include drop down menus, buttons, file trees, etc.

References
Russel, David. Introduction to Embedded Systems: Using ANSI C and the Arduino Development
Environment. Morgan and Claypool Publishers, 2010.
This book contains the basics of embedded systems and can function as a good reference for basic
functionalities of data analysis and port configuration while also serving as a launching point for
advanced features. The book is especially useful in its sections related to USART management
and memory addressing.This book will be helpful in the project for determining how to configure
the board that will used in this project. The biggest challenge in this project revolves around using
embedded systems and this book acts a guide for overcoming this challenge.

Fan, Xiaocong. Real Time Embedded Systems. Elsevier 2015.

30

Fan’s embedded systems book has a more detailed look into embedded systems than Russel’s. It
examines a lot of elements more closely tied into SLODC such as the use and implementation of
RTOS and the execution of real time task execution and management. It also has a useful sections
on embedded system architectures and thread usage. Like the book by Russel, David; this text
helps with learning how to program and work with embedded systems. The SLODC and RTOS
methods mentioned in this book will be the most valuable for this project.

Asrodia, Pallavi, Vishal Sharma. “Network Monitoring and Analysis by Packet Sniffing
Method.” IJETT. Vol. 4, No. 5, May 2013.
This paper focuses on the impact of packet sniffing. It identifies the core modules required for
packet sniffing as well as some of the impacts of packet discovery. The paper identifies packet
sniffing as a way to troubleshoot problems within a network and to identify where problematic
signals are coming from.This paper helps with the project because it gives examples and
techniques for packet sniffing.The core modules required for packet sniffing are essential for
grasping the methods to be used in this project.

Reiger, Robert, Yan-Ru Huang. “A Custom-Design Data Logger Core for Physiological Signal
Recording.” IEEE Transactions on Instrumentation and Measurement. Vol. 60, No. 2, February
2011.
This paper shows a lot of methods and solutions to approaches based on nonfunctional
requirements and challenges. It explains why certain hardware features were selected. The paper
also goes into some detail about how the specialized serial logger operated with particular
attention paid towards the operation of the ADC. This paper is relevant to the project in that it
helps develop techniques for determining what features in this project are the most essential. By
identifying the nonfunctional requirements and possible challenges, resources can allocated to
resolve them.

Nhivekar, G.S., R.R. Mudholker. “Data Logger and Remote Monitoring System for Multiple
Parameter Measurement Applications.” e-JST 2011.
This paper discusses methods used in the design and implementation of an embedded serial
logger that measures temperature and humidity. The article goes into specifics related to the use
and importance of timers as a necessity to get meaningful data from the analog to digital
conversions.

Fonseca, Rodrigo, Prabal Dutta, Phillip Levis, Ion Stoica. “Quanto: Tracking Energy in
Networked Embedded Systems.”
This paper focuses on the promotion of the Quanto system which analyzes the energy
consumption and system of embedded systems. Gaining knowledge of what processes are
hogging up resources and power of embedded systems can allow for optimization which will
improve the runtime and performance of a system. This is incredibly useful for battery operated
embedded systems.
Kocher, Paul, Ruby Lee, Gary McGraw, Anand Raghunathan, Srivaths Ravi. “Security as a New
Dimension in Embedded System Design.” DAC 2004.

31

This conference paper addresses some of the issues related to securing data managed by
embedded systems. The paper discusses multiple types of attacks that an embedded device can be
subjected to and discusses architectures that add resistances to these attacks. It also examines
some of the mechanisms and tricks that can be used to help lock down an embedded system from
unwanted attention and interaction.

Tsai, Wei-Tek, Lian Yu, Feng Zhu, Ray Paul. “Rapid Embedded System Testing Using
Verification Patterns.” Software, IEEE 22.4 (2005).
This article discusses the difficulties of testing embedded systems and offers some solutions for
improvement. The article recommends the development of verification patterns to test different
scenarios that typically arise from the requirements specification. Verification patterns can be
used at a basic level to test out various use cases and at more advanced levels to ensure that
timing-based operations work correctly.

Badhiye, Sagarkumar, Chatur Wakode. “Data Logger System: A Survey.”
This paper gives an overview on how data loggers are developed and work. It defines and
differentiates different categories of data loggers and gives a general overview on the operating
flow of these devices. The article discusses and brings up the idea of using different channels to
assist in gathering data more quickly. While parallelism would be great to use on the SLODC
project, it won’t be feasible due to board and time limitations.

Popa, M., A.S. Popa, V. Cretu, M. Micea. “Monitoring Serial Communications in
Microcontroller Based embedded Systems.”
This paper outlines some different techniques to monitor serial data. The paper primarily
discusses the use of RS232, LIN, and SPI systems to monitor a CAN connector. The paper goes
into detail on the advantages and disadvantages of the use of all of these systems over the
application, data, and physical layers. It was helpful for determining whether or not to utilize the
CAN connectors on the embedded device as well as give an insight into how to monitor the
incoming and outgoing data.

	Abstract
	Introduction
	Requirements
	Requirements Workshop Summary
	Software Requirements
	Functional Requirements:
	Non-Functional Requirements:
	Functional Requirements:
	Non-Functional Requirements:

	Design Models
	Architecture Design
	Class Diagrams
	Program Units
	Methods:

	Detailed Design

	Data Design
	User Interface Design
	Hardware Design
	Components

	Glossary of Terms
	References

