We Won’t Be Here Long: A Study of Anticipated Mobility in the Rabbithole Mining District, Nevada

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in Anthropology

By

Kristen M. Tiede

Dr. Carolyn White/Thesis Advisor

August 2017
We recommend that the thesis prepared under our supervision by

KIRSTEN M. TIEDE

Entitled

We Won’t Be Here Long: A Study of Anticipated Mobility in the Rabbithole Mining District, Nevada

be accepted in partial fulfillment of the requirements for the degree of

MASTER OF ARTS

Carolyn L. White, Ph.D., Advisor

Sarah E. Cowie, Ph.D., Committee Member

C. Elizabeth Raymond, Ph.D., Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

August, 2017
ABSTRACT

In response to the hardships many Americans faced during the Great Depression, a small subset of the population turned to small scale placer mining for gold in order to survive. The Rabbithole Mining District in Pershing County, Nevada was one area where placer gold deposits were worked by a small community of miners and their families. However, these families did not intend to make permanent homes in the remote desert landscape of the Rabbithole Mining District. Through examining the community’s anticipated mobility, or how long individuals think they will stay in an area, it is possible to discern how long these placer miners intended to stay. The analysis of the residential architecture, patterns of trash disposal, and recovered artifacts reveal the mining community in the Rabbithole Mining District fits within the nomadic category of anticipated mobility, further supporting the idea that the miners and their families intended to stay only for a short period of time.
ACKNOWLEDGEMENTS

First and foremost, I need to thank my parents for all their love and encouragement, I never could have finished my thesis without them, especially my dad for sharing all his knowledge about machinery. Also, Jeannie Harrison deserves a huge thank you for all her help and support through my fieldwork and writing my thesis. Next, I want to thank my committee, especially Dr. Carolyn White for her guidance. A huge thank you goes out to my friends here at UNR for always lending a listening ear, especially Melody, Lauren, and Shannon for going into the field with me. I also want to thank Doris Venable and her family for sharing her story and memories of Rabbithole. Finally, the University of Nevada, Reno Anthropology Department, the Bureau of Land Management, Nevada Historical Society, and Historic Reno Preservation Society all deserve thanks.
Table of Contents

Abstract ...i
Acknowledgements ...ii
List of Tables ..iv
List of Figures ..v
Chapter 1: Introduction ...1
Chapter 2: Method and Theory ...29
Chapter 3: Data ...46
Chapter 4: Analysis ..94
Chapter 5: Conclusion ...118
References ...128
Appendix A: Double O Features ...136
List of Tables

Table 2.1: Characteristics of Anticipated Mobility...38

Table 4.1: Classification of Residential Features at the Double O...............106

Table 4.2: Brooks’ Table of Artifacts and Recovery at Double O...............109

Table 4.3: South’s Artifact Types and Means at the Double O Mine.........113
List of Figures

Figure 1.1: Site location of the Double O Mine..14
Figure 1.2: “Depression Breadline” Sculpture..20
Figure 3.1: Map of Features at the Double O Mine..53
Figure 3.2: Map of Residential Features...56
Figure 3.3: Map of Trash Disposal Features..78
Figure 3.4: Photograph of Feature 11 ...55
Figure 3.5: Photograph of Feature 24 ...57
Figure 3.6: Photograph of Feature 44 ...57
Figure 3.7: Photograph of Feature 25 ...58
Figure 3.8: Photograph of Feature 30 ...59
Figure 3.9: Photograph of Feature 30 Interior ...60
Figure 3.10: Photograph of Feature 10 ...61
Figure 3.11: Photograph of Feature 13 ...62
Figure 3.12: Photograph of Feature 13 ...62
Figure 3.13: Photograph of Feature 19 ...63
Figure 3.14: Photograph of Feature 20 ...63
Figure 3.15: Photograph of Feature 29 ...64
Figure 3.16: Photograph of Feature 36 ...65
Figure 3.17: Photograph of Feature 36 Interior ...65
Figure 3.18: Photograph of Feature 41 ...66
Figure 3.19: Photograph of Feature 42 ...67
Figure 3.20: Photograph of Feature 48 ...67
Figure 3.21: Photograph of Feature 68 ...68
Figure 3.22: Photograph of Feature 85 ...69
Figure 3.23: Photograph of Feature 87B ..69
Figure 3.24: Photograph of Feature 7 ...70
Figure 3.25: Photograph of Feature 16 ...72
Figure 3.26: Photograph of Feature 39 ...73
Figure 3.27: Photograph of Feature 6 ...74
Figure 3.28: Photograph of Feature 9 ...75
Figure 3.29: Photograph of Feature 47 ...76
Figure 3.30: Photograph of Feature 3 ...77
Figure 3.31: Photograph of Milk Glass Teaware ...77
Figure 3.32: Photograph of Feature 8 ...79
Figure 3.33: Photograph of Feature 18 ..80
Figure 3.34: Photograph of Feature 27 ..81
Figure 3.35: Photograph of Feature 28 ..81
Figure 3.36: Photograph of Feature 63 ..82
Figure 3.37: Photograph of Feature 64 ..83
Figure 3.38: Photograph of Feature 66 ..83
Figure 3.39: Photograph of Feature 69 ..84
Figure 3.40: Photograph of Feature 72 ..85
Figure 3.41: Photograph of Feature 75 ..85
Figure 3.42: Photograph of Feature 84 ..86
Figure 3.43: Photograph of Feature 86 ..87
Figure 3.44: Photograph of Personal Hygiene Artifacts89
Figure 3.45: Photograph of Gambling Payout Table Side 190
Figure 3.46: Photograph of Gambling Payout Table Side 2..............................90
Figure 3.47: Photograph of Linoleum...91
Figure 3.48: Photograph of Sewing Needle and Buttons..............................91
Figure 5.1: Photograph of Feature 17...125
Figure 5.2: Photograph of Previous Location of Feature 17.........................126
CHAPTER ONE: INTRODUCTION AND BACKGROUND HISTORY

This thesis began with an interest in mining communities and a question of why many people chose to stay in areas of poor economic and physical conditions. A partial answer was found in place attachment in mining communities (Robertson 2001, 2006). Outsiders may view mining landscapes and communities as dangerous or derelict, but the individuals who call these places their home value them in all their imperfections (Robertson 2001:1, 2006:2; Ford 2002:153; Dublin 1998:41). Though life may have been easier in other areas, miners and their families took pride in their ability to survive hard times, believing it made them better people (Robertson 2001:196).

Though many mining community residents had been able make it through hard times before, the Great Depression resulted in hard times on a much grander scale, affecting not only the United States, but countries around the world (Barker and Lamb 2009, Steinberg 2012). Individuals had to find new ways to make ends meet in conditions unlike anyone had seen. Unemployment rates reached as high as 30% and those that still held jobs worked decreased hours (White 1991:472). Those in need first turned to local sources of aid, but the demand soon outpaced the available resources (White 1991:472; Rauchway 2008:41-42; Kyvig 2002:188; Kennedy 1999:88; Poppendieck 2014:22). Many governments, including the United States, were reluctant to pay out federal aid, fearing the public would become dependent on it (Barker and Lamb 2009:265; Kennedy 1999:90; Kyvig 2002:193; White 1991:465). Even when federal aid was available, many Americans were hesitant to sign up. Receiving federal aid came with a social stigma associated with being ‘on the dole’, or receiving food or money from the government or a charity (Rauchway 2008:42; White 1991:467; Barna 2008:15; McMurry 2007:53).
Though often not included in history books or popular narratives of the Great Depression, one tactic to make a living in the bleak economic times was gold mining. Wide-spread unemployment, decreased working hours, dwindling sources of aid, and pride in providing for one’s family led many to leave their homes and try their hand at placer mining (Kennedy 1999:88; Kyvig 2002:188; White 1991:472; Rauchway 2008:42). The United States government aided this trend by raising the price of gold, which allowed even small discoveries to be profitable (Hall and Ferguson 1998:116; Miller 1998:6; McMurry 2007:48; Barna 2008:38).

The Double O Mine near Rabbithole Springs in Pershing County, Nevada was one such place that victims of the Great Depression gathered seeking refuge. Many of the miners that left their homes during the Great Depression were inexperienced and relied on one another to survive hard times (McMurry 2007). The Great Depression was an especially dark period of American history, and Depression era gold mining and the community at the Double O are part of a larger narrative of the past that conflicts with the official history. Evidence of history that supports a narrative different from the accepted narrative can create dissonant heritage (McAttackney 2014; McWilliams 2013; Pollock and Bernbeck 2015). Recently, there has been growing interest in dark heritage, or past events marked by death, suffering, or the macabre, and bringing a dark heritage perspective to the study of Depression era mining could benefit from increasing public interest. Additionally, this alternative narrative of the Great Depression has the potential to strengthen national pride by sharing the history of American citizens who survived the Great Depression through independence and hard work.
Though the Double O landscape is desolate and unforgiving, the community formed the same attachment to a difficult and dangerous mining landscape that is visible in other mining communities around the United States. The miners that lived at the Double O valued the community and surrounding landscape for enabling them to survive the Great Depression (White 2012:71; Barna 2008:4; McMurry 2007:48; Venable 2006). But people can value a landscape without intentions to stay permanently.

In order to analyze how long the miners thought their stay at the Double O Mine would last, this thesis will combine several methods. The landscape holds evidence of how the inhabitants thought about their community and whether or not they intended to make it their permanent home. Rabbithole’s landscape will be analyzed using Francaviglia’s (1991) model for reading mining landscapes. Then, using Brooks’ (1995) model of anticipated mobility in mining communities, the residential features, refuse, and other artifacts will be examined to study how long miners and their families thought they would stay at the site. In the 80 odd years between the California Gold Rushes in the 1850s and the Automobile Gold Rushes in the 1930s, major advances in technology and changes to American cultural behaviors made alterations to Brooks’ (1995) original model necessary, particularly in the types of artifacts that might be recovered, but also in the patterns of trash disposal. Through the adaptation of Brooks’ (1995) model from the California Gold Rushes to the Automobile Gold Rushes, this thesis seeks to apply the model to Depression era gold mining communities using the Double O Mine in the Rabbithole Mining District as a case study. The examination of the patterns of refuse disposal, recovered artifacts, and residential features at the Double O Mine using the adapted anticipated mobility model will provide evidence of whether or not the snipers
intended to build permanent homes at Rabbithole. The miners at the Double O Mine
called themselves snipers, meaning small-scale miners working independently.

Attachment to Place

Place attachment has been defined as “the affective link that people establish with
specific settings, where they tend to remain and where they feel comfortable and safe”
(Florek 2010:347). The places that people value do not always make sense to anyone
else. Mining communities and the landscapes that surround them are common examples
of valued places whose significance is only recognized by certain groups (King
appearance and polluted landscapes are often not considered worth preserving
(Francaviglia 1991:9). Mining communities have been described as “icons of dereliction
and decay” (Robertson 2006:2), but the residents of these communities value them as
their homes (Robertson 2001:1; Goin and Raymond 2001:40). Landscape features such as
mining waste piles can hold value as a monument to a community’s mining past, such as
the Jumbos in Toluca, Illinois, the gob piles in Mark, Illinois, and the culm banks in
Wyoming Valley, Pennsylvania (Robertson 2001:31, 2006:19; King 2003:130; Goin and
Raymond 2001:38). In a unique pattern found in many mining regions, the very identity
of the residents is tied to the community’s mining past (Robertson 2006:11; Miller and
Sharpless 1985:2; Goin and Raymond 2001:39). When faced with hard times, miners and
their families often resisted leaving their homes, even if mine closure limited job
opportunities and affected the viability of the community itself (Dublin 1998:41).
Families that did stay relied on one another in order to make it through hard times, such
as the residents of Silver Peak, Nevada (Ford 2002:127). Their ability to survive difficult times resulted in pride not only in themselves but also in their community, no matter its condition (Robertson 2001:196; Goin and Raymond 2001:40).

Great Depression

The Great Depression officially began in 1929 with the stock market crash, but for many western Americans, it had begun well before. The wartime boom of World War I did not include the agriculture, mining, and logging industries (Kyvig 2002:178). Everyone across the country, though some more than others, felt the blow of the economic collapse. It came as a surprise, and “[t]he feeling would last a lifetime for many and shape their attitude toward saving or spending money decades later” (Kyvig 2002:177). The wide-swept effects of the Great Depression included bank closures, unemployment, homelessness, and hunger (White 1991:472; Rauchway 2008:40; Poppendieck 2014:22).

But finding help in the sea of troubles became increasingly difficult. The government was reluctant to step in, as aid for the poor was usually the responsibility of local institutions and charities (Poppendieck 2014:21; Kyvig 2002:188). Local and state sources of relief were quickly overwhelmed as the Depression years continued and the vast numbers of people in need increased. Overproduction in the agricultural sector led to surpluses of grain and livestock with no market demand (Poppendieck 2014:16; Kennedy 1999:85; White 1991:469). Though many men, women, and children were starving, livestock were slaughtered for fertilizer and other crops sat in warehouses waiting for market conditions to change (Poppendieck 2014:115). President Herbert Hoover and his
administration denied any American citizens were starving, though signs of malnutrition were visible across all demographics, especially children (Kennedy 1999:86). Hoover disapproved of direct federal aid, believing people would become dependent on the government (White 1991:465). What aid was available to those in need was insufficient to keep food on the table and a roof overhead for many families and individuals (Poppendieck 2014:210; Kyvig 2002:193). Some were forced to beg for scraps or scavenge through garbage cans (Poppendieck 2014:26).

Pride was another factor that stood between Americans and federal aid. Many refused to sign up for government aid to avoid the social stigma (White 1991:467; Rauchway 2008:42). Moreover, the unemployed often blamed themselves for their lack of work and inability to provide for themselves and their families, though it was not their fault (Kennedy 1999:174). The ability to work productively played a central role in “defining one’s psyche and creating a self-image” (Gamst 1995:4). The high rates of Depression era unemployment affected the “self-esteem, social progress, and quality of life” (Applebaum 1995:47). The Great Depression was more than physically demanding, but also was psychologically distressing for many of its victims (Miller 1998:5).

Later studies showed up to 25% of Americans could not afford food or housing (Rauchway 2008:40). In response to their eviction, “some built makeshift shacks on vacant land…whole communities of cardboard, scrap lumber, and tar paper shacks arose” (Kyvig 2002:192). The homeless placed blame squarely on President Hoover and his failure to acknowledge the widespread suffering, calling their shantytowns Hoovervilles (Dearborn and Harmon 2012:301; Poppendieck 2014:74). The creation of shacks from scavenged materials helped to show the homeless individuals wanted to be independent
and would work to provide for themselves and their families (Dearborn and Harmon 2012:301-302). While some communities were accepting of the Hooverville residents, others stopped construction of shanty towns or denied the homeless entry into their towns (Dearborn and Harmon 2012:302).

When Franklin D. Roosevelt was elected in 1933, he shared Hoover’s opinion of federal aid (Kennedy 1999:90), but unlike Hoover, he took action against the high rates of unemployment, creating work relief programs where individuals would be paid wages for work on improvement projects (Rauchway 2008:67). Finding and setting up projects to employ the poor required a higher budget than simply paying the money directly to those in need, but the money paid for work done helped ease the psychological distress stemming from the inability to provide for one’s family and helped avoid the stigma of relying on the government to survive (Rauchway 2008:67). Many of the work projects fed and housed the men they employed and wages could be sent home to provide for one’s family (Rauchway 2008:68). Though programs like the Civilian Conservation Corps (CCC) and the Works Progress Administration (WPA) provided many unemployed Americans the opportunity to work for wages rather than accept the government dole, a 1939 poll revealed they were some of the least popular New Deal programs in public opinion (Rauchway 2008:69).

The effects of the Great Depression extended globally, leading to similar patterns of behavior around the world. Much like the American government, the Australian government believed welfare programs were degrading and preferred to pay men for their work, much like the CCC and WPA programs in the United States (Barker and Lamb 2009:265). Unemployed men were discouraged from banding together in informal camps,
which were often met with hostility, similar to the American Hoovervilles (Barker and Lamb 2009:265).

In Queensland, the solution to a local camp of unemployed men was the creation of Eagle’s Nest Camp in 1929 (Barker and Lamb 2009:267). In order to stay at Eagle’s Nest, the men had to follow rules of behavior, which included no drinking, good personal hygiene, and keeping the camp clean (Barker and Lamb 2009:268). The archaeological record of Eagle’s Nest shows the men generally followed the rules. The presence of trash in isolated deposits rather than a sheet across the site suggests refuse was disposed of in a controlled manner, and although alcohol bottles were recovered, they may have been reused (Barker and Lamb 2009:276).

The term “deserving poor” is used to describe individuals who want to work but are unable to find jobs, while “undeserving poor” are those able to work but who choose not to (Barker and Lamb 2009:266). As deserving poor, the Eagle’s Nest residents were given aid by the local community, visible archaeologically through the evidence of lower quality cuts of meat and lack of native fauna, which would have been eaten only to avoid starvation (Barker and Lamb 2009:276). Barker and Lamb (2009:277) found that Eagles Nest was “more than just a place to find shelter and sustenance” but “a material symbol of order and control, providing in its physical manifestation, reassurance that although unemployed and poverty stricken, the people were adhering to the comfortable norms of ‘decent society’.”

Though the individuals responding to the tough economic times of the Great Depression were thousands of miles apart, their behavior shows marked similarities. Both Australian and United States governments were critical of simply paying out aid to the
poor (Barker and Lamb 2009: 265; Kennedy 1999:90). The homeless and unemployed abandoned the cities where they lived in attempts to find work elsewhere, though they were not often welcomed or accepted (Barker and Lamb 2009: 265; Dearborn and Harmon 2012:302). The government officials instead supported many unemployed individuals through hiring them for their manual labor, which simultaneously removed the stigma from receiving federal funds and made their encampments socially acceptable (Barker and Lamb 2009:266; Rauchway 2008:67).

Depression-Era Gold Mining

As briefly discussed, gold mining was a tactic used throughout the American West during the Great Depression to escape the bleak economic conditions of many cities (Smith 2006:1; Miller 1998:5; Clements 2003:102; Ogborne 2013:43; Woody 2008:24). Mining for gold provided families with an opportunity to avoid being on the dole and to support themselves (Smith 2009:212; Miller 1998:5). Though other industries were failing during the Depression, Vanderburg (1936:9) argued that “gold mining is a depression-proof industry…immune to the hazards which affect other industries, as the sale of product is unaffected by overproduction or competition.” The conditions of the Great Depression “certainly made gold placering attractive, but small operators of that era also benefitted greatly from artificial price supports by the federal government” (Clements 2003:102). In 1934, President Roosevelt passed the Gold Reserve Act, which raised the price of gold from about $20 an ounce to $35 an ounce, making even small amounts of gold profitable (Hall and Ferguson 1998:116; Miller 1998:6; Twitty 2002:267). Though the United States had dropped the gold standard in 1933 (Bernanke
many still valued gold with “mystical devotion that resembled religious faith” (Kennedy 1999:75). Although the Gold Reserve Act simply raised the price of gold, it resulted in more gold being mined in the United States that was then sold to the treasury and additional gold continued to come in from Europe (Hall and Ferguson 1998:120).

Another unforeseen impact of the Gold Reserve Act was a phenomenon which Miller (1998) has aptly named the Automobile Gold Rushes. As automobiles became increasingly popular and affordable (Kyvig 2002:43), families loaded up their belongings and supplies and headed out to find gold. The trend of families cooperatively working gold deposits was in opposition to the predominantly male population of miners that had flooded the West during the California Gold Rushes (Miller 1998:10). Another difference between the California and Automobile Gold Rushes is that Depression era miners were not looking to strike it rich, but to find enough gold to get by (Smith 2006:11; Clements 2003:99; Twitty 2002:268).

A majority of the individuals participating in the Automobile Gold Rush were not miners by trade and had to learn to find and work the gravels that held placer gold deposits (Twitty 2002:290; Smith 2006:169). The Public Works Administration sponsored classes to teach the novice miners how to find and pan for gold (Smith 2009:213). As noted by Twitty (2002:292), “[t]he Great Depression stimulated a revival, but the renewed interests consisted of jobless men and families literally picking over the bones left over from the Golden Days.” Smith (2006:1) has called this landscape capital, or the “physical remains of previous mining activity”, which were then used to identify feasible locations to settle and rework the diggings. She identified four unique circumstances common to Depression era mining sites, including economic hardship,
shortages of materials, lack of technical or geological knowledge, and harsh desert environments (Smith 2006:25).

In Smith’s case study near Twentynine Palms, California in the Mojave Desert, individuals first identified areas of previous mining activity on maps or through word of mouth, in addition to using landscape capital (Smith 2006:169). Throughout both the Dale and Piñon Districts, Smith (2006:26) identified “ample evidence that Depression-Era miners adapted, modified, and rejected their inherited landscape capital.” Due to their inexperience, the miners and their families relied both upon one another and experienced miners in the area to make a living (Smith 2006:16-17). Areas like Twentynine Palms, California and many other Depression era mine sites were characterized by their vernacular architecture. Due to lack of carpentry experience or tools and the foreknowledge the site would likely be abandoned, buildings were often poorly constructed of salvaged materials to fulfill an immediate need (Twitty 2002:289-290). Ultimately, Smith (2006:194) found that though families were faced with difficult economic times, desolate desert climes, and lack of running water and electricity, they often fondly remembered their time in the desert.

Throughout the West, mining districts experienced boom and bust, often followed by reoccupation during the Great Depression. The Bullfrog Mining District in Nevada boomed in the early 1900s, saw decline during the next decade, and then experienced an increase in mining activity during the 1930s (Hardesty 1988:70). Nevada’s Cortez Mining District was settled during the California Gold Rush years and experienced sporadic mining during the Depression years (Hardesty 1988:81-83).
Coloma, Montana’s history followed the same pattern: it was also originally settled during the Gold Rush era, but by the early 1900s the mines declined and the town was nearly abandoned (Woody 2008:16; Ogborne 2013:43). Like many other areas in the Western states, the Great Depression resulted in renewed interest in Coloma’s gold mines (Ogborne 2013:43; Woody 2008:20). Hanson Kimball noted that in the summer months during the 1930s, miners lived in Coloma, “attempting to prospect for gold in an attempt to mitigate the effects of the Depression” (Ogborne 2013:43).

There is also archaeological evidence of the Depression era reoccupation of Coloma. A trash dump located near one of the residences contains cans and other food containers dating to the 1930s, suggesting a dependence on mass produced food items at Coloma during the Depression (Woody 2008:49). Woody (2008:54) considers Coloma to have been a field camp, defined as a “temporary operational center…where a task group eats, sleeps, and otherwise maintains itself away from the residential base.” Individuals made temporary living arrangements at Coloma, and mined nearby as there were no mining tools recovered with the reoccupied house or trash dump (Woody 2008:54).

New communities were also formed during the Depression to extract gold in remote areas. For example, Herb Lake in Manitoba, Canada was formed as a “haven from the Depression” (Steinberg 2012:17). The singular focus of the community was the extraction of gold on a small, individual-based scale, resulting in an informal layout of the community (Steinberg 2012:17-18). The gold around Herb Lake was located in placer deposits, requiring little capital to extract (Steinberg 2012:19). Placer gold mining was popular during the Depression as it “is perfectly suited to people of limited means working in remote areas” (Steinberg 2012:19). The effects of the Depression were still
felt in remote mining areas like Herb Lake, but mining for gold provided a way to survive.

Not all the individuals that relied on gold to get by during the Depression could devote all their time to mining. Many individuals mined only during the off-season of their traditional employment or mined for gold in their spare time to supplement their income (Hardesty 1998:82; Vanderburg 1936:9). For example, coal miners in the company town of Madrid, New Mexico turned to gold mining as an alternative source of income during the Depression (Melzer 1976:38). The gold deposits near Madrid were not particularly rich, but a few dollars’ worth of gold could be found and then used to purchase items at the company store (Melzer 1976:68). Though faced with difficult economic times and few sources of aid, Madrid residents fondly remembered the Depression years (Melzer 1976:39).

Many remote Western mining districts became valued places during the Great Depression as they created spaces for people to escape the brutal effects of the Great Depression. Gold mining not only gave people purposeful work but returned the pride in being able to provide for one’s family (Miller 1998:155; Gamst 1995:4; Applebaum 1995:47). Though characterized by harsh environmental conditions, many Depression era mining landscapes are remembered fondly by their former residents, as the mining played a key role in their survival of hard times (Melzer 1976:39; Smith 2006:194).

Rabbithole Mining District and Double O Mine

The Double O Mine in the Rabbithole Mining District of Nevada is another area with extensive evidence of the Great Depression occupation by miners (Figure 1.1). Oral
history has revealed some of the residents thought Rabbithole was “like heaven” (Venable 2006). No one got rich at Rabbithole, but placer deposits of gold provided enough funds to buy food and other supplies (Barna 2008:38; McMurry 2007:48). Miners illegally squatted on the land, saving the expenses of rent and other utilities. Though faced with extreme heat, lack of water, and hard work, many victims of the Depression found a temporary home and a way to survive at Rabbithole.

![Figure 1.1: Site location of the Double O Mine.](image)

The Rabbithole area has been known to Euroamericans since the 1800s as the nearby Rabbithole Springs was a stop for much needed water on the Applegate Trail (McGuckian 1978:30; Stewart 1962:279; Basso 1970:39; Amesbury 1967:15; Helfrich 1971:2; Smith 1996:11; Carlson 1974:197; Paher 1970:123). There are several stories about how Rabbithole Springs got its unique name from the emigrants. Basso (1970:39) attributed the name to the “abundance of jack rabbits at the site”; while most sources
retell the story of how the emigrants, in great need of water, followed numerous rabbit trails which lead to the spring, resulting in the name Rabbithole Springs (McGuckian 1978:34; Stewart 1962:145). Lindsay Applegate noted in his journal that the emigrants had followed the rabbit trails to the spring and “killed all we wanted” of the numerous jack rabbits (McGuckian 1978:34).

Though the emigrants noted the presence of gold in the Rabbithole area, few attempted to mine it for themselves (Paher 1970:123). Due to the lack of resources, most importantly water, no emigrants settled in the area. Andrew Soule’s journal entry describes the area as “a barren flat, with but very little water and no grass at all” (Helfrich 1971:22). In the Rabbithole area, the emigrants were faced with a landscape “both spectacular and appalling” (Stewart 1962:208). Though the presence of gold had induced people to stay in other wilderness areas in the West, the emigrants on the Applegate Trail were discouraged from settling by the harsh Rabbithole landscape.

The mining industry was not introduced to the area until several decades after the emigrants had passed through. Around 1916, Rabbithole became an active placer mining area, though not on a large scale (Smith 1996:55; Paher 1970:123). Gold mining at Rabbithole peaked in the 1930s (Basso 1970:39; Johnson 1977:77). A. H. Dela Vega and his family acquired land and mining rights in the Rabbithole District, which they transferred to the Associated Royalty Mining Company in 1929 (McMurry 2007:57; Venable 2006). Interest in the district continued to increase, resulting in more companies entering the district (McMurry 2007:58). Dr. Richard P. Landis and his seven business partners founded the Landis Mining Company in 1931 with the intent to work the Rabbithole gravels on a large scale (McMurry 2007:58; McMurry et al. 2011:50; White
The W.W. “Wally” Irwin, along with his family, and other employees of the Landis Mining Company found themselves out of work with no money and nowhere else to go. With few options and a good price for gold, they stayed at Rabbithole and continued to work the gravels on a smaller scale (Venable 2006; McMurry 2007:61; Vanderburg 1936:50). About the same time, the Coarse Gold Group and the Associated Royalty Mining Company entered into a legal battle over the mining claims at the Double O Mine, which lasted several years (McMurry 2007:59). These issues surrounding the legal ownership of Rabbithole created the perfect diversion, leaving the former Landis employees to work the gravels for themselves (McMurry et al. 2011:50). They were soon joined by others looking to escape the Great Depression. Pershing County officials encouraged the people on the roles for relief to head out to the desert in search of gold. The county provided a grubstake, lessons in placer mining, and even gas to help them on their way (Johnson 1977:77; Venable 2006). The community in the desert was viewed favorably, unlike those living in Hoovervilles or on the dole (McMurry 2007:56; Dearborn and Harmon 2012:302). In 1935, as many as “150 men were digging the gold from the seemingly worthless desert” (Basso 1970:39). Those mining for gold at
Rabbithole became known as snipers, or “small scale placer miner[s], usually operating individually” (Barna 2008:37).

The community at Rabbithole did more than mine for gold. Using scavenged materials, including railroad ties, utility poles, scrap lumber, and panels from cars, they created homes in this remote desert mining district (Venable 2006; White 2012:61; McMurry et al. 2011:52; Barna 2008:58). Many of the dugouts fit in what Twitty (2002:289-290) has called Depression-era western mining vernacular, described as “small, low, made with scavenged materials, and poorly constructed.” The snipers were simply making the best of the poor circumstances, using whatever resources were available to them (Barna 2008:8). Extensive reuse of items is clearly visible at Rabbithole, which was likely the result of lack of funds to buy new materials, shortages of items, and disinclination to invest hard-earned money in a place intended to be temporary (Smith 2006:19; Barna 2008:58). Railroad ties were repurposed as the primary building material since they were available in Lovelock, free for the taking (Venable 2006). Cardboard was used to insulate most of the dugouts at Rabbithole; panels from cars shored up walls, and pieces of metal cut from fuel tanks covered roofs (Barna 2008:58). With the addition of a doorframe constructed from milled lumber and railroad ties and makeshift furniture, even an adit could be transformed into a residence (Barna 2008:141-142).

By today’s standards, these small structures appear uninhabitable, but Doris Irwin Venable, who grew up at Rabbithole, remembered her family’s cabin as cozy and comfortable, though childhood memories can be biased towards the positive (Venable 2006). Rows of nails along the ceiling often made up what little storage was available in
the cramped homes at Rabbithole, but as noted by White (2012:72), “the residents of Rabbithole did not intend to stay for very long—it was economic anguish that first drove people to this marginal place, and practicality as well as circumstances meant that they brought few possessions with them.” Everyday activities, such as sleeping, cooking, socializing, and even working would have overlapped in the dugouts, due to limited space (White 2012:71).

The importance of work to the everyday lives of the people at Rabbithole was written on the physical landscape (White 2012:71). Similar to the layout of Herb Lake in Manitoba, Rabbithole was informally organized. Dugouts dot the landscape, often in close association with shafts, adits, or other mining features. Residences were usually close enough to be intervisible and residents could have easily traveled between the dugouts, suggesting community was another important aspect of life at Rabbithole (McMurry 2007:72). Doris remembers a close-knit community that often came together for dances and pie socials and helped one another when the need arose (Venable 2006; Lovelock Review-Miner 1939). The harsh desert surroundings, the snipers’ inexperience, and being content with simply making ‘beans’ or daily wages brought the residents together and encouraged them to rely on one another (McMurry 2007:67-72).

Additionally, the snipers were self-governed, taking care of issues that arose within the community, ranging from disagreements to robbery (Barna 2008:39; Venable 2006).

The extensive can dumps at the Double O suggest the snipers subsisted mostly on canned foods procured from nearby towns of Lovelock or Gerlach. The small amounts of gold produced at Rabbithole enabled the snipers to buy the much-needed food items, as the surrounding area was poor in food resources. Also, much like the Depression era
miners in Coloma, Montana, the snipers may have preferred to focus on mining the gold rather than gardening, hunting, or gathering what little food the desert could produce (Woody 2008:54). One winter the snipers were stranded at the Double O, forcing them to hunt sage hens and jack rabbits to prevent starvation (Venable 2006). Much like the Australians living at Eagle’s Nest, the snipers only turned to eating wild game when in dire need (Barker and Lamb 2009:276).

For many years, the snipers led a challenging yet productive life at Rabbithole. In 1941, the issues involving the legal ownership of Rabbithole had been resolved and the snipers were forced to leave the place that had sheltered them from the worst of the effects of the Great Depression (McMurry et al. 2011:50; McMurry 2007:62). The snipers valued Rabbithole, not because it was an easy place to live or a beautiful place, but because they had been able to survive the hard times, which is a common theme across many mining landscapes (Goin and Raymond 2001:40; Melzer 1976:39; Smith 2006:194; Robertson 2001:196; Ford 2002:127; Dublin 1998:41). Short-term mining in the Rabbithole District and at the Double O Mine was carried out sporadically through the 1960s, but the community formed by the snipers was never reoccupied (Johnson 1977:77; Paher 1970:123; Poston n.d.).

Dark and Dissonant Heritage

The Great Depression, marked by human suffering and psychological distress, qualifies as a period of dark or negative heritage. Death, suffering, and the macabre are themes that help define dark heritage events. Common sites of dark heritage include prisons (Strange and Kempa 2003:388; Casella and Fennelly 2016:507), Holocaust sites
(Magee and Gilmore 2015:898; Lennon and Foley 2010:27; Liyanage et al. 2015:282), or locations of famous murders (Heidelberg 2015:75; Foote 1997:36). Sites of dark or negative heritage are often commemorated through transforming the site into memorials or tourist sites (Moshenska 2015:80; Salerno and Zarankin 2015:91; Liyanage et al. 2015:282; Meskell 2002:557). For example, the events of the Great Depression have been memorialized in multiple ways, including Dorothea Lange’s photographs of Great Depression victims around San Francisco (Library of Congress n.d.) and George Segal’s sculpture “Depression Breadline” in Washington D.C. (Grounds for Sculpture 2015). As the title suggests, the sculpture portrays five men waiting in a breadline, a common occurrence during the Great Depression (Figure 1.2).

![Figure 1.2: “Depression Breadline” sculpture in Washington D.C. Photo from Grounds for Sculpture 2015.](image)

Viewing memorials or other tourist sites commemorating dark heritage is called dark tourism, defined as “the act of travel and visitation to sites, attractions, and exhibitions which have real or recreated death, suffering, or the seemingly macabre as the main theme” (Hartmann 2014:168). The appropriateness of creating tourist attractions
from sites of human suffering has been questioned by many site managers and scholars (Moshenska 2015:87-88; Strange and Kempa 2003:387). Hartmann (2014:174) even suggested that dark tourism encourages deviant behavior, but further research has shown that tourists choose to visit sites of dark heritage for many reasons, most importantly for educational purposes (Biran et al. 2011:831; Liyanage et al. 2015:285; Magee and Gilmore 2015:898; Tinson et al. 2015:860).

Dark heritage events and the memorials honoring them are not equally dark, though there is no clear way to define the levels of darkness (McAtackney 2014:227; Biran et al. 2011:821-822; Liyanage et al. 2015:285). For example, the events of the Great Depression, as difficult as they were, were not as dark as the Holocaust. There is a simple dichotomy separating sites of death and those only associated with death (Miles 2002:1175; Stone 2006:151). Miles’ dichotomy is problematic as it only categorizes sites where lives ended, excluding sites of suffering without the overtones of death, such as sites from the Great Depression. Stone’s (2006) model for sorting sites of dark tourism places them along a spectrum. This system of classification is based upon “defining characteristics, perceptions, and product features” (Stone 2006:146). “Dark Fun Factories” (Stone 2006:152) occupy the lightest category and the spectrum continues through six other classifications, ending with the darkest type, “Dark Camps of Genocide” (Stone 2006:157). Stone’s dark tourism spectrum allows no space for sites of dark heritage that are not tourist destinations. No matter how dark or light the sites are, each has different push and pull factors that can encourage tourists to visit (Liyanage et al. 2015:286).
Though neither Miles’ (2002) nor Stone’s (2006) modes for classifying sites of dark heritage are without flaw, they do suggest that dark heritage is more than black and white, but more of a gray area. The past is more complex than simply being dark heritage or not. For example, miners have recalled enjoying the Depression years (Smith 2006:194; Melzer 1976:39; McMurry 2007:141; Venable 2006), but that does not mean all their experiences were positive. Alternatively, even though times were hard and the landscape was harsh, good experiences could be had too. Rather than only considering the positive or negative aspects of the snipers’ occupation of the Rabbithole Mining District, both are necessary to examine everyday life at the Double O Mine.

Tourists vary in their reasons for visiting dark heritage sites, but research has shown that most are not seeking dark heritage experiences. Rather, dark heritage sites are often near other sites of interest (Liyanage et al. 2015:283; Biran et al. 2011:823). Experiencing, remembering, and most importantly learning about past events, violent or not, is a common motivation for tourists to visit sites or memorials (Liyanage et al. 2015:285; Magee and Gilmore 2015:911; Hartmann 2014:169; Lennon and Foley 2010:148). Contrary to popular belief, most tourists are not fascinated with death and dying (Biran et al. 2011; Liyanage et al. 2011).

Dark tourism is not a new phenomenon, though it has seen increased attention in recent years. Victorians visited the prison on Sarah Island, Australia while it was still occupied (Casella and Fennelly 2016:509). Archaeological excavation has uncovered a historical record stretching from when the prison was occupied, through its post-occupational use as a tourist site, to modern times, with evidence of both regulated and unregulated recreational use (Casella and Fennelly 2016:509). Sarah Island helps to show
that sites of dark heritage have always been of interest to the public (Casella and Fennelly 2016:519).

Tourists can also be attracted to sites of dark heritage that the site’s community would rather forget (Heidelberg 2015:75; Light 2007:748). For example, citizens and authorities in Amityville, New York would rather overlook the metaphorical ghost that haunts their town (Heidelberg 2015:79). But ignoring sites of dark heritage does not make them disappear; rather it removes the community from the process of shaping the narrative and presenting the past in proper context (Heidelberg 2015:75). In the absence of formal tourism sites, tourists may even create their own. For example, many Western tourists visiting Romania are looking to experience Bram Stoker’s Dracula (Light 2002:749). Dracula tourism is an “externally generated phenomenon” (Light 2002:751), where many tourists “projected their fantasies and expectations onto Bran [Castle], which became an appropriate substitute for those who wanted to find Dracula in Transylvania” (Light 2002:754). Likewise, visitors to the Alcatraz Island National Park concentrate on the site’s prison history and famous prisoners as portrayed by Hollywood movies, rather than the other aspects of the island’s history as emphasized by rangers (Strange and Kempa 2003:391-392).

The remote nature of the Double O Mine site, the challenges in reaching the site, the site’s location adjacent to the National Conservation Area, and lack of infrastructure to support a high number of visitors are all factors into the low numbers of site visitors. The Rabbithole Mining District and the Double O Mine will never be popular tourist destinations but the history the site represents is still a valuable addition to the narrative of the Great Depression. Though studies of dark tourism are not directly related to the
management of the Double O Mine site, they help to show the public’s interest in dark heritage events and learning about the past.

Interpretations or reevaluations of dark heritage events or sites are not always accepted, creating dissonant heritage (Hartmann 2014:167; Mazz 2015:74; Meskell 2002:566, Pollock and Bernbeck 2015:145; Salerno and Zarankin 2015:91; Tunbridge and Ashworth 1996:20-21). Meskell (2002: 566) defines dissonant heritage as “heritage that does not conform to prevailing norms or sites that are inherently disturbing.” Tunbridge and Ashworth (1996:28-29) identify four common types of dissonance, including conflicting messages, messages that are not received as intended, messages that lag behind changes in society, and messages people would rather not hear.

Archaeology, though unintentionally, can recover physical evidence of the past that conflicts with common narratives, creating dissonance (McAtackney 2014:3; McWilliams 2013:16; Pollock and Bernbeck 2015:145). Sometimes, revealing dissonant heritage results in the formation of a new narrative of the dark heritage events (Salerno and Zarankin 2015:91; Mazz 2015:78). Unfortunately, it can be easier to forget difficult events, resulting in the destruction of many dark heritage sites (McAtackney 2014:3; Carr 2010:65). Imagery can heavily influence what people expect from dark heritage sites (McWilliams 2013:16). Though very little of the Iron Curtain that separated the Communist East from the Capitalist West looks like the Berlin Wall, that is what tourists expect to see (McWilliams 2013:31). Tourist sites that play into these expectations are far more successful than those that require the tourists to modify the image they have of the Iron Curtain (McWilliams 2013:42).
Historical documents can also tell a different narrative than the archaeological record, as discovered by Pollock and Bernbeck (2015) at the Tempelhof Airport in Germany. Documentary records indicated prisoners and laborers housed there during World War II received respectable levels of care, however, excavations into the buildings housing the prisoners tell another story (Pollock and Bernbeck 2015:145). Broken pieces of concrete were used in the foundations of their housing, though records indicate the Germans requisitioned new concrete for the construction (Pollock and Bernbeck 2015:145-146). Furthermore, nails measuring only seven centimeters suggest thin walls, which would have been little protection during brutally cold winters (Pollock and Bernbeck 2015:146). Archaeology reveals evidence of what the prisoners and laborers truly experienced, which can be harder to overlook than written accounts (Pollock and Bernbeck 2015:142).

The more recent the dark heritage, the harder it can be to manage and interpret (McAtackney 2014:5; Long and Reeves 2009:68). In order to forget the parts of the past that conflict with the official narrative of the Troubles in Ireland, part of the Long Kesh/Maze prison has been destroyed (McAtackney 2014:3). Management of the site is heavily influenced by shame (McAtackney 2014:3). Continued study of the prison remnants, artifacts left behind by prisoners, and the prisoners’ graffiti has influenced an expansion of the accepted narrative to include another viewpoint of the Troubles (McAtackney 2014:3).

Latin America has been another region stained by violence in recent years. Establishments of democracy have resulted in an increased interest in finding the truth of dark heritage events (Mazz 2015:74; Salerno and Zarankin 2015:91). Cooperative work
between specialists in history, forensics, and archaeology has helped to uncover evidence of the experiences of disappeared individuals (Mazz 2015:78; Salerno and Zarankin 2015:90). New political leaders support the specialists and relatives of the disappeared as they construct an inclusive narrative of the violence and the creation of a “memory of repression” (Mazz 2015:78). Many sites of dark heritage in Latin America are being granted official recognition (Salerno and Zarankin 2015:89), which represent the beginnings of remembering these difficult events, rather than forgetting (Salerno and Zarankin 2015:100).

Rabbithole, and many other Depression era gold mining sites, are sources of dissonant heritage. Commonly accepted narratives of the Great Depression do not typically include the reoccupation or creation of communities in remote gold mining districts (White 1991; Rauchway 2008; Kyvig 2002; Kennedy 1999; Poppendieck 2014). Though the community at Rabbithole is characteristic of Depression era sites and the history of the site is not as dark as other areas, themes of marginality, psychological distress, danger, and unpredictability give it the potential to be classified as a dark heritage site. The excellent preservation at the site allows in-depth study of this dissonant heritage. Approaching Rabbithole from a dark heritage standpoint is groundbreaking, because it would require an expansion of what is commonly considered dark heritage to include human suffering without overtones of death. But what criteria of suffering would classify Depression sites as dark heritage sites? Further research into the intersection of suffering and dark heritage could help to define what criteria of suffering would need to be present at Depression era sites to categorize them as dark heritage sites.
As tourism research has shown, tourists’ primary interests in dark heritage sites lie in learning about and experiencing the past (Biran et al. 2011:831; Liyanage et al. 2015:285; Magee and Gilmore 2015:898). Rabbithole’s excellent preservation, extensive historical documentation, and Doris Venable’s oral history would provide a unique opportunity to not only learn about how a portion of the American population survived the Great Depression but to experience the hardships the snipers faced. Though Rabbithole will never become a high-traffic tourist destination, the continued study of the site’s history and others like it will greatly benefit not only the fields of archaeology and history, but the public as well.

Rabbithole is a site whose interpretation could strengthen national identity and national pride (Tinson et al. 2015:857; Logan and Reeves 2009:2). The snipers showed tenacity, determination, ingenuity, and innovation in their time at Rabbithole, which are all traits valued in the United States (Smith 2006:6). Educating the public with the narrative of the Great Depression including the Automobile Gold Rushes could not only strengthen their national pride, but increase their interest in sites of Depression Era mining. The high levels of public interest in sites of dark heritage could be an asset to archaeologists in sharing their findings.

If the Double O Mine, a typical Depression era site, is considered dark heritage, it raises the question of whether all Depression era sites should be considered dark heritage. Further research into the development of criteria of suffering to help analyze the level of suffering, both physical and psychological, that occurred at the site could help determine whether sites from the Great Depression could be considered sites of dark heritage.
Conclusions

As the literature review in this chapter has shown, there has been extensive work on the topic of the Automobile Gold Rushes and gold mining during the Great Depression, though it is still not a part of the commonly accepted narrative. Sites like Rabbithole hold physical evidence of this dissonant heritage. Furthermore, the events of the Great Depression and the responses of the snipers at Rabbithole qualify as dark heritage. High levels of tourist interest in sites of dark heritage, especially to learn about and experience the past, make Rabbithole an ideal site to incorporate into the official narrative of the Great Depression. The inclusion of the events that took place in Rabbithole and the numerous other sites of Depression era gold mining into the official narrative of the Great Depression could help to reinforce national identity and pride.
CHAPTER TWO: METHOD AND THEORY

As Chapter 1 has emphasized, the study of Automobile Gold Rushes and Depression-era mining communities has been carried out in a wide variety of ways, ranging from focusing on the mining equipment to how the miners made the best of the difficult times. One common thread woven through many of the studies of these communities is the positive spin of most of the interpretations. For example, Smith (2006), McMurry (2007), and Barna (2008) all emphasize that the snipers and their families not only survived the Depression, but enjoyed their time mining for gold in the desert.

But simply living, let alone mining for gold, in such bleak and arid conditions was no easy task. The harsh and desolate environment at Rabbithole provided great challenges. Another challenge to surviving at the Double O Mine was the snipers’ lack of mining experience and materials for shoring in the adits, which resulted in fatal mining accidents (Venable 2006). One way the snipers and their families overcame the difficult task of making a living in the desert was by working together (McMurry 2007).

Doris Venable, who grew up at Rabbithole and fondly remembered the time she and her family spent at Rabbithole, recalled her mother thought of Rabbithole as hell in comparison to other areas their family had lived and worked (Venable 2006). Though Rabbithole was a demanding place to live and work, it had provided a desperately needed sanctuary against the worst effects of the Great Depression. Many of the snipers only abandoned the site when the legal owners forced them out (McMurry et al. 2011:50; McMurry 2007:62).
Since the snipers were squatting on the land, they knew their community would probably not last. Like many other industrial workers, the snipers may have entered the Rabbithole Mining District with expectations of transience. They were taking advantage of an opportunity presented to them in their time of need. It can be difficult to find how long the snipers intended to stay at the Double O Mine and work the placer gold deposits. But Brooks (1995:9) argues that miners’ intentions to leave are “reflected in the formation of the cultural landscape of mining districts and how it is expressed through the acquisition and use of material culture.” Using case studies in the California Gold Rush era communities of White Pine, Nevada (Brooks 1995:49) and the Black Hills in South Dakota (Brooks 1995:61), Brooks shows how the concept of anticipated mobility can be applied to mining settlements. Anticipated mobility is how long people think they will stay in a place and actual mobility is how long they do stay. The model uses several lines of evidence to support a site’s classification as nomadic, semi-nomadic, or sedentary, including the forms of housing, the disposal of refuse, and the types of artifacts associated with the occupation.

This chapter will discuss the archaeological work done at Rabbithole and the different focuses of research conducted there. Francaviglia’s (1991) methods for reading mining landscapes that were used to study the landscape at Rabbithole will be examined. A discussion of Brook’s (1995) model for analyzing anticipated mobility in mining communities through the study of recovered artifacts, trash disposal, and residential architecture will also be included. Then, the model and its application to Depression era mining communities will be analyzed.
Project Overview

Rabbithole Springs was a vital water source along the Applegate Trail, and was included in the Black Rock Desert-High Rock Canyon Emigrant Trails National Conservation Area, though much of the rest of the Rabbithole Mining District lies outside the boundaries. Congress created the National Conservation Area (NCA) to help preserve and protect the remnants of the emigrant trail. The Rabbithole Mining District is on public lands adjacent to the National Conservation Area, which are managed by the Bureau of Land Management (BLM).

Beginning in 2006, the BLM partnered with the University of Nevada, Reno (UNR) to conduct a Class III inventory of the cultural resources in the Rabbithole Mining District (McMurry et al. 2011:49, White 2012:60). Archaeological work was conducted by a field crew and students participating in a field school offered by UNR (McMurry et al. 2011, McMurry 2007). The Double O Mine was one of the primary sites where features related to gold mining in the 1930s and 40s were identified through extensive pedestrian survey. The main goals of the fieldwork included mapping the site boundaries, locating, identifying, and mapping the numerous surface features, and collecting diagnostic artifacts on the surface. Several excavation units were placed both inside and outside Feature 16, one of the standing structures that had served as a residence during the Great Depression, in order to study what the snipers’ everyday life would have been like at Rabbithole (McMurry et al. 2011:49). Preliminary lab analysis was conducted in the field. More delicate items such as paper were not processed in the field, but were collected for analysis. Further lab analysis was conducted in the Historical Archaeology Lab at UNR (Barna 2008:57).
A crew and field school students from UNR returned to the Rabbithole Mining District in 2007 to continue the survey of cultural resources within the NCA with an emphasis on Depression era material remains (Barna 2008:56). Other sites in the district were the main focus of the field work but some previously unsurveyed areas at the Double O Mine were examined.

During the 2008 field season, crew members and field school students from UNR focused on the Double O Mine once again. Excavation units, probes, and shovel tests were opened near several domestic features. The 1x1 m units were located in areas associated with dugouts, Features 6, 9, and 68, near a tent pad, Feature 24, and within a depression from a possible privy, Feature 26. Multiple 50x50 cm test pits were placed near Feature 84, a can dump. A shovel probe used to further explore the subsurface of Feature 39, a standing dugout. Field school students participated in the cleaning and processing of the collected artifacts at the Historical Archaeology Lab at UNR following the conclusion of the field work.

In 2016, another crew from UNR returned to Rabbithole to ground truth the information recorded at the Double O Mine through pedestrian survey. The fieldwork in 2016 shifted focus from the positive aspects of life at Rabbithole, towards factors that made the snipers choose to stay in such a challenging and harsh environment. Only the first 88 of the 137 features, including the dugouts, can dumps, and the associated mining features, were surveyed. The remaining features were primarily industrial in nature and did not have feature forms to review (for a complete list of features at the Double O Mine, see Appendix A). Additional artifacts, deterioration, and potential looting were recorded. For example, a large metal structure that had been previously recorded was
absent and nearby tire tracks suggest the structure was removed from the site, likely by looters. Recreational users of the site have also damaged several features through the creation of fire pits and have burned wood scavenged from several of the recorded features. The site lacks interpretation, so the visitors may not realize the rough and run-down dugouts they are damaging are valuable and well-preserved historical resources. Though the landscape at Rabbithole does reveal glimpses of stark beauty, many visitors to the district and the Double O Mine would probably not recognize or appreciate the landscape as worth preserving.

Francaviglia Landscape Analysis

While at Rabbithole in 2016, the field crew completed a landscape analysis of the community at the Double O Mine using Francaviglia’s (1991) model for reading mining landscapes. Francaviglia (1991:11) defines landscape as “an image of a place based on its visual characteristics.” He argues landscapes created by mining activities are of great importance but are under studied and appreciated (Francaviglia 1991:xvii). Mining landscapes are often overwhelming and “visually complex” (Francaviglia 1991:13) so breaking them down into more manageable parts can simplify the process. There are innumerable ways to approach the study of landscape, but Francaviglia (1991) focuses on three key aspects: site, layout, and architecture.

Site is the first part of the landscape to be studied, which Francaviglia (1991:13) defines as “the configuration of the natural or manmade topography and vegetation.” The landscape features made by humans, particularly the piles of waste rock, are one of the most important features, as they are “the result of specific processes; they do not result by
accident and are surely one of the most distinctive aspects of the site” (Francaviglia 1991:29). Additionally, the vegetation may reveal information about the underlying geology (Francaviglia 1991:30). As an example, Francaviglia describes the landscape of Tonopah, Nevada. The vegetation at the site is sparse, and limited to sagebrush and creosote. The natural topography of the site is rough, resulting from the terrain rising from the floor of the desert to meet the mountains surrounding the community. Piles of waste rock are located nearby the mines in the foothills around the town. In general, the inhabitants of Tonopah use the natural terrain to their advantage, especially in the placement of railroad lines (Francaviglia 1991: 14-17).

The second aspect to be considered is the layout, which is “made up of the streets and property parcels, as well as how they have been overlaid on the landscape” (Francaviglia 1991:14). Francaviglia includes many questions that help to describe the layout. These questions involve whether the community is clustered or scattered, whether or not there is a geometric pattern, and the size and shape of individual parcels. The answers to these questions can help reveal how much planning went into the community and its layout. Francaviglia (1991:31) argues “the feeling of a mining town relates to whether or not it was deliberately laid out, and how and by whom it was developed.” In order to better exemplify landscape layout, Francaviglia compares and contrasts Bisbee and Warren, Arizona. Bisbee, Arizona is the oldest town in the Warren Mining District. The streets follow natural landscape features rather than a geometric pattern. Individual property parcels tend to be small and irregularly shaped. The town is crowded, with little open space. In contrast, Warren, Arizona was laid out along a geometric pattern, with
open space built in. The property parcels in Warren are larger than those in Bisbee, resulting in more space for lawns and trees (Francaviglia 1991:30-32).

The built environment is the last aspect of mining landscapes to be analyzed by Francaviglia. He notes the importance of not only observing the style of individual buildings but also the function and the relationships with other buildings (Francaviglia 1991:33). First, he describes the difference between buildings and structures. The function of buildings is to “house people and their varied interpersonal activities” (Francaviglia 1991:33), while structures function as constructions “that people use only for the processing and storage of commodities” (Francaviglia 1991:33). Next, Francaviglia differentiates between the most important types of architecture in mining communities: commercial, institutional, residential, and industrial.

Commercial districts in mining communities are typically larger than other types of communities due to the variety of services provided to the large number of single men employed in the mining industry (Francaviglia 1991:35). The commercial districts were often established by speculators and entrepreneurs, with the exception of company towns, where the company controls the commercial district (Francaviglia 1991:39).

Institutional architecture includes town halls, churches, union buildings, and schools (Francaviglia 1991:40). These kinds of buildings are clues to how the public and social space in mining towns is organized (Francaviglia 1991:40). Compressed commercial and business districts are common to mining communities, which can result in the construction of elaborate facades on many institutional buildings (Francaviglia 1991:41).
Francaviglia argues residential architecture is strikingly different between mining communities and non-mining communities (Francaviglia 1991:44), noting “we can usually tell we are in a mining town by looking at the housing alone” (Francaviglia 1991:45). Residential architecture in mining communities usually falls into either category of individual housing or attached housing (Francaviglia 1991:44). There is often great diversity in residential architecture, due to speculation early in the communities’ construction (Francaviglia 1991:47). However, company towns and their standardized architecture are an exception to the pattern (Francaviglia 1991:47).

Francaviglia (1991:48) has described the industrial architecture of mining towns as “the largest structures with the boldest profiles and the oddest angles.” These structures are related to mining, milling, processing, and transporting ore (Francaviglia 1991:48). Common forms of mining-related industrial architecture include headframes, powerhouses, smokestacks, pump houses, mills, and tanks (Francaviglia 1991:48-53).

When combined, the varied features of mining landscapes can be very telling of the people that constructed, lived in, used, and sometimes abandoned them. The organization and use of space is evidence of how the landscape and the mining prospects were considered. Excitement to begin mining often resulted in less planning and organization in the communities that supported many mines. Larger and richer ore bodies resulted in the construction of greater support systems for the miners in the communities. The information gained through mining landscape analysis is another line of evidence to examine how long the miners and other residents intended to stay in the mining communities.
Brooks’ Anticipated Mobility

Though the community at Rabbithole was likely intended to be occupied for a short time, how long did the snipers plan to stay in the desert? This question could be answered by Brooks’ (1995) use of the architecture and patterns of trash disposal in mining communities to study the anticipated mobility of the residents. In contrast with actual mobility, anticipated mobility is how long people think they will stay in a place (Brooks 1995:9).

Brooks (1995:102-103) demarcated three categories of anticipated mobility: nomadic, semi-nomadic, and sedentary (Table 2.1). Though there are characteristics associated with each category, Brooks (1995) did not assign a length of stay to any of the categories. Nomadic societies typically follow the pattern of coming to an area, extracting the resource, and leaving soon after, while sedentary societies invest their time and energy in developing a settlement with a sense of permanence (Brooks 1995:1). Though the residents of a community may stay in an area longer than they had originally anticipated, their settlement pattern, architecture, and trash disposal will still follow the pattern associated with how long they first expected their stay to last (Brooks 1995:98).

Brooks applied the model of anticipated mobility to California Gold Rush era mining communities in Nevada and South Dakota. The California Gold Rush “created an entirely new type of mobile population moving throughout the West” (Brooks 1995:7). A majority of this new nomadic population was made up of prospectors, which Brooks (1995:12-13) contends form a unique subculture of mainstream society. The sedentary population forms the mainstream society concerned with proper behavior and etiquette in a permanent community built to follow the popular trends found in more urban areas.
Midway between the prospectors and the more permanent capitalist settlers are the wage laborers. Their patterns of behavior have traits of both the nomadic and sedentary groups (Brooks 1995:81).

Table 2.1: Characteristics of mining settlements using Brooks’ (1995:102-103) model of anticipated mobility.

<table>
<thead>
<tr>
<th></th>
<th>Nomadic</th>
<th>Semi-Nomadic</th>
<th>Sedentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing Type</td>
<td>Dugouts, cabins, or tent cuts</td>
<td>Dugouts or cabins</td>
<td>Houses and buildings</td>
</tr>
<tr>
<td>Number of Rooms</td>
<td>1</td>
<td>1-2</td>
<td>Multiple</td>
</tr>
<tr>
<td>Flooring</td>
<td>None</td>
<td>Possible</td>
<td>Definite</td>
</tr>
<tr>
<td>Heating</td>
<td>None (with exception of barrel stove)</td>
<td>Possible (hearth, fire place, or barrel stove)</td>
<td>Definite</td>
</tr>
<tr>
<td>Settlement Pattern</td>
<td>Random, unorganized</td>
<td>Random or organized</td>
<td>Organized</td>
</tr>
<tr>
<td>Refuse Disposal</td>
<td>Sheet midden</td>
<td>Sheet midden or contained</td>
<td>Contained</td>
</tr>
</tbody>
</table>

Prospectors followed different patterns of behavior, which are similar to those of subsistence foragers. Prospectors and foragers alike primarily build expedient shelters from whatever materials are available (Brooks 1995:76). In mining communities, shelters are usually dugouts, cabins, or tents, which are limited to a single room, lack flooring, and tend to lack a heat source, with the exception of barrel stoves (Table 2.1) (Brooks 1995:102-103). Miners often build their residences near the resource to be extracted, and once the resource has been exhausted, the prospectors move on (Brooks 1995:13). Therefore, the settlement pattern is random and unorganized, with little differentiation between the work place and the home, (Brooks 1995:34) and work-related artifacts often present in residential settings (Brooks 1995:116). The prospectors prioritized their
investments of time and capital towards mining activities rather than maintenance of residences that would be abandoned (Brooks 1995:39).

The architecture of residential structures in semi-nomadic communities is very similar to that of nomadic settlements. They are usually one to two room dugouts or cabins, with flooring, and possibly a heat source (Table 2.1). Depending on the length of the stay, the settlement pattern in semi-nomadic communities can be random or organized (Brooks 1995:102-103). Both nomadic and semi-nomadic communities show striking differences from more permanent settlements. Sedentary communities have houses and buildings with multiple rooms and always have flooring and a heat source (Table 2.1). The settlement pattern in permanent settlements is typically organized along a grid pattern (Brooks 1995:102-103).

Artifacts recovered from mining communities are a second form of evidence of anticipated mobility. Much like subsistence foragers, prospectors anticipating a short stay kept, used, and/or discarded only a few necessary items (Brooks 1995:76). This equates to the presence of fewer artifacts and less artifact diversity (Brooks 1995:39). Additionally, Brooks (1995:26) found “the principle that people anticipating a longer residency will bring more objects to their camps explains artifact quantity better than the concept that the longer a camp is occupied the more refuse will be deposited.” The prospectors were less concerned with proper Victorian etiquette and more interested in making their fortune. As a result, the prospectors did not bring tablewares and other status or luxury items with them to the remote areas where gold was found. Alternatively, more sedentary populations in mining communities brought items to help them fit into
proper society. Status items relating to personal hygiene and dining are commonly only recovered in sedentary mining communities (Brooks 1995:36).

Finally, the disposal of refuse can provide evidence of how long the residents intend to stay in a community. When residents intended to abandon a community, trash and refuse is commonly deposited in a sheet across the site (Table 2.1) (Brooks 1995:25). Sometimes trash is simply thrown out the door of the temporary dwellings (Brooks 1995:137). A majority of the refuse associated with temporary dwellings is related to consumption and foodways, primarily made up of food and drink containers (Brooks 1995:118). Semi-nomadic communities may be similar to nomadic ones and can have sheet middens or contained trash dumps in communities where a longer stay was planned (Table 2.1). But sedentary communities nearly always have contained trash dumps (Table 2.1) (Brooks 1995:102-103).

The case studies utilized by Brooks (1995) illustrate how communities show their anticipated mobility through the architecture, disposal of trash, and the number and diversity of artifacts recovered. The communities in the White Pine District in Nevada and the Black Hills in South Dakota show striking differences between short and long-term settlements.

White Pine, Nevada

Silver was discovered in the White Pine ledges in 1865, resulting in the creation of a mining district by the same name (Brooks 1995:49). Prospectors laid out a small town nearby called White Pine City (Brooks 1995:50). As more prospectors came to the district, the available housing fell behind the increasing demand. Shanties, cabins,
dugouts, and tents sprang up in response (Brooks 1995:55). Though many of the prospectors had intended to make their fortune and leave, the nature of the ore body prevented the success of small scale operations and forced them to stay longer than expected (Brooks 1995:98). Prospectors were soon replaced by wage laborers working for companies with the required capital and equipment to access the ore (Brooks 1995:54).

The more nomadic prospectors did not follow the typical Victorian era style of architecture, rather their community was made up of dugouts, tents, or small cabins constructed of available materials (Brooks 1995:100). Short-term occupants were more likely to dispose of their refuse in a sheet across the site, with the absence of luxury or status items. Archaeological investigations near the dugouts in White Pine reveal artifacts scattered immediately outside the doorway (Brooks 1995:137). Furthermore, many of the dugouts only had alcohol bottles, tin cans, and other food containers associated with them (Brooks 1995:118-119). Ultimately, Brooks (1995:129) found that artifacts types, such as teaware, tableware, or personal hygiene items, were not found in association with any of the dugouts in White Pine. As the study of documentary evidence in addition to archaeological investigations at White Pine have revealed, the intended length of stay greatly influences human behavior, including the shelters they choose to build, how they dispose of their trash, and what kinds of items they bring with them.

Black Hills, South Dakota

Though the Black Hills were a part of the Sioux reservation, prospectors followed rumors of gold and illegally entered the reservation in search of gold as early as the
winter of 1874 (Brooks 1995:62-63). In order to put an end to the violent conflicts between the Sioux and the prospectors, the United States government opted to buy the Black Hills from the Sioux in 1875 (Brooks 1995:66).

The prospectors began forming communities to support their search for gold, though if gold was discovered elsewhere, the prospectors were quick to abandon their makeshift communities (Brooks 1995:73). Much like the White Pine prospectors, the small-scale miners in the Black Hills were replaced by wage laborers, with the settlements suited to their more semi-nomadic settlement pattern (Brooks 1995:77). The prospectors working placer deposits in the Black Hills constructed their simple dugouts of earth, stone, and logs, which were all locally available (Brooks 1995:104). Artifact assemblages from the dugouts in the Black Hills are very minimal, made up of cans, glass fragments, and industrial waste (Brooks 1995:118). Sheet middens were recorded in association with the more nomadic settlements (Brooks 1995:137). The physical evidence left behind by the more nomadic prospectors in the Black Hills reveals their attitudes about the area. The allure of gold only held them in the Black Hills on a temporary basis, and they intended to leave as soon as they had made their fortunes. The sheet middens, small number and diversity of artifacts recovered, and roughly constructed dugouts are all evidence of this pattern of behavior.

Anticipated Mobility During the Great Depression

As Brooks’ (1995) case studies revealed, anticipated mobility helps to explain the visible patterns of behavior left behind from the California Gold Rush era. Brooks’ model and case studies, with several alterations, can also help to explain the patterns of material
culture left behind by the Automobile Gold Rushes. Much like the mobile populations that emerged during the mid-1800s, the Automobile Gold Rushes created a subset of the mainstream society that was highly mobile and created or reinhabited gold mining communities during the Great Depression. The rise of automobiles made the snipers mobile in a different way than the miners panning for gold in the mid- to late 1800s. Automobiles made it possible to live in remote places, such as the Rabbithole Mining District. Though automobiles require fuel and other maintenance, greater distances could be traveled more quickly, which made trips for supplies much easier.

Items not necessary to survival, such as those relating to personal hygiene or entertainment, could be bought and taken back to the snipers’ residences in remote locations. This pattern of behavior is unlike what Brooks’ (1995:129) describes for the California Gold Rushes, where items associated with a more sedentary lifestyle, such as personal hygiene products or tableware, are absent in nomadic and semi-nomadic communities. Consequently, even nomadic Depression era mining communities associated with the Automobile Gold Rushes should have a higher number and greater diversity of artifact types present than nomadic and semi-nomadic mining settlements during the California Gold Rushes.

Though lacking in mining experience, the Depression era prospectors were driven to remote mining districts by bleak economic conditions, unemployment, and the increased price of gold. Much like the prospectors during the California Gold Rush, the Depression era miners did not intend to make a permanent home near the resource to be extracted, but instead sought to make some money and return to their normal lives. But unlike the prospectors from the 1800s, who were seeking to make massive fortunes, the
Rabbithole snipers were content with recovering enough gold to buy supplies. Several Depression era gold mining communities like Rabbithole provide well-preserved evidence of this alternative pattern of behavior. Much like the communities in White Pine, Nevada and the Black Hills in South Dakota, the architecture, recovered artifacts, and trash disposal from Rabbithole can be used to discern the anticipated mobility of Depression era mining communities.

Conclusion

Though many individuals survived the Depression by abandoning their homes for desert gold mines, this pattern of behavior is overshadowed by the dark nature of the Great Depression. Interpretations of these Depression era mining communities can be portrayed in a myriad of ways, but not all the snipers’ experiences were positive. Further work on Depression era mining communities need to recognize both sides of the snipers’ experiences.

Brooks’ (1995) analysis of California Gold Rush settlements and both their actual and anticipated mobility has shown how perceptions can heavily influence human behavior. Expecting a short or long stay in a certain area influenced not only the amount and types of artifacts used and discarded at the site but the architecture and design of residences and how trash was disposed. With several alterations, Brooks’ (1995) model of anticipated mobility can be applied to the architectural and archaeological remains of Depression era mining communities to classify the settlements as nomadic, semi-nomadic, or sedentary.
Extensive archaeological work conducted in the Rabbithole Mining District and at the Double O Mine has helped to shed light on the sniper community and how they dealt with the conditions of the Depression. Closer examinations of the recovered artifacts, patterns of trash disposal, and residential architecture in the next chapter can reveal the snipers’ anticipated mobility.
CHAPTER THREE: DATA

In order to analyze the anticipated mobility at the Double O Mine, this thesis will include a closer examination of the physical evidence of the sniper community. Though Brooks (1995) does help explain some of the patterns of material culture at the Double O Mine, the model needs to be reworked to better fit gold mining communities from the Great Depression. The classifications based on architecture do conform to Brooks’ (1995) model. Much like California Gold Rush settlements, nomadic settlements dating to the Great Depression are characterized by tent cuts or single room dugouts or cabins. The dwellings tend to lack flooring and a heat source, with the exception of a rough stove. The settlement pattern is random and refuse is scattered across the site in a sheet (Brooks 1995:102-103).

Semi-nomadic settlements will be populated by dugouts or cabins with one to two rooms, with the possible presence of flooring and a heat source. These communities can be laid out in a random or organized fashion, and the refuse can be deposited in a sheet or in contained dumps (Brooks 1995:102-103). Sedentary communities will have houses and large buildings with multiple rooms. All the buildings will have flooring and heat sources. They will have been laid out in an organized manner, with the disposal of trash being carried out in designated areas (Brooks 1995:102-103).

The biggest differences between anticipated mobility in the Automobile Gold Rushes rather than the California Gold Rushes are the amount and type of artifacts that will be recovered and the disposal of trash. Brooks (1995:117) argues that nomadic settlements will lack artifacts relating to personal hygiene, women and children, or tablewares, however, the rise in the number and popularity of cars changed the way
people traveled and goods were transported. With larger distances covered in shorter periods of time, items unnecessary for the survival of the community could be taken to remote mining communities like the Double O Mine. Changes in manufacturing and American culture also created different behaviors. Changes to the pattern of behavior result in the presence of artifacts Brooks (1995:123) attributed only to sedentary communities in nomadic and semi-nomadic settlements. Furthermore, in the nearly 100 years between the two gold rushes, technological advancements in mining and other machinery result in large numbers of industrial and mechanical artifacts present at the site.

The differences in mobility between the California Gold Rushes and the Automobile Gold Rushes creates the need for a new model of anticipated mobility calibrated to the Great Depression years. While Brooks’ (1995) model is an excellent jumping off point, the archaeological and architectural evidence from the Double O Mine and other Depression era mining communities does not fit neatly into the model for the reasons discussed above.

This chapter will discuss the types of evidence of anticipated mobility that are present at the Double O Mine. The overall landscape, residential features, can dumps, other refuse, and recovered artifacts indicate how long the snipers anticipated their stay at the Double O Mine would last.

Rabbithole Landscape

As previously discussed, Francaviglia’s (1991) model for reading mining landscapes was utilized at the Double O Mine to focus on the landscape itself. Following
Francaviglia’s (1991:13) methods, the landscape was separated into site, layout, and architecture.

The first aspect to be studied in the landscape analysis is site, or “the configuration of the natural or manmade topography and vegetation” (Francaviglia 1991:13). Vegetation is minimal at Rabbithole; the ground cover is limited mostly to sage brush and cheat grass. Since shrubby junipers are only located at higher elevations, there is limited wood to burn as fuel or shade in which to escape the heat. The soil is fine and silty, with clearly visible evidence of erosion in many areas. Cryptocrystalline silicate (CCS) materials can be found scattered across the surface. The natural topography at Rabbithole is divided by multiple gulches with steep sides, which many of the snipers used to their advantage in the construction of their dugouts. Additionally, the multiple gulches provided greater access to the gold through the construction of adits and drifts into the hillsides. This alternative saved capital and labor as sinking a shaft is a rather costly venture (Twitty 2002:27; Brooks 1995:143). The topography altered or created through human behavior is marked by numerous piles of tailings of various grain size across the site. An earthen dam and spillway were also constructed, seemingly out of place in the desert, but were used for managing the water supply at Rabbithole.

The second stage of analysis focused on layout, which Francaviglia (1991:14) defines as being “made up of the streets and property parcels, as well as how they have been overlaid on the landscape.” Rabbithole was not laid out according to a grid system, but rather on an informal basis. This random pattern of settlement may be due to the fact that the snipers did not own the land upon which they built their homes. Many residences are in close association with mining features. The snipers may have wanted to limit travel
time to work sites since they squatted on the land and needed to make the most of this rare opportunity to mine gold for their own profits. Without a grid or parcel system to dictate the site of their homes, the snipers chose the place to build simply based on their desired location, orientation, or viewshed.

There are small clusters of dugouts, which may be evidence of the importance of community and necessary cooperation at the site (McMurry 2007). Doris remembered a community that often stepped up to help one another and often gathered for social events (Venable 2006). The small neighborhoods throughout the site are interconnected by trails and rough roads. Alternatively, there are several residential features that are isolated. These isolated dugouts are located nearby other residences, but through the use of the natural topography, no other residences are visible. Examples of these isolated homes include Features 6, 85, and 39 (see Figure 3.2, a map of residential features).

The final aspect of Rabbithole’s landscape to be analyzed was architecture. Most of the constructions at Rabbithole qualify as what Francaviglia (1991:33) classifies as buildings, or “those that house people and their varied interpersonal activities” rather than structures or “those that people use only for the processing or storage of commodities.” Francaviglia (1991:33) further differentiates between four common types of buildings present in mining landscapes: commercial, institutional, residential, and industrial.

The residential features at the Double O Mine utilize a vernacular architectural style that did not depend on typical building materials. The dugouts were built expediently with scavenged materials, including earth, railroad ties, scrap lumber, utility poles, car panels, sheet metal, and corrugated metal. Due to the reliance on available materials, each dugout or cabin is unique.
The Double O Mine lacks any commercial buildings. Unlike many remote mining communities, there was no store present where the snipers could replenish their supplies. They were reliant upon provisions purchased in Lovelock, Gerlach, or Sulphur with the gold they produced from the Rabbithole landscape. The numerous can dumps and other trash scattered across the site reveal the snipers’ reliance upon mass-produced food items in an area with very few food resources. The system of roads that linked the snipers’ community to Lovelock and Gerlach where the supplies were procured becomes all the more important when considered in this manner.

Also, there is no institutional architecture at the Double O Mine. Unlike many mining towns, there was no church, union building, school, or hospital. By working independently, the snipers had no need for a union. Many of the children living at the Double O Mine were taken to the nearby town of Sulphur for school, any sniper requiring more than basic first aid was transported to Lovelock or Gerlach to seek medical attention, and the snipers often took Sundays off and with automobiles could have traveled to nearby towns to attend church if they desired (Venable 2006). The unique circumstances at the Double O Mine lead to the construction of buildings that met only the basic needs of the snipers. Rather than spend time, money, and resources on unnecessary institutional buildings that would likely have been abandoned, the snipers made use of these types of institutional architecture in other nearby towns.

Industrial features are the most numerous feature type at Rabbithole, and are extremely varied in nature, ranging from loading docks, a processing plant, a dam and spillway to tailings, adits, and shafts. Much like the residential features, the industrial architecture utilizes scavenged materials in a “Making Do” vernacular style (Barna
The primary materials used in the construction of the industrial features are railroad ties and scrap lumber, including the loading docks and doorways and supports in the numerous adits. Most of the industrial architecture is associated with the small-scale placer mining carried out by the snipers, with the exception of some of the larger features, including the processing plant and dam and spillway. It is difficult to accurately date some of the larger industrial features due to the lack of diagnostic materials associated with them, though some have been tentatively dated to periods after the sniper occupation. Placer deposits of gold can be accessed more easily and with little capital through digging adits rather than shafts (Twitty 2002:27), as evidenced by the numerous adits scattered across the landscape and the small number of shafts. Additionally, the snipers solved the problem of an inadequate water supply faced by the corporate mines in the area by dry washing the gold.

By breaking down Rabbithole’s landscape into site, layout, and architecture, the temporary nature of the site comes into focus. Rather than houses organized along an orderly gridded system of streets and land parcels, dugouts at Rabbithole are scattered across the landscape in an informal manner. This pattern may be influenced by the snipers’ illegal occupation of the land. Landforms were utilized in their natural state and the little earth moving that occurred at the site was probably associated with the Landis Mining Company or mining activities from a later date. The expedient nature of the vernacular architecture used to construct both residential and industrial features brings into focus how the community of snipers at Rabbithole made use of the landscape and available resources to construct a community to meet their immediate needs.
Evidence of Anticipated Mobility

The three lines of evidence used to analyze the anticipated mobility at Rabbithole will be further discussed in this section (for a full list of features at the Double O Mine, see Appendix A). Figure 3.1 is a map with all the recorded features at the Double O Mine, while Figure 3.2 is a map of the residential features, and Figure 3.3 is a map of the can dumps. The residential features are discussed from most simple to complex, beginning with tent pads, moving to collapsed dugouts, then to standing dugouts and cabins. The trash disposal features will be discussed in numerical order. Finally, the recovered artifacts will be discussed by artifact type, including personal hygiene, industrial, domestic, and entertainment.

Residential Features

There are 23 residential features at the Double O Mine, ranging from tent platforms to dugouts and cabins (Figure 3.2). Several of the residential features were recorded as part of a feature system, or a group of features that are likely related. Hardesty (1988:9) defines a feature system as “a group of archaeologically visible features and objects that is the product of a specific human activity.” For example, Features 7 and 8 make up Feature System A because the can dump (Feature 8) was likely the refuse disposed of by the residents of the nearby dugout (Feature 7). Feature systems can shed light on how the snipers organized their space, and will be briefly discussed in the descriptions of residential features. There are eight feature systems at the Double O Mine, labeled as Feature Systems A through H. Appendix A lists all the features and feature systems at the Double O Mine.
Figure 3.1: Map of Features at the Double O Mine.
Doris Venable (2006) remembered a few of the snipers simply slept on the ground rather than build a shelter, though this behavior would be difficult to identify archaeologically. Most of the snipers and their families chose to make the most of available materials and constructed rough dwellings. The challenges of Rabbithole’s landscape, including the high daytime temperatures, lack of shade, and low nighttime temperatures made shelters a necessary part of everyday life in the desert. The residential features provided space not only to sleep, prepare food, and store personal items, but also to work, play, and socialize.

Tent and Building Pads

The simplest residential features were tents, which can be identified by the presence of tent pads. There are three tent pads at the Double O Mine and a single building pad that retained little physical evidence to reveal what the residence on the pad had looked like.

Feature 11 is a flat earthen rectangle without any vegetation that served as the pad for a tent (Figure 3.4). The pad measures 17 by 24 feet and is surrounded by earthen mounds, possibly from leveling the surface of the pad. In the northeast corner is a wooden frame topped with corrugated metal. Artifacts scattered around the feature include corrugated metal, hexagonal chicken wire, steel wire, several tin cans, an elbow for a stove pipe, fragments of wood, sheet metal, the base from a large glass jar, a gas can, and a tobacco tin.
Feature 24 is another tent pad, part of Feature System D, which also contains dugouts, can dumps, an adit, an anvil base, and a possible privy. The pad was constructed using a cut and fill technique (Figure 3.5). Support is provided by railroad ties in northwest corner and a large rock in the southeast corner. Parts of the wooden frame, the screen door, and canvas from the tent surround the pad. A push plate with the inscription “Storage” suggests the door has been reused (Barna 2008:155). Various artifacts around the tent pad include fragments of newspaper, canvas from the tent, a section of stovepipe, a 5-gallon petro-chemical can, scraps of lumber, an automobile fuel tank, a tire tube, a metal folding chair, box springs from car seats, fragments of stoneware, pieces of sheet metal, several railroad ties, a tobacco tin, tin cans, fragments of both colorless and amber glass, and the iron body of a clock.
Figure 3.2: Map of the residential features at the Double O Mine.
Figure 3.5: Feature 24 (tent pad), facing south. Note the railroad ties in the lower half of the photo. Photo by Jessica Smith.

Feature 44 is a tent platform associated with a mining location marker (Figure 3.6). The platform utilizes a naturally flat surface and measures 12’ 9” by 11’ 6.” Rebar stakes mark two corners, with a rock wrapped in wire that may have acted as weight to keep the tent in place. The only artifact associated with the tent platform is a can.

Figure 3.6: Feature 44 (tent pad), facing northwest. Photo by Dave Valentine.
Feature 25 is a cut and fill building pad that is also part of Feature System D (Figure 3.7). The floor of the pad is about 4 feet below the surface of the hillside, which gradually rises running east to west. The southwest corner is roughly leveled and extends beyond the perimeter of the cut (McMurry 2007:103). Surrounding the pad are various domestic and industrial artifacts. These include milled lumber, sheet metal fragments, solarized selenium glass fragments, a piece of red rubber, multiple sanitary cans, a key wind, a stove pipe, several metal plates, an iron hoop, a brick with mortar, a hydraulic cylinder, and a possible boiler wall.

![Figure 3.7: Feature 25 (building pad), facing north. Photo by Anna Sorenson.](image)

Repurposed Adit

Feature 30 was originally an adit that was repurposed as a residence (Figures 3.8 and 3.9) (Barna 2008:71). The feature is a part of Feature System E, which also contains a can dump. It is the only adit at the Double O Mine with clear evidence of habitation. Both Venable (2006) and Paden (1949:155) have described such residences as “caves.” With the addition of a doorframe, a stove, and furniture, the adit was transformed into a
home, which Doris Venable (2006) recalled as being warm in the winter and cool in the summer. The earthen walls could easily be altered to suit the needs of the inhabitants. A shelf was dug into the southern wall just inside the entrance, while depressions in the back walls may have supported shelves or a bed. Several nails have been placed in the walls, possibly serving as hooks to hang up belongings. Part of the roof has collapsed, as evidence by upper section of the door frame that is free-standing. Various artifacts are present both inside and outside the feature. Artifacts from the interior include a decayed piece of denim, a metal tank with a hole punched out, several metal cans, labels, a bone from a beef round steak, and newspaper fragments. Cardboard panels may have covered the earthen floor. Outside the repurposed adit, artifacts include a makeshift metal stove, a tire, and metal sheeting that may have been the stove door.

Figure 3.8: Feature 30 (Repurposed adit), facing northwest. Photo by Carolyn White.
Collapsed Dugouts

Due to the lack of standard building materials, carpentry experience, and woodworking tools, many of the dugouts built to house the snipers and their families have now collapsed. Twelve of the nineteen dugouts at the Double O Mine have deteriorated and have fallen down. There is little left of some of dugouts as they have been scavenged, either for building materials or fuel for campfires.

Feature 10 is a collapsed dugout, associated with a can dump in Feature System B (Figure 3.10). It was constructed from reused railroad ties and machined lumber, with a dirt floor. The dugout was roofed with corrugated sheet metal. The north wall may have been covered with canvas. A claim marker lies on the ground next to a pipe extending from the southwest corner of the dugout. The southwest corner also has a timber wrapped with wire. Six railroad ties nearby and the condition of the other building materials suggest they have been scavenged (McMurry 2007:100-101). Artifacts include a two-
holed shell button, fragments of glass, tin can lids, tin cans, metal cushion springs from a car seat, a length of metal pipe, broken timber pieces, railroad ties, and metal sheeting.

Figure 3.10: Feature 10 (collapsed dugout), facing northwest. Photo by Jessica Smith.

Feature 13 is a collapsed dugout primarily constructed of dimensional lumber (Figures 3.11 and 3.12). The roof was covered with corrugated sheet metal, with the southwest corner showing evidence for a stovepipe thimble. The floor of the dugout was dirt. A nearby railroad tie may have also been part of the building materials used to construct Feature 13. By 2016, the lumber used to build Feature 13 had been scavenged and possibly burned by site visitors. A metal car window frame, corrugated metal pieces, various lumber pieces, a piece of stovepipe, tin cans, window glass, a metal stove, metal screening, and a metal bucket were recorded in close association with the dugout.
Figure 3.11: Feature 13 (collapsed dugout), facing east. Photo by Jessica Smith.

Figure 3.12: Feature 13, facing north. Photo by Jessica Smith.

Feature 19 is another collapsed dugout that is part of Feature System D (Figure 3.13). It had been constructed of dimensional lumber and railroad ties, with an earthen floor. Artifacts associated with the dugout include a railroad tie, corrugated sheet metal, and fragments of solarized selenium flat glass.
Figure 3.13: Feature 19 (collapsed dugout), facing southwest. Photo by Jessica Smith.

Feature 20 is a narrow dugout measuring only 8’ 5” wide (Figure 3.14). It is also a part of Feature System D. The floor was packed earth, and only a few building materials are present. A single piece of lumber extends from the eastern wall. There is a pile of dirt in front of what may have been the door of the dugout. Recorded in the vicinity was a hand steel with evidence of resharpening and a twist of wire around it, metal fragments, a large sanitary can with holes, and a screw top metal jar lid.

Figure 3.14: Feature 20 (collapsed dugout), facing south. Photo by Anna Sorenson.
Feature 29 is a small dugout, measuring approximately 10 square feet (Figure 3.15). Dry-laid rock embedded in the north side’s embankment and in the northeast corner may represent the remains of the foundation (McMurry 2007:105-106). Like many of the dugouts, Feature 29 had a dirt floor. A handmade iron post, with the exposed end that has been flattened and bent is embedded in the ground in the southeast corner, with a loop of wire nearby. Associated artifacts include a Brazilian meat can, glass fragments, other tin cans, and two claim markers.

Figure 3.15: Feature 29 (collapsed dugout), facing northwest. Photo by Jessica Smith.

Feature 36 is the footprint of a 10 foot by 13 foot dugout that was included in Feature System F (Figures 3.16 and 3.17). The other feature in the feature system is a shaft. The dugout was built into the wall of one of the gulches. The remains of the south wall are made of stacked rocks, four courses high (McMurry 2007:106), and an opening in the south wall may have been the doorway. The floor was packed earth. The roof may have been canvas, as suggested by a grommet found in the doorway. Artifacts include
sheet metal, automobile parts, dimensional lumber, glass fragments, tin cans, and box springs from two car seats which may have been used as furniture (Barna 2008:71).

Figure 3.16: Feature 36 (collapsed dugout), facing northwest. Photo by Nick Schroeder.

Figure 3.17: Interior of Feature 36, note the stacked rocks that made up the south wall, facing east. Photo by Nick Schroeder.

Feature 41 is the footprint of a dugout that was built into the wall of one of the gulches (Figure 3.18). The floor and part of the walls were earthen. Almost none of the building materials remain, except for a possible wooden cabinet and a galvanized piece of
corrugated sheet metal in the back of the dugout, and several timbers (McMurry 2007:124). A fragment of metal grating, tin cans, and a metal object that looks like a stoplight were recovered inside the dugout footprint. In the southeast corner of the dugout are a metal pipe and a cluster of rocks. A section of stovepipe with a damper, a metal machine part, copper tubing, and several pieces of metal were scattered around the dugout.

Figure 3.18: Feature 41 (collapsed dugout), facing southwest. Photo by Lauren Walkling.

Feature 42 is a collapsed dugout constructed of railroad ties with a dirt floor (Figure 3.19). To the northeast, the roof and framing are strewn across the landscape. In the center of the dugout and along the northern edge are concentrations of lumber and corrugated metal. One piece of the corrugated metal has a hole cut for a stovepipe. Railroad spikes were used in the construction of the dugout and are present near the feature (McMurry 2007:124). A metal rod wrapped with wire extends from the ground along the southern edge of the dugout. Artifacts scattered near the dugout include a French’s mustard jar, several complete bottles, an enameled tin pot lid, cream glazed stoneware, car seat box springs, electrical wiring with a metal sheath, and a washer with an intact screen.
Feature 48 is a dugout with two collapsed walls, a dirt floor, and a level gravel pad (Feature 3.20). It is a part of Feature System H, along with another dugout and a shaft. The walls were constructed of mismatched lumber patched together. Sheet metal is scattered around the dugout and is partially covered by the gravel pad. Directly to the south of the dugout is a mining disturbance. Tin cans and a metal canister were recorded near the dugout.

Figure 3.20: Feature 48 (collapsed dugout), facing northwest. Photo by Dave Valentine.
Feature 68 is another collapsed dugout and part of Feature System D (Figure 3.21). The floor had been packed earth and building materials included five railroad ties, mismatched lumber of varying dimensions, and sheet metal. Artifacts are present both inside and outside the dugout, including nails, a brick, wire screen, a metal mining machine part, glass fragments, tin cans, metal springs, box springs from automobile seats, and a metal sheet with a wooden frame.

Figure 3.21: Feature 68 (collapsed dugout), facing north. Photo by Anna Sorenson.

Feature 85 is the remains of a dugout, which may have been burned, suggested by nearby charred lumber pieces (Figure 3.22). This feature, along with a can dump, make up Feature System I. It is isolated, with no other residences in its viewshed. The floor was probably earthen, and lumber to the southeast may have been part of the structure at one
time (McMurry 2007:104). Timbers that may represent the remains of the door lay to the south. Artifacts are scattered to the south of the dugout, including mattress springs, corrugated sheet metal, a section of stovepipe, a gas tank, metal screening, tins cans, and bottle glass.

![Figure 3.22: Feature 85 (burned dugout), facing west.](image)

Feature 87B is the remains of a dugout with stacked rock retaining walls two courses high in the southern wall and southwest corner (Figure 3.23) (McMurry 2007:106). The floor was made of packed earth. Few other building materials are present, except for fragments of wood. Artifacts recovered nearby include tin cans and glass fragments.

![Figure 3.23: Feature 87B (collapsed dugout), facing west. Photo by Jessica Smith.](image)
Standing Dugouts and Cabins

Due to their location, sturdier construction, or building materials, seven of the dugouts or cabins at the Double O Mine are still standing. Some of these standing dugouts and cabins are continuing to deteriorate and may collapse in the future.

Feature 7 is a roughly rectangular one-room structure than has been buried by mining activities after its construction (Figure 3.24). Before the dugout was buried, the window openings were closed with railroad ties. The doorway faces east and the windows open to the north and south, and the primary building material is railroad ties. A nearby can dump in association with this feature make up Feature System A. Interior characteristics include a hard-packed dirt floor and flat ceiling covered with cardboard panels as insulation (White 2012:64). Newspaper and cloth were used as chinking between the railroad ties (McMurry 2007:96). Though no longer present, a stovepipe is evidence a stove had been in the residence. Irregularly spaced nails suggest siding may have been hung along the exterior walls (McMurry 2007:96). The roof has a layer of cardboard as insulation beneath the asphalt tiles.

Figure 3.24: Feature 7 (dugout), facing southwest. Photo by Jessica Smith.
Feature 16 is a dugout constructed of railroad ties and lumber (Figure 3.25). The roof is gabled and covered with corrugated metal, sheet metal, and earth. Due to the uneven ground the dugout was built on, the walls were leveled with smaller pieces of lumber (Barna 2008:94). The door is in the southwest wall, with the larger window, while there are two smaller windows in the northwest and southeast walls (McMurry 2007:96). The floor and two interior walls are dirt, though excavation revealed the inhabitants had laid out linoleum as a floor covering. The walls constructed of railroad ties are chinked with cardboard and mud. All the interior walls were insulated with cardboard panels. Flashing made of galvanized sheet metal in present on the southeast wall, with a hole for a stovepipe cut in the roof directly above it (McMurry et al. 2011:54). Nails in the eastern corner may have been coat hooks (White 2012:71). There is a low bench and shallow shelving on the southwest wall. Artifacts around Feature 16 include window glass, tin cans, lumber, wire mesh screen, and pieces of metal. A fire pit and reflector have been built by recreational site visitors about 6 feet from the doorway. Scavenged sheet metal and the base of the barrel were used to build the reflector and wood from Feature 16 and other nearby features was burned as fuel.

Feature 39 is a partially buried, one room cabin built primarily of machined lumber, but has been repaired with scavenged materials (Figure 3.26). This feature and a nearby can dump make up Feature System G. It is one of the isolated residences at Rabbithole. The roof was flat and is partially collapsed. Part of the roof had been covered with sheet metal and another section is covered by metal cut from the body of a large tank. The area where the sheet metal and the tank body met was covered with a rubberized canvas belt (McMurry 2007:97). There is a single door and window in the
southern wall with a second window in the north wall. The frame of the southern window uses a slat from a packing crate, with “W.W. IRWIN, SULPHUR, NV” stenciled on it. Doris Venable’s father W.W. “Wally” Irwin served as the postmaster in Sulphur, Nevada from the mid-1930s to the 1950s (McMurry 2007:87; Venable 2006). There are shelves on the northern wall between the window and the door and along the east wall. In the northwest corner, a metal bed frame is partially buried in the earthen floor (McMurry 2007:97). The interior walls were lined with cardboard panels and a schedule of radio news broadcasts was written on one.

Figure 3.25: Feature 16 (dugout), facing north. Note the modern fire pit built by recent site visitors, photo by Melody Zionch.
Feature 6 is another one of the isolated residences at the Double O Mine. It is a three-room cabin constructed in separate phases, and the most complex building at the site (Figure 3.27). Though Feature 6 is a free-standing cabin, embankments to the east and west make the cabin look like a dugout. The larger main room may have served as a bunkhouse, with the smaller side room to the east separately housing a family (White 2012:67, Venable 2006). A possible pantry with shelving opens to the west of the larger room and a loft was built in the larger room. Unlike most of the other residences at Rabbithole, this feature was constructed mostly of dimensional lumber, though there is evidence of scavenged construction materials. Railroad ties form a retaining wall adjacent to the southeast corner of the cabin, the eastern room utilized railroad ties in its construction, and a utility pole was used as a roof beam (Barna 2008:87).

The larger main room has one door, two windows, and wooden flooring (McMurry et al. 2011:52). Several makeshift shelves are present on the walls, including a square meat can. The larger shelves are covered with linoleum, except one is lined with
flattened cans to form flashing. The flashing and a blackened area on the wall suggest a stove was located nearby when the cabin was occupied (McMurry 2007:95). The smaller eastern room also had evidence of a stove, supporting the hypothesis that the rooms may have been separate dwellings. The walls are covered with tar paper, chipboard, panels of cardboard, canvas, and carpet. Some of the nails were driven through crown caps to keep the wall coverings from pulling off the nails. Both domestic and industrial artifacts were recorded nearby, including a crushed metal wash tub, tin cans, pieces of metal screening, metal pipe, and timber.

Figure 3.27: Feature 6 (three room cabin), facing northeast. Photo by Melody Zionch.

Feature 9 is a two-room dugout, with an enclosed rear room, while the front room was walled with canvas (Figure 3.28). This may have been an adaptation to the heat at Rabbithole, as the canvas would allow breezes through the covered porch, or if the canvas was wet, it would have served as a desert cooler (Venable 2006; White 2012:67; Poston n.d.:10). The rear room has three earthen walls and the rest of the walls and framing are made of railroad ties and some lumber (McMurry 2007:99; McMurry et al. 2011:53). Both rooms had dirt floors. The walls of the interior room were covered with cardboard panels. A short distance away from the dugout is a small can dump. Other
artifacts include a colorless glass bottle base, evaporated milk cans, sardine cans, amber
glass fragments, aqua window glass, an oil can, and an automobile part.

Feature 47 was a two-room dugout, but only half of the front room remains
(Figure 3.29). It is also a part of Feature System H, along with a shaft and another
dugout. It is constructed of railroad ties and lumber, and is roofed with corrugated sheet
metal. The exterior of the north wall is covered with tar paper and metal siding (McMurry
2007:124). The back room utilized timber, corrugated metal, and automobile hoods in its
construction (Barna 2008:108). This may have been the living area, as that is where the
stove would have been located. Both rooms had packed earth floors. Wooden fruit crates
have been nailed to the wall as shelving. Unlike most dugouts at Rabbithole, Feature 47
was not lined with cardboard panels, though the tar paper on the exterior of the walls may
have negated the need for insulation in the building’s interior. Nearby artifacts include a
stovepipe, a straightened wire coat hook, a colorless glass jar finish, a wooden cot frame,
colorless bottle glass, amber bottle glass, metal window screen, corrugated metal, a
battery rod, wire nails, an electrical part, and an oil can.

Figure 3.28: Feature 9 (two room dugout), facing northwest. Photo by Jessica Smith.
Figure 3.29: Feature 47 (two room dugout), facing south-southwest. Photo by Dave Valentine.

Trash Disposal

There are 13 can dumps at the Double O Mine, though refuse is also associated with nearly all the mining and residential features and is scattered across the site (Figure 3.3). Many of the can dumps are located in close association with residential features. Most of the refuse is a mix of industrial and domestic items, emphasizing the lack of separation between work and home. The large number of food-related cans discarded throughout the site is evidence of the snipers’ reliance upon mass produced food items procured in nearby towns of Sulphur, Lovelock, and Gerlach. The Rabbithole Mining District is poor in food resources, which were only utilized in times of desperate need.

Feature 3 is a can dump containing about 400 cans (Figures 3.30 and 3.31). While a majority of the cans were cylindrical sanitary cans, condensed milk cans, rectangular cans, tobacco tins, rectangular spice cans, and metal flask with an aluminum cap were also present. There were many fragments of glass, including colorless bottle glass, colorless jar glass, amber bottle glass, straw-colored glassware with an embossed filigree
design, orange glassware with a floral design embossed on it, fragments of Depression Glass with an embossed filigree design, and light green glassware. Decorated and undecorated white improved earthenware fragments and pieces of a stoneware mug were recorded. Other various artifacts included a burned bovine vertebra, a partial shoe sole, a large metal roasting basket, an automobile bench frame, battery leads, a stove pipe, and a gas can.

Figure 3.30: Feature 3 (can dump), facing northeast. Photo by Jessica Smith.

Figure 3.31: Milk glass teaware fragments. Photo by Jessica Smith.
Figure 3.3: Map of the trash disposal features at the Double O Mine.
Feature 8 is a can dump associated with Feature 7, a dugout, to form Feature System A (Figure 3.32). The dump contains about 200 cans, mostly cylindrical and evaporated milk cans. The domestic-related items include cans, white improved earthenware fragments, porcelain tableware, a button, a bovine tarsal bone, a red rubber shoe sole, a National distillers screw top, amber bottle glass, colorless bottle glass, colorless glassware, a glass lamp globe with a grape and leaf pattern, flat glass, an amethyst glass jar finish, an amber glass jug, the top of a Clorox bottle, cobalt glass, and a colorless glass cup with a bronze line painting. Industrial refuse includes barrel hoops, a bucket, wire rope cable, a metal frame, a wheel drum brake from an automobile, and an aluminum tube reading “THE J.B. WILLIAMS CO.”

Figure 3.32: Feature 8 (can dump), facing west. Photo by Jessica Smith.

Feature 18 is one of many features in Feature System D and is primarily made up of industrial waste, though a leather shoe fragment was recorded (Figure 3.33). The dump
contains about 125 cans, mostly for motor oil. Also recorded were an iron canister, a metal duct elbow, lug bails, rectangular screw top cans, and a perforated metal plate.

![Image](image_url)

Figure 3.33: Feature 18 (can dump), facing east. Photo by Jessica Smith.

Feature 27 is another can dump that is part of Feature System D (Figure 3.34). It has three major concentrations of cans, with approximately 200 cans total. In addition to the cans, aqua bottle glass, colorless bottle glass, a shoe sole, white improved earthenware fragments, sheet metal, wire mesh, and two collections of battery fragments were recorded.
Feature 28 also has a large number of cans, including evaporated milk cans, sanitary cans, and tobacco tins (Figure 3.35). In addition to the cans, a flask with an external friction lid, a muffler, car batteries, a key wind, a lidless paint can, an Argentinian can, brown bottle glass, green bottle glass, colorless glass fragments, pieces of lumber, nails, white improved earthenware, wire screen, and a button were present.
Feature 63 is associated with Feature 10 as part of Feature System B (Figure 3.36). It contains bottle glass, white improved earthenware fragments, and food-related cans. Additional artifacts include several unidentified automobile parts, a hand-made stove, and a French’s mustard jar with holes punched in the lid to form a shaker.

Figure 3.36: Feature 63, facing south. Photo by Jessica Smith.

Feature 64 is associated with the dugout that served as a shop, making up Feature System C (Figure 3.37). Associated artifacts include amber bottle glass, colorless bottle glass, amethyst bottle glass, a medicine bottle, white improved earthenware fragments, a stove pipe, embossed colorless glass, a muffler, a small wheel with a 5” diameter, a ½” wide rubber tire, battery leads, and approximately 275 tin cans. The cans originally held evaporated milk, tobacco, sardines, canned meat, and motor oil.
Feature 66 is also part of Feature System D and is mostly domestic refuse, consisting of a variety of tin cans, including rounded edged rectangular cans, round cans, and evaporated milk cans (Figure 3.38). Other recorded artifacts include colorless glass fragments, amber bottle glass, an amethyst drinking glass, an unopened metal can, and an intact amber glass bottle. There are several industrial-related items, including wire mesh screening, batteries, and metal machine parts.
Feature 69 (Figure 3.39) is located in a small man-made channel and is made up of motor oil, cylindrical sanitary, and evaporated milk cans, in addition to amber bottle glass, colorless bottle glass, a ham can, an aqua bottle base, and several screw-top bottle finishes reading “NATIONAL DISTILLERIES.”

![Figure 3.39: Feature 69, facing northeast. Photo by Ben Barna.](image)

Feature 72 is a small can dump, associated with Feature 30 and part of Feature System E (Figure 3.40). The can dump consists of approximately 20 cans. Fragments of window glass and wire mesh are also present. A makeshift gas can that was constructed from metal cut from a larger can is in the dump. More cans are located to the northeast.
Feature 75 is made up of approximately 100 cans, 20 of which are evaporated milk cans (Figure 3.41). Other cans include tobacco tins, a rectangular metal can with “REMOVE PROTECTIVE CAP PUNCH BOTH HOLES” with an offset cap, a high rough can with an internal friction lid, and meat cans. Additional artifacts include an 8-sided glass bottle base, a fragment of mirror, an intact colorless glass bottle, colorless glass fragments, amber glass fragments, two rubber boot heels, an intact medicine bottle with a black plastic screw cap, and a colorless glass jug shoulder, handle, and finish.
Feature 84 is made up of two scatters of trash near Feature 39, a dugout (Figure 3.42). Features 39 and 84 make up Feature System G. One concentration is adjacent to Feature 39 and is mostly domestic refuse. It contains a small colorless glass jar, an aqua glass jar finish, colorless bottle glass, approximately 100 sanitary cans, several tobacco tins, metal grating, tin roofing, thick gauge wire, a windshield holder from an automobile, and an automobile tire. The second concentration extends to the southwest of Feature 39. This concentration is a mix of both domestic and industrial refuse. Domestic items include colorless bottle glass, a colorless bottle neck and finish, a colorless glass bottle base, amber bottle glass, a metal stove, decorated fragments of white improved earthenware, approximately 100 sanitary cans, evaporated milk cans, oval cans, a large round can lid, square cans and lids, several square meat can lids, and an enamelware bowl. Industrial-related items associated with the dump include sheet metal, fragments of galvanized metal, metal cable, a metal bucket with a handle, two metal gas cans, metal piping, a metal flex hose, a metal gold pan with ridges, a metal oil can, an automobile gas tank, other various automobile panels and parts, a metal funnel, and pieces of a tire.

Figure 3.42: Feature 84, facing southwest. Photo by Jessica Smith.
Feature 86 is nearby Feature 85, the burned dugout (Figure 3.43) in Feature System I. It contains nearly 500 cans, colorless glass fragments, a four-hole shell button, an enamelware basin, amber glass fragments, car seat springs, and a boot heel. Other items include fragments of wire, a multiple celled battery, paint buckets with lug bail handles, a square spade head with a two-piece handle bracket reading “BALDWINS/KNOXALL/2”, a partial barrel, and corrugated metal. Debris continues down the hill the east and south.

Figure 3.43: Feature 86, facing west. Photo by Nick Schroeder.

Artifacts Recovered at Double O Mine

Extensive changes in machinery, mass production, and the products being manufactured result in very different patterns of material culture between the California Gold Rushes of the 1850s and the Automobile Gold Rushes of the 1930s. Artifact types, such as personal hygiene or tableware, which Brooks (1995:116) attributed only to sedentary mining communities, are present in nomadic and semi-nomadic mining
communities dating to the 1930s because they were more likely to be available, cost less, and could be transported more easily due to automobiles. Therefore, Brooks’ (1995) model is not a perfect fit for analyzing the Automobile Gold Rushes. Temporary communities dating to the 1930s will have a greater number and diversity of artifacts recovered than similar communities from the 1850s, though sedentary settlements would deposit a larger amount of refuse made up of more types of items. As previously mentioned, Brooks (1995:26) argued that people will bring fewer belongings to a place where they do not anticipate staying very long, which helps to explain the pattern of material culture better than the argument that the longer people stay in a place the more refuse will accumulate.

Though artifacts were collected across the surface of the site, a majority of the artifacts included as evidence of anticipated mobility were recovered from the excavation units nearby and inside Feature 16. A wide variety of artifacts were recovered at Rabbithole, including domestic, industrial, entertainment, and personal hygiene related items.

Personal Hygiene Artifacts

Excavation inside Feature 16 produced multiple artifacts relating to personal hygiene, including fragments of combs, the head of a razor, and fragments of toothbrushes (Figure 3.44). The collection of artifacts from a single household reveals the importance of personal hygiene to the inhabitants. Though the snipers and their families lived in a remote desert landscape, they continued to care about their appearances.
With the exception of the men’s razor head, none of the personal hygiene artifacts can be tied to a particular gender. Toothbrushes and combs could have been used by any member of the community at the Double O Mine, whether male, female, or child. This collection of hygiene related artifacts shows the snipers at Rabbithole continued to follow the cultural norms relating to personal appearances during the Great Depression.

![Personal hygiene related artifacts recovered at the Double O Mine. Photo by Kristen Tiede.](image)

Figure 3.44: Personal hygiene related artifacts recovered at the Double O Mine. Photo by Kristen Tiede.

Entertainment Artifacts

Excavations also revealed that the snipers were not singularly focused on mining, but also took time for leisure and entertainment. A fragment of a plastic gaming payout table was recovered in one of the excavation units in Feature 16 (Figures 3.45 and 3.46). The use of this artifact is strictly for entertainment and is a unique artifact as Nevada is one of the few states with legalized gambling. Also, the small plastic card was likely not
reused for another purpose. Other items, such as newspapers, could be read and then turned into chinking for the dugout walls. Brooks (1995:116-117) has no classification for entertainment-related items, but noted personal items would not be present in nomadic settlements and would be only possibly present in semi-nomadic settlements.

Domestic Artifacts

Though the dugouts were a temporary solution to the need for housing at Rabbithole, the residents worked to make the dugouts seem more like home (White 2012:60). One example of this behavior was recovered through excavation within Feature 16, where different colors of linoleum were laid out in a geometric pattern (White 2012:70). It may have been easier to keep the linoleum floor surface clean than a floor of
packed earth, or the inhabitants may have wanted to add some decoration to the dugout, or possibly both (Figure 3.47).

Figure 3.47: Linoleum recovered through excavation. Photo by Kristen Tiede.

Excavation units inside Feature 16 also recovered a sewing needle, many buttons, and fragments of a variety of textiles, including denim, corduroy, and knit (Figure 3.48). These artifacts suggest clothing was repaired or manufactured within the dugout. Limited money encouraged the snipers and their families to “Make Do” with what they had, including items of clothing (Barna 2008).

Figure 3.48: Sewing needle and buttons recovered at the Double O Mine. Fabrics not pictured due to their deteriorated nature. Photo by Kristen Tiede.
Additionally, fieldwork crews at Rabbithole recorded fragments of glassware, tableware, and other ceramics (see Figure 3.31). Though Brooks (1995:116) argued tableware would be absent from nomadic and semi-nomadic mining settlements, these items would have been easier to purchase and transport with automobiles in the 1930s. Using tableware may have also made the dugouts feel more like home.

Industrial Artifacts

Industrial refuse, including machinery parts, automobile parts, barrels, and cans, is scattered across the entire site, including areas associated with residential features. The lack of separation between work and home is suggested by this pattern. The excavation units inside Feature 16 revealed extensive industrial related artifacts, especially hardware such as nuts, bolts, and cotter pins, located within the home. Brooks (1995:116) found industrial related items would be present at both nomadic and semi-nomadic mining communities. However, due to the advances in technology, they are present at the Double O Mine and other Depression era mining communities at a much higher rate.

Conclusion

Though Brooks’ (1995) model of anticipated mobility is a good place to start analyzing anticipated mobility, it does need to be reworked to better suit the needs of mining communities formed during the Great Depression. Though the residential architecture and patterns of trash disposal are very similar between the different types of communities from the California Gold Rush and the Automobile Gold Rushes, the material culture left behind by the snipers shows a very different pattern from the
prospectors. This change in behavior and the material culture that results from it could have several explanations, including changes in culture, manufacturing, and machinery.

The landscape, the 23 residential features, the 13 can dumps, and collected artifacts are all physical evidence of how the snipers thought about the Double O Mine and how long they would stay. The next chapter will analyze the evidence using the adapted model.
CHAPTER FOUR: ANALYSIS

As discussed in Chapter 3, there is ample evidence of the snipers’ anticipated mobility at the Double O Mine, including their residential features, patterns of trash disposal, and recovered artifacts. Through the examination of the rough dugouts and cabins, the refuse spread across the site, and the majority of industrial or work-related artifacts, it is clear the snipers did not intend to make permanent homes in the Rabbithole Mining District, though it is harder to discern how long they thought they would stay. The application of the anticipated mobility model to the material remains the snipers left behind helps to provide evidence to answer that question.

While Brooks’ (1995) model of anticipated mobility helped to interpret the physical remains of communities from the California Gold Rushes, evidence from Great Depression era mining communities do not fit neatly into the model. The model of anticipated mobility needs to be adjusted to better interpret the physical evidence left by mining communities from the 1930s. Firstly, Brooks’ (1995) original model of anticipated mobility does not factor in poverty, though it was a part of everyday life during the Great Depression. The level of poverty in Depression era mining communities could affect the patterns of material culture left behind, such as residential architecture, adaptive reuse of items, and what items would have been thrown away. When applying the model of anticipated mobility to communities from the Great Depression, the effects of poverty should be considered alongside expectations of transience.

The patterns of residential architecture and refuse disposal in remote mining communities are relatively similar between the California Gold Rushes of the 1850s and the Automobile Gold Rushes of the 1930s. However, when considering poverty in
relation to residential architecture, the residents may not have been able to afford standard building materials or flooring materials even if they planned to stay in an area. The effects of poverty may influence the classification of residences in the nomadic and semi-nomadic categories. Additionally, residents of Depression era mining communities often relied on mass-produced food items (Woody 2008:49), which alters the patterns of trash disposal. Even in short-term settlements, the miners’ dependence on canned foods will result in the disposal of large numbers of cans. The major difference between the California Gold Rushes and the Automobile Gold Rushes lies in the number and types of artifacts that may be recovered.

Entire families worked the placer gold deposits cooperatively, which resulted in different material culture than the primarily male population of miners from the 1800s. Additionally, automobiles allowed people to be more mobile, traveling greater distances more quickly. Changes in machinery allowed the manufacture of a greater number and type of commercial products at a cheaper cost. Advertisements helped to create a wider ranging market for these items, and trucks delivered the products across the country. These changes in manufacturing and transportation allowed miners even in remote mining communities such as Rabbithole to purchase what would have been considered luxury items during the California Gold Rushes. Therefore, the categories of artifacts present in nomadic, semi-nomadic, and sedentary communities from the Automobile Gold Rushes will be expanded from Brooks’ (1995) original model.

Furthermore, the original model only had three categories of mobility: nomadic, semi-nomadic, and sedentary, but the analysis of the residential features at the Double O Mine required a fourth category of unclassifiable. The addition of the unclassifiable
category allows further analysis and discussion of residential features that fit more than one category of anticipated mobility. The results of the model as applied to the Double O Mine are analyzed here in order to discuss how long the snipers thought they would stay in their dugouts in the desert.

Anticipated Mobility of Residential Features

The twenty-three residential features at the Double O Mine described in Chapter 3 are classified here as nomadic, semi-nomadic, sedentary, or unclassifiable based on their physical characteristics. Brooks’ (1995) model of anticipated mobility as it is applied to the dwellings needs no alterations, besides the consideration of poverty. In resolving their great need for shelter in the harsh desert environment, the snipers constructed the dugouts and cabins scattered across the Double O Mine, and these are well-preserved evidence of the snipers’ anticipated mobility. Analyzing these various residential features can help to reveal how long the snipers and their families expected they would stay at Rabbithole to work the placer gold deposits as an alternative to the government dole.

The residential features at the Double O Mine that were classified as nomadic will be discussed first, followed by those classified as semi-nomadic, sedentary, and unclassifiable. Residential features in each category will be discussed in order of complexity, ranging from simple to complex.

Nomadic

According to Brooks (1995:102-103), the forms of housing in nomadic mining settlements are limited to tent pads, dugouts, and cabins. The characteristic residential
features of nomadic settlements are single room dwellings, without flooring or a heat source, apart from rough stoves (Table 2.1). Many of the residential features at the Double O Mine can be classified as nomadic, since the snipers that built them did not intend to stay in the Rabbithole Mining District permanently. The nomadic residential features will be discussed from simple to complex, starting with tent pads, moving to collapsed dugouts, and, finally, standing dugouts.

Tent Pads

Tent pads are the simplest form of residence that can be identified archaeologically, both at the Double O Mine and in the nomadic category of the model, resulting in the classification of Features 11, 24, and 44 as nomadic. Feature 11 is a tent pad and associated scatter of artifacts. Feature 24 is another tent pad with a wide variety of artifacts present nearby. Feature 44 is a tent pad and mining location marker, with few associated artifacts.

Collapsed Dugouts

Dugouts are the most common form of residence in the nomadic category of anticipated mobility. Over half of the dugouts at the Double O Mine have collapsed and were scavenged for building materials or campfire fuel, leaving little physical evidence of the residence behind to interpret.

First, the collapsed dugouts with no evidence of a heat source will be discussed in numerical order. Feature 10 is a collapsed dugout, probably with only one room and a dirt floor. There is no evidence of a stove, but the collapse of the dugout and scavenging of
building materials make it difficult to be certain. Feature 19 is a collapsed dugout, built from a combination of railroad ties and dimensional lumber. The floor was packed earth, and there is no evidence a stove was present within the dwelling. Feature 20 is the remains of a small dugout. Only a few building materials are present. The floor is earthen and there is no evidence for the presence of a stove. Feature 29 is made up of the remains of a small single-room dugout with a dirt floor. Stacked rocks were likely part of the walls. There is little evidence to suggest the dwelling had a heat source inside. Feature 36 is a single-room dugout, possibly roofed with canvas. The floor was packed earth and there is no evidence of a stove present within the feature. Feature 48 is another collapsed dugout that had been built with available materials, evident in the mismatched lumber of one of the walls. The floor of the residence was likely dirt and there are few artifacts associated with the dwelling. There is no evidence of a stove. Feature 68 is a collapsed dugout with various building materials still present in the vicinity. The floor was packed earth and there is no evidence a stove had been present. Feature 87B is a collapsed dugout. Few building materials are present, though stacked rocks likely made up one or more walls within the dwelling. The residence had a dirt floor and there is no evidence a stove was present.

Next, the collapsed dugouts with evidence of a heat source will the discussed in numerical order. Feature 13 is a collapsed dugout. It was likely a single room dwelling, with a dirt floor. A stovepipe thimble in the southwest corner of what is left of the roof is clear evidence of a stove in the dwelling. Feature 25 is a building pad with little evidence of the dwelling that had been built on it. The feature would have likely been small with a dirt floor, and a stove pipe suggests a stove would have been present. Feature 41 is the
footprint of a dugout. Little is left of the original dwelling and the floor would have been packed earth. A stove pipe and damper located nearby suggest a stove would have been present within the dwelling. Feature 42 is a collapsed dugout, with building materials scattered in the immediate area. The floor of the dugout was likely packed earth and a circular hole in a piece of corrugated metal that had been the roof is evidence a stove was inside the residence. Feature 85 is made up of the remains of a burned dugout. The floor was likely packed earth. A section of stovepipe nearby suggests the residence had a stove inside.

Standing Dugouts

Very few of the nomadic residences are still standing, but they enable the analysis of how the domestic and social space within the dugouts was organized. The standing nomadic residences will be discussed in numerical order. Feature 7 is a standing dugout further buried by subsequent mining activities. The dwelling’s single room had a dirt floor, and a stovepipe suggests a stove was present. Feature 39 is a one-room cabin, built primarily from lumber, though repairs were made with scavenged materials. The floor was likely packed earth. A small stove is present in the trash scatter associated with this dwelling and may have been used for heat and cooking within the residence.

Discussion

Since 18 of the 23 residential features were classified as nomadic, they are further evidence in support of the idea that the snipers did not originally intend to stay in the Rabbithole Mining District for very long. The simple tent platforms and rough dugouts
provided shelter in the harsh desert environment but would not have been ideal for a long-term occupation.

Further research and sub-surface testing into the residences categorized as nomadic could potentially change their classification. For example, Feature 16 would have been classified as nomadic, due to its single room and dirt floor, though a stove was present. Excavation within the feature revealed linoleum flooring laid out in a geometric design, which placed the dugout in the semi-nomadic category. Sub-surface testing within other residential features at the Double O Mine could reveal similar features that would influence their classification as semi-nomadic rather than nomadic, due to the presence of flooring. Additionally, excavation could also reveal evidence for the presence of a stove inside the dwelling, when other forms of evidence such as a hole in the roof for a stovepipe, the stove, or stovepipe itself are not evident.

The more residences at the Double O Mine that are placed within the semi-nomadic category is further evidence that the snipers’ occupation lasted far longer than they had originally anticipated. As the snipers could see no reason to leave the claims in the remote Rabbithole Mining District, they worked to make their dugouts and cabins seem more like home, with the additions of stoves, flooring, and other domestic items. Flooring, such as linoleum, would have been easier to keep clean than packed earth and stoves would have been a necessity for hot meals and keeping the residences warm. The snipers also gathered around stoves to socialize, making them important social spaces (White 2012:72).

Again, poverty could be a factor in the absence of flooring at the Double O Mine. The small amounts of gold recovered from the placer gravels were likely spent on food.
and other supplies rather than flooring materials. The linoleum recovered in Feature 16 were fragments of different colors, shapes, and patterns, which suggests they may have been scavenged. Furthermore, if floorboards had been present during the time the dugouts were occupied, they could have been removed when the snipers left the Double O Mine or could have been scavenged. But this would be difficult to prove archaeologically, so while these factors have been addressed they do not play a large part in the classification of nomadic residences at the Double O Mine.

Semi-Nomadic

Semi-nomadic mining settlements usually have dugouts or cabins that have one to two rooms, may have flooring, and usually have a heat source (Table 2.1). The residential features may not have all the characteristics of semi-nomadic architecture, but the presence of at least one of the characteristics is enough to place the feature within the semi-nomadic classification. The residential features at the Double O Mine that have been classified as semi-nomadic are all standing dugouts or cabins, and will be discussed numerically.

Feature 6 is a cabin with multiple rooms, one of which is a pantry. The cabin was constructed mainly with dimensional lumber, though some scavenged materials were also used. The larger room had a section of wooden floor present and excavation in the smaller room revealed carpeting with the design still visible. Stovepipes were present in both rooms, further supporting the hypothesis that the rooms were separate dwellings.

Feature 9 is a dugout with two rooms, with the open-framed front room possibly functioning as a desert cooler. Both the enclosed rear room and the canvas-walled front
room had floors of packed earth. There is no evidence a stove was present in the dwelling.

Feature 16 is a single room dugout built of railroad ties and lumber. On the surface, the floor appeared to be packed earth, but excavation revealed linoleum flooring, placing the feature in the semi-nomadic category. Flashing on the wall and a hole in the roof for a stovepipe were clear evidence a stove had been present, and excavation also revealed an ash lens probably associated with the stove.

Feature 47 is a dugout with two rooms, though what remains of the front room is only half the original size. The dwelling was constructed of railroad ties, lumber, and other scavenged materials. Both rooms had earthen floors. The stove was most likely placed in the back room and a section of stovepipe is present nearby.

Discussion

Only four of the 23 residential features were classified as semi-nomadic, helping to prove that the snipers put more effort into making their homes more comfortable the longer they stayed at the Double O Mine. Though a majority of the semi-nomadic residences had two rooms, flooring, and stoves, they were still not ideal homes for a long-term occupation. For example, the front room of Feature 9 was likely walled with canvas, which would have suited a warm weather occupation rather than a year-round occupation, and the earthen walls in the rear room in Feature 47 are shored up with panels from automobiles, suggesting they were attempting a quick repair with available materials. These aspects of the semi-nomadic residential features highlight the temporary nature of the snipers’ occupation of the Rabbithole Mining District.
Though a majority of the residential features at the Double O Mine were classified as nomadic due to their size and dirt floor, excavation units opened in their interior could potentially reveal the presence of other forms of flooring or evidence of a stove. With the presence of a single characteristic of semi-nomadic residences, like in Feature 16, more of the dugouts could potentially be categorized as semi-nomadic. As mentioned above, a larger number of residences classified as semi-nomadic supports the idea that as the snipers continued to stay in the Rabbithole Mining District, they invested time and resources into their dugouts to make them feel like home. This pattern of behavior shows a change in how the snipers thought about Rabbithole and their homes.

Sedentary

Sedentary mining settlements typically are populated by houses and buildings with multiple rooms, which always have flooring and a source of heat (Table 2.1). As expected, none of the dugouts or cabins at the Double O Mine fit this classification, because the snipers and their families knew they did not hold the legal ownership to the land they occupied. Even if the snipers were the legal owners of the claims or had been allowed to stay and work the claims once the ownership had been resolved, the Rabbithole Mining District was a difficult place to live, as it is poor in resources, including water, fuel for fires, and food resources. Many hazards made the Double O Mine an unsafe place to live, including extreme heat, open mine shafts, venomous snakes, and makeshift shoring for adits which could result in collapses (Venable 2006; Lovelock Review-Miner 1938). Snipers looking for a more permanent settlement could
have moved to the nearby town of Sulphur, which had a store, school, and other businesses and institutions (Venable 2006).

Unclassifiable

As previously mentioned, Brooks’ (1995) original model of anticipated mobility did not include a category for dwellings that do not neatly fit within any one category. Rather than place the dwellings into an ill-fitting category, I added unclassifiable to address this issue, though most of the residential features at the Double O Mine were easily classified as nomadic or semi-nomadic.

One of the features at the Double O Mine did not easily fit within any of the categories of anticipated mobility. Feature 30, an adit repurposed as a residence, should have fallen into the nomadic category. It was a single room dwelling with a dirt floor, with shelves and other storage dug into the walls. A stove had been present inside, which does not necessarily place it within the semi-nomadic category. Panels of cardboard had been laid out to serve as makeshift flooring, which would make the residence fit within the semi-nomadic category. Panels of cardboard would have been a form of temporary flooring, which would soak up liquids, break down when wet, and likely get dirty quickly. But, it could be easily replaced with fresh panels, which were readily available.

With similar dwellings being described as “caves” by Doris Venable (2006) and Paden (1949:155), I hesitated to classify this residential feature as semi-nomadic, though it did have makeshift flooring. Because of this conflicting pattern of characteristics, it was difficult to fit Feature 30 into one category of anticipated mobility, resulting in its designation as unclassifiable. Without the high level of preservation at the Double O
Mine, the makeshift flooring of cardboard panels would not have been recovered, and this feature would have been simply classified as nomadic.

Discussion of Anticipated Mobility in Residential Features

Table 4.1 shows the classification of all the residential features at the Double O Mine. As expected, a majority (79%) of the 23 residential features were classified as nomadic. None of the features were sedentary, while 17% were semi-nomadic and 4% were unclassifiable.

Three of the 23 residential features (12.5%) were tent platforms, which suggests the stay was anticipated to be quite short. Though flat areas were sometimes constructed on which to place the tent, time, energy, and resources were not invested in building a dugout or cabin. Tents could also have been easily moved, both within and between sites.

Only eight of the dugouts are still standing. The other thirteen dugouts or cabins have collapsed or been heavily scavenged, either immediately after the dugout was abandoned or by modern site visitors. The snipers may have had limited carpentry skills, lacked tools and materials, built their residences in an expedient manner, or have been disinterested in the time investment in building a sturdy home, all of which may have resulted in the rough, poorly constructed dwellings.

Modern visitors to the site may think the dugouts are uninhabitable. When Irene Paden (1949: 155) visited the Rabbithole Mining District, she noted she “was upset by the notion of civilized people living under such conditions. It seemed beneath our lowest standards.” But through further examination and reflection on the dwellings, she recognized them as evidence of human resilience and resourcefulness (Paden 1949:156).
The snipers and their families were simply making do with the materials they had for a short-term occupation (Barna 2008). The rough dugouts and cabins provided the needed shelter from the elements for the short amount of time the snipers thought they would be at Rabbithole. They saved the gold they had dug from the steep gulches for purchasing food and other necessary supplies, avoiding investing time, energy, and resources into dwellings they planned to abandon.

Table 4.1: Classification of residential features at the Double O Mine using the adapted Brooks (1995) model of anticipated mobility.

<table>
<thead>
<tr>
<th>Feature #</th>
<th>Nomadic</th>
<th>Semi-Nomadic</th>
<th>Sedentary</th>
<th>Unclassifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87B</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anticipated Mobility of Can Dumps

Trash disposal offers another way to examine how long the snipers thought they would be staying at the Double O Mine. The patterns of trash disposal as described in the anticipated mobility model are as follows: nomadic settlements tend to have sheet middens, semi-nomadic settlements may have sheet middens or contained dumps, and sedentary settlements always have contained dumps (Table 2.1).

The thirteen features at the Double O Mine relating to refuse disposal are scatters of domestic and industrial trash. Trash is dispersed across the site, associated with residential features, and found in concentrations. Many food related cans are present, due to the lack of food resources in the surrounding landscape and the popularity of canned food items during the 1930s. Any artifact or item of trash present at the site had been brought to the site by the snipers or other miners who worked at the site from nearby towns of Sulphur, Gerlach, or Lovelock. The presence of trash scattered across the site classifies the refuse disposal pattern at the Double O Mine as nomadic.

Discussion of Anticipated Mobility of Can Dumps

At first glance, the pattern of trash disposal at the Double O Mine looks to be a mix of contained dumps and sheet refuse across the site. Brooks (1995:98) has an explanation for this method of trash disposal: miners follow the pattern associated with how long they originally thought their stay would last, even if they stay longer than anticipated. This means that when the snipers arrived at the Double O Mine, they anticipated they would only be there for a short time. The extended legal battle over ownership of the claims and the high price of gold encouraged the snipers to continue to
eke out a living at the remote desert mine claims. The snipers followed the nomadic pattern of refuse disposal, where trash was simply dropped or thrown out the door of the residence. As the snipers’ stay stretched on, cans and other refuse began to pile up. The hundreds of cans and other refuse scattered across the site and occurring in large concentrations are the result of about seven years’ worth of trash disposed of by the snipers.

With few other options to feed themselves and their families, the snipers regularly traveled to nearby towns to replenish supplies of canned foods. The large numbers of cans recorded at the Double O Mine supports the need for an alteration to the model of anticipated mobility. Even nomadic mining settlements from the 1930s would likely have numerous cans present, as the miners may not have had many other ways to put food on the table. Some miners could have supplemented their diet with produce grown in gardens, though the harsh desert landscape made this impossible at the Double O Mine. Therefore, the trash disposal patterns from sites dating to the Great Depression need to include concentrations of cans in all categories of settlements.

Anticipated Mobility of Artifacts

As previously discussed, changes in production and transportation allowed a wider variety of products to be available to consumers by the 1930s. The ability to travel greater distances more quickly resulted in a greater number and variety of artifacts present at the Double O Mine, including items relating to personal hygiene or entertainment. Table 4.2 lists Brooks’ (1995:116-117) original claims for the presence of
certain types of artifacts in nomadic, semi-nomadic, and sedentary sites. The fifth column shows nearly all the categories of artifacts were present at the Double O Mine.

Table 4.2: Brooks’ (1995:116-117) original table of artifacts and artifacts recovered at the Double O Mine.

<table>
<thead>
<tr>
<th>Artifact Types</th>
<th>Nomadic</th>
<th>Semi-Nomadic</th>
<th>Sedentary</th>
<th>Found at Double O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Cans</td>
<td>Probable</td>
<td>Probable</td>
<td>Possible</td>
<td>Yes</td>
</tr>
<tr>
<td>Industrial Cans</td>
<td>Probable</td>
<td>Probable</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Bottle Glass</td>
<td>Probable</td>
<td>Probable</td>
<td>Probable</td>
<td>Yes</td>
</tr>
<tr>
<td>Work-Related</td>
<td>Probable</td>
<td>Probable</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tin Plates</td>
<td>Possible</td>
<td>Possible</td>
<td>No</td>
<td>Possible</td>
</tr>
<tr>
<td>Tableware Sets</td>
<td>No</td>
<td>No</td>
<td>Probable</td>
<td>Yes</td>
</tr>
<tr>
<td>Teaware Sets</td>
<td>No</td>
<td>No</td>
<td>Probable</td>
<td>Yes</td>
</tr>
<tr>
<td>Glassware</td>
<td>No</td>
<td>No</td>
<td>Probable</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-Male Items</td>
<td>No</td>
<td>No</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>Personal</td>
<td>No</td>
<td>Possible</td>
<td>Probable</td>
<td>Yes</td>
</tr>
<tr>
<td>Architectural</td>
<td>No</td>
<td>Possible</td>
<td>Probable</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Nearly all Brooks’ (1995:116-117) categories of artifacts were found at the Double O Mine. This pattern is one of the reasons the model of anticipated mobility needs to be reworked when it is applied to time periods other than the California Gold Rushes of the 1850s. Though the community at the Double O Mine was by no means sedentary, there were artifacts that Brooks (1995:116-117) argued are only present in permanent settlements.

Some categories of artifacts were more prolific than others. For example, hundreds of food-related and industrial cans were found, while only a few personal and entertainment items were recorded. Only a small number of tableware, teaware, and glassware items were recorded and most of them were small fragments. Though no tin plates were recorded, several pieces of enameled tin cookware were recorded, resulting in the probable listing in Table 4.2. Excavation units inside other residential features have the potential to reveal more personal, hygiene, and what Brooks (1995:116-117) calls
non-male artifacts. For example, a large number of artifacts were recovered inside Feature 16, including combs, tooth brushes, and a perfume bottle, in addition to numerous architectural and hardware items.

Because the population of many 1850s mining communities was primarily male, Brooks (1995:116-117) noted it would be rare to find artifacts associated with women or children, except in more permanent settlements. But during the Great Depression, entire families traveled by car to reach the gold mining districts, so the presence of women and children in a mining district would have been the norm, rather than an oddity. Changes in culture, clothing, and manufacturing make it difficult to clearly identify the gender of the residents of the dugouts at the Double O Mine. Anyone could have used the combs and toothbrushes recovered in Feature 16. Artifacts used to identify women during the California Gold Rushes, such as corset busks, beads, and jewelry (Timmons and Dixon 2011:68) were either no longer worn or may not have been worn while working placer gold deposits in the remote Rabbithole Mining District. Furthermore, the presence of a sewing needle is not concrete evidence of a woman, as men could also have sewed new clothing or repaired old clothing at the Double O Mine. Even when studying California Gold Rush era communities, such as Coloma, Montana, it is problematic to use sewing pins or needles to identify the presence of women, since Thurlo (2010:61) recovered sewing pins in a residence occupied by two single men. Therefore, it is difficult to identify the presence of women archaeologically at the Double O Mine, as none of the artifacts are definitively associated with women.
Discussion of Anticipated Mobility of Artifacts

Though the artifacts recovered at the Double O Mine reveal a pattern that does not fit within Brooks’ (1995) original model of anticipated mobility, the proportions of the artifacts from each category have the potential to reveal more about the snipers and their lives in the desert. The category with the most artifacts is easily the industrial and work-related items, such as gears, nuts, bolts, cotter pins, and other fragments of metal. This pattern emphasizes the importance of work at the Double O Mine. While personal hygiene, entertainment, and tableware artifacts are also present, they occur at much smaller proportions. One potential explanation for this pattern of material culture, and therefore human behavior, is that the snipers and their families believed they would only be in the Rabbithole District for a short time and focused on mining the placer gold. But, their anticipated short stay stretched on to last about seven years. However, the snipers may have taken personal, hygiene, and domestic items with them when they were forced to leave the site, which could also account for the small numbers of artifacts in those categories. Alternatively, the level of poverty experienced by the snipers could also influence the level of personal, domestic, and hygiene items. Tableware, teaware, and glassware items could have been recovered in such few numbers because the snipers could not afford to buy full sets and instead purchased only enough for their household.

As the snipers’ occupation of the Double O Mine lengthened, they may have been more likely to purchase items relating to hygiene, entertainment, or the home, in addition to acquiring the necessary parts, hardware, and materials needed for the numerous mining ventures. Regular trips into nearby towns to sell their gold and stock up on supplies allowed the snipers numerous opportunities to purchase domestic, hygiene, and personal
items that would have been considered luxury items in the California Gold Rushes. Tableware, teaware, and glassware items may have helped the snipers and their families feel more at home in the rough dugouts. The addition of flooring in several of the dugouts, whether a wood floor, linoleum, or cardboard panels, may have aided in keeping the residences clean. At the same time, the snipers knew they would more than likely have to eventually leave the dugouts they had built in the remote mining district. Though they were living in an isolated desert setting, the snipers still followed what would have been considered acceptable patterns of behavior, such as keeping up with their personal hygiene, as evidenced by the presence of tooth brushes, combs, and a razor head.

Brooks (1995) used a presence/absence analysis of artifact types in the model of anticipated mobility, which only revealed that a majority of the artifact types were present at the Double O Mine. To look at the types and number of artifacts present at the Double O Mine in more detail, I applied Stanley South’s (1978) artifact patterns. Using only the artifacts in the catalog and not all the artifacts whose presence was recorded at the site, I counted the numbers of artifacts that fell into South’s (1978) artifact types, including Kitchen, Architecture, Furniture, Arms, Clothing Personal, Tobacco Pipes, and Activities (Table 4.3). Artifacts that did not fit into South’s (1978) categories were not included in this analysis. No tobacco pipes were recovered but tobacco-related artifacts, including tobacco tins were counted in this category. Also, the Double O Mine’s function as a recreational area means that the recorded and recovered ammunition may not be related to the sniper occupation of the site, so further research may exclude some of the ammunition from the analysis. The high levels of artifacts in the Architecture Type in relation to the smaller number of artifacts in the Kitchen Type follows South’s
Frontier Artifact Pattern, which South suggests could be explained by “a shorter occupation period per architectural unit on the frontier than in settlements not on the frontier.” The addition of South’s (1978) analysis of artifact patterns further supports the idea that the settlement at the Double O Mine was not occupied, or intend to be occupied, in the same manner as a permanent settlement.

Table 4.3: South’s (1978) Artifact Types and Means at the Double O Mine.

<table>
<thead>
<tr>
<th>Artifact Type</th>
<th>Number</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitchen</td>
<td>76</td>
<td>17.92</td>
</tr>
<tr>
<td>Architecture</td>
<td>257</td>
<td>60.61</td>
</tr>
<tr>
<td>Furniture</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Arms</td>
<td>14</td>
<td>3.30</td>
</tr>
<tr>
<td>Clothing</td>
<td>42</td>
<td>9.91</td>
</tr>
<tr>
<td>Personal</td>
<td>22</td>
<td>5.19</td>
</tr>
<tr>
<td>Tobacco Pipes</td>
<td>3</td>
<td>0.71</td>
</tr>
<tr>
<td>Activities</td>
<td>10</td>
<td>2.36</td>
</tr>
<tr>
<td>Total</td>
<td>424</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Discussion

Brooks (1995) neatly applied the model of anticipated mobility in her case studies of two mining districts that were occupied during the 1850s, classifying communities around the White Pine and Black Hills Districts as nomadic, semi-nomadic, or sedentary. But the physical evidence the snipers left behind at the Double O Mine is less clear cut, requiring a model of anticipated mobility attuned to the Automobile Gold Rushes. Sedentary is the only category not represented in the 23 residential features. Eighteen (79%) are nomadic, four (17%) are semi-nomadic, and one (4%) is unclassifiable. Since the majority of the residential features fall under the nomadic category, this evidence
suggests the community was intended to be occupied only for a short time until the economy improved, the gold ran out, or the snipers were forced to leave the property where they illegally squatted. None of these events happened until 1941, resulting in the combination of nomadic and semi-nomadic traits in the sniper community.

A similar pattern is evident with the disposal of trash at the Double O Mine. As they anticipated leaving the Double O Mine after only a short time, trash was dropped across the site and thrown out the door of residences. The disposal of trash was not confined to dumps, but as the snipers’ occupation continued for several years, cans and other trash began to build up in large concentrations. This pattern of dispersed trash and concentrations of cans is due to the necessity of canned foods in a landscape poor in resources. The trash scattered across the site and associated with mining features suggest the snipers were following the typical nomadic pattern of disposing of their trash, though their stay lasted longer than they had anticipated.

The large numbers of artifacts recovered at the Double O Mine are influenced by how long the snipers stayed in the remote desert mining district. As the snipers had originally thought they would only be at Rabbithole for a short period of time, they focused on the mining that allowed them to survive the Great Depression without relying on federal aid. This is evidenced by the high numbers of industrial and work-related artifacts scattered across the site, mixed with domestic trash in can dumps, and recovered in residences through excavation. But as their stay at Rabbithole lasted years longer than they had originally thought, the snipers and their families were more likely to bring items relating to the home, entertainment, or other personal items to the site. This helps to
explain the presence of teaware, tableware, and glassware items recovered at the Double O Mine.

The anticipated mobility of the community built by the snipers and their families in the Rabbithole Mining District is nomadic, which is supported by the residential architecture, patterns of trash disposal, and artifacts recovered at the site. Though the actual mobility was much more semi-nomadic, it is the original plan of how long the residents thought they would stay at a site that influenced their behavior through the dwellings they built, how they disposed of refuse, and what they brought to and disposed of at the site. These patterns of material culture show that even though the snipers’ occupation of the Rabbithole Mining District extended far beyond what they had originally anticipated, the snipers’ behavior did not change drastically. As they continued to live at the Double O Mine, the snipers did not invest more time and resources into more stable homes or institutional architecture, but simply brought more personal and domestic items into the community. The snipers’ focus was still on gold, but they used the money they earned on domestic items that allowed them to recreate behavioral norms even in their isolated location. For example, tin plates and cups were likely replaced by real dishes and drinking glasses.

As the lines of evidence have shown, the Double O Mine does not fit neatly into either the nomadic or semi-nomadic category. Though the residential architecture, trash disposal pattern, and recovered artifacts have mostly nomadic characteristics, each does have a few traits of semi-nomadic settlements. This is partially explained by the actual mobility lasting a great deal longer than the original anticipated mobility of the community, but it prevents the community from neatly fitting within the categories of the
original model. The actual mobility of the community at the Double O Mine followed a more semi-nomadic pattern, while the behavior that shaped the landscape and material culture at the site follow the nomadic pattern. Adding additional categories to the model could potentially help with this problem, but still does not resolve some of the tension between actual and anticipated mobility. The model briefly addresses what may happen when anticipated mobility and actual mobility do not match up, but does not address how anticipated mobility may change as well. For example, within the community at the Double O Mine, the snipers originally thought they would stay for a short time before moving on, but as time passed, they began to realize they would stay longer. As their anticipated mobility moved towards the semi-nomadic category, some residents began to invest more time and resources into making their dugouts more comfortable homes, which creates difficulty in categorizing the community into a single category of anticipated mobility. But with the revisions to the original model, the majority of physical evidence at Double O Mine fits within the nomadic category of anticipated mobility, while the actual mobility falls within the semi-nomadic category.

Conclusion

The residential architecture, patterns of trash disposal, and artifacts recovered at the Double O Mine are well-preserved evidence used to understand the intentions of the snipers to live in the desert. The residential features were classified by size, the presence of flooring, and the presence of a heat source. Most of the residential features at the Double O Mine were classified as nomadic. The can dumps and trash scattered across the site follow the pattern of nomadic mining communities. Though at first it looks as though
it may have followed a combination of the nomadic and semi-nomadic patterns, placing the site in proper context reveals that a dependence on canned foods and following the nomadic pattern for seven years results in large concentrations of refuse piling up where it was often thrown out the door of residential features or simply dropped by other features when no longer useful. The artifacts recovered were harder to classify, as many of the artifact types Brooks (1995:116-117) argued would only be present at sedentary settlements were present at the Double O Mine. For example, items such as a gambling payout table, a possible perfume bottle, teaware, and glassware were all recovered, which does not seem to follow the nomadic pattern. But the presence of these artifacts can be explained by comparing the anticipated mobility of the sniper community to its actual mobility.

Though Brooks’ (1995) model of anticipated mobility helps to explain the physical evidence left behind by the sniper community at the Double O Mine, it does not fit into the categories of nomadic, semi-nomadic, or sedentary as cleanly as Brooks’ (1995) case studies, resulting in the need for a model of anticipated mobility adapted to the Automobile Gold Rushes. The different time period of the mining community, the changes in American culture, manufacturing, and transportation, or that the actual mobility was far longer than the anticipated mobility all play into the differences between the two models. More categories could be added to the model of anticipated mobility, which may help to further discuss Depression era mining communities and compare anticipated mobility to actual mobility.
CHAPTER FIVE: CONCLUSION

The work done in this thesis brings new theoretical standpoints to the study of Depression Era mining communities. The dark heritage approach highlights the negative aspects of the Great Depression in the American West, but also the suffering of the snipers attempting to survive in such a desolate and difficult place as the Rabbithole Mining District. The model of anticipated mobility helps to analyze the physical landscape and the material culture left behind by the snipers. The focus on housing, trash disposal, and recovered artifacts can help access how the snipers thought about their community in the Rabbithole Mining District and how long they planned to stay.

Landscape Analysis

Francaviglia’s (1991) methods for analyzing the landscapes of mining communities were very useful in the analysis of the landscape at the Double O Mine. By breaking the landscape down into site, layout, and architecture, each aspect can be analyzed individually and compared to other parts of the landscape. The analysis of the landscape of a mining community helps to reveal the amount of planning that went into a community and how the residents thought about their surroundings. For example, the residences, roads, and work areas at the Double O Mine were not laid out along a grid system, but were scattered across the landscape. This is evidence that little planning went into the layout of the community and that the snipers and their families likely did not think they would be staying long in the Rabbithole Mining District. Additionally, the limited vegetation, water, and wild animals that could be hunted influenced the behavior of the snipers. They built structures to provide shade, used the available railroad ties as
building material and fuel, dry washed their gold, and relied upon canned foods available in nearby towns of Sulphur, Gerlach, and Lovelock. Furthermore, the snipers did not invest time, energy, and resources into infrastructure or unnecessary commercial and institutional architecture. Instead, the snipers took advantage of the stores and institutional buildings in nearby towns they could travel to by car. Through utilizing a rough vernacular style of architecture in their dugouts, cabins, and mining features, the snipers signaled their intentions to only stay at the Double O Mine for a short time. When combined, the site, layout, and architecture of the Double O Mine’s landscape reveal the temporary nature of the settlement.

Great Depression

The landscape at Rabbithole is very telling about the conditions of the Great Depression. The snipers and their families willingly occupied an area passed over by the early Euroamerican emigrants. But the nationwide and global trends of bank closures, hunger, homelessness, and unemployment forced many people to change their lifestyles in order to avoid starvation (White 1991:472; Rauchway 2008:40; Poppendieck 2014:22). Local sources of aid were no match for the increasing numbers of Americans in need (Poppendieck 2014:21; Kyvig 2002:188). Some federal aid was available, but Presidents Hoover and Roosevelt feared the American public would come to depend on those funds (White 1991:465). But rather than rely on the federal government, many Americans sought other ways to make ends meet rather than being ‘on the government’s dole’ (White 1991:467; Rauchway 2008:42).
The Gold Reserve Act of 1934, which raised the price of gold to $35 an ounce, opened up another avenue for many to make money during hard times (Hall and Ferguson 1998:116; Miller 1998:6; Twitty 2002:267). In what Miller (1998) has called the Automobile Gold Rushes, entire families loaded up their cars and headed for mining districts. Men, women, and children worked the gold deposits, looking for enough gold to buy groceries and other supplies, rather than trying to strike it rich (Miller 1998:10; Smith 2006:11; Clements 2003:99; Twitty 2002:268). These groups of individuals working the gold never intended to stay permanently in the remote gold mining districts where they had made a living during the Depression. Once the Depression had ended, these districts were abandoned once again. The community the snipers built at the Double O Mine is not unique among Great Depression sites, but rather contains many of the traits and themes representative of this dark period of American history, including suffering, marginality, psychological distress, and unpredictability.

Anticipated Mobility

One way to analyze the communities formed by the small-scale miners in the Great Depression is anticipated mobility. Anticipated mobility is how long people think they will stay in a place, while actual mobility is how long the people do stay in that place (Brooks 1995:9). The model helps archaeologists to access how the residents thought about their community and how long they thought they would stay there to mine the gold, through analyzing the housing, trash disposal, and recovered artifacts.

According to Brooks’ (1995) model of anticipated mobility, there are three levels of mobility: nomadic, semi-nomadic, and sedentary. Nomadic settlements of miners are
much like those of hunter gatherers, which are only inhabited for a short time until the resource is depleted (Brooks 1995:1). Rather than expend resources in a place that the residents plan to abandon, the housing tends to be tent platforms, dugouts, and cabins with a single room, no flooring, and may have a stove. Trash is scattered across the site in a sheet. A majority of the artifacts recovered are industrial or work related. A small proportion of domestic and personal items may also be present (Brooks 1995:102-103).

Semi-nomadic communities are occupied for longer periods of time, but not permanently. Housing can be dugouts or cabins with one or two rooms, a heat source, and may have flooring (Brooks 1995:102-103). These dwellings show more investment of resources than the nomadic dwellings. Trash can be found in a sheet across the site or in contained dumps, depending on the length of stay. A lengthier stay results in a larger proportion of domestic and personal items, but a vast majority of the artifacts will be related to mining or work (Brooks 1995:102-103).

The residents of sedentary communities want to make permanent settlements. Great amounts of resources are invested in housing and infrastructure. Houses and buildings have multiple rooms and even multiple stories. They always have flooring and heat sources (Brooks 1995:102-103). Trash is disposed of in contained dumps. In sedentary communities, there will be more domestic and personal items than work related items (Brooks 1995:102-103).

Since the original model was applied to the California Gold Rushes, the landscape and physical remains of the Depression Era community at Rabbithole did not fit perfectly into the model. Most of the twenty-three residential features were single room dugouts, with a few exceptions. Trash was scattered across the site with several large
concentrations of cans and other materials, the result of a dependence on canned foods and a far longer occupation than the snipers originally planned. A majority of the recovered artifacts are mining or work-related items, but a surprising number of personal and domestic items were also recorded. This pattern is also the result of a longer stay than the snipers had anticipated. As their stay at Rabbithole lengthened, they likely brought the domestic items to feel more at home in their dugouts. Each line of evidence used to analyze the anticipated mobility of the community cannot be neatly categorized within the original model.

Due to the major changes in mining techniques, technology, manufacturing, advertising, and transportation, the model of anticipated mobility needs alterations to better fit Depression Era mining communities. Though the residential architecture and trash disposal patterns need minor changes, the category that needs the most alteration between the California Gold Rushes and the Automobile Gold Rushes is recovered artifacts. While the original model is a good starting point for studying anticipated mobility, it needs to be modified in order to be applied to mining communities from other time periods. For the model to be applied to Great Depression mining communities or mining settlements from other time periods, adjustments to the model and categories of anticipated mobility need to be considered. Additionally, more categories could be added to the model, and while this gives the model more flexibility, it does not ease the tension that still remains between anticipated and actual mobility. The model also does not address poverty or changing anticipated mobility, which should be considered in further work with the model of anticipate mobility.
Place Attachment

As defined in Chapter 1, place attachment is when people tend to stay in a certain place because they feel safe and secure there (Florek 2010:347). Though the snipers were illegally occupying the mining claims, they stayed at Rabbithole for about seven years because they could make a living mining the placer gold and found community in living and working together. It was not easy to live at Rabbithole, the weather was unforgiving, the landscape was harsh, and there were little to no available resources. And yet, the snipers had formed a connection to this desolate place because it had allowed them to survive the Great Depression and provide for their families, which is a common theme across many mining communities. Also, the snipers, like many miners, took pride in their ability to survive the hard times and make a living in such a difficult place.

Dark Heritage

Countless people around the globe suffered unemployment, hunger, homelessness, and marginality in the 1930s due to the Great Depression, making it a potential period of dark heritage. This decade is not as dark as other periods of dark heritage, because it is marked by suffering, both physical and psychological, rather than death. For further research into the Great Depression and dark heritage, criteria of suffering should be designed to help determine if sites from the 1930s can be classified as dark heritage sites. The Double O Mine should be considered a dark heritage site because of the marginality, suffering, psychological distress, unpredictable nature of their occupation of the site, and the hazardous landscape experienced by the snipers that lived and worked there.
Though this era is well-studied, the narrative of the snipers at Rabbithole and other gold mining districts is noticeably absent from most depictions of the Great Depression. Dissonance, or “heritage that does not conform to prevailing norms” (Meskell 2002:566), within the history of the Great Depression in the West does a disservice to the individuals and communities who are left out of the narrative, and to the broader American public. Multiple studies have shown that the public is interested in learning about and experiencing the past (Biran et al. 2011:831; Liyanage et al. 2015:285; Magee and Gilmore 2015:898; Tinson et al. 2015:860).

The high level of preservation at the site, due to the desert environment, could allow further analysis of small scale Depression era mining for years to come. This site and the physical evidence left behind by the snipers are unlikely to be viewed by tourists, due to the rough and remote nature of the site. Images, maps, oral history, and the overall narrative could aid in sharing what everyday life would have been like for the snipers in the Rabbithole Mining District. Furthermore, the inclusion of the snipers at Rabbithole and other Depression Era gold miners in the narrative of the Great Depression has the potential to strengthen Americans’ national identity and pride (Tinson et al. 2015:857; Logan and Reeves 2009:2).

Preservation

The desert environment has helped to preserve much of the physical evidence of the snipers’ occupation, including cardboard, textiles, tin cans, and other metal items. Unfortunately, the site is being damaged by recreational visitors. Items both large and small are disappearing, including Feature 17, a metal structure (Figures 5.1 and 5.2). Site
visitors are also damaging the buildings as they scavenge materials to make fire pits and to burn in their fires. By destroying and damaging the material culture, recreational visitors are, albeit unwittingly, slowly erasing the community at Rabbithole and the snipers who made a living there during the Great Depression.

It is difficult to tell if signage and other interpretive materials would make a difference. The site is extremely remote and difficult to get to, so monitoring site usage would be nearly impossible without staff at the site full-time. This also raises the question of whether visitors would be more inclined to take souvenirs if they knew the importance of the site and its history. Rather than make the Double O Mine out to be a tourist attraction that it is not, educating the public in other ways about the fascinating history of the Great Depression and gold mining that played out in the remote desert is a better option.

Figure 5.1: The large metal structure (Feature 17) that has been taken from the site, photo taken in 2006.
Figure 5.2: The location of Feature 17, all that is left are the large timbers that supported
the metal structure, photo taken in 2017.

Conclusion

The use of a dark heritage approach to the study of the Great Depression
highlights the suffering and negative experiences of many Americans during the 1930s
and encourages the inclusion of individuals whose narratives have previously been absent
from the mainstream accounts of those hard times. The snipers, whose determination and
ingenuity allowed them to survive the bleak desert in some of the worst hard times
remembered, deserve to have their story told. A dark heritage approach can and should be
applied to many periods of history, and fits well within the field of archaeology as
excavations often reveal an account of past at odds with the commonly accepted
narrative. Additionally, its use should be expanded to include sites of suffering in addition to common dark heritage sites of death and dying.

Furthermore, the model of anticipated mobility adapted to the Great Depression can aid in the analysis of Depression era mining communities. Anticipated mobility helps to reveal how the inhabitants thought of their community and the surrounding landscape, through the analysis of housing, trash disposal, and recovered artifacts. Through the application of the model of anticipated mobility to other Depression era mining communities, comparisons could be drawn between them and Rabbithole, particularly in how long the miners intended to stay and mine the gold to support themselves and their families. The model also helped to show how the snipers at Rabbithole thought about their makeshift home and how their view of Rabbithole changed over time. When the community was first being constructed, the miners and their families anticipated a short stay, building only rough homes, throwing refuse out the door, and focusing almost singularly on mining. But as their stay in the Rabbithole District lengthened, they worked to make their dugouts feel more like home, covering dirt floors with linoleum and bringing more domestic and personal items. By 1941, when the legal owner forced them off the claims, the snipers had formed a connection with these claims in the remote desert. Though their original intentions had been to mine the gold and get out, many of the snipers ended up making homes in the desert where close friendships were formed and children fondly remembered growing up (Venable 2006).
References

Amesbury, Robert

Applebaum, Herbert

Barker, Bryce and Lara Lamb

Barna, Benjamin T.

Basso, Dave

Bernanke, Ben S.

Biran, Avital, Yaniv Poria, and Gila Oren

Brooks, Allyson

Carlson, Helen S.
Carr, Gilly
2010 Shining a Light on Dark Tourism: German Bunkers in the British Channel Islands. Public Archaeology 9, 2: 64-84.

Casella, Eleanor Conlin and Katherine Fennelly

Clements, Eric L.

Dearborn, Lynne M. and Abbilyn Harmon

Dublin, Thomas

Florek, Magdelena

Foote, Kenneth E.

Ford, Victoria

Francaviglia, Richard V.

Gamst, Frederick C.

Goin, Peter and C. Elizabeth Raymond
Grounds for Sculpture

Hall, Thomas E. and J. David Ferguson

Hardesty, Donald L.
1988 *The Archaeology of Mining and Miners: A View from the Silver State*.
Braun-Brumfield, Inc.: Ann Arbor.

1998 Power and the industrial mining community in the American West, in

Hartmann, Rudi

Heidelberg, Beth A Wielde

Helfrich, Devere

Johnson, Maureen

Kennedy, David M.

King, Thomas F.
Kyvig, David E.

Lennon, John and Malcolm Foley

Library of Congress

Light, Duncan

Liyanage, Sherry, J. Andres Coca-Stefaniak, and Raymond Powell

Logan, William and Keir Reeves

Long, Colin and Keir Reeves

Lovelock Review-Miner
1938 Rabbit Hole Man Keeps Reputation as Snake Hunter. Lovelock Review-Miner, October 28: 1, 3.

Magee, Roxanna and Audrey Gilmore
Mazz, José María López

McAtackney, Laura

McGuckian, Peggy

McMurry, Sean Elizabeth

McMurray, Sean, Benjamin Barna, and Carolyn L White
2011 The Rabbithole Mining District: Survey and Excavation in a Depression-Era Mining Community. *Nevada Archaeologist* 24: 47-64.

McWilliams, Anna

Melzer, Richard
1976 *Madrid Revisited: Life and labor in a New Mexican Mining Camp in the Years of the Great Depression*. The Lightning Tree: Santa Fe.

Meskell, Lynn

Miles, William F. S.

Miller, Charles Wallace Jr.
Miller, Donald L. and Richard E. Sharpless

Moshenska, Gabriel

Ogborne, Jennifer Honora
2013 “Setting the Best Table in the Country”: Food and Labor at the Coloma Gold Mining Town. PhD Dissertation, Department of Anthropology, The College of William and Mary. UMI Microform: Ann Arbor.

Paden, Irene D.

Paher, Stanley W.

Pollock, Susan and Reinhard Bernbeck

Poppendieck, Janet

Poston, J. Michael

Rauchway, Eric

Robertson, David

Salerno, Melisa A. and Andrés Zarankin

Smith, Duane A.

Smith, Jessica L.K.

Smith, Raymond M.

South, Stanley

Steinberg, Will

Stewart, George R.

Stone, Philip R.

Strange, Carolyn and Michael Kempa

Thurlo, Margaret Anne
Timmons, Marta Amelia and Kelly J. Dixon

Tinson, Julie S., Michael A. J. Saren, and Bridget E. Roth

Tunbridge, J.E. and G. J. Ashworth

Twitty, Eric

Vanderburg, William O.

Venable, Doris
2006 Interview by Dave Valentine and Benjamin Barna, April 14. Audio recording in author’s possession.

White, Carolyn
2012 At Home During the Depression in Rabbithole Springs, Nevada, USA. *Home Cultures* 9, 1: 57-76.

White, Richard

Woody, Benjamin
APPENDIX A: DOUBLE O FEATURES

Figure A.1: List of features recorded at Double O Mine Site.

<table>
<thead>
<tr>
<th>Feature Number</th>
<th>Feature Type</th>
<th>Feature System</th>
<th>Included in Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tank Base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tank Base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Can Dump</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>Loading Dock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Loading Dock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Dugout</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>Dugout</td>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>Can Dump</td>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>Dugout</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>Dugout</td>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>Tent Pad</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>Anvil and Cellar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Dugout</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Dugout</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td>Metal Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Can Dump</td>
<td>D</td>
<td>X</td>
</tr>
<tr>
<td>19</td>
<td>Dugout</td>
<td>D</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>Dugout</td>
<td>D</td>
<td>X</td>
</tr>
<tr>
<td>21</td>
<td>Anvil Base</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Depression</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Adit and Drift</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Dugout Foundation</td>
<td>D</td>
<td>X</td>
</tr>
<tr>
<td>25</td>
<td>Dwelling Pad</td>
<td>D</td>
<td>X</td>
</tr>
<tr>
<td>26</td>
<td>Privy</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Can Dump</td>
<td>D</td>
<td>X</td>
</tr>
<tr>
<td>28</td>
<td>Can Dump</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>29</td>
<td>Dugout</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>30</td>
<td>Dugout</td>
<td>E</td>
<td>X</td>
</tr>
<tr>
<td>31</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Tank and Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Dam and Spillway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Work Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Processing Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Dugout</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td>37</td>
<td>Shaft</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Letter</td>
<td>Status</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>39</td>
<td>Dugout</td>
<td>G</td>
<td>X</td>
</tr>
<tr>
<td>40</td>
<td>Shaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Dugout</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>42</td>
<td>Dugout</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>43</td>
<td>Truck Body</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Tent Platform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Survey Monument</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Shaft</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Dugout</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>48</td>
<td>Dugout</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>49</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Shaft and Ladder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Shaft and Drifts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Shaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Dugout (Shop)</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Can Dump</td>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>64</td>
<td>Can Dump</td>
<td>C</td>
<td>X</td>
</tr>
<tr>
<td>65</td>
<td>Adit, Collapsed Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Can Dump</td>
<td>D</td>
<td>X</td>
</tr>
<tr>
<td>67</td>
<td>Auto Wreckage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Dugout</td>
<td>D</td>
<td>X</td>
</tr>
<tr>
<td>69</td>
<td>Can Dump</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>70</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Can Dump</td>
<td>E</td>
<td>X</td>
</tr>
<tr>
<td>73</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Can Dump</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>76</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Tunnel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Processing Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>83</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Can Dump</td>
<td>G</td>
<td>X</td>
</tr>
<tr>
<td>85</td>
<td>Dugout</td>
<td>I</td>
<td>X</td>
</tr>
<tr>
<td>86</td>
<td>Can Dump</td>
<td>I</td>
<td>X</td>
</tr>
<tr>
<td>87A</td>
<td>Shaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87B</td>
<td>Dugout</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>88</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Diggings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Ash lens discovered through excavation in Feature 16, renumbered as Sub-Feature 16.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Trench</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Diggings and Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Diggings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Diggings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Shaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Tailings, Loading Dock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Linoleum revealed by excavation in Feature 16, renumbered as Sub-Feature 16.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Stain in Feature 16 Unit 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Burrow in Feature 16 Unit 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Stove Area in Feature 16 Unit 1, renumbered as 16.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Trench</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Trench</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Trench</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Adit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Prospect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Trench</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Diggings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Well Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Reservoir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Reservoir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Modern Trash Scatter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Reservoir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Intersite Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Intersite Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Rosebud Canyon Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Eastern Canyon Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Intersite Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Tailings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>