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Abstract

The purpose of this thesis is to explore a method for measuring the correlation

between two measures or random variables using the ROC (Receiver Operating

Characteristic) diagram and Gini coefficient. This procedure is then applied to

seismic data to produce a metric of earthquake clustering in various regions.

Earthquake clustering is a fundamental component of seismicity that reflects

various forms of earthquake triggering mechanisms. Zaliapin and Ben-Zion (2021)

introduced a simple and robust measure of space-time clustering, using the ROC

diagram, that allows disentangling effects related to concentration of events around

a heterogeneous regional fault network (marginal space distribution of events)

from coupled space-time fluctuations (joint space-time distribution). This work

describes the mathematical and statistical foundation of their approach.

Specifically, this study:

• examines and illustrates seismic clustering in multiple seismically active re-

gions, including the Reno area,

• explores several general measures of seismic rate that can account for the

number of events, the total area of faultbreaks, seismic moment, and more,

• And systematically examines general and coupled space-time clustering of

raw and declustered catalogs.

Conclusion of this analysis are that the overall observed earthquake cluster-

ing is high, for a variety of regional catalogs and global seismicity. At the same

time, when the marginal clustering is removed, different catalogs show different

degrees of coupled space-time clustering, reflecting a variety of specific triggering

conditions and mechanisms.

Keywords: ROC Diagram, Gini Coefficient, Seismology.
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1 Introduction

Forecasting extreme events is a fundamental task for the statistics community. A first

step towards this goal is developing methods for finding relationships between several

processes. This work proposes one such method, using the ROC(Receiver Operating

Characteristic) and the Gini coefficient(G). A ROC diagram is a useful tool to compare

measures on the same domain and to quantify the degree of concentration of a given

measure. This method is applied to seismic data from earthquakes, which are extreme

events that pose a significant threat to society and infrastructure. Seismology is a field

of study that is concerned with the analysis of earthquakes, their behavior, and the

impact they have on the environment. Statistical seismology is a subfield of seismology

that aims to analyze earthquake data using mathematical and statistical methods. In

recent years, the availability of large earthquake catalogs, such as those provided by

the Advanced National Seismic System (ANSS), has provided an abundance of data for

studying the behavior of earthquakes.

Understanding the complex seismic systems and then developing models that can

be used for forecasting is a big task. This work focuses on quantifying one element of

seismicity, earthquake clustering. To establish a foundation for the basis of this work,

statistical models of seismicity are discusses in the literature review section, with a

focus on methods that quantify clustering. Classic models, like the ETAS model, are

presented along with models that try to characterize seismicity through a localization

approach. Earthquake clustering is discussed as a key component of any predictive

model for seismicity. Current methods of quantifying clustering and previous studies

of clustering in various regions are presented, which leads us to the motivation of this

work.

In the background section we give an overview of different mathematical and statis-

tical approaches to quantifying correlation. The methodology section presents a math-

ematical foundation for determining how concentrated one measure is. A method for

comparing a given measure first to a uniform measure, then to a more complex measure,
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using the Receiver Operating Characteristic (ROC) diagram and the Gini Coefficient is

discussed.

This work applies these techniques to earthquake data from the ANSS catalogs for

the regions Reno, southern California, Japan, New Zealand, Italy, the Atlantic, and the

Pacific. The Gini coefficient and ROC diagrams are used to quantify, characterize and

compare clustering and the spatial-temporal distribution of seismic activity in the study

regions.

The findings of this study will contribute to the existing knowledge of statistical

seismology, provide insights into the spatial and temporal distribution of seismic activ-

ity in the regions studied, and present the statistical and mathematically theory behind

these approaches. This research has implications for seismic hazard assessment and

earthquake forecasting, which can inform policies and practices for disaster risk reduc-

tion and management.

2 Literature Review

2.1 Earthquake Catalogs

Earthquake catalogs from different regions around the globe provide a record of seismic

activity reporting at-least the epicenter of each shock, origin time and magnitude. We

will define an earthquake catalog as follows:

C = {ti,mi, ✓i,�i, zi} (1)

where ti is the time, mi is the magnitude , ✓i is the latitude, �i is the longitude and zi is

the depth of the ith event.

In this work, the following catalogs will be referred to:

• Northern California Earthquake Data Center (NCEDC), global catalog, https://nc

edc.org/ncedc/catalog-search.html
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• Hauksson et al. (2012), relocated catalog for southern California, https://scedc.

caltech.edu/data/alt-2011-dd-hauksson-yang-shearer.html

• Hauksson et al. (2013), waveform-relocated Southern California earthquake

catalog, https://scedc.caltech.edu/ data/alt-2011-dd-hauksson-yang-shearer.html

• Richards-Dinger and Shearer (2000), southern California, https://scedc.caltech.ed

u/data/alt-2000-richards.html

• ANSS catalog, global catalog, https://earthquake.usgs.gov/data/comcat/

2.2 Statistical Models of Seismicity

There are many models that describe seismic activity. Some of these models are based

on the physical principles that govern earthquakes, while other models are statistical

and developed from the catalogs of earthquake data. This thesis focuses on statistical

models.

2.2.1 Point Process Models

Upon inspecting earthquake catalogs, Ogata et al. concluded that seismic activity in a

region follows a time series with an extremely complicated structure. Seismic events

can be thought of as a marked point process, where the origin times of each earthquake,

ti is modeled as a point process and all other characteristics are marks. Ogata et al.’s

work analyzes a group of parametric models used in statistical analysis of earthquake

catalogs and assesses earthquake risk in a region (Ogata, 1998).

The conditional intensity function plays an important role in the likelihood theory

of point processes (Daley and Vere-Jones, 1972). The conditional intensity function

can be understood roughly as the derivative of the probability of an event occurring at a

time t

�(t|Ft) = lim
�!0

Prob {An event occurs 2 (t, t+�)/Ft} /�, (2)
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where Ft is information over the time interval (0, t) of observations available, including

the history of the point process itself at time t.

2.2.2 Cyclicity Models

Two classes of models for interpreting seismic data are proposed by Ogata (1998). The

first aims to break down seismicity into components of evolutionary trend, clustering

and periodicity. To determine if sesimicity happens in cycles the uniformity of super-

posed point process is checked on one cycle (Shimazaki, 1971). These techniques for

determining cyclicity assume the data is not contaminated by the presence of clustered

events or by the change in the detection rate of seismicty that could uncover real or

artificial trends (Vere-Jones and Ozaki, 1982; Vere-Jones, 1985). Data sets for anal-

ysis therefore are significantly decreased in size because of declustering and having

a threshold for smaller events that ensures the homogeneous detection of sesimicity.

Ogata provides a model to overcome these limitations.

Ogata (1983) suggested the following model for the conditional intensity in Equa-

tion (2),

�(t|Ft) = a0 + PJ(t) + CK(t) +
X

ti<t

gM(t� ti). (3)

On the right-hand side of (3), the second term represents the evolutionary trend where

PJ(t) =
JX

j=1

aj�j(t|T ), 0 < t < T, (4)

T is the total length of the observed interval and �j(·) is a polynomial of order j. These

components are introduced to incorporate either the genuine seismic trend, the evolu-

tionary change of the detection rate of shocks, or both. The third term of 3 is the Fourier

expansion

CK(t) =
KX

k=1

{b2k�1 cos(2k⇡t/T0) sin(2k⇡t/T0)} , (5)
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for cyclic effects with a given fixed cycle length T0. The last term in (3) stands for

the clustering effects such as aftershocks and earthquake swarms. The function gM(x)

measures the increase in clustering due to a shock. This function is referred to as the

response function of a shock, and parameterize it as

gM(x) =
MX

m=1

cmx
m�1e�↵x. (6)

If in (6) the scaling parameter ↵ is fixed, then the model in (3) is linearly parameter-

ized. This model is then used to examine and establish the existence of each component

by the comparison of AIC values among a possible set of (J,K,M) configurations. For

example, if the configuration with K = 0 is selected, that is to say C0(t) = 0, then

this suggests that no periodicity of T0 exists in the seismic actiivty, Otherwise,m its

shape is estimated by the maximum likelihood method for the selected configuration of

(Ĵ , K̂, M̂).

2.2.3 Cluster Models

Another class of models is used to attempt to determine if earthquake sequences in two

regions have a causal connection. The second-order properties between point processes

such as cross correlation have been used to examine this problem (Brillinger, 1988).

One main difficultly of this approach is that even if you detect a significant cross cor-

relation between two realizations of point processes this method cannot discern which

process causes the other, if they both cause each other to occur, or if another process

entirely causes both. To make this distinction, Ogata and Akaike (1982) and Ogata et

al. (1982) constructed a parametric model that applies the minimum AIC procedure

using the mutually-exciting process by Hawkes’ (Hawkes, 1971). To examine whether

or not some other process causes the two correlation processes, call them {ti} and {ui}

, Ogata (1983b) extends the model in (3) to
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�(t|Ft) = a0 + PJ(t) + CK(t) +
X

ti<t

gM(t� ti) +
X

uj<t

hN(t� uj), (7)

where {ui} is another series of events considered as inputs of the conditional intensity

function. The response function hN(x) is a parameterized by

hN(x) =
NX

n=1

dnX
n�1e��x. (8)

It is expected that hN(x) = 0 if there is no causal relation from {ui} to the condi-

tional intensity function �✓(t|Ft), or the occurrence of {ti}. If there is a causal relation-

ship, then it would be important to determine how influential the relationship is and the

approximate shape of the response function.

The correlation between the deep earthquakes beneath the Hida region in central

Japan and the shallow earthquakes in central Kanto were explored using this method(Utsu,

1975). The outcomes of these analyses showed that Hida shocks can be classified as a

stationary Poisson process, and that earthquakes in the central Kanto region receive sig-

nificant one-way stimulation from earthquake occurrences in the Hida region and they

are self-exciting (Ogata, 1998).

2.2.4 ETAS Model

Since the 1970s, stochastic branching processes were regularly utilized to model earth-

quake occurrence. Ogata (1988) developed the Epidemic Type Aftershock Sequence

(ETAS) model, which combines the basic empirical principles of statistical seismology

with rigorous stochastic modeling and estimate methods; see also Ogata (1985). The

model represents seismic activity of earthquakes with magnitudes greater than M0 re-

gionally. A Poisson process with intensity µ(t) is used to model background events. A

modified Omori law describes the offspring produced by each earthquake(Utsu, 1961).

The modified Omori law states that an earthquake with magnitude Mi that occurred

at time ti produces offspring according to a Poisson process with intensity
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v(t|ti,Mi) =
K010↵(Mi�M0)

(t� ti + c)p
, t > ti (9)

where the parameters are the positive constants K0, ↵, c and p > 1. The numerator

of the offspring intensity v is an exponential productivity law and the denominator is a

power-law for temporal decay. According to the Gutenberg-Richter law,

P (Mi > M) = 10�b(M�M0), M > M0. (10)

each newly created event, background or offspring, is given a magnitude Mi indepen-

dent of prior events, including its parent (Gutenberg & Richter, 1954). Background

events, first-generation aftershocks, offspring of these aftershocks (called second gen-

eration aftershocks), offspring of the second generation aftershocks (third generation

aftershocks), and so on form the combined earthquake flow (Kovchegov, Zaliapin, Ben-

Zion, 2022).

The combined flow is a point process described by the ETAS model that will be

discuss in detail in this section.

Conditional Intensity The normal seismic activity of a wide region is described by

the conditional intensity function of the Epidemic Type Aftershock Sequence model

(ETAS) (Ogata, 1998). This model superimposes a constant rate for background seis-

micity and the modified Omori functions of any shocks i which occurred at time ti as

follow:

�(t|Ht) = µ+
X

ti<t

Ki

(t� ti + c)p
, (11)

where µ is an occurrence rate for the background seismic activity and Ht = (Ti,Mi); ti < t

is the history of occurrence times ti up to time t and their corresponding magnitudes

Mi (Ogata, 1998). In this model the parameter Ki is defined as
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Ki = K0e
↵(Mi�M0) (12)

and is dependent of the magnitude Mi of event i and the cut-off magnitude M0 of the

data set. Some advantages of the ETAS model compared to alternative models are that

is does not require the discrimination between mainshocks and aftershock and it has the

best fit when comparing goodness-of-fit. Among the parameters ✓ = (µ,K0, c,↵, p) of

the ETAS model, the last two parameters ↵ and p characterize the temporal pattern of

seismicity. The ↵ value measures magnitude sensitivity of an earthquake in generating

its aftershocks in a wide sense and the p value represents the decay rate of aftershocks

(Ogata, 1998).

Estimation The Omori formula quantifying the frequency of aftershocks per unit time

interval is

n(t) = K(t+ c)�p (K, c, p : parameters) (13)

where t is the lapse time from the occurrence of the main shock, K depends on the

magnitude of the main shock and the lower bound of the magnitude of aftershocks

counted, and p is known to be independent of these(Utsu, 1961). If p = 1 this formula

is called the original Omori formula and for p 6= 1 it is called the modified Omori

formula. One interpretation of the value of p is that it represents physical state of the

Earth’s crust. For instance, there is a consistent regional fluctuation of the p value

in Japan, related to variation in surface heat-flow values. Areas with greater crustal

temperatures see a faster decrease of aftershock activity, or a faster release of stress

(Mogi, 1962; Ogata, 1998).

Traditional estimates of the parameter p and the other three parameters of the mod-

ified Omori formula are outlined by Utsu (1961) and Ogata (1983a,b). For these es-

timates, we concider occurence time of afterschocks sequence t1, t2, ..., tN in a time

interval S, T , where the occurence time of the main shock corresponds to the origin of
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the time axis, t = 0. Using the modified Omori formula to represent the aftershock se-

quence, assume that the afterschock sequence is distributed according to a nonstationary

Poisson Process with intensity function

�(t; ✓) = K(t+ c)�p, ✓ = (K, c, p), (14)

To estimate the parameters, maximizing the log-likelihood function of the aftershock

sequence with respect to the parameters (K, c, p) to obtain the maximum likelihood

estimate (MLE) ✓̂ = (K̂, ĉ, p̂). The inverse of the Fisher information matrix J(✓̂)�1

produces the variance-covariance matrix of the errors of the MLE. The modified Omori

formula’s maximum likelihood estimation makes it feasible to predict the probability of

major aftershocks (Ogata, 1998).

In the calculation of the log-likelihood, a suitable starting time S must be deter-

mined to avoid significant bias and to gain accurate estimation of p and c. If the after-

shocks were detected homogeneously throughout the entire observation period [0, T ],

then we can formulate S = 0. However, in some cases the MLE computed with S = 0

will produce biased estimates, if the aftershock sequences are too complicated, for ex-

ample. Methods for choosing S include selecting the S that produces the smallest AIC

value or the magnitude versus time plots can be visually inspected to calculate S in a less

exact manner (Ogata, 1998). The model (14) is inaccurate if an earthquake sequence

over an observed time period does not consist of a single pure aftershock sequence.

Ogata proposes a transformation of the conditional intensity with respect to time to

a frequency-linearized time so that the occurrence of earthquakes becomes the standard

stationary Poisson process. He used this technique to show that the intensity trend of an

earthquake’s aftershocks decays over a lengthy period of time, if the background seis-

micity level in the vicinity of an aftershock zone is very low. The alternative intensity

functions can also be used to model secondary aftershocks. Additionally, sometimes the

rate of aftershock decay in some stage can occur more quickly than predicted accord-

ing to the modified Omori formula. A shift from aftershock to normal activity may
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be directly observed and objectively detected using the techniques and models Ogata

describes. In order to recognize a seismic quiescence that could occur before the next

large earthquake, it is essential to identify and quantify normal activity (Ogata, 1998).

The change-point problem can be used to determine whether or not the temporal

patterns of seismicity changed before and after a time T0 in a given data set on a time

interval [S, T ]. AIC values are computed as the criterion for model selection to deter-

mine if a model throughout the time interval [S, T ] fits better than two different models

on the respective intervals [S, T0] and [T0, T ] for some T0. The method of selecting T0

dictates the way AIC values are compared and computed. More specifically, if a pos-

sible change-point T0 is chosen using information other than observed data, such as a

theoretical reason, different techniques are used than when T0 is determined from the

data. Essentially, if the AIC value for the entire interval [S, T ] is larger than the sum of

the AIC values for the interval [S, T0] and [T0, T ], with some adjustments made when

T0 is estimated from the data itself, then there is a significant distinction in the patterns

of seismicity in the two divided time spans. Otherwise, we deduce that there isn’t a

change-point there. To find more potential change-points in the range [S, T0], repeat

this technique (Ogata, 1998).

Ogata describe how to use the point process equivalent of residual analysis for re-

gression models to identify periods of relative quiescence. Origin times ti are trans-

formed 1-to-1 into the residual point process (RPP) ⌧i. If the maximum likelihood esti-

mate (MLE) ✓̂ = (µ̂, K̂0, ĉ, ↵̂, p̂) of the ETAS model for a data set provides a good fit to

the seismicity, then the RPP is approximately the standard stationary Poisson process.

If a major departure of any characteristic property of the RPP from that anticipated

for a stationary Poisson is observed, then there is a disparity between the model and

data. Non-homogeneous data or the presence of seismic quiescence could cause such

a deviation because these structures are not best modeled by the ETAS equations. For

example, during a period of relative quiescence, the occurrence rate of the RPP will

be significant smaller than that expected from the standard Poisson process. This more



11

mathematical approach was a significant improvement on the qualitative methods of re-

porting quiescence at the time. Identifying periods of relative quinescence is important

for the prediction of future seismic activity. Understanding whether these periods of rel-

ative inactivity signal the end of aftershock activity or are the precursor of a forthcoming

larger earthquake, for example, will be essential in the prediction process (Ogata, 1998).

The ETAS model is a higher-order approximation of the aftershock occurrences

than the modified Omori formula. The modified Omori formula models aftershock

sequences as simple inverse power decay, but in many cases aftershock sequences are

more complex. The ETAS model better captures these complexities and fits well to

various types of aftershock sequences (Ogata, 1998).

In the last section, Ogata provides an extension of the ETAS model to create a space-

time conditional intensity function that models a history-dependent probability that an

earthquake occurs. The specifics of choosing the parameters of this function to best

model the space-time point process of seismicity are described in detail (Ogata, 1998).

By using a hypocenter database, point-process models described by parameterized

conditional intensity functions can be effective instruments for analyzing seismic ac-

tivity. AIC evaluates the model’s goodness-of-fit and can help distinguish between

competing hypotheses. The maximum likelihood estimation approach is used to esti-

mate the modified Omori formula for aftershock decay effectively. The ETAS model

quantifies the characteristics of a focus region’s standard seismicity. Modeling the in-

tensity function in respect to the crustal stress-field change will be necessary. Using

data on anomalous occurrences like relative quiescence, point-process modeling aims

to create an algorithm for the practical application of probability predictions of major

earthquakes. Using spatial, time, and magnitude pattern, Ogata et al. (1995, 1996) at-

tempted to develop real-time probability discrimination of foreshocks. It is suggested to

assess probability forecasting using the AIC difference. Ultimately, point-process mod-

eling could be applied to forecast the probability of large earthquakes (Ogata, 1998).



12

2.3 Localization Approach - Progressive Localization

The mechanisms generating massive earthquakes are still a mystery after decades of

observational, experimental, and theoretical research (Ben-Zion, 2008). Kato and Ben-

Zion (2021) synthesize existing knowledge of the starting mechanisms of major earth-

quakes and present some key characteristics of the origin processes. They discuss evi-

dence of earthquake-induced rock damage causing regional weakening, and that a few

years prior to certain large earthquakes there is progressive localization of deformation

around the ensuing rupture zones. Depending on the circumstances, a combination of

slow slip transients and foreshocks at various spatial and temporal scales comprise the

last stage of deformation localization. In contrast to the smooth acceleration anticipated

for a developing aseismic nucleation phase, the development of slip on large, localized

faults displays a step-like rise. Ultimately, they propose an integrated model to explain

the diversity of large earthquake generation that uses multiple models at different scales

simultaneously to describe a seismic system.

Large earthquakes that pose substantial social and economic threats to people all

over the world. Understanding the processes that lead up to large seismic events is a

pivotal question for the seismology community (Abercrombie, 2019). Changes in the

amount of stress and strength in a fault zone are the underlying elements that lead up to

a large, dynamic rupture (Ben-Zion et al., 2003). This paper outlines three main models

to describe the process- cascade-up, pre-slip and progressive localization.

Large earthquakes on a heterogeneous fault can be modeled by the cascade-up struc-

ture as forming in reaction to static and dynamic stress fluctuations brought on by ear-

lier earthquakes, which locally increase the long-term tectonic stress (Ellsworth, 2018).

Large mainshock ruptures are the result of a series of seismic events on pre-existing

faults. Until the dynamic fracture ends, the earthquake’s magnitude is uncertain.

The pre-slip model, in contrast, describes the generation of significant events on a

fault surface that is rather uniform. These are started by gradual slip or fluid movement

and may cause later, more powerful earthquakes (Dieterich, 1992). The pre-slip model,
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like the cascade-up model, centers on processes that take place along major faults that

already exist. An underlying assumption that gives this model importance is that mon-

itoring increasing aseismic slip may be utilized as an indicator of an impending major

earthquake. However, it has not yet been feasible to predict major earthquakes in natural

settings by observing previous seismic slip.

The progressive localization framework is distinct in that it does not concentrate on

processes that are restricted to pre-existing faults (Lyakhovsky et al, 1997). It instead

explains the gradual progression from dispersed failures in a rock volume to concen-

trated deformation, culminating in the production of primary slip zones and major earth-

quakes. There are various clusters of seismicity throughout the localization process in

a zone with many faults of varying scales. Each cluster may have its own foreshocks,

one of which may initiate the mainshock rupture.

Foreshocks that occur near to mainshocks in space and time have been used to pre-

dict mainshocks because they are the most visible precursors. Foreshocks can be used

as predictors that a particular source location for a main-shock is approaching stress,

slide, or strength change. However, these foreshocks can only be defined retroactively

by statistical studies of seismic catalogs that contain the mainshocks. In addition, not all

large earthquakes are preceded by a foreshock series (Wu et al., 2014). Though some

studies have show that certain big earthquakes along plate boundaries and in crustal

fault systems were preceded by an elevated rate of sesimicity in the months to days

preceding the mainshock (Bouchon et al., 2013; Tamaribuchi et al., 2018).

A component of each of these models to predict large earthquake is the clustering

of earthquakes within a region both in time and in location. In the next section, we take

a deeper look at earthquake clustering and the methods for quantifying and understand-

ing clustering with the goal of improving models from both the localization approach

discussed in this section and the previous section on statistical models.
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Figure 1: Schematic illustrations of generation processes of large earthquakes. a

Progressive localization of shear deformation and background seismicity around a large
rupture zone. b Shear localization and several foreshock sequences before the instability
leading to the large rupture. c A space–time diagram of step-like increase in fault slip
before a major earthquake associated with combined slow slip and foreshocks. A final
rapid local loading by a small foreshock triggers the subsequent major dynamic rupture
and circumvents the large nucleation process of a large patch. White and yellow stars
denote epicentres of mainshocks and other events, respectively. As an example, two
foreshock sequences accompanied with slow slip are displayed. (Kato & Ben-Zion,
2021)

2.4 Earthquake Clustering

A basic characteristic of seismicity is earthquake clustering. Clustering is observed

most clearly as the concentration and frequency of earthquakes around large faults and

tectonic plate boundaries and after large earthquakes (Scholz, 2002; Utsu, 2002). To ex-

plore clustering partition seismicity into groups closer in space and time than expected

in a purely random distribution and look for patterns (Zaliapin & Ben-Zion, 2016). Un-

derstanding seismic clustering plays an important role in many elements of seismicity,

such as identifying the characteristics and interactions of active fault structures(Zaliapin

& Ben-Zion 2013a; Vidale & Shearer 2006; Vidale et al. 2006; Zhang & Shearer 2016).

2.4.1 Classification and Characteristics of Earthquake Clusters

Earthquake clustering is an important aspect of seismic activity that reveals valuable

information about earthquake behavior. Clustering occurs in space, time, and size (such

as magnitude and energy), and is the primary form of seismic activity. Spatial clus-

tering appears as concentrations of earthquakes along major tectonic plate boundaries
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and regional fault networks, while temporal clustering involves increased seismic ac-

tivity following large earthquakes, leading to aftershock sequences (Omori,1894; Utsu,

1961; Utsu et al., 1995; Kisslinger, 1996). However, there is no formal definition of

seismic clusters, which hinders systematic global analysis. This section reviews the de-

velopment of an objective and reliable method for analyzing seismic clusters (Zalipin

& Ben-Zion, 2013).

Mathematically, earthquake clustering is the separation of seismicity into groups

that are closer in space and time than would be expected in a distribution that is com-

pletely random. These clustered groups of earthquakes reflect various triggering mech-

anisms, swarms and other forms of clustering as well as the traditional aftershock series.

A preliminary investigation of seismic clustering in southern California, detailed in

the following section, revealed that clustering is strongly influenced by the crust’s phys-

ical characteristics, leading to two primary types of clusters: ”burst-like” and ”swarm-

like” (Zaliapin & Ben-Zion, 2013b). These findings demonstrate the importance of

region-specific factors in understanding earthquake dynamics and improving seismic

hazard assessments. While high-quality data for southern California made these trends

apparent, global data suffers from lower quality catalogs with increasing magnitudes of

completeness/reporting and location uncertainty, affecting cluster characterization.

In ”A global classification and characterization of earthquake clusters”, Zaliapin

and Ben-Zion (2016) develop statistical tools for working with low-quality catalogs

that are not sensitive to catalog inaccuracies. Zaliapin and Ben-Zion reveal that a

main driving factor behind the types of clustering seen in a region is the effective vis-

cosity of the region. Regions with increased effective viscosity experience burst-like

clusters and regions with decreased effective viscosity experience swarm-like clusters.

They show that local heat flow is the primary factor controlling the significant spatial

dependencies of global earthquake clustering. Burst-like clusters are typical of cold

places (mostly shallow seismicity of subduction zones), whereas swarm-like clustering

is typical of hot regions (mainly mid-oceanic ridges). It is also shown that the sort of
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plate-boundary deformation only has a little impact on the seismicity cluster style. The

global findings summarized below are consistent with previous regional findings based

on higher-quality data in southern California and these results are found to be resilient

to the known catalog uncertainties and inadequacies.

The authors used a global earthquake catalogue produced by the Northern California

Earthquake Data Center (NCEDC) for the period of 1975 to 2015, containing 256,993

events. They used a minimum magnitude of 4, which is higher than the completeness

magnitude in some regions but their analysis technique is still robust.

Heat flow data from a study by Bird et al. (2008) was used to map the heat flow

within seismically active areas and over the entire Earth surface. The highest heat flow

production, reaching 0.3Wm�2, is found along the oceanic spreading ridges.

The global strain rate field data from Kreemer et al. (2014) was used to study the

deformation of the Earth’s surface. The analysis is based on the second invariant of the

strain rate tensor (I2) and the tensor style (S) defined by Kreemer et al. The tensor style

is used to classify the type of displacement into contraction (S < �0.5), strike-slip

(0.5 < S < �0.5), and extension (S > 0.5).

The minimum magnitude cutoff, mc, in a catalog can affect aftershock analysis as

earthquakes below this cutoff cannot be considered aftershocks of larger ones. A �-

analysis, which only considers mainshocks with a magnitude of at least mc + � (in

this case, 4) and aftershocks 2 units below the mainshock magnitude, is used to com-

pare aftershocks of mainshocks with different magnitudes. Aftershocks found through

this method are called �-aftershocks and differ from regular analysis that considers all

events.

To understand earthquake clustering first consider generalized earthquake distance.

When working with a catalogue where each event i is characterized by its occurrence

time ti, hypocentre (�l,�i, di), and magnitude mi, Baiesi & Paczuski (2004) define the

proximity ⌘ij of earthquake j to earthquake i as:
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Figure 2: Global maps of selected parameters of seismic clustering. Average nearest-
neighbour distance log10⌘bg in the background mode. (Zaliapin and Ben-Zion, 2016)

⌘ij =

8
>><

>>:

tij(rij)d10�bmi , tij > 0.

1, tij  0.

(15)

The event intercurrence time, tij = tj � ti, is positive if event i occurs before event j;

the spatial distance between earthquake hypo-centers is rij � 0, the (possibly fractal)

dimension of the hypo-centers or epicenters is d, and b is the parameter of the Guten-

berg–Richter law. Zaliapin & Ben-Zion (2013a, 2015, 2016a) address this proximity

measure’s justification and characteristics.

In identifying and characterizing earthquake clusters, it is necessary to identify the

parent and offspring earthquakes in a catalog. To determine the distinct nearest neigh-

bor(parent) j for each event i use the distance determined by (16), and indicate this

distance by the same symbol, ⌘ij . For this definition, event i is referred to as an off-

spring of j, each event has a unique parent, aside from the first one in the catalog, and

each parent might have multiple offspring.

Zaliapin & Ben-Zion (2016a) have shown that the distance to the nearest-neighbor is

distributed bimodally. The distance in space and time normalized by magnitude of the
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Figure 3: Generalized earthquake distance ⌘ and its normalized space and time com-
ponents (T,R) in regions with high heat flow H > 0.25. (a) Joint distribution of the
rescaled components (T,R) of the earthquake nearest-neighbour distance. (b) Distri-
bution of the values of the nearest-neighbour distance ⌘. Black diagonal lines in panel
(a) depict levels of constant distance ⌘ (from top to bottom): –log10⌘ = 4, 5, 6, 7, 8
(Zaliapin & Ben-Zion, 2016).

parent between a parent event j and its offspring event i is given by the formula

Tij = tij10
�qbmi ;Rij = (rij)

d10�pbmi ; q + p = 1 (16)

as defined by Zaliapin et al. (2008). Theoretically, it can be shown that events with

Gutenberg-Richter magnitudes and time-stationary space-inhomogeneous Poisson flow

have a uni-modal distribution of (log T, logR) concentrated along a line log10 T +

log10 R = constant. In reality, observed seismicity behaves differently. It has been

documented that detected seismicity over various regions has a bimodal joint distribu-

tion of (log10 T, log10 R) where one of the modes coincides with background events and

is comparable to the mode of a Poisson process (Zaliapin et al. 2008; Zaliapin & Ben-

Zion 2011, 2013a,b, 2015, 2016; Gu et al. 2013; Davidsen et al. 2015; Reverso et al.

2015; Schoenball et al. 2015). The other mode is made up of clustered events located

noticeably closer in space and time to their parents than is likely in a Poisson process.

A Gaussian mixture model approach can be used to distinguish the background and

cluster modes in the bimodal distribution of earthquake distances. A Gaussian mixture

model with two modes is used to intentionally select a nearest neighbor threshold ⌘0, so

each event can be group into either the background (if ⌘ij > ⌘0) or cluster (if ⌘ij < ⌘0)
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mode.

The distribution for a two mode Gaussian mixture model assuming that sample xi 2

Rm, i = 1, ..., n is

F (x) = wN(x;µ1,⌃1) + (1� w)N(x;µ2,⌃2). (17)

Here, w is the mixture weight of the first mode and N(x;µ,⌃) denotes the Gaussian

(Normal) distribution, with mean µ that is a vector with m elements and variance ⌃ that

is a m⇥m positive-definite matrix. Model estimation, mode and background (cluster)

events threshold assignment are discussed in detail in Zaliapin & Ben-Zion (2016a).

From this model, two important parameters of clusters, ⌘bg and Q, can be estimated

for a region. The mean generalized earthquake distance ⌘ij of the background events

from parent events is ⌘bg. The average value of the mode assignment probability v =

max(w, 1 � w) over all events in a region is the regional mode separation quality Q.

Q can take on any value between 0.5 and 1. If each event can be classified as part of

one of the modes with probability 1 , Q = 1, while if the classification of each event to

either mode has probability 0.5 then Q = 0.5.

Clustering identification is done using tree graphs and spanning forests. A spanning

network representing a cluster is created by connecting each earthquake to its nearest

neighbor, resulting in a tree graph (Zaliapin & Ben-Zion 2013a; Baiesi & Paczuski

2004). Applying a threshold ⌘ � ⌘0 removes links representing large distances between

parent and offspring, resulting in a spanning forest where each tree represents a separate

cluster. Trees may contain only single events (singles) or multiple events (families).

Events in each family are classified into foreshocks, main shock and aftershocks.

The main shock is identified as the earthquake with the largest magnitude in the family,

or the first to occur if there are multiple earthquakes with the same largest magnitude.

Foreshocks are the events preceding the main shock, and aftershocks are the events

following the main shock. Single events are classified as main shocks.

Earthquake clustering is space-dependent and related to heat flow production, with
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the highest seismic activity occurring in subduction zones and the average heat flow

having the highest values in extension environments, particularly along mid-oceanic

spreading ridges. The behavior of earthquake clustering is driven by space-dependent

heat flow production. Notable differences in earthquake clustering between high and

low heat flow regions include higher earthquake intensity in low heat flow regions with

predominantly contraction and transform deformation styles, lower proportion of back-

ground events in low heat flow regions, and faster time decay of cluster events in high

heat flow regions leading to stronger time separation between background and cluster

modes.

A 1-D Gaussian mixture model applied to the nearest-neighbor distances of events

within circles centered at the epicenters of all examined earthquakes was used to esti-

mate the space-dependent threshold ⌘0 that separates the cluster and background modes.

This threshold was then used to partition events into cluster and background popula-

tions. From this analysis properties of the cluster characteristics ⌘bg and Q were illumi-

nated. The highest earthquake intensity and lowest values of ⌘bg were observed within

convergent environments, which flexibility large spatial variability and intermittence in

separation quality Q. The lowest earthquake intensity and largest values of ⌘bg were

observed along divergent boundaries, and these boundaries also have high mode sepa-

ration quality Q. Intermediate values of earthquake intensity and background position

⌘bg were observed along transform boundaries, along with the mode separation quality

Q showing high intermittency. A GLM approach and Spearman’s correlation were used

to compare earthquake cluster statistics with strain rate tensor and heat flow parame-

ters. This approach further documented the correlation between heat flow and these

examined cluster characteristics (Zalipain & Ben-Zion, 2016).

A key property of earthquakes clusters uncovered in this analysis was that cold areas

have much larger clusters than hot areas. The study examines a catalogue of 256,993

events and partitions them into 135,840 clusters using a specific procedure. Of these

clusters, 85.6% are single events and 14.4% are families with sizes ranging from 2 to
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6584. The distribution of cluster size is found to be different in areas with high and low

heat flow levels, with a power law tail approximation of

S(N) = Prob[cluster size > N] / N�↵ (18)

with ↵ ⇡ 2 in hot areas and ↵ ⇡ 1 in cold areas. The observed difference in cluster size

distributions implies that cold areas have much larger clusters and a larger proportion of

clusters with size N > 10. The dominance of large clusters in cold regions is explained

by statistically higher maximal magnitude and better quality of catalogs in cold regions

compared to hot ones. The cluster size is stochastically larger in cold regions for clusters

with main shock magnitude m > 6, while the size of intermediate-magnitude clusters

(with main shock magnitude m < 6) is stochastically larger in hot regions. In addition,

the proportion of smallest clusters (singles) among all detected clusters is higher in

cold areas. The probability of being a single is higher for small-magnitude events. With

the existing data, it is difficult to conclude whether this effect is related to the inferior

catalog quality in hot regions or is a real physical property.

The proportion of foreshocks among foreshocks and aftershocks, pF , is higher in

areas with high heat flow, typically with values greater than 0.2, while in areas with low

heat flow the typical proportion is very small, pF < 0.1. This increased production of

foreshocks in hot regions is supported by the analysis of the value of pF averaged for

different combinations of strain rate tensor’s style S and second invariant I2. Spatial

patterns similar to those reported in 4 are also seen for other examined cluster charac-

teristics.

When looking at the worldwide distribution of the aftershock magnitude gap �A

defined for families with aftershocks as the difference between the magnitudes of the

main shock and the largest aftershock, this gap is generally larger within cold regions,

with typical value of �A ⇡ 0.8, while in hot regions it is typically smaller, �A ⇡ 0.55.

The comparison of pF and �A with heat flow and strain rate tensor parameters using

Spearman’s correlation and GLM approach, it is notable that the values of the aftershock
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magnitude gap reported here are lower than the value �A ⇡ 1 suggested by the Bath

law. This deflation is artificial and is due to the fact that we consider families with main

shock magnitude m � 5, which is only one unit above the magnitude cut-off mmin = 4

selected for this study. The magnitude gap is affected by the catalog completeness

magnitude, since a higher completeness magnitude leads to smaller observed values of

�A. The reported difference in magnitude gap might be influenced to some extent by

inferior catalog quality in hot areas. However, Zaliapin & Ben-Zion(2013a) reported

lower magnitude gap in hot regions in a local study in southern California, where the

quality of catalogs is comparable in both cold and hot regions. The study believes that

the magnitude gap difference between hot and cold areas is a real phenomenon that will

be confirmed in future studies with better catalog quality.

As mentioned previously, the structure of earthquake families is represented by a

tree, T , with vertices, V = vi, i = 1, ..., N representing earthquakes and edges, ei con-

necting them to their parent within the same family. The first event in the family is

referred to as the root and all other events have a single parent within the same family.

Two statistics are used to study the structure of earthquake families: the average fam-

ily branching and the average leaf depth. The average family branching is the average

number of offspring per parental vertex of the tree, while the average leaf depth is the

average number of edges between a leaf and the tree root. It is expected that the leaf

depth and family branching are negatively correlated, meaning that as the leaf depth

increases, the family branching decreases. Zaliapin and Ben-Zion (2013b) found that

these statistics are strongly coupled with the heat flow in southern California, with leaf

depth increasing and family branching decreasing as heat flow increases. The same

trend is observed on a global scale. The values of these statistics also depend on the

family size, which can affect spatial analysis. A least-square regression analysis sug-

gests that the examined statistics have a relation to the family size in the intermediate

size range of 5 to 20. The spatial distribution of these statistics also shows that cold

regions typically have a smaller average leaf depth and a larger average family branch-
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Figure 4: Global spatial distribution of selected earthquake cluster statistics. (a) Pro-
portion pS of singles among regular clusters. (b) Proportion pF of foreshocks among
foreshocks and aftershocks (Zaliapin and Ben-Zion, 2016).
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ing than hot regions. The comparison of these statistics with heat flow and strain rate

tensor parameters using Spearman’s correlation and GLM approach confirms that heat

flow exerts the primary control on the values of these two statistics.

This study investigates earthquake dynamics on a global scale and found that earth-

quake statistics and cluster characteristics have a spatially dependent distribution, which

correlates with global heat flow production and style of lithospheric deformation indi-

cated by an estimated strain rate tensor. The results support earlier findings that there

is non-universal, region-specific behavior of seismicity, and suggest that there are two

primary types of earthquake clustering: burst-like clusters characterized by a large main

shock in cold regions, and diffuse clusters with a smaller main shock and a larger num-

ber of offspring events in warm regions. The findings are consistent with theoretical

expectations based on a viscoelastic damage rheology model.

2.5 Applications - Earthquake clusters in southern California

2.5.1 Identification and stability

This section explores the application of the techniques discussed in the previous sec-

tion to identify and characterize the clustering of seismicity in southern California.

The study ”Earthquake clusters in southern California I: Identification and stability”

by Zaliapin and Ben-Zion (2013a) uses the method based on the bimodal distribution

of nearest-neighbor earthquake distances in a combined space-time-magnitude domain,

which allows for partitioning an earthquake catalog into separate individual clusters

mentioned in the previous section. The clusters are divided into singles, which con-

tain just one event, and families, which contain multiple events, and are subclassified

into foreshocks, mainshocks, and aftershocks. Recall this method is characterized by

its ability to use only three easily estimated parameters, its ability to uniformly analyze

clusters associated with mainshocks of greatly different magnitude, its high stability

with respect to parameters, minimal reported magnitude, catalog incompleteness, and

location errors, and its absence of underlying assumptions or governing models for the
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Figure 5: Map of earthquake epicenters, m � 2, from the relocated catalog of Hauksson
et al. (2012). Circle size is proportional to magnitude. Major faults are shown by gray
lines.

expected earthquake cluster structure.

The study uses a the by Hauksson et al. (2012) catalog. Figure 5 in the study

shows the location of these earthquakes and Figure 6 provides a visual representation

of changes in seismic intensity, which are mostly related to aftershocks of large earth-

quakes.

Despite using a lower completeness magnitude of mc = 2 compared to the estimated

Figure 6: Epicenters of the earthquakes with m � 3 as a function of time and latitude.
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completeness magnitude of 3.0 for southern California, the study found that the cluster

structure of events is unaffected by incompleteness or the minimum reported magnitude

(Felzer, 2008; Schorlemmer and Woessner, 2008). This indicates that the recovered

cluster structure is similar to what would be observed in a complete catalog. Results

for a higher magnitude threshold of 3 are similar, but there are insufficient clusters to

obtain clear results.

In this study, earthquake clusters are identified by the nearest neighbor approach

discussed in detail in the previous section. The analysis shows two distinct groups:

clustered events that are close to each other in time and space, and background events

that are farther apart than expected. Although background events are not entirely ho-

mogeneous, deviations are smaller than for clustered events. The study focuses on

significant clusters, their properties, and the single largest event in each cluster, regard-

less of homogeneity. This approach differs from catalog declustering, which removes

events to create a homogeneous set (Gardner & Knopoff, 1974). Recent research shows

that the assumption of catalog homogeneity is often incorrect due to seismic migration

and changes in activity (Luen & Stark, 2012).

Results from analyzing 2,105 events with m � 3 in southern California, using the

Hauksson et al. relocated catalog, suggest that they form a Stationary Homogeneous

Poisson (SHP) process. This process is a marked Poisson point process that is uniform

across multiple dimensions, stationary over time, and has magnitudes that follow the

Gutenberg-Richter distribution. The joint 2-D distribution of time and distance in SHP

is unimodal and concentrated along the line log10 T + log10 R = �5, as shown by

exploring Nearest Neighbor distances (NND). A histogram of NND on a logarithmic

scale also displays a clear unimodal shape in the joint distribution of time and distance

of the SHP process, which closely matches the theoretical Weibull distribution (Zaliapin

et al., 2008; Hicks, 2011). This aligns with the analysis outlined in the previous section.

Observed seismicity in Southern California uncovers a prominent bimodal distri-

bution of ⌘ and of the joint distribution of (T,R). The first mode, referred to as the
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”background,” is similar to the distribution of a SHP process. The second mode, re-

ferred to as ”clustered,” is located closer to the origin. This bimodal distribution has

also been observed in global seismicity and regional seismicity in other areas such as

Nevada, Japan, New Zealand, and Africa (Hicks, 2011; Bautista, 2011). The bimodal

distribution is caused by groups of earthquakes happening within localized regions in

space and time, mainly corresponding to foreshock-mainshock-aftershock sequences or

swarms. The bimodality of the (T,R) distribution is used to identify individual space-

time clusters of seismicity.

A nearest-neighbor spanning network from the southern California earthquake cat-

alog was created by connect each earthquake to its closest neighbor to form a single

cluster that includes all earthquakes. This nearest-neighbor network is a tree structure

without loops (Baiesi & Paczuski, 2004). The links in the tree are then separated into

strong and weak links based on their proximity, NND ⌘. Weak links correspond to the

background part of the bimodal distribution of seismicity, while strong links correspond

to the clustered part of the bimodal distribution. The weak links are removed to form

a spanning forest, which is made up of a collection of distinct trees, which includes

single-event trees (singles) and multievent clusters (families) as discussed in the previ-

ous section. 60% of the earthquakes have strong links and form families, while 40%

have weak links and are singles in the southern California catalog (Zaliapin & Ben-

Zion, 20213a). If we zoom in on a specific aftershock sequence we can see the highly

clustered nature of families of events, while singles are more uniformly distributed.

When examining the internal composition of the clusters within the nearest-neighbor

spanning forest, families, are separated into ”mainshocks,” ”aftershocks,” and ”fore-

shocks.” The type of earthquake depends on the time and magnitude. The analysis

shows that the proportion of different types of earthquakes is stable for families with

magnitudes below 5, with about 37% of mainshocks and singles, 56% aftershocks, and

7% foreshocks. For larger earthquakes, there is a preference for mainshocks. The spa-

tial and temporal distribution of mainshocks and singles is larger than that of the clusters
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identified by the nearest-neighbor analysis. The mainshock/single field is not Poisso-

nian and the cluster identification procedure does not distort the nonhomogeneous and

possibly nonstationary background events. However, the clustering of mainshocks and

singles lacks bimodality, so additional rules are required to analyze such data (Zaliapin

& Ben-Zion, 2013a).

The technique for detecting earthquake clusters used in this study is based on the

earthquake distance equation (Equation 16) and a cluster threshold ⌘0 as described

in the previous section. The technique is completely parameterized by three values

(b, df , and⌘0) that are estimated from observations(Marzocchi & Sandri, 2003; Harte,

1998; Kagan, 2007; Molchan & Kronrod, 2009; Hicks, 2011). The performance and

stability of the technique were tested using catalogs generated by the ETAS model(Ogata,

1998). The results suggest that the technique can accurately identify clusters in the

ETAS model, is stable with respect to various parameters, and can be applied to the ob-

served catalog of southern California seismicity. The study uses a version of the ETAS

model that assumes isotropic spatial kernel and homogeneous spatial background, which

is commonly used in seismicity analysis(Veen and Schoenberg, 2008; Wang et al., 2010;

Chu et al., 2011). The results suggest that the cluster structure in the southern California

catalog is similar to that generated by the ETAS model, and the proposed technique can

robustly recover the cluster structure.

When analyzing the statistics of the detected earthquake clusters, Zaliapin and Ben-

Zion had two objectives. The first objective was to validate the proposed cluster detec-

tion technique by reproducing known statistical features of aftershocks and foreshocks.

The second objective was to uncover new properties of the earthquake clusters.

When looking at the magnitude distributions of mainshocks/singles, aftershocks,

and foreshocks, the cumulative proportion of earthquakes above or equal to magnitude

m is normalized by the magnitude, [1 � F (m)]x10m where F (m) represents the em-

pirical cumulative distribution function of magnitudes, to emphasize the changes in the

exponential index. This transformation shows that all three distributions are exponen-
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tial within the magnitude range of 2.5 to 4.5, with a lower index, b ⇡ 1, for mainshocks

and aftershocks and a higher index, b > 1 for foreshocks. The estimation of the b-

value, which is a measure of the rate of earthquakes, confirms the visual observations

from the cumulative plots of observed seismicity (Tinti and Mulargia, 1987). The b-

value for mainshocks and aftershocks is the same, while it is higher for foreshocks.

The mainshock/single magnitude distribution does show an upward deviation from the

exponential distribution and it is thought this is due to growth of stress concentration

in elastic solid with rupture size, but the exact reason remains unclear, and may be due

to either statistical artifacts or physical processes. The results suggest that the behavior

of natural seismicity clusters and foreshocks, in particular, cannot be fully explained by

the ETAS framework (Zaliapin & Ben-Zion, 2013a).

When the number of offspring events (Noff) in a catalog of observed earthquakes

is compared to an ETAS model catalog, the results showed that the Noff distribution

for fixed m in the observed catalog deviates significantly from a Poisson distribution

and is better approximated by a negative binomial distribution, which is consistent with

previous research (Kagan, 2010).

For observed seismicity in southern California, the offspring number scales with the

event magnitude as

Noff / 10cm, c = 0.93± 0.06 (19)

where the estimation is done within the range 4  m  6, and at the 95% confidence

level.

The estimated mean and variance of Noff for the observed catalog is larger com-

pared to the ETAS model. In particular, the average Noff for earthquakes with magni-

tude less than 4 is significantly smaller in the ETAS model than in the observed catalog.

The ratio between the variance and average also increases from 1 to about 100 as the

magnitude of earthquakes increases from 2 to 6 in both the observed catalog and ETAS

model, further emphasizing the inadequacy of the Poisson model for describing the



30

Noff distribution (Zaliapin & Ben-Zion, 2013a).

An important result of this increased variability of the Noff distribution in the ob-

served catalog is the existence of a large population of ”singles” or main shocks with

no offspring. This observation cannot be solely explained by catalog artifacts such as

incompleteness or the minimal reported magnitudes. Singles make up 84% of all de-

tected clusters, 53% of clusters with magnitude greater than or equal to 3, and 17% of

clusters with magnitude greater than or equal to 4. The largest single event detected has

a magnitude of 5.0 (Zaliapin & Ben-Zion, 2013a).

The distribution of cluster size N is found to be closely approximated by a Pareto

distribution with a index a ⇡ �1, which can be represented by the combination of expo-

nential mainshock magnitude distribution and the exponential number of offspring for

a given mainshock with index ↵ ⇡ b (Saichev et al., 2005). The number of aftershocks

per cluster is larger and scales with the mainshock magnitude as NA / 10�m with an

index of � ⇡ 0.99 ± 0.06(95%CI). The number of foreshocks doesn’t exhibit a clear

exponential scaling but the best exponential fit would have a smaller index of � ⇡ 0.6.

The increase of fore/aftershock number with the cluster mainshock magnitude is due

to the existence of the catalog lower cutoff magnitude. The cluster size is found to

be independent of the mainshock magnitude and robust with respect to the earthquake

magnitudes after conducting various tests (Freedman, 2005; Kruskal & Wallis, 1952).

To understand the temporal structure of families the intensity of earthquakes in the

clusters versus time is averaged over all the detected clusters in both regular and �-

analyses, specifically looking at the relationship between the intensity and time relative

to the main shock. Results from both regular and �-analyses (which only includes af-

tershocks and foreshocks within � magnitude units from the main shock) showed a con-

ventional pattern of foreshock-mainshock-aftershock, with lower number of foreshocks

and higher number of aftershocks. The intensity of both aftershocks and foreshocks

decreases over time, with a power-law decay seen in both. Results were consistent

with the Omori-Utsu law (13) for the intensity of both foreshocks and aftershocks, and
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showed that the productivity index K is a constant dependent on � but not the main

shock magnitude in �-analysis, while in regular analysis it scales with the main shock

magnitude m as

K = 10�m (20)

with � ⇡ 1 for aftershocks and � < 1 for foreshocks. The difference between the

aftershock intensity in regular vs �-analysis was significant, while the difference be-

tween the foreshock intensities was much smaller. This difference was seen in the

distribution of magnitude differences between the main shock and the family events,

with foreshocks having a closer magnitude to the main shock compared to aftershocks.

However, the distributions of the magnitude difference between the main shock and

the largest foreshock or aftershock were statistically the same. These results suggest

the existence of an accelerated failure process as the time of main shock approaches

(Mogi, 1969; Keilis-Borok & Kossobokov, 1990; Bufe and Varnes 1993; Ben-Zion &

Lyakhovsky,v2002; Turcotte et al., 2003).

Previous research has shown a systematic difference between the magnitudes of

mainshocks and their largest aftershocks with an average magnitude difference close

to 1.2 (Båth, 1965; Kisslinger & Jones, 1991; Shcherbakov & Turcotte, 2004; Shearer,

2012). The current analysis of southern California confirms this, with an average mag-

nitude difference of 1.1 for aftershocks and 1.2 for foreshocks. The differences in mag-

nitude, �m = mmainshock �mlargest-event are found to have an almost uniform distribution

within the range of [0, 2]. However, the data shows significant deviations from a uni-

form distribution in the foreshock magnitude distribution in the ETAS model. Further

testing is needed to determine if this deviation is systematic and if the ETAS model

deviates from observations regarding foreshock magnitudes.

The size of earthquake clusters relates to the main earthquake magnitude, with the

area A defined as the smallest convex hull containing them. Aftershock areas scale with

the mainshock magnitude m as A / 10�m, � ⇡ 1, and are independent of family size
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N , suggesting a damage zone around the main rupture that scales with its magnitude.

Foreshock areas are an order of magnitude smaller on average than aftershock areas and

independent of family size. Cluster duration is independent of main earthquake magni-

tude and slightly increases with family size, indicating elastic stress transfer dominates

stress relaxation after a mainshock.

Seismic clustering in southern California is tied to crustal properties and changes

over tens of kilometers. Two primary types of clusters exist: ”burst-like” and ”swarm-

like.” Burst-like clusters have a distinct large main shock, few foreshocks, and more

first-generation offspring, indicating brittle collapse in regions of low fluid and heat

flow. The Mojave, Ventura, and San Gabriel regions have burst-like clusters. Swarm-

like clusters lack a noticeable primary shock, have more foreshock activity, and many

secondary offspring, indicating mixed brittle-ductile failure in regions of high fluid,

heat, and/or soft sediment flow. The Salton Sea and Coso geothermal districts have

swarm-like clusters. Effective viscosity is the primary driver, with increased viscosity

leading to burst-like clusters and decreased viscosity leading to swarm-like clusters.

These trends in southern California provide valuable insights into earthquake dynamics

and seismic hazard assessments but are limited by the quality of global earthquake

data, which can be improved using statistical tools developed by Zaliapin and Ben-Zion

(2016) discussed in the previous section.

2.5.2 Spatial Variations of Rock Damage Production

Earthquake ruptures result in rock damage within their source volumes, leading to an

increase in crack density and changes in various rock properties such as elastic moduli,

mass density, seismic velocities, attenuation, anisotropy, permeability, and conductiv-

ity (Lockner et al., 1977; Dresen & Gueguen, 2004; Mavko et al., 2009). The ways

in which rock damage progresses reflects important underlying dynamics that precede

large brittle instabilities and an accurate model of seismicity would take these elements

into account (Peng & Johnson, 1972; Hamiel et al., 2004; Renard et al., 2018).
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”Spatial variations of rock damage production by earthquakes in southern Califor-

nia” (Ben-Zion & Zaliapin, 2018) endevours to estimate the amount of rock damage

produced by earthquakes in Southern California. The authors use data from earth-

quakes with magnitudes in the range [2, 4) from 1981 to 2017 (Hauksson et al., 2012).

The study aims to understand the relative production of rock damage in different parts

of Southern California. The authors use theoretical relations from earthquake phe-

nomenology and fracture mechanics to estimate the production of fracture area and

volume generated by observed seismicity. The results of the study indicate that there

is a zone with ongoing damage production between the Imperial fault and the Eastern

California Shear Zone. The regions around the 1992 Joshua Tree, Landers and Big Bear

earthquakes are active before 1990 and outline the future earthquakes. The seismicity

and damage zone become more pronounced and continuous with increasing depth lead-

ing up to these larger events. Finally, implications of these results for the properties and

dynamics of the plate-boundary region in Southern California are discussed.

Estimating the amount of rock damage produced by earthquakes in southern Cali-

fornia is done by using observed seismicity, basic relations from earthquake events and

fracture mechanics (Jamtveit et al., 2018). The authors provide theoretical formulations

for calculating the fracture area and rupture volume, which are then implemented using

the earthquake catalog for the period 1981-2017.

The total number of earthquakes with a magnitude of M or greater is given by the

Gutenberg-Richter exponential relation (Gutenberg B. & Richter C. 1954). The fracture

area of each earthquake is estimated by assuming it can be approximated as a circular

crack with a uniform strain drop in a solid (Eshelby, 1957; Ben-Zion, 2008; Ross et al.,

2016). The seismic potency of each earthquake is related to its magnitude (Hanks and

Kanamori, 1979). By combining these relationships, the total fracture area is calculated

by integrating the fracture area of each earthquake. The calculation shows that the

smallest earthquakes in the population dominate the total fracture area.

A method for estimating the rupture volume generated by earthquakes in the magni-
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tude range M1  M  M2 by considering the width (thickness) of the rupture zone for

each earthquake is outlined in this paper. The width of the rupture zone is proportional

to the rupture radius and is related to the dynamic stress intensity factor and the ratio of

stress drop to strength drop (Ben-Zion & Ampuero, 2009). Using this information, the

damage volume generated by each individual earthquake can be calculated. Integrating

the results over the magnitude range gives the total rupture volume, which is dominated

by the largest earthquakes included in the analysis.

The above techniques were implemented to estimate the relative production of frac-

ture area and rupture volume in different parts of Southern California caused by earth-

quakes associated with ongoing background activity. This analysis uses a catalog of

earthquakes from 1981 to 2017, and only earthquakes with magnitude 2  M < 4 to

obtain results that are representative of a typical inter-seismic period for all faults in the

study area. They use a grid of 300⇥ 300 with an average spacing of 10 km to calculate

the cumulative damage volume caused by the earthquakes, then divide it by the time

interval duration of 37 years to obtain damage values in units of km3 per year. Finally,

they smooth the resulting map using a Gaussian filter with a standard deviation of 0.15

degrees (equivalent to 16 km).

To assess the temporal stability of the estimated damage production, compare the

damage volume production before and after 1990, the year in which the largest event

occurred in the study area, which was the 1992 M7.3 Landers earthquake. The compar-

ison is done by calculating the proportional change of damage volume

�volume =
Vafter � Vbefore

max(Vafter, Vbefore)
(21)

Where Vbefore represents the damage volume production rate prior to 1990 and Vafter

represents the value for the same rate after 1990. The change in damage volume pro-

duction rate (�volume) after 1990 has a range of -1 to 1, with negative values indicating

a decrease and positive values indicating an increase.

Southern California has concentrated background damage in several areas, includ-



35

ing the San Jacinto Fault Zone, Brawley Seismic Zone, South Central Transverse Ranges,

Eastern California Shear Zone, and Elsinore Fault. The rock damage is not uniformly

distributed along the fault structures but instead focused in persistent active areas, which

are major damage hotspots. Most moderate to large earthquakes occur within these

hotspots, which are also connected to low magnitude seismic events. However, there

are also active damage zones that have not experienced any moderate to large earth-

quakes in the last 30 years.

Rock damage production has remained concentrated in the same zones before and

after 1990, with some fluctuations indicating a slow migration of active patches and

changes in damage intensity. Isolated patches have shown decreased damage produc-

tion after 1990. Overall, background events’ damage production is stable across the

examined region, despite the earthquake process’s complexity and the shortness of the

catalog (Ben-Zion & Zaliapin, 2019).

Fracture area maps were created using the same approach as the damage volume re-

sults, and they are nearly identical, confirming that the analysis represents inter-seismic

activity and is not affected significantly by sample artifacts. The numerical ratio of

estimated total rupture area and volume changes with the lower and upper boundaries

of magnitude. It increases when the lower boundary extends to smaller events and de-

creases when the upper boundary extends to larger events (Ben-Zion & Zaliapin, 2019).

Results from damage volume production analysis suggest stable damage production

by background events in space and time, with active regions around the 1992 M6.1

Joshua Tree, M7.3 Landers, and M6.3 Big Bear earthquakes before 1990 outlining the

ruptures of future events(Ben-Zion & Zaliapin, 2019).

Changes in rock damage in southern California were explored by applying basic

theoretical principles for the area and volume of rupture caused by earthquakes, which

follow the Gutenberg-Richter frequency-magnitude relation. Results show ongoing oc-

currences of background earthquakes in certain regions, with the largest continuous

region associated with the San Jacinto fault zone. Rock damage maps suggest a possi-
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ble large-scale active seismic zone connecting the Imperial fault and Brawley seismic

zone in the south with the Elsinore fault zone to the north. Rupture zones of past earth-

quakes were found to have ongoing background seismicity before the events occurred.

These results provide valuable insights into the seismically active configuration of the

plate boundary in southern California (Ben-Zion & Zaliapin, 2019).

2.5.3 Artifacts of Earthquake Location Errors and Short-term Incompleteness

Inconsistencies in data collection can impact analysis towards the goal of quantify earth-

quake clustering. Quantitative characterization of spatio-temporal earthquake clustering

and its relationship to the physical properties of the lithosphere, as well as its response

to various natural and human-induced loads has been a fundamental goal of seismol-

ogists (Enescu et al. 2009; Holtkamp et al. 2011; Brodsky & Lajoie 2013; Ellsworth

2013; Gu et al. 2013). Advancements in seismology have enabled the study of smaller

magnitude earthquakes using innovative statistical methods and improved catalog data

(Hainzl 2013; Hainzl et al. 2014; Moradpour et al. 2014). This has opened up new

avenues for exploration, such as the structure of seismic bursts and induced seismic-

ity, which cannot be investigated using data from larger earthquakes alone (Vidale &

Shearer 2006; Chen & Shearer 2013; Eaton et al. 2014). However, the increased focus

on smaller earthquakes has also led to various catalog uncertainties that can impact re-

sult (Kuge 1992; Rohm et al. 1999; Storchak et al. 2000; Kagan 2003). ”Artefacts of

Earthquake Location Errors and Short-term Incompleteness on Seismicity Clusters in

southern California” (2015) by Zalipain and Ben-Zion focuses on the effects of earth-

quake catalog uncertainties, such as event location errors and short-term incomplete-

ness, on the estimated earthquake clustering and triggering. The paper uses the method

of estimating earthquake cluster properties outlined in section 2.4.1 and the relocated

earthquake catalogs in southern California to explore these uncertainties. The results

showed that the method can identify thousands of earthquake clusters, including small-

to-medium magnitude events, in different seismic environments, and classify them into
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three main types. However, extending these results to other seismically active areas is

challenging because of the non-uniform quality of typical data. This study investigates

the effects of catalog errors on inferred cluster properties and documents the striking

seismic patterns that arise as a result of these errors.

This research uses three earthquake catalogs from southern California for analysis,

Hauksson et al. (2013), Richards-Dinger and Shearer (2000), and ANSS catalog(2015).

The earthquake clustering method outlined in section 2.4.1 was used in this study to

identify and analyze parent–offspring pairs of earthquakes from these three catalogs.

Geography strongly affects the location errors of earthquakes in the Southern Cali-

fornia HYS catalog from 1981-2013. The errors decrease in central southern California

compared to peripheral areas due to differences in the seismic network quality. Three

statistics - number of P and S picks used, number of differential times, and number

of similar events - can evaluate network quality. The number of picks used shows the

strongest correlation with location error, but the distribution doesn’t match that of the

other two statistics, which have higher values in high seismic activity areas (Zaliapin &

Ben-Zion, 2015).

Location errors in earthquakes significantly impact the spatial relationship between

parent and offspring events. Analyzing the rescaled time and distance between events

showed that high location errors increase the distance-to-parent, particularly when the

parent event is large. Location errors can cause related artifacts, including decreased

spatial decay rate of offspring and artificial increase in the spatial distribution of fore-

shocks. These effects are not limited to the study’s specific parent identification method

but also expected in other cluster approaches (Zaliapin & Ben-Zion, 2015).

The second artifact is underestimated offspring production. When analyzing the

impact of mislocations in earthquake catalogs on the identification of parent-offspring

relationships, the study defines close events as those separated by a combined distance

of ⌘ < 10�5. The proportion of events with close offspring and close parent are ex-

amined as a function of the absolute horizontal location error. The results show that as
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the error increases, the proportion of events with close offspring and close parent de-

creases, leading to an underestimation of offspring productivity and the total number of

clustered events. When comparing the location errors to the estimated rupture lengths

of the events and their parents the location errors are comparable to the half-rupture-

length of the estimated parent for many events, potentially leading to incorrect parent

identification (Zaliapin & Ben-Zion, 2015).

Location errors can cause miss-identification of background events as clustered

events, resulting in an overestimated background rate. The study found an increase in

the proportion of background events with large location errors and a three-fold increase

in single events as absolute location error increases. While relative error exacerbates

the effect, the miss classification is negligible (Zaliapin & Ben-Zion, 2015).

Small events following large earthquakes may not always be recorded in seismic

catalogs, causing a change in b-value over time and space (Utsu et al. 1995; Wiemer &

Katsumata 1999; Narteau et al. 2002; Kagan 2004; Lolli & Gasperini 2006; Helmstetter

et al. 2007; Peng et al. 2007). B-value measures earthquake frequency at different mag-

nitudes. To investigate this change, earthquake magnitudes were compared for events

occurring soon after a large earthquake (t < 1day) and those far away (t > 10 days) in

Southern California. Magnitudes were also compared for rescaled times (T ) of events.

This analysis found that the b-value decreases by over 0.1 near a parent earthquake

due to short-term incompleteness. This effect is more noticeable when using rescaled

times. The average magnitude of earthquakes also decreases after a large earthquake,

indicating an increase in b-value, which affects small and large magnitude earthquakes.

This short-term incompleteness may bias regional b-value studies, even for magnitudes

above the completeness threshold.

Next, four alternative catalogs of earthquakes in Southern California are compared

and analyzed. These include the Hauksson et al. (2013) catalog, the Richards-Dinger

and Shearer (2000) catalog, and two ANSS subcatalogs. The goal is to show that the

inaccuracies and incompleteness in earthquake locations, seen in the Hauksson et al.
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catalog, are not unique to it and are present in the other catalogs as well. This analysis

aims to use the relationships between location errors and clustering to determine the

accuracy of event locations in each of the four catalogs, ranking them based on the

overall accuracy.

The study compares earthquake catalogs in Southern California to determine if re-

ported location errors and short-term incompleteness are unique to the Hauksson et al.

(2013) catalog. Four catalogs are compared: Hauksson et al. (2013), Richards-Dinger

and Shearer (2000), and two ANSS subcatalogs. The joint distribution of the rescaled

time and space components of the earthquake nearest-neighbor distance (⌘) and the

log10 ⌘ in the Richards-Dinger and Shearer (2000) catalog resembles that of the Hauks-

son et al. (2013) catalog. The three main artifact studied in the Hauksson et al. (2013)

catalog were also reproduced in the Richards-Dinger and Shearer (2000) catalog. The

results suggest that these artifacts are present in all catalogs studied and are not specific

to a single catalog or relocation method.

The analysis is done for two complementary groups of events, with and without

magnitude constraints. As the quality of the catalogs decreases, the location of the

events shifts towards higher rescaled times and distances, the separation of the clustered

and background modes decreases, and the proportion of background events increases

while the proportion of clustered events decreases. Other cluster statistics remain con-

sistent among the alternate catalogs. The study also examines the effects of short-term

incompleteness in the catalogs and finds that the average magnitude decreases with time

after the parent and stabilizes after 10 days. The results provide a rough assessment of

the size of fluctuations that might be expected as a result of varying location quality

(Zaliapin & Ben-Zion, 2015).

In summary, two types of well-known uncertainties in the catalogs: location er-

rors and short-term incompleteness, effects the estimation of earthquake cluster statis-

tics. These uncertainties can significantly bias the results of cluster analysis and affect

the estimation of earthquake background rates, triggering productivity, and b-value.
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These uncertainties affect the estimated structure of small-magnitude earthquake clus-

ters, causing many events to be misidentified as background seismicity and leads to

overestimated background rates and underestimated clustering. Short-term incomplete-

ness impacts the estimation of the b-value, which can be confused with magnitude de-

pendence. The study focuses on cluster statistics related to parent-offspring pairs and

shows that while large errors in individual parent-offspring identification do not propa-

gate to the global cluster statistics, they still have a significant effect on the estimation

of individual earthquake properties (Zaliapin & Ben-Zion, 2015).

2.6 Declustering

Using declustered catalogs (catalogs that do not include foreshocks, aftershocks and

other strong forms of clustering) can uncover more subtle features of earthquake at-

tributes and patterns (Dieterich, 1994; Console et al., 2006; Felzer & Brodsky, 2006;

Lengliné et al., 2012; Ross et al., 2017; Kato & Ben-Zion, 2021).

The short duration of earthquake records and strong clustering of seismicity can

mask other properties and hinder our ability to understand long-term earthquake dy-

namics (Wang, Jackson, and Zhuang, 2010; van der Elst, 2017). The majority of earth-

quakes occur in a small fraction of space and time near other earthquakes, and there

are laws, such as the Omori-Utsu power-law, that describe the decay of aftershocks and

seismic intensity (Utsu & Ogata, 1995). In ”Perspectives on Clustering and Decluster-

ing of Earthquakes”, Zaliapin and Ben-Zion (2021) present a reliable and straightfor-

ward measure, G, to analyze the clustering of earthquakes in space and time. The goal

of this measure is to separate the effects of earthquakes concentrated around a complex

fault network from other linked fluctuations in space and time. The authors suggest that

the vast majority of earthquakes in the catalog are due to uneven spatial distribution,

which conceals signals from combined space-time fluctuations. To improve the accu-

racy of the catalog, they recommend various techniques for detecting and removing

these combined fluctuations. The metrics for declustering the catalog include the goals
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of separating the signals from earthquakes, aftershocks, foreshocks, swarms, and other

types of clusters to examine or remove them from the catalog.

The ROC-based Gini coefficient is used to measure the degree of coupled space-

time clustering, which is shown to be stronger than what is suggested by visual inspec-

tions and ETAS modeling. The article suggests that catalog declustering should be done

before further analysis to uncover additional features of seismicity beyond the strong

clustering caused by aftershocks. The ROC diagram provides a convenient assessment

of the coupled space-time clustering, and a large Gini coefficient value indicates a con-

centration of events in a small fraction of the examined space-time volume. The article

proposes that the quality of declustering should be assessed by removing catalog in-

homogeneities and biases, rather than focusing on the final product. The declustering

procedure used in the article tries to remove clustered events and allows the user to

decide which events are background or clustered. The article notes that the factorized

rate may include temporal variations that are not related to event-event triggering, and

that alternative declustering techniques can result in different numbers of background

events.

Declustering is not the main focus of this work, so it is left to the reader to learn

more about the topic and the aforementioned paper is a great place to start (Zaliapin and

Ben-Zion, 2020).

3 Background

At the heart of developing a statistical model is determining how the processes being

modeled are correlated (Gelman & Hill, 2006). There are many different ways of math-

ematically and statistically representing the correlation between two things, and this

section will provide a review of different ways to quantify the relationship between two

quantities. After this review, we will dive deeply into one such method, the ROC-based

Gini coefficient introduced in the previous section, and apply it to the field of seismol-

ogy discussed above.



42

3.1 Comparing Measures

To study the relationship between quantities we first establish properties of the quanti-

ties themselves. Studying measures generalizes the intuitive notions of length, area, and

volume. Let X be a set such that X ⇢Rn. For example, X is a space in two-dimensions.

Usually, we consider up to three-dimensions for our space. The power set of X denoted

P (X) is then the set of all subsets of X . For example, if X is the set of two elements,

a and b, the X = a, b and the power set of X is

P (X) = {;, {a, b}, {a}, {b}}. (22)

A measurable set is defined as any subset A of the power set of X , P (X), such that

A ✓ P (X)

The axioms of probability for a measure f are as follows:

If f is a measure if 8A,B ⇢ X ,

0  f (A)  1 (23)

The measure f is said to be normalized if the total probability,

f (X) = 1 (24)

and

f (A) + f (B) = f (A [ B) if A [ B = ; (25)

This can be extended to n and infinite events.

A counting measure is a type of measure used to assign a non-negative value to a set,

indicating its ”size” or ”cardinality”. Let (X,⌃) be a measurable space. The measure

f on X defined by
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f(A) =

8
>><

>>:

n if Ahas exactlyn elements

1 otherwise
(26)

for all A 2 ⌃ is called the counting measure on X .

Intuitively, a counting measure assigns a non-negative integer value to each element

of the measurable space, and the measure of a set is simply the sum of the measures

of its elements. Counting measures are used in probability theory to define discrete

probability distributions, where the probability of an event is proportional to its ”size”

or frequency. While a counting measure can be defined on an infinite set, in practice it

is typically used to measure finite subsets of the set (Taylor, 2018).

A level set of a real-valued function f of n real variables is a set where the function

takes on a given constant value c, that is:

Lc(f) = {(x1, . . . , xn) | f(x1, . . . , xn) = c} , (27)

(Osher & Fedkiw, 2003).When the number of independent variables is two, a level set

is called a level curve, also known as contour line; so a level curve is the set of all real-

valued solutions of an equation in two variables x1 and x2. When n = 3, a level set is

called a level surface. A level surface is the set of all real-valued roots of an equation in

three variables x1, x2 and x3. For higher values of n, the level set is a level hypersurface,

the set of all real-valued roots of an equation in n > 3 variables.

A sublevel set of f is a set of the form

L�
c (f) = {(x1, . . . , xn) | f(x1, . . . , xn)  c} (28)

is called a sublevel set of f (or, alternatively, a lower level set or trench of f)(Osher

& Fedkiw, 2003). A strict sublevel set of f is

{(x1, . . . , xn) | f(x1, . . . , xn) < c} (29)
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(Osher & Fedkiw, 2003). Similarly, a superlevel set of f (or an upper level set of f ) is

defined as

L+
c (f) = {(x1, . . . , xn) | f(x1, . . . , xn) � c} (30)

And a strict superlevel set of f is

{(x1, . . . , xn) | f(x1, . . . , xn) > c} (31)

3.2 Wasserstein Metric, Monge Problem, Kantorovich problem

The Wasserstein metric is one such alternative approach to comparing measures. The

Wasserstein metric, also known as the Earth Mover’s Distance (EMD), is a measure of

the distance between two probability distributions (Villani, 2003). It is defined as the

minimum amount of ”work” or cost required to transform one distribution into the other,

where the cost is defined as the amount of mass transported multiplied by the distance

it is transported. It was first introduced by Gaspard Monge in 1781 in the context of

optimization problems in transportation theory, known as the Monge problem. The

Monge problem asks to find the most efficient way of transporting material from one

pile to another pile, with the cost of transportation being proportional to the amount of

material transported and the distance it is moved.

The Wasserstein metric formalizes this idea by considering the total cost of trans-

portation, or the amount of ”work” required, as the distance between two distributions

(Villani, 2003). Given two probability distributions p and q, the Wasserstein distance

between them is defined as the minimum cost of transforming one distribution into the

other, where the cost is defined as the integral of the transportation cost function over

all pairs of points in the two distributions. Formally, let (M, d) be a metric space that

is a Radon space. For p 2 [1,1), the wasserstein p-distance between two probability

measures µ and ⌫ on M with finite p-moments is
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Wp(µ, ⌫) =

 
inf

�2�(µ,⌫)
E(x,y)s�d(x, y)

p

! 1
p

(32)

where �(µ, ⌫) is the set of all couplings of µ and ⌫ (Villani, 2003). A coupling � is

a joint probability measure on M ⇥ M whose marginals are µ and ⌫ on the first and

second factors, respectively. That is,

Z

M

�(x, y)dy = µ(x) (33)
Z

M

�(x, y)dx = ⌫(y) (34)

In the context of the Monge problem and the Wasserstein metric, the final integral is

the expected cost of the transportation between two distributions, which is the minimum

cost that is achieved when transforming one distribution into the other. Assume that

there is given some cost function c(x, y) � 0 that gives the cost of transporting a unit

mass from the point x to the point y, then the total cost of a transport plan � is

Z Z
c(x, y)�(x, y)dxdy (35)

The final integral provides a measure of the distance between the two distributions,

with lower values indicating that the distributions are more similar.

The Monge problem is a special case of the more general Kantorovich problem,

which involves finding the optimal transportation plan between two probability distri-

butions. The Kantorovich problem allows for a more general class of cost functions,

whereas the Monge problem is restricted to the case where the cost function is a dis-

tance function (Villani, 2009). In the Monge-Kantorovich problem, a cost function is a

mathematical representation of the cost or distance between two objects, usually in the

context of mass transportation. The cost function determines the cost of moving a unit

of mass from one point to another. The goal of the Monge-Kantorovich problem is to
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find an optimal transport plan that minimizes the total cost of transportation, which is

typically defined as the sum of the cost function values over all unit masses transported

from the source to the target.

If the Wasserstein distance between two measures is small, then one of the mea-

sures is potentially a localized version of the other. We will explore this concept of

localization at length in the Methodology section.

4 Methodology

Statistically speaking, this method was developed for finding a relationship between

several processes. In defining the relation between measures (fi) the following ques-

tions were considered: (i) Are f1 and f2 related? (ii) How are they related? (iii) Can we

use one of the measures to predict (or forecast) the other?

4.0.1 Measures and Level Sets

To begin to answer these questions we will set up the following general mathematically

framework.

Consider a set X (which can be multidimensional) partitioned into a finite collection

of m non-overlapping subsets

X = Xi : 1, ...,m. (36)

A general measure f on a set X is a function f : ⌃ ! [0,1], where ⌃ is a sigma-

algebra on X , satisfying the following properties:

• f(;) = 0, where ; denotes the empty set.

• f is countably additive: for any sequence of pairwise disjoint sets {An} in ⌃,

we have f(n = 11An) = ⌃1
n=1f(An).
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• f is translation-invariant: for any set A in ⌃ and any x in X , we have f(A +

x) = f(A), where A+ x = a+ x : a 2 A.

where the density of measure f is

f(I) =

Z

I

f(x)dx (37)

and we will assume that all measures have a density (Bauer, 2001).

An upper level set of a measure f will be defined as

Lf (c) = {Xi : f(x) � c} (38)

Figure 7: Level set of a measure f

Consider a pair of measures now f and g. To compare measures f and g, we can

measure the level sets of one measure with respect to the other measure. The measure

of the level set Lf (c) with respect to g is

If |g(c) =

Z

Xi⇢Lf (c)

g(Xi)dx (39)
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Figure 8: Mass Ig|f (c) of the level set Lf (c) with respect to measure g(x) equals the
area of the shaded region. Measure f(x) is shown by the blue line and measure g(x) is
shown by the red line.

4.0.2 Receiver Operating Characteristic (ROC)

To compare measures on intervals, the Receiver Operating Characteristic (ROC) can be

used. To define the ROC consider three measures f , g and h. The ROC of measure

f with respect to the ordered pair of measures g and h, denoted by R(f, g|h), is the

set (If |g(c), If |h(c)) where parameter c � 0. Every level set Lf (c) corresponds to a

specific point in the set R(f |g, h). The measure of the level set Lf (c) corresponding

to measures g and h is represented by the x and y coordinates of the point, respec-

tively. The normalized (probability) measures used in this work adhere to the condition

f(X) = g(X) = h(X) = 1. The following properties for the ROC can be inferred for

normalized probability measures:

• The set R(f |g, h) is contained within the unit square [0, 1]⇥ [0, 1]

• The points (If |g(1), If |h(1)) = (0, 0) and (If |g(0), If |h(0)) = (1, 1) are in the

set R(f |g, h).

• The set R(f |g, h) consists of a finite number of points; the number of points is

one more than the number of distinct values of P (Xi), i = 1, ...,m



49

• The set R(f |g, h) is monotone non-decreasing: If |g(a) < If |g(b) implies If |h(a) <

If |h(b) for any non-negative pair a, b.

• For any pair of measure f and g, the set R(f |g, g) lie on the line connecting the

points (0, 0) and (1, 1).

• For the uniform measure U that assigns the same value to each subset Xi, and

any pair of measures g and h, the set R(U |g, h) consists of the two points: (0, 0)

and (1, 1) .

Figure 9: ROC diagram R(f, g|h): a parametric plot of If |g(c) vs If |h(c) for c � 0. The
set R(f |g, g) always lies on the diagonal (grey).

4.0.3 Absolute Localization

The ROC diagram can be used to quantifying the degree of concentration of a given

measure within a specific domain. To quantify the degree of concentration of a measure,

compare the measure to a uniform measure using the following properties.

For the uniform measure U which assigns equal values to all subsets xi, and any

two measures f and g:
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• The set R(f |U, f) includes two points, namely (0,0) and (1,1).

• The set R(f |U, f) is situated on or above the diagonal line that connects points

(0,0) and (1,1).

• If f 6= U then R(f |U, f) encompasses at least one point above the diagonal line.

The absolute localization of measure f can be quantified as the amount of deviation

of R(U, f |f) from the diagonal line. A point (x, y) in the set R(f |U, f) corresponds to

a level set L where f(L) = y and U(L) = x. The point (x, y) will be located close

to the corner point (0, 1), far from the diagonal line, if a significant portion of f is

concentrated within a small region of L.

The Gini coefficient can be used to provide a precise measure of absolute local-

ization. The Gini coefficient for absolute localization, denoted Gf , is twice the area

between the curve of R(f |U, f) and the diagonal line. Gf can take on values between

0 and 1, where Gf = 0 indicates f = U , and Gf gets closer to 1 when f becomes more

heterogeneous (more localized).

4.0.4 Relative Localization

Relative localization is a measure of the localization of measure f with respect to an-

other non-uniform measure g. Relative localization means that measure f is concen-

trated within the same domain as g and it has more pronounced peaks (its measure of

absolute localization is higher). This concepts is illustrated in Figure (10) where f (red)

is a more localized version of g(blue), f has a larger absolute concentration than g and

is located within the same domain.

To measure relative localization use the receiver operating characteristic for the set

R(g|f, g) with every point in the set corresponding to a particular level set Lg(c). This

set may include points below the diagonal line, indicating that the corresponding level

sets of measure f accumulate a higher mass with respect to measure g than with respect

to g itself. This situation is interpreted as relative localization of f with respect to g.



51

Figure 10: Measure f is a more localized version of measure g.

To quantify the relative localization of measure f with respect to measure g, we

calculate the area above ROC curve R(g|f, g), denoted as Gf |g. The parameter Gf |g

ranges from 0 to 1. If Gf |g < 1
2 then measures f and g are not concentrated within the

same regions. If f is a localized version of g then Gf |g >
1
2

4.0.5 ROC and Random Variables

A general measure can be changed into a probability measure. A probability measure

is a function P defined on a sigma-algebra ⌃ of subsets of a sample space S, such that:

• Non-negativity: For any set A 2 ⌃, P (A)  0.

• Normalization: P (S) = 1.

• Countable additivity: For any sequence of disjoint sets A1, A2, ..., An 2 ⌃, the

probability of their union is the sum of their individual probabilities:

P (A1UA2U...UAn) = P (A1) + P (A2) + ...+ P (An). (40)
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The sigma-algebra ⌃ defines the collection of events for which probabilities can be

assigned, and the axioms ensure that the probabilities are non-negative, normalized, and

additive.

To change a measure f to a probability measure v, you need to normalize the mea-

sure by dividing each set’s measure by the measure of the entire space. This normaliza-

tion ensures that the measure of the entire space is equal to 1. Define the new measure

v on ⌃ as follows:

v(A) = f(A)/f(X) (41)

for all A in ⌃. v must satisfy the properties of a measure: non-negativity, countable

additivity, and v(;) = 0.

4.0.6 Theoretical ROC for a Random Variable

Let W be a normalized random variable with probability density function(PDF) fW (w)

and the cumulative distribution function (CDF) FW (w). The ROC diagram of W with

respect to a uniform random variable U , denoted R(W |U,W ) can be obtained by plot-

ting IU |W (w0) = P (W > w0) on the x-axis and IW |W (w0) =
R1
w0

wf(w)dw on the

y-axis. The equation of a theoretical ROC curve for the random variable, can then be

parameterized as follows:

x = P (W > w0) = 1� F (w0) (42)

and

y =

Z 1

w0

wf(w)dw. (43)

The theoretical ROC curve for a random variable can sometimes be parameterized

in terms of just x and y and will be a monotonically increasing curve that starts at (0, 0)

and ends at (1, 1) with equation R(W |U,W ). The Gini coefficient for a random variable
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is thus:

G = 2

Z 1

0

R(W |U,W )� xdx (44)

4.0.7 Theoretical ROC for an Exponential Random Variable

Let W be a normalized exponential random variable with parameter � = 1. The PDF

of W is

fW (w) = e�w if w � 0 (45)

and the CDF for W is

FW (w) = 1� e�w if w � 0. (46)

The coordinates of the ROC curve can be parameterized as follows:

x = e�w0 (47)

y = (w0 + 1)e�w0 (48)

Solving Equation (47) for w0, yields

w0 = ln(x) (49)

Substituting this in for w0 in Equation (48) yields

y = �xlnx+ x (50)

The theoretical ROC curve for an exponential random variable is therefore:

R(W |U,W ) = �xlnx+ x for 0 < x  1 (51)



54

Figure 11: ROC diagram R(W |U,W ): a parametric plot of IU |W (w0) vs IW |W (w0) for
w0 � 0.

The Gini coefficient for an exponential variable is thus:

G = 2

Z 1

0

�xlnxdx =
1

2
(52)

4.0.8 Theoretical ROC for a Pareto Random Variable

Let W be a normalized pareto random variable with parameters wm = 1 and ↵ � 1.

The PDF of W is

fW (w) =
↵w↵

m

w↵+1
, w � wm, (53)

and CDF

FW (w) = 1�
⇣wm

w

⌘�↵

, w � wm. (54)

Normalizing this probability distribution by its mean (E(w) = ↵wm
↵�1 ) yields the

following PDF and CDF
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fW (w) =
↵(↵�1

↵ )↵

w↵+1
(55)

FW (w) = 1�
✓
↵� 1

↵x

◆↵

(56)

The x-coordinates of the ROC for a normalized pareto random variable can be parame-

terized as follows:

x =

✓
↵� 1

↵w0

◆↵

(57)

and the y-coordinates can be parameterized:

y =

✓
↵� 1

↵

◆↵�1

w1�↵
0 . (58)

Solving Equation (57) for w0, yields:

w0 =

✓
↵� 1

↵

◆
x� 1

↵ . (59)

Substituting this in for w0 in Equation (58) yields:

y = x
↵�1
↵ . (60)

The theoretical ROC curve for an Pareto random variable will therefore be a monotoni-

cally increasing curve that starts at (0, 0) and ends at (1, 1) and has equation:

R(W |U,W ) = x
↵�1
↵ , 0 < x  1,↵ > 1 (61)

The Gini coefficient for an Pareto variable is thus:

G = 2

Z 1

0

�
x

↵�1
↵ � x

�
dx =

1

2↵� 1
(62)
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Figure 12: ROC diagram R(W |U,W ): a parametric plot of IU |W (w0) vs IW |W (w0) for
w0 � 0 for a Pareto random variable with parameter ↵ = 3.

4.0.9 Theoretical ROC for a Bivariate Random Variables

Let (W,Z) be continuous random variable that happen to be correlated with joint proba-

bility density function(PDF) fW,Z(w, z) and the cumulative distribution function (CDF)

FW,Z(w, z). Consider a subset LW (w0) corresponding to a threshold on the random

variable W such that W > w0.

The ROC diagram of (W,Z) with respect to W , denoted R(Z|W,Z), is the set

R(Z|W,Z) = {(x, y) : y = f(x)} . To obtain the theoretical ROC curve of Z with

respect to W , the x-coordinates, normalized by the mean E[W ] =
R1
0 wfW (w)dw

where fW (w) =
R1
0 f(w, z)dz, can be parameterized as follows:

x = IZ|W (w0) =

R1
w0

R1
�1 zfW,Z(w, z)dzdwR1
�1 wfW (w)dw

(63)

and the y-coordinates, also normalized by the mean, can be parameterized

y = IW |W (w0) =

R1
w0

wfW (w)dw
R1
�1 wfW (w)dw

(64)
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Figure 13: A level set LW (w0) corresponding to a threshold on the random variable W
such that W > w0.

Like the theoretical ROC curve for a random variable, the ROC for a two random

variables can sometimes be parameterized in terms of just x and y and will be a mono-

tonically increasing curve that starts at (0, 0) and ends at (1, 1). The Gini coefficient

will be defined by Equation (44).

4.0.10 Theoretical ROC for a Bivariate Exponential Random Variables

Let (W,Z) be bivariate exponential random variable with joint probability density func-

tion(PDF)

fW,Z(w, z) = e�(�1w+�2z+✓wz)
⇥
(�2 + ✓w)(�1 + ✓z)� ✓

⇤
. (65)

where w, z > 0 and �1,�2, ✓ > 0. The cumulative distribution function (CDF)

FW,Z(w, z) = e�(�1w+�2z+✓wz) (66)

.
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For the bivariate exponential distribution, the mean we will normalize by is

E[W ] =

Z 1

0

wfW (w)dw =
1

�1
(67)

The x-coordinate of the ROC for a bivariate exponential random variables can be

parameterized as follows:

x =

R1
w0

R1
0 ze�(�1w+�2z+✓wz)

⇥
(�2 + ✓w)(�1 + ✓z)� ✓

⇤
dzdw

1
�1

(68)

= �1

Z 1

w0

(�1✓w + ✓ + �1�2)e��1w

(✓w + �2)2
dw (69)

= �1[
�e��1w

(�2 + ✓w)
|1w0

] (70)

=
�1

(�2 + ✓w0)e�1w0
(71)

and the y-coordinate, normalized by the mean, is:

y =

R1
w0

w�1e��1wdw
1
�1

(72)

= �1[�
(aw + 1) e�aw

a
|1w0

(73)

= �1
(�1w0 + 1) e��1w0

�1
(74)

= (�1w0 + 1) e��1w0 (75)

Neither of these coordinates can be solve for w0 so the final parameterized coordi-

nates for the ROC diagram for a bivariate exponential random variables is:

ROC(Z|W,W ) = {(x, y) :
� �1

(�2 + ✓w0)e�1w0
,
�1w0 + 1

e�1w0

�
} (76)

where w0 2 [0,1) and �1,�2, ✓ > 0.
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Figure 14: ROC diagram for bivariate exponential random variables with �1,�2, ✓ = 2
and w0 2 [0,1).

4.0.11 Simulation

The theoretical results for the bivariate exponential ROC diagram presented above

where verified by a numerical simulations using the model of Balakrishna and Shijia

(2014).

To evaluate the theoretical procedure discussed above we carried out a simulation

for different sample sizes and for different values of the parameters. As outlined by

Balakrishna and Shijia (2014), for the simulation, we first generate realizations from

positive stable RV’s {Ui} using the relation:

U = E� 1�↵
↵ (sin⇠)

�1
↵ sin(↵⇠)sin((1� ↵)⇠)

1�↵
↵ , (77)

that was first proposed by McKenzie (1982), where ⇠ is a uniform RV over (0, ⇡) and

E is a unit exponential RV independent of ⇠ . For specified values of the parame-

ters we simulated independent and identically distributed (i.i.d.) sequence {wi} from

Exponential(�) distribution and then obtained the sequence {zi} using the relation
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zi = w↵
i

1

�

� �
Ui

�↵
, i = 1, 2, ....n (78)

This generates a bivariate sample {wi, zi}. From this sample we can generate the

ROC diagram and Gini coefficient for the absolute and relative localization as outlined

above. In Figure (15) you can see an example of the results of the simulation.

Figure 15: Results for a bivariate exponential simulation with parameters ↵ = 0.3,
� = 2.0, � = 0.5 for samples of size n = 500 with 100 replicates. (a) Marginal
distribution of simulated random variable W . (b) Marginal Distribution of simulated
random variable Z. (c) ROC(W |U,W ) where G = 0.46. (d) ROC(W |Z,W ) where
G = 0.446.

This simulation can be used to test the performance of the Gini coefficient as com-

pared to the Pearson correlation coefficient. To do this, the simulation was carried out

for different sample sizes and for different specified values of the parameters. Then the

values of the relative Gini coefficient and the Pearson correlation coefficient for between

the simulated bivariate exponential (W,Z) were computed. Results for this simulation

are displayed in the Table (1).
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n ↵ � � Gini Coefficient Pearson Correlation
Mean SD Mean SD

50 0.8 2.0 2.0 0.4500 0.0278 0.7985 0.0871
0.7 2.0 3.0 0.4271 0.0300 0.7076 0.1002
0.6 3.0 1.0 0.4048 0.0300 0.5998 0.1130
0.5 1.0 2.0 0.3774 0.0393 0.4985 0.1406
0.3 2.0 0.5 0.3285 0.0424 0.3098 0.1410
0.2 0.5 2.0 0.3037 0.0492 0.1936 0.1579

100 0.8 2.0 2.0 0.4473 0.0191 0.7903 0.0635
0.7 2.0 3.0 0.4251 0.0213 0.6986 0.0812
0.6 3.0 1.0 0.4010 0.0259 0.5999 0.0949
0.5 1.0 2.0 0.3756 0.0282 0.5094 0.1055
0.3 2.0 0.5 0.3264 0.0268 0.3120 0.1066
0.2 0.5 2.0 0.2996 0.0242 0.1906 0.1015

500 0.8 2.0 2.0 0.4501 0.0077 0.8025 0.0314
0.7 2.0 3.0 0.4248 0.0091 0.6977 0.0345
0.6 3.0 1.0 0.4248 0.0091 0.6977 0.0345
0.5 1.0 2.0 0.3766 0.0121 0.4970 0.0481
0.3 2.0 0.5 0.3264 0.0130 0.3049 0.0519
0.2 0.5 2.0 0.3007 0.0139 0.2008 0.0515

Table 1: Simulation results for the Bivariate Exponential Random Variables W and Z
for different values of the parameters. 100 replicates of each sample where created of
the given sample size n for each of the sets of parameter values in the table.

Figure 16: Comparing the Gini Coefficient to Pearson Correlation Coefficient of 100
samples of size n = 500 for parameters ↵ = 0.3, � = 2.0, and � = 0.5.
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When comparing the Gini coefficient to the Pearson correlation coefficient, as seen

in Figure (16), we see that the Gini Coefficient is a more stable measure. When conduct

the simulation for 100 replicates of different sample size with different parameters,

the Gini coefficient consistently produces sampling distribution with a smaller standard

deviation.

4.0.12 Independence

Theorem: WhenW and Z are independent, ROC(Z|W,W ) will be the same as ROC(W |U,W ).

Proof: Let (W,Z) be continuous normalized random variable that are independent.

Then the joint probability density function(PDF) fW,Z(w, z) = fW (w)fz(z) and the

cumulative distribution function (CDF) FW,Z(w, z) = FW (w)FZ(z). Consider a subset

LW (w0) corresponding to a threshold on the random variable W such that W > w0.

The theoretical ROC curve of Z with respect to W , can be parameterized as follows:

x = IZ|W (w0) =

R1
w0

R1
�1 zfW,Z(w, z)dzdwR1
�1 wfW (w)dw

(79)

=

R1
w0

R1
�1 zfW (w)fz(z)dzdwR1

�1 wfW (w)dw
(80)

=
E[Z]

R1
w0

fW (w)dw

E[W ]
(81)

= (1� FW (w0)) (82)

= IU |W (w0) (83)

which is the x-coordinate of R(W |U,W ).

Recall the y-coordinates, also normalized by the mean, can be parameterized

y = IW |W (w0) =

Z 1

w0

wfW (w)dw (84)

which is exactly the same parameterization of the y-coordinate for the R(W |U,W ).
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5 Results - Localization of Seismicity

The above methodology can be used as a novel statistical approach to quantify regional

earthquake clustering. Clustering was introduced in the background section as a funda-

mental component of understanding seismicity and earthquake triggering mechanisms.

Using the ROC diagram to measure space-time clustering allows disentangling effects

related to concentration of events around a heterogeneous regional fault network from

coupled space-time fluctuations.

Figure 17: Clustering of global seismicity based on the ComCat catalog during the
period of 1981–2022. Shades of color reflect the number of earthquakes (logarithmic
scale; see color bar) with M � 4.5 in square spatial cells with side length equal to 1°.
Notice a significant space inhomogeneity.

In this section the ROC will be used to examine and illustrate seismic clustering in

multiple seismically active regions, including the Reno area. The ROC will be used

to explore several general measures of seismic rate that can account for the number

of events, and the total area of fault breaks. This analysis will systematically examine

general and coupled space-time clustering of raw and declustered catalogs. The Gini

coefficient will be presented as a simple and robust measure of space-time clustering to
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illustrate and quantify earthquake clustering with examples of seismicity from regions

worldwide.

5.1 Data

For this study, the ANSS comprehensive Earthquake Catalog was used. The regions

examined for this study are Reno, southern California, Japan, New Zealand, Italy, the

Atlantic and Pacific. Specifics of the analysis for each region are in Table (2).

5.2 Methodology

A systematic assessment of the inhomogeneity of the space-time distribution of seis-

micity in the study regions was conducted using ROC diagrams, which produce a single

measure of space-time clustering, the Gini coefficient (G). As mentioned in the previ-

ous section, the coefficient G may assume values between 0 and 1, a value of G close

to 1 in this case indicates a large portion of events are concentrated in a small fraction

of the examined space-time volume.

More formally, we partition the examined space-time area into voxels with space

dimension � and time size !. The voxels can be indexed by two space indices i, j and

time index k. Measure seismic activity within a voxel at location x = i, j at time t by

the equation

⌃(x, t) =
kX

i=1

10�Mi (85)

where the summation is taken over all events, 1, ...., k, within the voxel, � is a parameter

we change to understand the different characteristics of clustering in that region, and Mi

is the magnitude of event i. � = 0 corresponds to counting events, � = 1 approximates

the faultbreak area, and � = 3
2 corresponds to the seismic moment. We only examine

voxels with the time-integrated value of ⌃ being larger than a threshold ⌃0 (in this work,

⌃0 = 0).
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After computing ⌃ for each non-empty voxel, sort the voxels by there ⌃ value in

descending order: ⌃1 � ⌃2... � ⌃m, assuming there are m non-empty voxels. First,

we evaluate the general clustering where the ROC diagram is a plot of ⌃ within the

most active voxels (y-axis) vs. the fraction of the examined non-empty voxels (x-axis).

For example, if � = 0, we are simply counting the number of events in each non empty

voxel, ⌃i = Ni, and the ROC diagram essential consists of the points

� i
m
,
N1 + ...+Ni

N

�
for i = 1, ...,m, (86)

where N is the total number of examined events: N =
Pm

i=1 Ni.

Next, in order to remove the effects of marginal space and time heterogeneities in

the examined catalog, we evaluate coupled space-time clustering. In this analysis, the

ROC diagram is a plot of ⌃ within the most active voxels (y-axis) vs. the weighted

fraction of the examined non-empty voxels(x-axis). The weights are determined by the

factorized space-time rates of background events. Declustering is done by the method

of Zaliapin and Ben-Zion. The x-axis of the factorized ROC diagram is scaled in a way

that represents the product of the estimated marginal space and time rates of background

seismicity , denoted as J(x, t) = S(x)T (t), corresponding to the diagonal. Essentially,

the x-axis measures the proportion of the factorized rate J(x, t) in the most active cells

of the process under study, while the y-axis shows the proportion of events in the pro-

cess. Any deviation from the diagonal is due to coupled space-time irregularities, such

as short-term fluctuations in local areas. The Gini coefficient G of this scaled ROC

diagram measures the overall level of coupled space-time clustering.

The ROC diagram for a factorized rate, which is scaled to account for possible

marginal space and time catalog inhomogeneities is defined in the following way. Start

by estimating the background field using the method of Zaliapin and Ben-Zion (2020)

and counting the numbers B(i, j, k) of estimated background events in the space-time

voxels indexed by {i, j, t}. The marginal space and time background rates are estimated

as
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S(i, j)) =
X

k

B(i, j, k) and T (k) =
X

i

X

j

B(i, j, k), (87)

where the space variable x is discretized by grid {i, j} and the time variable t is dis-

cretized by grid k. The factorized rate J on the voxel grid indexed by {i, j, k} is defined

as

J(i, j, k) =
J0(i, j, k)P
i,j,k J0(i, j, k)

, with J0(i, j, k) = S(i, j)T (k) (88)

To do this for a region, we sort the non-zero ⌃(i, j, k) value for each voxel in de-

scending order: ⌃1 � ⌃2... � ⌃m. This creates the order map n(i, j, k, t) : {i, j, k} !

{n} that maps the space-time indices {i, j, k} and order index n = 1, . . .m. We use

the inverse map {i(n), j(n), k(n)} : {n} ! {i, j, k} to form a sequence of factorized

counts:

Jn = J(i(n), j(n), k(n)), n = 1, . . .m, (89)

where the 1-st factorized count is taken from the voxel with the maximal value of ⌃, ⌃1

of the observed events, the 2-nd count is taken from the voxel with the second largest

count ⌃2 of the observed events, etc. The x-axis in the scaled ROC diagram shows the

proportion of the factorized rate J(i, h, k) within the most active cells of the examined

process, and the y-axis shows the observed proportion of events in the same cells. In

other words, the diagram consists of the points

�
Ji,

(⌃1 + . . . + ⌃n)

⌃N

�
for i = 1, . . . ,m, (90)

where ⌃N =
Pm

i=1 ⌃i is the total value of ⌃ in the full catalog.

Factorized space-time rates of background events are a way to model the expected

frequency of events occurring in a particular region over a certain period of time. In seis-

mology, this is often used to model the frequency of earthquakes in a specific area over

a given time period. The term ”factorized” refers to the fact that the model separates the
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rate of events into two components: space and time. The space component represents

the expected frequency of events in different locations, while the time component rep-

resents the expected frequency of events at different times. The model assumes that the

rate of events is proportional to the product of the space and time components. In other

words, the expected frequency of events in a given region at a given time is the product

of the expected frequency of events in that region and the expected frequency of events

at that time.

Figure (18) illustrates the general procedure for quantifying clustering of earth-

quakes in southern California with the ROC diagram. The first plot is a measure of

earthquake clustering with respect to a uniform measure. The red shading corresponds

to the most active voxels in our region over the period of time for the catalog. Clearly

seismicity in the southern California area is not uniform over the region, instead, a

large fraction of earthquakes occurs in a relatively small time-space volume. We call

this ”clustering” and measure it by a general Gini coefficient.

Figure 18: Quantifying clustering of earthquakes in southern California with the re-
ceiver operating characteristic (ROC) diagram. The analysis uses the catalog of Hauks-
son et al. (2012, extended) during 1981–2020 with magnitude M � 2, and space–time
voxels with square space projection of latitude size 0.25v and 1 yr duration.

5.3 Results

Figures of the above implement method for all regions of this study, except the Atlantic

and Pacific, are located in Appendix A to help the reader visualize clustering in each
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Catalog

Clustering
with Respect
to Constant
Rate, G

Background
Clustering
with Respect
to Constant
Rate, G

Clustering
with Respect
to Factorized
Rate, G

Background
Clustering
with Respect
to Factorized
Rate, G

SoCal 0.79 0.53 0.55 0.07
Japan 0.71 0.57 0.35 0.06

New Zealand 0.62 0.50 0.28 0.03
Italy 0.64 0.42 0.62 0.05
Reno 0.78 0.42 0.22 0.12

Atlantic 0.49 0.53 0.26 0.04
Mean 0.67 0.49 0.37 0.06

Standard Deviation 0.10 0.07 0.15 0.03

Table 3: Localization Results (� = 0). The ComCat catalog was used for all regions.

regions. This Appendix contains maps of clustered and declustered seismic activity in

each region, as well as the ROC diagrams for both clustering with respect to a con-

stant rate and clustering with respect to a factorized rate. This section summarizes the

numeric findings of the analysis.

5.3.1 � = 0

The results displayed in Figure (19) show the Gini coefficients G for all regions for

� = 0.
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Figure 19: Summary of G for � = 0 by region.
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Figure 20: Summary of G for � = 0 by measure.

5.3.2 � = 1
2

Adjusting the parameter in Equation (85) to � = 1
2 we get the following results dis-

played in Table (4) illustrated in Figures (21) and (22).
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Catalog

Clustering
with Respect
to Constant
Rate, G

Background
Clustering
with Respect
to Constant
Rate, G

Clustering
with Respect
to Factorized
Rate, G

Background
Clustering
with Respect
to Factorized
Rate, G

SoCal 0.80 0.55 0.57 0.14
Japan 0.71 0.58 0.36 0.08

New Zealand 0.64 0.51 0.38 0.15
Italy 0.65 0.51 0.30 0.06
Reno 0.80 0.51 0.61 0.12

Atlantic 0.49 0.44 0.19 0.12
Pacific 0.66 0.56 0.30 0.10
Mean 0.68 0.52 0.39 0.11

Standard Deviation 0.11 0.05 0.15 0.03

Table 4: Localization Results (� = 1
2). The ComCat catalog was used for all regions.

Figure 21: Summary of G for � = 1
2 by region.



73

Catalog

Clustering
with Respect
to Constant
Rate, G

Background
Clustering
with Respect
to Constant
Rate, G

Clustering
with Respect
to Factorized
Rate, G

Background
Clustering
with Respect
to Factorized
Rate, G

SoCal 0.91 0.86 0.75 0.70
Japan 0.87 0.77 0.64 0.44

New Zealand 0.80 0.83 0.55 0.61
Italy 0.73 0.66 0.40 0.24
Reno 0.89 0.85 0.73 0.66

Atlantic 0.61 0.62 0.22 0.26
Pacific 0.82 081 0.61 0.61
Mean 0.80 0.77 0.56 0.50

Standard Deviation 0.11 0.10 0.19 0.19

Table 5: Localization Results (� = 1). The ComCat catalog was used for all regions.

Figure 22: Summary of G for � = 1
2 by measure.

5.3.3 � = 1

Changing the parameter in Equation (85) to � = 1 we get the following results dis-

played in Table (5) illustrated in Figures (23) and (24).
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Figure 23: Summary of G for � = 1 by region.

Figure 24: Summary of G for � = 1 by measure.

5.4 Conclusions

This study examined clustering in regions worlds wide and found that overall clus-

tering is high for both the raw and declustered catalogs for all values of �. Even when

we are not considering empty voxels, there are not the same number of earthquakes in
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each non-empty voxel. Coupled space-time clustering had the largest variation region

to region and therefore provides the most insight into region specific triggering mech-

anisms and causes of clustering. This is supported by the fact that the variability (as

measured by standard deviation) for this measure is the largest. This suggests that the

marginal space clustering, fault network, plays a dominant role in the overall clustering.

An interesting observation gained from Figure (19)is that this coupled clustering

(the red measure) is rather strong, and varies substantially from catalog to catalog.

For the other measures, clustering for all events, for background events and coupled

space time clustering for background events (the blue yellow and green measures in

the figures) we see a more uniform clustering over all regions. The Gini coefficient for

coupled space-time clustering for all events can help us identify regional differences in

clustering because there is the greatest variability in this measure. Coupled clustering

of declustered catalogs (for � = 0) is negligible (G < 0.1).

This violin plot grouping Gini coefficients by measure for � = 0 instead of by re-

gion highlights this fact that coupled space-time clustering for all events has the largest

variability of all the measures. The region with the largest coupled space time clustering

was Reno, NV.

Results for � = 1
2 lead to similar conclusions as the results for � = 0. Coupled

space-time clustering for all events has the largest variability region to region of all the

measures suggesting that regional differences in triggering mechanisms and character-

istics of siesmisity are best captured by this measure.

Results for � = 1 show far less variability in measures region to region than the

results for � = 1 or � = 1
2 . General clustering for all events is very similar to general

clustering for background events when � = 1. Coupled space-time clustering for all

events is also similar to that of background events.

In conclusion, the Gini coefficient for coupled space-time clustering can be used as

a metric that shows variability in clustering region to region.
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6 Discussion

Earthquake prediction is a difficult task due to the complex and not fully understood

dynamics involved (Turcotte 1997; Keilis-Borok 2002; Ben-Zion 2008; Jordan et al.

2011). This thesis contributions to the field of seismology by providing a method of

visualizing, quantifying and comparing spatial-temporal clustering region to region.

First we measure earthquake clustering with respect to a uniform distribution of

seismicity. Seismicity in all regions is clearly not uniform over the region, and instead,

a large fraction of earthquakes occurs in a relatively small time-space volume. We call

this ”clustering” and measure it by a general Gini coefficient. This general clustering is

attributed to two reasons: first, earthquakes occur along fault zones (see Figure (17)).

Second, there exist groups of events highly localized in a given area during a short

time (these would be aftershock sequences after a large earthquake). We would like

to separate these two effects. Technically, this is done by introducing the space-time

coupling Gini coefficient.

In other words, we start by using a measure that shows no clustering if events occur

uniformly in space and time. Then we introduce a more delicate measure that doesn’t

include clustering related to events around hot spot areas that are active all the time,

or burst of activity in time that might affect an entire region. Then we measure how

strongly the observed clustering deviates from this new (factorized) model. All devia-

tions represent burst of activity that are localized in time and space.

Factorized space-time rates of background events are a way to model the expected

frequency of events occurring in a particular region over a certain period of time. In seis-

mology, this is often used to model the frequency of earthquakes in a specific area over

a given time period. The term ”factorized” refers to the fact that the model separates the

rate of events into two components: space and time. The space component represents

the expected frequency of events in different locations, while the time component rep-

resents the expected frequency of events at different times. The model assumes that the

rate of events is proportional to the product of the space and time components. In other
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words, the expected frequency of events in a given region at a given time is the product

of the expected frequency of events in that region and the expected frequency of events

at that time. Factorized space-time rates of background events are useful for estimating

the probability of rare events, such as large earthquakes, occurring in a particular re-

gion over a given time period. By modeling the expected frequency of events based on

historical data, seismologists can better understand the likelihood of future earthquakes

and improve earthquake hazard assessments.

A next step for this research is to identify specifically what clustering mechanisms

and physical characteristics are associated with regions that have a particularly low

coupled space time clustering for all events or a particularly high Gini coefficient. This

method could also be used to quantify clustering in other regions and for smaller regions

within the areas of this study. Specifically, smaller regions of southern California fo-

cusing on specific faults. This method also has the potential to predict future seismicity

from the observed long term distribution of seismicity.

Most importantly, this work introduces a novel approach for quantifying non-linear

correlations between positive-valued processes and random variables. The method pro-

posed uses the Receiver Operating Characteristic and the Gini coefficient to forecast one

measure using another measure. We review the existing approaches to the problem both

from a statistical perspective, reviewing other methods of determining if two variables

are correlated and from a seismological perspective reviewing methods of quantifying

clustering and modeling seismic activity. The theoretical advantage of our approach is

that the ROC and Gini coefficients are directly related to the theoretical forecast prob-

lem. Practically, this method is easy to compute and implement in a variety of contexts.

We expand the correlation technique to the time-space domain setting and adapt it to

quantifying the degree of clustering in the observed earthquakes.

The Gini coefficient and the Pearson correlation coefficient are both measures of

statistical dependence. Comparison with Pearson correlation for bivariate exponential

random variables shows that the Gini coefficient is more stable (has smaller variability)
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than the Pearson correlation coefficient for bivariate exponential random variables over

many different values of the distribution parameters. Next steps for this research are

to define the ROC diagrams for the Weibull distribution, either theoretically or empiri-

cally. Determining confidence intervals for the ROC curve for the bivariate exponential

random variables would also allow for inference to be performed on ROC curves in

applications. This method can be used in a broader context to quantify how systems

produce extreme events. In the future, I hope this methodology could be applied in

other areas outside seismology.
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A Appendix A - Figures of ROC Analysis

Figure 25: ROC analysis for southern California. Magnitude of completeness 2.3.
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Figure 26: ROC analysis for Japan. Magnitude of completeness 4.5. Colors represent
number of quakes on the log scale.
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Figure 27: ROC analysis for New Zealand. Magnitude of completeness 4.4. Colors
represent number of quakes on the log scale.
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Figure 28: ROC analysis for Italy. Magnitude of completeness 3.3. Colors represent
number of quakes on the log scale.
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Figure 29: ROC analysis for Reno. Magnitude of completeness 2.5. Colors represent
number of quakes on the log scale.


