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Abstract of the Dissertation

In the past fifteen years, the network of Global Positioning System (GPS) stations 

in the western United States has dramatically expanded, greatly improving the spatial 

resolution at which we can resolve geophysical signals. This is particularly important for 

areas such as the Basin and Range, where data limitations prevented substantial analysis 

in the past. In addition to improved network geometries, many robust data analysis 

techniques have been produced, and revised reference frames and data processing 

strategies have greatly improved data quality. While these advancements have expanded 

our understanding of long term tectonics in the western United States, they also provide 

the opportunity to robustly investigate temporally variable, subtle deformation signals. 

Many of these signals were previously below uncertainty levels of the data, or station 

coverage was too sparse. The research presented in this dissertation takes advantage of 

this progress, to advance our understanding of the interaction of subtle deformation 

signals within the western United States, across a range of spatio-temporal scales.  

The first study investigates drought induced deformation observed at GPS stations

near the Great Salt Lake (GSL), in Utah, between 2012 and 2016. During this time, GPS 

timeseries show a subtle, but distinct, three-dimensional change in trend, with horizontal 

motion away from the lake and vertical uplift centered upon it. Concurrently, GSL lost a 

total of 1.89 m of surface elevation. Previous hydrologic studies have typically only used 

vertical GPS displacements to quantify load variation over broad, regional scales. Here, 

we find that at small spatial scales, three-dimensional GPS is sensitive to not just the 
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unloading of the lake, but the nearby groundwater as well. In our preferred model, the 

volume lost by GSL is equivalent to that observed, at 5.5 ± 1.0 km3, and the inferred 

groundwater is substantial at 10.9 ± 2.8 km3. Seismicity is modulated by the hydrologic 

cycle within the inferred load region, revealing increased earthquake rates during drier 

periods as stresses on faults under the loads are reduced. This study highlights the impact 

of subtle, multi-year, drought signals on GPS time series, and indicates, that for robust 

regional analyses, small scale hydrologic loading must be accounted for. 

In the second study, we focus on correcting subtle deformation signals within the 

central Basin and Range, and produce the most robust interseismic velocity field of the 

region to date. Since deformation rates are low, the combined corrections produced in this

study for postseismic deformation, hydrologic loading, and regional common mode error,

substantially alter the velocity field and resulting strain rates. Station uncertainties reduce

by 62.1% and 53.8% in the east and north components, compared to the original velocity 

field. The Pahranagat Shear Zone is strongly affected by postseismic relaxation, which 

accounts for as much as half the shear along its western extent. We find that east–west 

extension across the Las Vegas Valley is substantially larger than previously estimated at 

0.5 – 0.6 mm/yr and our preferred strain rates within the Las Vegas Valley are           

8.5 ± 2.4 x10−9yr−1, supporting that crustal deformation is active within the urban area of 

Las Vegas. These results show in detail the significant impact that subtle deformation 

signals impart on regional analyses and their interpretation. 

Positioning errors present in five-minute GPS time series propagate subtly into the

daily position of the station. In the final study, we produce a sensitivity analysis of the 
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zenith tropospheric delay (ZTD) random walk constraint, and show that station vertical 

scatter can be greatly improved by loosening its value. We find that large wavelike 

displacements of ~100 mm, which occurred along the coast of California during Winter 

Storm Ezekiel in 2019, are suppressed when using a random walk constraint of 24 

mm/√(hr) (i.e., eight times looser than the default value). Global station RMS and 

repeatability shows improvements of 4% – 9% and 10% – 21% respectively, when using 

uniform random walk constraints of 6 – 12 mm/√(hr). Further improvement is attained 

when defining characteristic random walk constraints to the stations, with a 10% 

improvement in repeatability globally. A daily optimal random walk approach reveals 

24% improvement in global station repeatability. These findings reveal an opportunity to 

greatly improve five-minute vertical positioning, not just for stations in the western 

United States during storms, but for the global GPS network as a whole, by loosening the 

ZTD random walk constraint at least to a value of 6 mm/√(hr).
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1.1 Robust Identification of Subtle Deformation Signals in the Western United 

States

The western United States is one of the most tectonically active and complex 

regions in the world, not only due to the presence of the Pacific – North American plate 

boundary, but the diverse inland deformation observed far from its margins (Hammond et

al., 2009; Hammond & Thatcher, 2004; Kreemer et al., 2010). Since its initiation in the 

early 1990’s to monitor crustal processes, the network of Global Positioning System 

(GPS) stations has become crucial to enhancing our understanding of the region. This has

driven a flourishing field of study, with a consistent flow of new applications and insights

produced. Not only does the GPS network provide a direct view of crustal deformation in

the western United States, it allows comparison of modern deformation with geologic 

observations. Validating results when in agreement, and providing a view into the 

temporal variability exhibited in recent years when results differ. Processing strategies are

continuously evolving to produce improved positioning [e.g., revised reference frames 

(Altamimi et al., 2016) and positioning software (Bertiger et al., 2020)], driving down 

uncertainties and increasing station repeatability. 

Additionally, in the past fifteen years, the GPS network in the western United 

States has seen a dramatic increase in the number of stations and available data (Blewitt 

et al., 2018), with more than double the number of stations present in 2007. This has been

driven by the installation of the Plate Boundary Observatory (PBO) and Mobile Array of 
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GPS for Nevada Transtension (MAGNET) networks (Blewitt et al., 2009), as well as the 

expansion of existing networks. The PBO stations greatly improved the distribution of 

stations across the entire western United States, while the MAGNET network improved 

coverage within sparsely populated areas of the Basin and Range. Furthermore, many 

robust processing techniques have been produced in this time, which improve velocity 

[i.e., the Median Interannual Difference Adjusted for Skewness algorithm (Blewitt et al., 

2016)], strain rate [i.e., the Median Estimation of Local Deformation Algorithm (Kreemer

et al., 2018), and common mode [i.e., Common Mode Component Imaging (Kreemer & 

Blewitt, 2021)] estimates, as well as improved modeling software for postseismic 

deformation [i.e. PSGRN/PSCMP (Wang et al., 2006)] and elastic deformation [i.e., 

LoadDef (Martens et al., 2019)]. The progress made toward improving data quality, and 

increasing the resolution of the GPS network in the western United States, has greatly 

furthered our understanding of long term tectonic processes. However, in combination 

with robust analysis techniques, it additionally provides the opportunity to investigate 

temporally variable subtle deformation signals present in the GPS timeseries. Previously, 

sparse data often left studies with open-ended interpretations (Kreemer et al., 2010), and 

hydrologic loading investigations were limited to broad regions with typically only the 

vertical GPS component used (Amos et al., 2014; Borsa et al., 2014). Additionally, 

postseismic deformation, and displacements due to regional common mode error (i.e., 

timeseries noise which is correlated across hundreds of kilometers), have been shown to 

alter velocity fields (Broermann et al., 2021; Freed et al., 2007; Hammond et al., 2009; 
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Kreemer & Blewitt, 2021; Márquez‐Azúa & DeMets, 2003; Serpelloni et al., 2013), 

raising questions over their impact to the interpretation of the velocity field in the western

United States. While much of the focus in geodesy relies on the use of daily positions, 

these positions are derived from five-minute solutions, and the expansion of the network 

provides to opportunity to better investigate deformation signals which occur over hourly 

time frames. This dissertation is comprised of three unique studies of subtle deformation 

signals, observed in the western United States, across daily, multi-year, and sub-daily 

time frames, to improve our understanding of their effects on regional analyses. 

Summaries of each study are provided in the following section. 

1.2 Summary of Dissertation Chapters

1.2.1 Using GPS to Quantify Hydrologic Load Variation at Small Spatial Scales

In Chapter 2, the sensitivity of GPS stations near Great Salt Lake (GSL), Utah, to 

hydrologic load variation during the 2012-2016 drought is investigated. During this time, 

the lake lost 1.89 m of surface elevation, and GPS stations nearby show a subtle, but clear

thee-dimensional change in trend. The pattern of these displacements is characteristic of 

an unloading signal, however, calculations for the displacements attributed to the 

observed lake unloading, indicate that additional mass loss is required to explain the GPS

observations. This suggests that the signal is the combination of both the unloading of the

lake, and nearby groundwater. A suite of loading models are tested, allowing a range of 

distributions of groundwater loads, to identify the model which best accounts for the 
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observed displacements and to test the maximum resolvability of the current GPS 

network. In our preferred solution, we find that the model accurately estimates the 

volume of water lost by GSL, at 5.5 ± 1.0 km3, and that GPS is sensitive to groundwater 

loss up to 64 km from the edge of the lake. The total mass loss for the inferred 

groundwater is substantial, at 10.9 ± 2.8 km3, and wells within its distribution observe 

significant decline. Further support of the model is present in the seismicity analysis, 

which finds that within the inferred load region, earthquakes are modulated by the 

seismic cycle. Outside of the load, no relationship is observed. The findings presented in 

this study indicate that, at small spatial scales, GPS data is sensitive to, and their 

velocities affected by, subtle deformation due to hydrologic variation. 

The material presented here was published in: Young, Z. M., C. Kreemer, and G. 

Blewitt, (2021). GPS Constraints on Drought-Induced Groundwater Loss Around Great 

Salt Lake, Utah, With Implications for Seismicity Modulation. Journal of Geophysical 

Research: Solid Earth, 126(10), e2021JB022020. https://doi.org/10.1029/2021JB022020. 

In this project, I identified the unloading signal at GPS stations near GSL and performed 

the time series analysis. Hilary Martens provided guidance on using the LoadDef 

software and assisted with benchmark testing my results. I then designed and applied the 

sensitivity test for the load models. Ilya Zaliapin declustered the earthquake catalog, after

which I produced the seismicity analysis. Throughout the entire process, Corné Kreemer 

provided substantial guidance and insight, greatly improving the project. I produced all of
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the figures and authored the text. Both Corné Kreemer and Geoff Blewitt assisted with 

several rounds of edits to prepare the manuscript for final submission.  

1.2.2 Central Basin and Range Interseismic Strain Accumulation

Since deformation rates within the central Basin and Range are low, the presence 

of subtle deformation signals within the GPS time series, can significantly alter the 

velocity field and its associated hazard. In Chapter 2, we present the most robust 

interseismic velocity field to date for the region, and investigate its implications for the 

seismic hazard near Las Vegas. Results of this study, corroborate many of the findings of 

Kreemer et al. (2010), when using our original velocity data set, and improve upon them 

by producing robust corrections for postseismic deformation, hydrologic loading, and 

regional common mode error. Results are greatly improved by the expansion of the GPS 

network in recent years, and after corrections, our final velocity uncertainties are reduced 

by 62.1% and 53.8% in the east and north components. Large strain rate differences are 

observed when using the original versus the final corrected velocities, and we find the 

values to be significantly larger within the Las Vegas Valley than previously estimated 

and compared to the original velocity model, at 8.5 ± 2.4 x10−9 yr−1. East to west 

extension within the valley is much larger as well, at 0.5 – 0.6 mm/yr, indicating that 

deformation is active within the Las Vegas Valley. These results highlight the significant 

impact subtle deformation signals have on regional analyses, particularly where 

deformation rates are low. 
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These materials have been submitted for consideration to the Bulletin of the 

Seismological Society of America: Young, Z. M., C. Kreemer, W. C. Hammond, and G. 

Blewitt (in review), Interseismic Strain Accumulation Between the Colorado Plateau and 

the Eastern California Shear Zone: Implications for the Seismic Hazard Near Las Vegas, 

Nevada. This project was designed by Corné Kreemer and myself. I conducted the time 

series analysis and produced the postseismic model. Corné provided the codes and 

guidance for the MELD, Haines and Holt, and CMC Imaging programs. Bill Hammond 

provided the codes and guidance for the scripts used in the block modeling. I applied 

theses codes to produce the common mode correction and to calculate strain rates and 

block models for the CBR. All of the results and figures were produced by myself and I 

authored the text. All co-authors assisted with many rounds of revisions which greatly 

improved the text. 

1.2.3 Improved Tropospheric Path Delay Estimation 

While Chapters 2 and 3, analyzed the effects of subtle deformation signals on 

daily GPS time series, Chapter 4 investigates a spurious deformation signal observed 

within five-minute timeseries. During Winter Storm Ezekiel in 2019, sub-daily GPS 

vertical time series along the coast of California, show significant wavelike 

displacements. These displacements are large, at ±100 mm, and travel from northern 

California to Los Angeles by the end of the day. The spatio-temporal distribution of the 

displacements is highly correlated with radar reflectivity, suggesting they are a result of 
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the satellite signal interacting with moisture in the atmosphere. To investigate this, we 

produce a sensitivity analysis of the zenith tropospheric delay (ZTD) random walk 

constraint. Since Bar‐Sever et al. (1998), the majority of GPS processing centers have 

adopted their recommended value of 3 mm/√(hr) as the default value to constrain the 

random walk. We show that increasing the constraint to 24 mm/√(hr) allows the ZTD 

enough freedom to more accurately account for atmospheric variability, without 

introducing substantial noise into the time series. This adjustment improves station 

repeatability by 21% during the storm. To investigate the effect of loosening the random 

walk during more typical atmospheric conditions, we expand our study to the global GPS

network, and find substantial improvements when loosening its value to 6 – 12 mm/√(hr).

Regionally we find that vertical RMS and repeatability, for all but the polar regions, are 

improved by 4% – 9% and 10% – 21% respectively. We show that there is large regional 

variability, dependent on  climactic, temporal, and geographic factors, suggesting that 

determining variable random walk constraints, per station, is more appropriate. For our 

data sets, we find a global improvement of station repeatability of 10% when a 

characteristic random walk per station is identified, and of 24% when determining daily 

optimal, station specific, random walks. This study identifies a prevalent source of 

vertical positioning error in the five-minute GPS time series, which propagates subtly 

into the daily positions, and we present recommended approaches which will 

substantially improve data quality. 
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These results are being prepared for publication with the Journal of Geodesy in: 

Young, Z. M., G. Blewitt, and C. Kreemer (in prep), Improved GPS Tropospheric Path 

Delay Estimation Using Variable Random Walk Process Noise. In this project, I identified

that large displacements present in the 5-minute GPS time series were associated with 

weather systems. Geoffrey Blewitt and I designed the project. All GPS data presented in 

this study were produced by Geoff using the Nevada Geodetic Laboratory processing 

strategy. I performed all of the analysis with guidance from both Geoff and Corne 

Kreemer. All figures and videos were produced by myself and I authored the text. Geoff 

provided insight into the methodologies applied in this project and his edits substantially 

improved the text. 
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2.1 Publication Status

The material presented in this chapter was published in: Young, Z. M., C. 

Kreemer, and G. Blewitt, (2021). GPS Constraints on Drought-Induced Groundwater 

Loss Around Great Salt Lake, Utah, With Implications for Seismicity Modulation. 

Journal of Geophysical Research: Solid Earth, 126(10), e2021JB022020. 

https://doi.org/10.1029/2021JB022020. The dissertation author led the research and 

authored the text. The co-authors provided guidance and revisions which assisted the 

production of the presented research.

2.2 Key Points:

 3D time-series of local GPS stations are sensitive to mass loss in Great Salt Lake 

and additional groundwater contributions nearby.

 During the 2012 – 2016 drought, the Great Salt Lake basin lost 10.9 ± 2.8 km3 of 

groundwater while the lake itself lost 5.5 ± 1.0 km3.

 Seismicity near Great Salt Lake is modulated throughout the drought cycle with 

significantly more events occurring during drought periods.
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2.3 Abstract

Great Salt Lake (GSL), Utah, lost 1.89 ± 0.04 meters of water during the 2012 to 2016 

drought. During this timeframe, data from the GRACE mission underestimates this mass 

loss, while nearby Global Positioning System (GPS) stations exhibit significant shifts in 

position. We find that crustal deformation, from unloading the Earth’s crust consistent 

with the observed GSL water loss alone, does not explain the GPS displacements, 

suggesting contributions from additional water storage loss surrounding GSL. This study 

applies a damped least squares inversion to the 3D GPS displacements to test a range of 

distributions of groundwater loads to fit the observations. When considering the 

horizontal and vertical displacements simultaneously, we find a realistic distribution of 

water loss while also resolving the observed water loss of the lake. Our preferred model 

identifies mass loss up to 64 km from the lake via two radial rings. The contribution of 

exterior groundwater loss is substantial (10.9 ± 2.8 km3 vs.  5.5 ± 1.0 km3 on the lake), 

and greatly improves the fit to the observations. Nearby groundwater wells exhibit 

significant water loss during the drought, which substantiates the presence of significant 

water loss outside of the lake, but also highlights greater spatial variation than our model 

can resolve. We observe seismicity modulation within the inferred load region, while the 

region outside the (un)loading reveals no significant modulation. Drier periods exhibit 

higher quantities of events than wetter periods and changes in trend of the earthquake rate

are correlated with regional mass trends.   
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2.4 Plain Language Summary  

During the 2012 – 2016 drought, GPS stations near Great Salt Lake (GSL), UT, showed a

distinct shift in position. The GSL lost nearly two meters of water. As water mass is lost 

from a lake, the crust uplifts and extends from the center of the source; however, the 

amount of water loss observed on the GSL is not enough to explain the displacements 

observed by nearby GPS stations. To address this, water loss in the form of additional 

rings of groundwater surrounding the GSL are estimated and we find the model that best 

fits the GPS displacements. We find that water loss up to 64 km from the edge of the lake

contributes to the observed signal, at a volume substantially larger than lost on the lake 

itself. Our results show that GPS data can be used to infer localized water loss and 

discriminate between loss of surface water versus ground water. Furthermore, we see 

evidence that changes in mass in the region result in changes in the quantity and rate of 

seismicity; significantly more events occur in the crust underneath the area with water 

fluctuations when there is a reduced water load.
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2.5 Introduction

Decline in fresh water availability is one of many societal challenges resulting 

from the compounding effects of climate change and population growth (Famiglietti, 

2014; Gleeson et al., 2012; Vörösmarty et al., 2000). Most groundwater loss can be 

attributed to the increase of pumping for irrigation and other anthropogenic use, 

particularly during times of drought (Castle et al., 2014; Famiglietti et al., 2011; Ojha et 

al., 2019; Matthew Rodell et al., 2009; Russo & Lall, 2017; Scanlon et al., 2012; Tiwari 

et al., 2009), with depletion rates often highest in land-locked basins within (semi-)arid 

regions (Wang, 2018). Commensurate with the groundwater loss, significant global 

surface water loss has also been recorded (Pekel et al., 2016), which is likewise most 

dramatic for (saline) lakes in (semi-)arid areas (Wurtsbaugh et al., 2017). Regional water 

loss due to the recent drought in the Western United States has provided insight into the 

balance between surface (i.e., lakes and reservoirs) and groundwater loss. The ratio of 

ground to surface water loss has been reported to be 1.89 for the Upper Colorado River 

basin (Castle et al., 2014), and 4.79 for California’s San Joaquin Valley (Ojha et al., 

2019).

The Gravity Recovery and Climate Experiment (GRACE) satellite mission has 

brought invaluable insight into changes in terrestrial water storage (TWS) (e.g., 

Famiglietti & Rodell, 2013; Rodell et al., 2018). GRACE’s wide spatial resolution of 

~300 km (Wahr et al., 2013), limits the observations of TWS changes to large regional 
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scales. Even significant deviations localized on relatively small basins, such as Great Salt

Lake (GSL), Utah, are virtually undetectable (Rodell & Famiglietti, 1999). Many studies 

have found Global Positioning System (GPS) data sensitive to mass variation associated 

with extreme drought conditions (Amos et al., 2014; Argus et al., 2017; Borsa et al., 

2014). Changes in load result in elastic deformation, in which the crust is displaced in 

both the vertical and horizontal components, thus deforming the crust as the load 

changes. These elastic displacements are dependent on the magnitude and distribution of 

the load variation, and return to their original position when equilibrium is re-attained. 

While many studies rely primarily on vertical GPS observations to identify and quantify 

TWS variation, some studies have shown that horizontal motion is a useful indicator of 

mass localization when regional trends are well accounted for (Fu et al., 2013; Kreemer 

& Zaliapin, 2018; Wahr et al., 2013).

In this study, we investigate a three-dimensional (3D) transient deformation signal

observed at GPS sites near GSL between 2012 and 2016. Onset of this signal correlates 

well with the beginning of severe drought conditions in the region. During this period, 

GSL surface elevation decreased by 1.89 ± 0.04 m. Concurrently, GRACE only observes 

1.18 ± 0.08 m of equivalent water loss, if the full 300 km resolution is consolidated on 

the lake, corroborating the findings of Rodell & Famiglietti (1999). While GRACE is 

unable to quantify the load on the lake for this timeframe, a previous study showed that 

GPS sites near GSL exhibited load-induced deformation correlated with lake level 

variation between 1997 and 2003 (Elósegui et al., 2003). Only two long-running GPS 
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sites were available at the time of that study, but results identified the signal in all three 

components and suggested the need for more complex load geometries. Currently, long-

running GPS sites are well distributed around the lake and provide an opportunity to 

further investigate the sensitivity of 3D GPS near GSL to small spatial scale mass 

variation (Figure 2.1). During the recent drought, GPS timeseries reflect horizontal 

extension and vertical uplift at pairs of stations located on opposite sides of GSL, 

indicating the presence of an unloading signal (Figure 2.2). As we will show below, the 

data cannot be explained solely by the unloading of the lake. Considering the observed 

ratios of groundwater to surface water shown in previous studies, as well as observed 

well water level changes during this drought, it is likely that additional groundwater 

unloading has contributed to the observed GPS transients. To address this, we estimate 

displacements due to GSL unloading combined with distributions of groundwater loss 

and explore a range of models to identify the spatial distribution of mass loss in this 

region which best explains the 3D GPS signal.
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Figure  2.1:  Location  map  of  the  study  area.  Green  triangles  represent  GPS stations
included  in  this  study.  Red  triangles  represent  GPS  stations  not  included.  Turquoise
rectangles  represent  USGS water  surface  elevation  gauges  and grey  circles  represent
USGS groundwater well locations. The red box in the inset identifies the bounds of the
figure with yellow stars showing the location of stations used to calculate the common
mode  in  the  GPS  time-series.  Labeled  stations  identify  locations  of  GPS  timeseries
shown in Figure 2.2. Black lines represent significant faults in the region, including the
Wasatch fault. No data east of the Wasatch fault are included in this study.
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2.6 Observations

Great Salt Lake sits in close proximity to the Wasatch fault to the east (Figure 

2.1). For this study, we only include data within the GSL basin and west of the Wasatch 

fault. GPS displacements and seismicity on opposing sides of the fault are expected to 

behave independently and reflect unique dynamics respectively. 

2.6.1 Water Level Variation

Historically, GSL has experienced large fluctuations in lake surface elevation, and

the lake level has been in decline since the 1850’s (Elósegui et al., 2003; Wurtsbaugh et 

al., 2017). To investigate the modern trends, we inspect two long running lake level 

gauges (USGS Water Resources, 2020). These gauges are labeled 10010100, located on 

the northeastern side of GSL, and 10010000, located on the southeastern side of GSL. 

Deviations in lake level compare well with the Palmer Drought Severity Index (PDSI), 

which provides an index for the intensity of dryness in a region (Abatzoglou et al., 2017) 

(Figure 2.2a). In Figure 2.2, PDSI for the study area is reflected as the background 

shading and is used to indicate drier and wetter periods in comparison to the lake level 

deviations. The period of 2004 – 2012 (henceforth referred to as our base period), reveals 

variable drought conditions and minor net change in lake elevation. Between 2012 and 

2016 (i.e., the drought period), the PDSI indicates consistent drought conditions and GSL

exhibits steady lake level decline, totaling 1.89 ± 0.04 m of surface elevation lost. This 

value is calculated with the MIDAS algorithm, which provides a robust trend estimation 

with realistic uncertainty while being insensitive to seasonality (Blewitt et al., 2016).  
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Figure  2.2: Comparison  of  GPS,  GRACE,  PDSI,  and  GSL surface  elevation  data.
Background  shading  indicates  the  Palmer  Drought  Severity  Index  averaged  over  the
study area. Green data represent the base period of 2004 – 2012, red data represent the
drought period of 2012 – 2016, and black data represents later data not included in this
study. a) Average of the two GSL water level gauges.  b) Averaged GRACE TWS data
covering a range of 300 km centered on GSL, detrended relative to the base period.  c)
Average  NLDAS  soil  moisture  content  within  the  study  area.  d) GPS  timeseries
detrended relative to the base period. Regional common mode and annual/semi-annual
signals have been removed. Station pairs in each component are located on opposite sides
of the lake. Black lines represent the trends during the drought period calculated with
MIDAS. Stations P122 and P100 show East – West extension, while stations P100 and
P115 show North – South extension during the test period. Stations P122 and P115 both
show vertical uplift. Station locations are shown in Figure 2.1. 

The increase in lake level observed at the end of 2016 reveals the combined 

effects of increased precipitation and anthropogenic modifications. GSL is split by a 

railroad causeway which separates the lake into northern and southern portions and was 

retrofitted to improve flow in December of 2016 (Hassibe & Keck, 1991). This has 

historically caused a difference in water level across the causeway. For the period of 2004

– 2015, the lake elevation in the northern portion showed a consistent ~20-cm lower level

than that of the southern half. Between 2015 and 2016, the halves of the lake diverge 

slightly with the southern portion retaining more water than the northern half. This 

deviation is not readily distinguishable in the GPS data and is unlikely to influence 

loading results due to the magnitude and localization of the deviation. For the purpose of 

this study, we refer to the average of the two lake level gauges.

Groundwater well observations reveal a similar pattern of water level decline, 

with the majority of wells reflecting a distinct trend of water loss during the drought 
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period. Well data are obtained from the National Groundwater Monitoring Network, with 

sites distributed around the majority of GSL (Figure 2.1) (NGWMN, 2020). Since many 

wells have poor temporal resolution or inconsistent sampling, three interpretations of the 

groundwater variation during the drought are provided (Table S2.1).  First, we calculate 

the Theil-Sen median slope and apply it to the duration of the drought (Sen, 1968; Theil, 

1950). All wells exhibit water loss during this period and cover a range of water variation

between -0.28 and -9.34 meters. For 22 out of 39 available wells, the decline is 

significant at the 2-standard deviation level, where the standard deviation is calculated as 

1.4826 times the median absolute deviation (Huber, 1981). Similar results are observed 

when applying the MIDAS algorithm, however, only nine stations had enough data points

required for this method. Many wells provide data near the start and end times of the 

drought and investigation of the net difference reveals similar observed ranges to those 

produced by MIDAS. While these changes in water level cannot be directly compared to 

the lake level change, as they are a function of the characteristics of the host rock and 

aquifer dynamics, these observations highlight substantial mass variation exterior to the 

bounds of GSL and exhibit the largest water level deviations at wells closest to the lake.

2.6.2 GRACE and NLDAS

GRACE data are able to identify spatio-temporal variation of TWS (e.g., Castle et

al., 2014; Ojha et al., 2019; Tiwari et al., 2009). Although our study area is below the 

spatial resolution of GRACE, we inspect the temporal variability of the GRACE signal. 

Here we use the Release 06 version of the TELLUS GRACE TWS anomaly data and 
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select the grid points which span 300 km, centered on GSL (Landerer & Swenson, 2012).

The unique JPL, GFZ, and CSR solutions produce extremely similar results and minimal 

spatial variability is observed across grid points. Considering these similarities and to 

minimize potential errors in the solutions, we average the three unique solutions for each 

grid point and present the average of these timeseries in this study (Figure 2.2b). We 

observe that the TWS anomaly remains fairly stable across the duration of the base 

period, followed by a distinct change in trend, beginning in 2012, which exhibits a 4-year

net loss of water mass of 41.1 mm across the drought period. This is equivalent to only 

3.48 ± 0.21 km3 of water loss and is comparable to only -1.18 ± 0.08 m if the load was 

entirely constrained to the bounds of the lake. Although the timing of the deviation 

matches well with the onset of the drought, the volume is significantly smaller than the 

5.58 ± 0.11 km3 implied from the observed lake level decline itself. This indicates that for

the small spatial scale of this study, GRACE identifies the regional onset of water loss but

does not accurately estimate the magnitude of the loss, supporting the findings of Rodell 

& Famiglietti (1999).

The North American Land Data Assimilation System Phase 2 (NLDAS-2), 

provides unique land surface parameters which distinguish surface process variation over 

time (Xia et al., 2012). Here we use the NLDAS-2 monthly Noah model to observe 

variation in soil moisture content within the top two meters of soil near GSL (Mocko, 

2012). While a slight trend change is observable during the drought, this trend, and that 

of the base period, are below their respective significance levels (Figure 2.2c), indicating 
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that the source of the deviation observed in both the GRACE data and GPS 

displacements, is not primarily confined to the uppermost soil layers.

2.6.3 GPS Displacement Fields

The ability of GPS to resolve load variations is highly dependent on the removal 

of extraneous signals, particularly within the horizontal components (Wahr et al., 2013). 

To better distinguish the signal attributed to the drought period, contributions of local and

regional signals must be taken into account. We address this issue by first identifying 

well-behaved, long-running, GPS sites in the region. We analyze GPS station coordinate 

time-series data that are publicly available at the Nevada Geodetic Laboratory in the 

IGS14 reference frame (Blewitt et al., 2018). Stations are limited to those which recorded

data for the entirety of the drought period as well as at least four years of data spanning 

the base period. Three stations, SLCU, ZLC1, and P057, meet the time requirements but 

exhibit unmodeled transients associated with local aquifer deformation (Hu & Bürgmann,

2020), and/or questionable monumentation. Consequentially, we consider 17 stations in 

our study area (Figure 2.1), including stations CEDA and COON, whose response to lake 

load variation was previously investigated by Elósegui et al. (2003). The considered 

stations provide good spatial coverage around the lake, with the exception of the western 

side of GSL where there are currently no stations installed.

Regional common mode variation in the GPS positions can alter the inferred 

displacement field and is a source of error for our study (Kreemer & Blewitt, 2021; Li et 

al., 2020; Márquez-Azúa & DeMets, 2003; Serpelloni et al., 2013). We are interested 
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uniquely in how the GSL area affects the GPS positions and not how the positions may be

affected by large-scale signals. We therefore use nineteen long-running regional stations 

outside our study area with limited data gaps (see inset of Figure 2.1, Table S2.2), to 

calculate the regional common mode component (CMC). Station timeseries are 

detrended, and the CMC is defined as the median position at each epoch and removed 

from our study timeseries. A comparison of GPS observations is shown in Figure 2.2d. 

These timeseries are detrended relative to the base period, with the common mode, 

annual, and semi-annual components removed. A consistent change in trend is present for

the duration of the drought period in all three components. Each pair of stations are 

positioned on opposite sides of the lake, as identified in Figure 2.1, revealing east-west 

and north-south extension with vertical uplift.

To distinguish the unique displacements attributed to the drought period, long 

term trends, due to both tectonic and non-tectonic sources, must be removed from each 

timeseries. To achieve this goal we must identify a period which exhibits stable, 

consistent positions across its duration, hence our base period of 2004-2012. Across this 

period, GPS stations reveal only minor changes in trend as drought conditions vary, 

resulting in a consistent long term trend. Furthermore, GRACE TWS estimates remain 

very consistent during the base period and GSL exhibits low surface level variability. The

combination of these factors provide the best opportunity to isolate the long term, steady 

rate attributed to external factors present across both the base and drought periods, thus 

isolating our specific drought signal. 
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Individual velocities of the cleaned timeseries, for both the base and drought 

periods, are calculated using MIDAS, and then differenced. The MIDAS algorithm is 

robust to outliers, steps, and annual signals in the timeseries. The extended duration of 

our base period, as well as the minimum requirement of four years of data, assists in 

ensuring the resulting rate is not affected by short term variations in drought conditions. 

The drought relative to base-period velocities are then multiplied by the duration of the 

drought period, identifying the net displacements unique to this timeframe.  

 The resulting GPS drought-specific displacement field shows motion consistent 

with an unloading signal centered on/near GSL (Figure 2.3, Table S2.3). Horizontal 

displacements exhibit extension across the lake. All stations exhibit vertical uplift, with 

the largest displacements at stations located closest to the lake. We note that stations to 

the south of the GSL exhibit more scatter than their counterparts to the north. 
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Figure 2.3:  Observed GPS displacements for the drought period (2012 – 2016) relative
to the base period (2004 – 2012). Blue arrows represent horizontal displacements with
95% confidence ellipses. Circles represent vertical displacements. Note that horizontal
displacements  exhibit  extension  centered  on/near  GSL,  while  the  largest  vertical
displacements are located at stations nearest the lake.
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2.7 Loading Models

2.7.1 Elastic Loading Model

To establish the relationship between observed GPS displacements and the signal 

attributed to load variations, we apply an elastic loading model. Homogeneous half-space

models are often used for this goal (Amos et al., 2014; D’Urso & Marmo, 2013); 

however, Argus et al. (2017) showed that these models overestimate the displacements in 

the vertical component by a factor of ~2.5. This also affects the horizontal distribution of 

the uplift signal. Accurately calculating the vertical displacement field is key to the 

inversion as it can lead to underestimation of the net loading and poor interpretation of 

the distribution of mass. For this goal, we use the LoadDef software suite (Martens et al., 

2019). LoadDef calculates displacements on a self-gravitating stratified sphere for a 

given Earth model and allows for complex geometries of the load distributions through 

the use of a user-defined template grid. This template grid calculates the response at a 

defined point to the users applied load model and allows the user to define the resolution 

in both the near and far fields. To ensure well defined edges of the applied load geometry,

we supply LoadDef with applied load models on a regular grid at the spatial resolution of 

0.005°x0.005° and the near field of the template grid is also defined at a resolution of 

0.005°x0.005°. For our Earth model, we use the Preliminary Reference Earth Model 

(PREM) (Dziewonski & Anderson, 1981). While more detailed Earth models exist [e.g., 

CRUST 1.0 and CSEM (Fichtner et al., 2018; Laske et al., 2013)], the resulting GPS 

displacements differ by only fractions of a millimeter between the different Earth models,
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and estimated loads differ by only a few centimeters. We therefore retain PREM as our 

Earth model. A thorough description of the methods applied in LoadDef can be found in 

Martens et al. (2019).

2.7.2 Observed and Inferred GSL Load Models

Our first goal is to determine whether the unloading of GSL alone is able to 

produce the observed displacements at nearby GPS stations. We produce a load model in 

which all points within the bounds of the lake exhibit a uniform load of -1.89 m and 

calculate the resulting displacements at the GPS positions with LoadDef. The results 

indicate that the observed unloading significantly underestimates the observed GPS 

displacements (Figure S2.1, Table S2.4). While the orientation of the horizontal 

components compares well with the observations, the magnitude of the vertical 

component is severely underestimated. In order to determine the amount of load required 

to best explain both horizontal and vertical components, we invert for the load on the 

lake. To do so, Green’s functions are produced at the GPS sites by applying a uniform 

load of -1.00 m to the bounds of GSL to determine the respective 3D response vectors. 

These are then used in the inversion to estimate the load on GSL. The results obtain a 

significantly improved fit to the vertical component, however, the estimated load on GSL 

is -5.01 ± 0.26 m (Figure S2.2, Table S2.4). This is substantially larger than the -1.89 ± 

0.04 m observed on the surface of the lake and unrealistic. While the orientation of the 

horizontal components are promising, we find that we cannot explain the observed GPS 

displacements with GSL loading alone. This, combined with the fact that substantially 
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higher loads are required to fit the vertical component, suggests that additional mass loss 

exterior to GSL likely plays a significant factor in producing the observed unloading 

signal at the GPS stations. 

2.7.3 Groundwater Model Setup

Because the effect of the drought does not end at the edge of the lake, our goal is 

to determine whether additional water loss around GSL contributes to the observed GPS 

displacements during the drought period. In the following two sections, we present two 

suites of groundwater models. The first investigates segmented load sections surrounding 

GSL, and in the second a range of radial load rings are tested which expand from the 

bounds of GSL. Both suites follow the same methodology described here. 

Two constraints are applied to the distribution of loads within individual rings. 

First, contributions of load variation within bedrock units are assumed to be negligible, so

loads are constrained to alluvial units, as identified by the Utah Geologic Unit Map 

(Hintze et al., 2000). Second, since the basement footwall side of the Wasatch fault to the 

east sits adjacent to sedimentary layers on the GSL side to the west, it therefore acts as a 

natural barrier to groundwater. Thus, we prevent loads from crossing the fault to the east. 

For each unique distribution, individual load Green’s functions are calculated by 

supplying LoadDef with high resolution applied load grids. The resulting response 

vectors for each load are then used as individual parameters in the inversion to estimate 

the loads on GSL and surrounding groundwater regions. Finally, these estimated loads are
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used to produce a single high resolution load model, which is then passed to LoadDef to 

calculate the estimated displacements at the GPS sites. 

Since we do not expect loads in adjacent segments or rings to differ wildly and 

because some load regions may contain too many or too few GPS observations, we 

include a Tikhonov regularization term in our inversion (e.g., Aster et al., 2013). The 

regularized least squares equation is shown in Equation 1 and our individual load 

solutions are shown in Equation 2.

 (1)

(2)

Here G is our matrix of Green’s functions, m contains the loads we are inferring 

(as equivalent water thickness), d contains our observed GPS displacements, W is the 

weighting matrix built from the GPS observation uncertainties, L is the roughening 

matrix for the regularization, and α is the regularization parameter. To find the optimal 

balance between the regularization and the fit to the data, a range of α values are tested. 

We choose the best solution from the L-curve for each load distribution, which identifies 

the regularization parameter which minimizes the solution and residual norms. 
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2.7.4 Segmented Groundwater Models

Considering the non-uniform distribution of GPS stations around GSL, we first 

test groundwater distributions which take this into account. To do so, we investigate four 

distributions of groundwater loads (V1 through V4) in which we divide the area 

surrounding the lake based on the locations of the GPS observations (Figures S2.3-S2.6, 

Tables S2.5-S2.6). These segments are prepared with the goal to account for the 

distribution of the GPS stations as evenly as possible, with the number of segments 

ranging between nine, for segmented model V1, and three for V4. Since no data exist to 

the west of GSL, this region is omitted from these models. 

We find that none of these models are able to estimate the load on GSL, with 

estimated loads well below the two sigma range. Furthermore, models V1-V3 each 

suggest positive loads to the southwest of GSL are necessary and exhibit the largest water

loss in the eastern and southeastern segments where GPS data exhibit the largest vertical 

signal. Considering the severity of the drought, and the fact that decline in well water 

levels is observed throughout the entirety of the study area, we do not expect substantial 

positive loads at these scales to be realistic. While it is likely more water is lost within the

eastern segments, as wells show generally higher deviations in these areas, the high 

estimated loads introduce large displacements in the east component, resulting in a poor 

fit to the horizontal components regionally. This indicates that at the resolution of these 

models, the vertical component dominates the inversion, resulting in positive loads in the 

western sections to balance the fit to the data. Estimation of groundwater loss at these 
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resolutions is distinctly affected by the quantity and distribution of available GPS data. In

order to fit both the horizontal and vertical components accurately, a lower resolution 

load distribution is necessary. 

2.7.5 Parallel Load Ring Groundwater Model

Because of the aforementioned shortcoming of the segmented load models, we 

considered an alternative set of models which use parallel load rings surrounding the 

bounds of GSL. These rings benefit from the station distribution and receive information 

from all sides of the lake. This provides more insight into the regional trends in 

groundwater than the segmented models could provide. To determine to best distribution 

of ring loads, a suite of solutions is produced, in which up to three parallel load ring are 

tested with varying widths between 10 and 45 km. This randomization of ring 

distributions results in 1,889 unique ring load models tested in this study.

Our primary goal is to minimize the misfit to the displacements, but this does not 

guarantee the most realistic model, so a few considerations are taken into account to 

identify the preferred model. First, we omit solutions which exhibit ring loads greater 

than the inferred load on the lake. The individual loads represent an average load, applied

evenly across the surface of each region. Although the average decline in water levels in 

the wells is higher than the load on the lake, these values indicate the presence of 

groundwater loss and are not directly comparable to the estimated loads since they are a 

function of the porosity in the host rock. Considering this, GSL is likely to exhibit the 

highest average rate of load variation due to direct evaporation from the surface of GSL 
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itself. Groundwater observations reveal spatial variability in the distribution of loads, 

indicating non-uniform load variation exterior to the lake. The average load across the 

surface of each ring is likely to be lower than localized well observations and lower than 

the uniform load change on the lake. Similarly, due to the intensity of the drought and 

well observations, we do not expect rings to exhibit average net positive loads. Non-

positivity is not enforced in the inversion, but solutions with positive loads are simply 

removed from these results. Of the remaining solutions, we identify those that best 

minimize the data misfit and also have a GSL load comparable to that observed during 

the drought (i.e. within the range of -1.89 ± 0.15 m).

 We find that our preferred model estimates a load of -1.85 ± 0.33 m on the GSL 

and provides a good fit to both the horizontal and vertical GPS displacements observed, 

with a 3D RMS misfit of 1.73 mm (Figure 2.4, Table S2.7). This model exhibits two 

radial load rings. An inner ring of 24 km width with a load of -1.16 ± 0.20 m, and an 

outer ring of 40 km width with a load of -0.32 ± 0.14 m. The load inferred on the lake 

itself is very close to the observed -1.89 ± 0.04 m. Inclusion of the groundwater loads 

provide a more disperse vertical uplift signal and significantly improves the fit to the 

vertical displacements. This results in a net improvement in the 3D GPS misfit of 30.5%, 

compared to the model that fixed the observed lake level decline solely to the bounds of 

the lake. The regularization parameter for our preferred model is 1.75, with the solution 

sitting well on the corner of the trade-off curve. A comparison of the preferred ring model

to the observed and inferred lake only models is shown in Table 2.1. While the volume 
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inferred on the lake is comparable to that observed (i.e., 5.5 ± 1.0 km3 versus the 

observed 5.58 ± 0.11 km3), the combined volume attributed to groundwater loss 

surrounding the GSL is twice the lake loss at 10.9 ± 2.8 km3, spread over an area nearly 

six times larger than GSL, resulting in a combined model volume of -16.5 ± 3.8 km3. 

This is nearly five times the volume observed within the spatial resolution of GRACE. 

The volume we find is consistent across the full set of ring model solutions with a median

volume of -15.92 ± 0.71 km3, at 95% confidence.
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Figure 2.4: Displacements and distribution of the preferred load model. This model includes the load on GSL and two rings of
groundwater at widths of 24 km (inner ring) and 40 km (outer ring). a) Comparison of observed and modeled displacements at
GPS stations. Blue arrows represent observed horizontal displacements with 95% confidence ellipses. Red arrows represent
modeled  horizontal  displacements.  Inner  circles  represent  the  observed  GPS displacements,  while  outer  circles  represent
modeled displacements. Faults are represented as thin black lines. The data misfit for this model is 1.73 mm.  b) Inferred load
distribution. Polygon shading represents the load inferred for GSL and two additional rings. GSL load is inferred at -1.85 ±
0.33 m, the inner ring at -1.16 ± 0.20 m, and the outer ring at -0.32 ± 0.14 m. Circles represent changes in groundwater levels
observed at wells, with the same color scale as the ring loads.  c) Modeled displacement field on a grid. Black arrows show
horizontal displacements while the background shading shows vertical displacements. The bounds of GSL are shown as the
thick black line.
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Table 2.1: Comparisons between the observed GSL load model (fixed to -1.89 m), the
solved GSL load model (inferred at -5.01 m), and the preferred ring model.

Model Region Load (m) Volume (km3) 3D RMS (mm)

Observed GSL GSL -1.89  ± 0.04 -5.58  ± 0.11 2.49

Solved GSL GSL -5.01 ± 0.26 -14.8  ± 0.8 1.85

Preferred Ring
Model

GSL -1.85  ± 0.33 -5.5 ± 1.0

1.73Ring 1 – 24 km -1.16  ± 0.20 -7.5 ± 1.3

Ring 2 – 40 km -0.32  ± 0.14 -3.5 ± 1.5

Total Volume -16.5 ± 3.8

  

2.8 Regional Seismicity Modulation

We next assess whether the drought-modulated load variations on the Earth’s 

surface is reflected in spatio-temporal variations in seismicity in our study area. We use 

the Utah Authoritative Region earthquake catalog for 1981 – 2020. Prior to our analysis, 

the catalog was declustered following Zaliapin & Ben-Zion (2020). Events are limited to 

only mainshocks that occur to the west of the Wasatch fault. While studies have identified

strong correlations between seasonal water level variation and seismicity (Amos et al., 

2014; Craig et al., 2017; Kreemer & Zaliapin, 2018), we find no evidence of annual 

seismicity modulation, in agreement with the findings of Hu & Bürgmann (2020), so we 

inspect the catalog for evidence of temporally variable, drought-cycle induced seismicity 

modulation. To allow for an equal assessment of seismicity during wet and dry periods, 

we cut the catalog to the period of 1987.1 – 2020, in which there are equal timeframes 

where the PDSI indicates either wet or dry periods. The distribution of earthquakes is 
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shown in Figure 2.5. Earthquakes are primarily located to the northeast of the lake near 

the Hansel Valley, Hansel Mountain, and North Promontory faults, and to the south of the

lake along the Wasatch fault. Events occurring within the bounds of the lake occur near 

the ends of the Great Salt Lake fault zone, which runs NW–SE along the eastern edge of 

the lake and dips to the west.

The trimmed catalog is separated into two sets. The first are those events which 

occur within the load of the preferred model, shown in light blue. The second reflects the 

events occurring outside the load region. For an objective comparison of earthquakes 

occurring inside and outside of the load, the area of the outside region is constrained to be

equivalent to that of the load region. Due to the sparsity of events to the west of GSL, the 

outside region is mostly limited to the area north of the GSL (i.e., up to 42.5°) and south 

of the GSL. Finally, we set a conservative magnitude cutoff of 1.3, inferred from an 

inspection of the cumulative and non-cumulative distribution of events within our region.

This cutoff magnitude is comparable the findings of Pankow (2004), who found a cutoff 

magnitude of 1.2 for the GSL basin for the period of 2000 – 2003. 

Following these criteria, the cumulative number of events in the study area (i.e., 

the defined inside and outside areas) between 1987.1 and 2020 is 1,345. We then separate

these events depending on whether they occurred during dry and wet periods and whether

they are in the area inside or outside the load. This reveals that inside the load area, 

earthquakes occur ~20% more frequently when the region is experiencing drier 

conditions, while outside the load area there only being ~2% more events during drier 
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periods (Table 2.2). While the number of events in this catalog is fairly small, we find 

that the observed ratio of events during dry over wet periods for the load region is well 

above the 95%, 1-sided confidence level, following 100,000 temporal randomizations of 

the catalog. The same ratio outside of the load is not statistically significant. The 

prevalence of earthquakes during dry time periods identifies modulation of seismicity 

likely associated with fault unloading due to the reduced mass on the Earth’s surface 

within the load region during dry periods.
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Figure 2.5: Distribution of regional earthquakes for 1987.1 – 2020. Light blue polygon
shows the preferred model load distribution.  Light yellow polygon defines the region
used  to  identify  earthquakes  outside  of  the  load  region.  The  area  of  this  region  is
equivalent to the area of the modeled load and the northern section ends at 42.5° N. All
regional earthquakes are shown as grey circles, those inside of the load and greater than
Mw 1.3 are shown as green circles, and those chosen outside of the load and greater than

Mw 1.3 are shown as brown circles.
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Table  2.2:  Regional  earthquakes  for  the  timeframe  of  1987.1  –  2020.  Dry  and  wet
periods are defined by the PDSI value at the time of the events. Expected median and
confidence ratio are calculated from 100,000 randomizations of the catalog. The inside
load exhibits significantly more events during dry periods than during wet periods.

Earthquake Counts
by Region

Dry
Periods

Wet
Periods

Expected
Median

Observed
Ratio

95% Confid.
in expected

Ratio

Inside Load 444 369 406 1.20 1.15

Outside Load 269 263 266 1.02 1.19

Combined 713 632 672 1.13 1.12

To further investigate the temporal aspect of the seismicity near the GSL, we 

compare the relationship between the surface elevation rate of the lake and the seismicity 

rate, shown in Figure 2.6. Each dataset is smoothed with a 3-year moving window to 

identify long term trends. Regional PDSI is shown in the background, indicating periods 

of relative dryness and wetness in the study area. Periods which exhibit drier conditions 

see an increase in seismicity rate as the lake level recedes, and the inverse occurs as the 

lake fills. Notably, the earthquake rate exhibits periods of distinct trends which are 

consistent and unique for each individual period. The relationship between the timing of 

these rate changes is illuminated when compared to the rate of GSL surface elevation 

change. We see a temporal relationship between changes in the trend of seismicity rate 

and the inflection of the GSL surface elevation rate. As the surface elevation rate changes

sign, a change in the trend of the rate of earthquakes is closely observed. Increasing 

seismicity trend changes are tied to periods when the lake exhibits negative rates and 

decreasing seismicity trends relate to periods when the lake is filling. These results 
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further indicate a close relationship between the trends of mass fluctuation within the 

GSL basin and seismicity. 

Figure  2.6: Comparison of earthquake rates for the inside (green) and outside (brown)
load regions with the rate of lake elevation change over time (white). Each dataset has
been smoothed with a 3-year moving window. Background shading shows PDSI values,
scale as shown in  Figure 2.2. Black dashed line represents the neutral line of the GSL
elevation rate. Vertical black lines indicate breakpoints for periods of unique trends in the
earthquake rate in the inside load area. Note that the timing of the GSL elevation rate
inflection often closely matches the timing of changes in the trends of the earthquake rate
for the inside load region. Those periods which do not match the inflection better match
switches  in  the  PDSI.  The  outside  load  region  shows  minimal  variation  with  the
exception of the 1999 – 2004 period.  
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2.9 Discussion  

We find that the observed drought-induced GPS displacements can best be 

described by the presence of additional groundwater mass loss surrounding the GSL. 

When inverting only for the load on GSL itself, we find an unrealistic load on the GSL 

that is 2.65 times higher than what is observed from the lake level decline. In our 

preferred ring model, which includes mass loss outside the GSL, we resolve the observed 

unloading of GSL between 2012 and 2016. It is possible to produce a ring model which 

estimates the load on the lake from the vertical component only, but the 3D inversion 

produces more consistent estimates. The median GSL load estimate is -1.87 ± 0.15 m 

compared to -1.75 ± 0.22 m for the vertical only ring models. Furthermore, the vertical-

only inversion produces higher ring estimates. The balance between reduced GSL load 

estimates and increased ring load estimates, indicates a bias due to the distribution of 

GPS sites, which is addressed by the inclusion of the horizontal components. An over-

emphasis on fitting the vertical data is also observed in the segmented models and none 

of the segmented models could resolve the lake load. We see that the full 3D inversion 

better localizes the mass to the lake and produces more consistent results.

The estimated volume of water loss is substantial, at 16.4 ± 3.8 km3, with a ratio 

of groundwater to surface water volume of 2:1. Differences between the GRACE 

estimated volume of 3.48 ± 0.21 km3 and the observed lake volume loss of 5.58 ± 0.11 

km3 can be explained by the spatial resolution of GRACE; however, this still leaves 
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significant additional water level variation observed at nearby wells unaccounted for, 

resulting in a possibly even larger discrepancy between the GRACE estimate and the true

change. All three interpretations of the well data find an average water level change 

within Ring 1 near -3 m and less water loss in Ring 2 (Table 2.3). Without knowledge of 

the storativity of the aquifers, direct comparison to the load estimates is not possible, 

however, we note that the ratio of well water loss between the two rings is comparable to 

the ratio inferred by our model (with 3 – 4 times higher change in water level within the 

inner ring compared to the outer ring) when the well change is estimated by MIDAS or 

net difference approaches. While the well observations show that some localized areas 

exhibit large changes in groundwater levels, they also show a wide range of observed 

water displacement. Considering that wells are primarily located where water levels are 

most observable or intriguing, it is likely that water levels in wells reflect above average 

loss of water compared to the entire surface area of the inferred rings. Furthermore, our 

inferred rings reflect area averaged loads, which provides insight into the net magnitude 

of water loss required to explain the GPS displacements, but underestimates the 

complexity of the real mass distribution. While we refer to our loads as groundwater, we 

make no distinction to the specific location of the mass and the estimated loads reflect net

mass loss in the column below the surface of the load from any source. Although the soil 

moisture data does not reflect statistically significant trends during the drought, it is likely

to play a minor role and is combined with our estimated loads. We note that GPS uplift is 

significantly less to the west of the GSL than east of the GSL (Figure 2.3), which may 
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reflect greater water loss closer to the Wasatch fault and our inferred load rings provide a 

more regionally averaged estimate. The segmented models estimate larger loads in this 

region, but due to network configuration, were unable to produce regionally realistic 

results as positive loads were required to balance the fit to the data. To better infer the 

complexity of the true load distribution in future studies, a significantly higher density of 

long running GPS stations is required than are currently installed to resolve complex load

distributions. 
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Table 2.3: Comparison of observed groundwater level changes with respect to location within the inferred load rings. Three
methods are tested to quantify the observed water deviation during the drought: the Theil-Sen slope estimate, the MIDAS
algorithm, and a net difference between the start and end of the drought. For the Theil-Sen and MIDAS solutions, only wells
with water level differences greater than two sigma are presented.  The net difference solutions take the difference in the
average position of 2012 ± 0.1 and 2016 ± 0.1. Each method finds a higher average water loss within the bounds of Ring 1
compared to Ring 2. The ring ratios for both MIDAS and net difference approaches is comparable to the ratio of the ring loads
inferred in our model.

Method Location Number
of Wells

Mean Water Level
Change (m)

Median Water
Level Change

(m)

Water Level Range (m)

Theil-Sen
Ring 1 9 -3.25 -2.98 -6.21 -0.28

Ring 2 13 -2.39 -1.77 -9.34 -0.45

MIDAS
Ring 1 4 -3.04 -3.78 -4.37 -0.25

Ring 2 5 -0.77 -0.11 -3.16 0.32

Net Difference
2012 - 2016

Ring 1 9 -2.98 -2.47 -7.34 -0.24

Ring 2 13 -1.00 -1.00 -3.87 0.61
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Vertical displacements associated with loading signals are largest near the center 

of the load, while horizontal displacements reach their maximum at the edges of the load 

(e.g., Becker & Bevis, 2004). Consequently, extension or contraction is expected within 

the load bounds, depending on the sign of the signal, with the largest change in vertical 

stresses directly under the load. In the presence of listric normal faults [e.g., the Wasatch 

fault zone as suggested by Pang et al. (2020) and Savage et al. (1992)], the role of vertical

stresses on faults is increased at depth when the fault dip becomes shallower (i.e., less 

than 45°). Since the majority of events within the catalog are at depths deeper than 2 km 

below sea level (i.e. the depth at which Pang et al. (2020) suggests the fault becomes 

shallower than 45°), we expect higher quantities of events during drier periods, due to the

reduction of vertical stresses on the faults cutting underneath the load at depth. This 

matches well with our findings (Table 2.2), and we observe the strongest distinction 

between the inside and outside regions with this load distribution. If the actual load were 

constrained closer to the bounds of the lake, or to a much wider region around GSL, such 

a distinction between dry and wet events would not be clear at this specific radial 

distance. The observed seismicity modulation may therefore corroborate the spatial extent

of the load implied by our model. While a cutoff magnitude of 1.3 is used in this study, 

observed seismicity trends are also found when using magnitudes above 0.8, but they are 

only significant (at the 95% confidence level) when considering events with magnitudes 

above 1.2 (Figure S2.7). In fact, the higher the cutoff magnitudes we consider, the higher 
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the difference between dry and wet events within the load region, while the events 

outside the load continue to reflect no significant trends.

Comparison of the earthquake rates to lake elevation rates highlights long-term 

seismicity modulation in the region (Figure 2.6). A clear distinction exists between inside 

and outside load events, with those inside exhibiting significant levels of anti-correlation, 

at a value of -0.49 ± 0.23, and those outside showing no relationship, at a value of -0.14 ±

0.23, following 100,000 randomizations of the catalog. Changes in the trend of 

earthquake rate in the region alter when the rate of GSL surface elevation changes sign. 

That is, as the lake shifts from losing water to gaining water, the seismicity rate changes 

from negative to positive. These trends are consistent between inversions of the lake 

elevation rate and are unique for each time period, supporting an inverse relationship 

between load variation and seismicity.

This study advances the findings of Elósegui et al., 2003, and further 

distinguishes the contribution the GSL and surrounding groundwater make to regional 

water loss during droughts. As noted in their study, load geometry plays a significant role 

in best explaining the GPS observations and the placement of loads determines which 

signals will be constructive or deconstructive at each site. Significantly higher complexity

of load distribution is applied in this study than their two disk model; however, the real 

distribution of groundwater loads is undoubtedly still more complex. This likely explains 

some of the residuals exhibited at GPS sites to the south of the GSL where wells exhibit 

increased spatial variability of water level change and localized aquifers have been shown
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to alter the deformation field (Hu & Bürgmann, 2020). Nevertheless, the simple 

distribution of surface averaged groundwater loss in addition to the unloading of the 

GSL, provides significant improvement to the interpretation of GPS data near the GSL. 

The results of this study highlight that mass variability on local scales have a significant 

impact on GPS timeseries and must be accounted for when, for example, using those data

to infer secular loading rates on nearby faults.

2.10 Conclusions

The results presented in this study find that GPS data are able to detect and 

localize mass loss within the GSL basin and that the regional extent of inferred water loss

during the drought period is supported by both regional seismicity variations and well 

observations. Inclusion of two surface averaged groundwater rings in the inversion, 

covering a radial distance of 64 km from the lake, significantly improves the fit to the 3D 

GPS observations. We find the inferred groundwater loss to be substantial (10.9 ± 2.8 

km3), at twice the volume observed on the lake (5.58 ± 0.11 km3 ), and are able to recover

the lake observation with an inferred lake volume loss of 5.5 ± 1.0 km3. The modeled 

ratio of groundwater to surface water estimates is comparable to the findings of Castle et 

al. (2014) and Ojha et al. (2019) in which groundwater loss exceeded surface water loss 

at a rate 1.89 – 4.79 times higher, during the same drought. Additionally, wells within our

inferred load region corroborate the presence of significant water level decline, and the 

ratio between average well water levels and inferred loads, between the inner and outer 

rings, are comparable. 
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We find that earthquakes within the load region occur during dry versus wet 

periods ~20% more frequently, and that the earthquake rate is anti-correlated with the 

lake elevation rate, with a coefficient of  -0.49  ± 0.23. Events outside the load show no 

significant relationships. These results reveal a long-term relationship between the 

distribution and variation of loads with stresses on faults, resulting in drought-cycle 

influenced seismicity modulation within the loaded region.

 Our study benefits greatly from the distribution of long running GPS stations 

near the GSL, which directly improved the performance of the inversion and advances 

the finding of Elósegui et al., 2003; however, we also present limitations for the 

maximum resolvability of the network during this time. Future modeling of load variation

on and near GSL will be significantly improved by the quantity of GPS stations which 

have been installed in the past 10 years, although there remains no nearby GPS sites to 

the west of the lake. Additionally, expansion of the GPS network will reduce uncertainty 

in load estimates, allowing for more complex load geometries. Our case study for the 

GSL highlights how regional GPS networks are particularly well suited to identify water 

loss in similarly sized lakes and reservoirs during drought periods. Continued expansion 

of GPS networks will further allow water management authorities to identify and 

quantify regional variation in water storage and its redistribution.
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MIDAS software is available at http://geodesy.unr.edu/ (Blewitt et al., 2016), and the 

LoadDef software is available at https://github.com/hrmartens/LoadDef (Martens et al., 

2019).
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2.14 Supplemental Material 

2.14.1 Description 

This supplemental material consists of Figures S2.1 to S2.7 and Tables S2.1 to S2.7
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2.14.2 Supplemental Figures 

Figure S2.1:  Modeled displacements for a load equivalent to the observed lake level
change between 2012 and 2016 (-1.89 m). Displacements are calculated with LoadDef.
Applied  load  is  constrained  to  the  bounds  of  GSL.  a)  Comparison  of  observed  and
modeled  displacements  at  GPS  stations.  Blue  arrows  represent  observed  horizontal
displacements with 95% confidence ellipses. Red arrows represent modeled horizontal
displacements.  Inner  circles  represent  the  observed  GPS  displacements  while  outer
circles represent modeled displacements. Faults are represented as thin black lines. The
3D data misfit for this model is 2.49 mm. b) Modeled displacement field on a grid. Black
arrows  show horizontal  displacements,  while  the  background  shading  shows  vertical
displacements. The bounds of the region where the load is applied is shown by the thick
black line. Note the poor fit to the vertical component. 
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Figure S2.2:  Modeled displacements for the inferred load on GSL. The distribution of
load is constrained to the bounds of GSL and applied equally. Key as described in Figure
S2.1. The inferred load is 5.01 ± 0.26 m with a data misfit of 1.85 mm. Note that the fit
improves  but  the  load  is  significantly  higher  than  the  observed  GSL water  loss and
unrealistic.
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Figure S2.3: Displacements and distribution of segmented load model V1. This model includes nine segments in addition to
GSL. a)  Comparison of observed and modeled displacements at GPS stations. Blue arrows represent observed horizontal
displacements with 95% confidence ellipses. Red arrows represent modeled horizontal displacements. Inner circles represent
the observed GPS displacements, while outer circles represent modeled displacements. Faults are represented as thin black
lines. The data misfit for this model is 1.40 mm.  b) Inferred load distribution. Polygon shading represents the load inferred for
GSL and groundwater load segments. GSL load is inferred at -0.98 ± 0.26 m, with segment loads ranging between -2.43 ± 0.35
m and 0.87 ± 0.36 m. The alpha value is 1.55. Individual segment loads are identified in Table S5. c) Modeled displacement
field on a grid. Black arrows show horizontal displacements while the background shading shows vertical displacements. The
bounds of GSL are shown as the thick black line. Note the presence of positive loads to the southwest of GSL, and the poor fit
to the horizontal GPS displacements. 
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Figure S2.4:  Displacements and distribution of  segmented load model V2. This model includes  six segments in addition to
GSL. Key as described in Figure S2.3. GSL load is inferred at -1.02 ± 0.21 m, with segment loads ranging between -2.04 ±
0.21 m and 0.32 ± 0.20 m. The alpha value is 2.25 with a data misfit of 1.42 mm.  
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Figure S2.5: Displacements and distribution of segmented load model V3. This model includes seven segments in addition to
GSL. Key as described in Figure S2.3. GSL load is inferred at -0.52 ± 0.16 m, with segment loads ranging between -1.84 ±
0.27 m and 0.75 ± 0.28 m. The alpha value is 5.00 with a data misfit of 1.86 mm. 
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Figure S2.6: Displacements and distribution of segmented load model V4. This model includes three segments in addition to
GSL. Key as described in Figure S2.3. GSL load is inferred at -1.18 ± 0.21 m. The northern segment has a load of -0.95 ± 0.11
m, the inner southern segment has a load of -0.92 ± 0.13 m, and the outer southern segment has a load of -0.42 ± 0.15 m. The
alpha value is 5.50 with a data misfit of 1.86 mm. 
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Figure S2.7: Confidence level plot comparing dry and wet period events, for the inside
and outside load regions, across a range of cutoff magnitudes of the earthquake catalog.
Reds indicate events which occur during dry periods  as identified by the PDSI. Blues
indicate events which occur during wet periods. Solid colored lines reflect events within
the inside load region. Dashed colored lines reflect events within the outside load region.
Black lines show two sigma confidence bounds for the inside region (solid) and outside
region (dashed)  following 100,000 randomizations  of  the  catalog  at  each  magnitude.
Grey vertical bar reflects the chosen cutoff magnitude of 1.3. Note that for the inside load
region, the number of dry events is above the significance level for all magnitudes above
1.2. 
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2.14.3 Supplemental Tables 

Table S2.1: Observed groundwater level change for wells within the inferred load rings by three methods. Water level trends
are calculated with Theil-Sen slope estimation method and the MIDAS algorithm and applied to the duration of the drought.
The net difference results indicate the difference in the average well water level positions at the start (2012 ± 0.1 yr) and end
(2016 ± 0.1 yr) of the drought. Bold Theil-Sen data reflect accepted wells which exhibit water level changes greater than two
sigma. All MIDAS values are greater than two sigma.

Drought Displacement Calculation Method

Theil-Sen MIDAS Net Diff.

Well ID Location Longitude Latitude
Water
Level

Disp. (m)
σ (m)

Water
Level

Disp. (m)
σ (m)

Water
Level

Disp. (m)

403339112152501 Ring 1  -112.2588 40.5619 -3.79 0.452 -4.37 1.06 -3.27
403355112173601 Ring 1 -112.2947 40.5647 -2.14 0.112 ~ ~ ~
403400112144001 Ring 1 -112.2461 40.5647 -4.95 0.613 -4.25 0.323 -7.34
403555112230303 Ring 1 -112.3850 40.5986 -0.84 0.102 ~ ~ ~
403949112043301 Ring 1 -112.0766 40.6636 0.28 0.294 ~ ~ -0.61
405412111525701 Ring 1 -111.8833 40.9019 -6.21 0.707 ~ ~ -6.40
410523112053301 Ring 1 -112.0933 41.0897 -2.91 0.404 ~ ~ -2.47
410852111580501 Ring 1 -111.9688 41.1477 -5.16 0.699 ~ ~ -3.46
411035111594501 Ring 1 -111.9966 41.1763 -0.22 1.147 ~ ~ -0.77
411348112013601 Ring 1 -112.0274 41.2299 -2.98 0.931 -3.30 0.130 -2.24
414411112543701 Ring 1 -112.9111 41.7363 -0.29 0.094 -0.26 0.002 -0.24
401818112014501 Ring 2 -112.0299 40.3049 0.01 0.065 0.02 0.004 0.02
401818112034201 Ring 2 -112.0624 40.3049 -0.51 0.174 ~ ~ ~
402317111554401 Ring 2 -111.9292 40.3881 -1.54 0.135 ~ ~ ~
402333111513401 Ring 2 -111.8579 40.3930 -3.27 1.546 -3.16 0.075 -3.87
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403126112444501 Ring 2 -112.7480 40.5236 -2.14 0.233 ~ ~ ~
403511111541501 Ring 2 -111.9049 40.5863 -0.45 0.127 ~ ~ 0.14
403916111575901 Ring 2 -111.9672 40.6544 0.08 0.162 0.32 0.021 0.13
404152111525101 Ring 2 -111.8816 40.6977 -2.18 0.220 ~ ~ -1.25
404531111510101 Ring 2 -111.8510 40.7586 -2.01 0.248 ~ ~ -1.59
405735112593001 Ring 2 -112.9925 40.9597 -0.06 0.046 ~ ~ ~
411928111581001 Ring 2 -111.9702 41.3244 -0.80 0.548 ~ ~ 0.61
414236112101201 Ring 2 -112.1708 41.7099 -0.90 0.202 -0.93 0.018 -0.85
414406112163601 Ring 2 -112.2775 41.7349 -1.77 0.060 ~ ~ -1.55
414406112173601 Ring 2 -112.2941 41.7349 -1.16 0.159 ~ ~ -1.29
414418112154801 Ring 2 -112.2641 41.7383 -1.27 0.269 ~ ~ -1.00
414813113075401 Ring 2 -113.1325 41.8035 -4.55 1.072 ~ ~ ~
415703112514501 Ring 2 -112.8633 41.9508 -0.39 2.343 -0.11 0.022 -0.17
415754112551301 Ring 2 -112.9211 41.9649 -9.34 4.196 ~ ~ -2.36
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Table S2.2:  GPS stations included in the regional common mode calculation. 

Station Longitude Latitude
AHID -111.0637 42.2731
BBID -111.5261 43.6850
BLW2 -109.5578 42.2671
CASP -106.3841 42.3192
CAST -110.6773 38.6910
ELKO -115.8172 40.4147
FOOT -113.8054 38.8694
GOSH -114.1797 40.1402
HLID -114.4140 43.0626
MYT5 -110.0482 39.6027
P007 -114.8197 41.2242
P012 -109.3338 37.5974
P032 -107.2559 41.2417
P684 -111.4505 43.4191

RUBY -115.1228 40.1172
SMEL -112.8449 38.9256
SPIC -112.1275 38.8062
TCSG -113.4782 43.1192
TSWY -110.5975 43.1741
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Table S2.3: Observed GPS relative displacements during the drought period. Values are
calculated from the difference of the MIDAS velocities for the drought and base periods
then applied to the duration of the drought (four years).

Observed Displacements at GPS Stations
Drought Disp. (mm) Uncertainty (mm)

Station Longitude Latitude E N U σE σN σU 
CEDA -112.8605 40.6807 0.86 -1.79 0.47 0.21 0.17 0.64
COON -112.1210 40.6526 -1.42 -2.50 10.34 0.31 0.31 1.25
EOUT -111.9289 41.2532 2.38 1.42 6.78 0.36 0.38 1.28
LTUT -112.2468 41.5921 1.01 0.66 5.17 0.18 0.17 0.78
NAIU -112.2296 41.0157 1.98 -2.04 9.67 0.27 0.26 1.18
P016 -112.3614 40.0781 0.31 -0.63 0.30 0.17 0.19 0.67
P057 -112.6231 41.7566 1.15 0.03 4.88 0.16 0.19 0.68
P084 -113.0540 40.4940 -0.35 -0.34 1.90 0.13 0.15 0.61
P086 -112.2821 40.6488 1.17 -0.85 4.30 0.17 0.18 0.79
P100 -113.2942 41.8568 -0.70 1.31 0.47 0.22 0.29 0.96
P111 -113.0122 41.8173 -0.06 0.37 2.69 0.16 0.16 0.73
P113 -113.2780 40.6713 -0.23 -0.31 1.80 0.13 0.14 0.57
P114 -112.5276 40.6340 -0.43 -1.37 4.00 0.22 0.19 0.78
P115 -112.4280 40.4744 0.55 -1.74 3.59 0.21 0.27 0.89
P116 -112.0142 40.4340 0.04 -0.31 4.84 0.19 0.21 0.73
P117 -111.7514 40.4352 1.74 0.77 10.12 0.31 0.27 1.09
P121 -112.6983 41.8034 0.05 0.38 5.36 0.15 0.16 0.60
P122 -112.3319 41.6354 0.40 0.40 3.99 0.19 0.18 0.79
SLCU -111.9550 40.7722 4.77 0.93 3.84 0.49 0.33 1.47
ZLC1 -111.9522 40.7860 8.33 -0.78 11.79 0.38 0.25 1.02
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Table S2.4: Displacements at GPS sites, calculated with LoadDef, for the observed fixed
GSL load model, and the solved (inferred) GSL load model. The fixed load model only
applies the observed load of -1.89 m to the bounds of the lake while the solved GSL
model applies the inferred load of -5.01 m. 

Modeled Displacements at GPS Stations
Observed GSL Only

(-1.89 m)
Solve For GSL
Only (-5.01m)

Station Longitude Latitude E N U E N U

CEDA -112.8605 40.6807 -0.27 -0.39 1.33 -0.70 -1.03 3.52
COON -112.1210 40.6526 0.36 -0.52 1.68 0.95 -1.39 4.44
EOUT -111.9289 41.2532 0.50 0.18 1.51 1.31 0.48 4.01
LTUT -112.2468 41.5921 0.27 0.40 1.40 0.70 1.07 3.71
NAIU -112.2296 41.0157 0.88 -0.22 5.01 2.34 -0.59 13.29
P016 -112.3614 40.0781 0.02 -0.27 0.63 0.06 -0.72 1.67
P084 -113.0540 40.4940 -0.20 -0.30 0.89 -0.54 -0.79 2.36
P086 -112.2821 40.6488 0.20 -0.79 2.20 0.53 -2.11 5.84
P100 -113.2942 41.8568 -0.22 0.27 0.83 -0.59 0.71 2.21
P111 -113.0122 41.8173 -0.19 0.39 1.09 -0.50 1.03 2.88
P113 -113.2780 40.6713 -0.28 -0.23 0.91 -0.74 -0.62 2.41
P114 -112.5276 40.6340 -0.15 -0.56 1.67 -0.39 -1.49 4.42
P115 -112.4280 40.4744 0.00 -0.45 1.16 0.00 -1.19 3.09
P116 -112.0142 40.4340 0.18 -0.34 0.94 0.48 -0.89 2.49
P117 -111.7514 40.4352 0.22 -0.25 0.79 0.57 -0.67 2.09
P121 -112.6983 41.8034 -0.01 0.47 1.24 -0.02 1.24 3.29
P122 -112.3319 41.6354 0.22 0.43 1.40 0.58 1.14 3.71
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Table S2.5: Inferred loads and model uncertainties for segmented models V1-V4 shown
in Figures S3-S6. Segments with their location noting “in”, indicate those closest to the
southern side of the lake. Those identified as “out”, indicate segments that are farthest
from the southern side of the lake.  

Load ID Location Load (m) σ (m)
Segmented Model V1
GSL ~ -0.98 0.26
P1 N -0.28 0.22
P2 NE -0.93 0.22
P3 E -2.10 0.35
P4 SE – in -2.03 0.28
P5 S – in 0.55 0.29
P6 SW – in 0.87 0.36
P7 SW – out 0.03 0.29
P8 S – out -0.17 0.32
P9 SE – out -2.43 0.35
Segmented Model V2
GSL ~ -1.02 0.21
P1 N -0.12 0.22
P2 NE -0.75 0.20
P3 E -1.96 0.31
P4 SE -2.04 0.21
P5 S 0.02 0.19
P6 SW 0.32 0.20
Segmented Model V3
GSL ~ -0.52 0.16
P1 N -0.05 0.20
P2 NE -0.84 0.17
P3 E -1.84 0.27
P4 SE – in -1.37 0.24
P5 S – in 0.45 0.20
P6 SW – in 0.75 0.28
P7 S – out -1.05 0.15
Segmented Model V4
GSL ~ -1.18 0.21
P1 N -0.95 0.11
P2 S – in -0.92 0.13
P3 S – out -0.42 0.16



76

Table S2.6: Displacements at GPS sites, calculated with LoadDef, for segmented models
V1-V4. 
Modeled Displacements at GPS Stations

Segmented Model V1 Segmented Model V2
Station Longitude Latitude E N U E N U
CEDA -112.8605 40.6807 -0.43 -0.21 0.01 -0.64 -0.32 1.10
COON -112.1210 40.6526 -0.79 -0.41 7.71 -0.65 -0.45 7.68
EOUT -111.9289 41.2532 1.18 0.75 5.75 1.11 0.77 5.36
LTUT -112.2468 41.5921 0.08 0.71 4.82 0.07 0.70 4.17
NAIU -112.2296 41.0157 -0.48 0.01 6.96 -0.35 0.07 6.86
P016 -112.3614 40.0781 -0.55 -0.67 2.80 -0.50 -0.63 2.12
P084 -113.0540 40.4940 -0.45 -0.15 1.18 -0.56 -0.21 0.56
P086 -112.2821 40.6488 -1.00 -0.47 6.46 -0.75 -0.49 6.83
P100 -113.2942 41.8568 -0.44 0.41 1.72 -0.38 0.36 1.36
P111 -113.0122 41.8173 -0.40 0.50 2.37 -0.37 0.47 1.81
P113 -113.2780 40.6713 -0.41 -0.16 1.09 -0.43 -0.25 0.42
P114 -112.5276 40.6340 -0.86 -0.29 1.37 -0.87 -0.40 2.70
P115 -112.4280 40.4744 -0.83 -0.25 2.03 -0.75 -0.51 2.82
P116 -112.0142 40.4340 -0.24 -0.35 6.63 -0.15 -0.47 6.02
P117 -111.7514 40.4352 1.29 -0.12 6.18 1.17 -0.20 5.50
P121 -112.6983 41.8034 -0.26 0.68 2.72 -0.26 0.62 2.15
P122 -112.3319 41.6354 -0.11 0.79 4.73 -0.09 0.76 4.07

Segmented Model V3 Segmented Model V4
Station Longitude Latitude E N U E N U
CEDA -112.8605 40.6807 -0.07 0.19 0.89 -0.69 -0.41 5.14
COON -112.1210 40.6526 -0.38 -0.29 5.69 0.30 -0.58 5.42
EOUT -111.9289 41.2532 1.01 0.64 4.82 1.16 0.35 4.54
LTUT -112.2468 41.5921 0.04 0.60 4.05 0.40 0.68 5.34
NAIU -112.2296 41.0157 -0.44 0.09 5.29 0.49 -0.10 6.62
P016 -112.3614 40.0781 -0.09 -0.70 4.62 0.03 -0.76 3.05
P084 -113.0540 40.4940 -0.18 -0.10 4.10 -0.51 -0.55 3.52
P086 -112.2821 40.6488 -0.53 -0.22 4.86 0.37 -0.64 6.00
P100 -113.2942 41.8568 -0.29 0.31 1.08 -0.61 0.72 3.32
P111 -113.0122 41.8173 -0.30 0.39 1.38 -0.40 0.76 4.78
P113 -113.2780 40.6713 -0.53 0.20 3.94 -0.76 -0.23 3.32
P114 -112.5276 40.6340 -0.40 0.02 1.52 -0.30 -0.61 5.85
P115 -112.4280 40.4744 -0.29 0.11 2.36 0.02 -0.82 4.94
P116 -112.0142 40.4340 0.14 -0.32 4.28 0.44 -0.65 3.50
P117 -111.7514 40.4352 0.84 -0.19 3.71 0.73 -0.44 2.85
P121 -112.6983 41.8034 -0.25 0.52 1.70 -0.03 0.94 4.97
P122 -112.3319 41.6354 -0.13 0.67 3.94 0.22 0.79 5.36
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Table S2.7: Displacements at GPS sites, calculated with LoadDef, for the preferred ring
load model. The preferred ring model estimates a GSL load of -1.85 m, a 24 km inner
ring at -1.16 m, and a 40 km outer ring at -0.32 m. 

Modeled Displacements at GPS Stations
Preferred Ring

Station Longitude Latitude E N U
CEDA -112.8605 40.6807 -0.69 -0.87 4.66
COON -112.1210 40.6526 0.55 -0.99 6.24
EOUT -111.9289 41.2532 1.36 0.48 4.84
LTUT -112.2468 41.5921 0.68 0.87 4.73
NAIU -112.2296 41.0157 0.89 -0.27 8.82
P016 -112.3614 40.0781 0.07 -0.90 2.32
P084 -113.0540 40.4940 -0.62 -0.83 3.00
P086 -112.2821 40.6488 0.54 -1.11 7.25
P100 -113.2942 41.8568 -0.70 0.79 3.36
P111 -113.0122 41.8173 -0.64 1.13 5.26
P113 -113.2780 40.6713 -0.82 -0.63 2.94
P114 -112.5276 40.6340 -0.46 -1.08 6.75
P115 -112.4280 40.4744 -0.02 -1.33 5.11
P116 -112.0142 40.4340 0.53 -0.85 3.45
P117 -111.7514 40.4352 0.75 -0.62 2.79
P121 -112.6983 41.8034 0.18 1.17 6.10
P122 -112.3319 41.6354 0.58 0.94 4.80
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Colorado Plateau and the Eastern California 
Shear Zone: Implications for the Seismic Hazard 
Near Las Vegas, Nevada
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3.1 Publication Status

The material presented in this chapter has been submitted for consideration to the 

Bulletin of the Seismological Society of America: Young, Z. M., C. Kreemer, W. C. 

Hammond, and G. Blewitt (in review), Interseismic Strain Accumulation Between the 

Colorado Plateau and the Eastern California Shear Zone: Implications for the Seismic 

Hazard Near Las Vegas, Nevada. The dissertation author led the research and authored 

the text. The co-authors provided guidance and revisions which assisted the production of

the presented research.

3.2 Key Points

 Active deformation across the central Basin and Range and Las Vegas, NV is 

determined from GPS data.

 The extension rate across Las Vegas Valley is larger than previously reported, at 

0.5 – 0.6 mm/yr.

 Postseismic relaxation substantially alters the deformation field within the central 

Basin and Range. 
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3.3 Abstract 

Crustal deformation in the central Basin and Range between the Colorado Plateau 

and the Eastern California Shear Zone is active but slow, making it a challenge to assess 

how strain is distributed and crustal motion transferred. However, knowledge of strain 

rates is very important, particularly for addressing the seismic hazard for both the Las 

Vegas urban area and the site of the proposed Yucca Mountain nuclear waste repository, 

in southern Nevada. Global Positioning System (GPS) data provide important constraints,

particularly now that the GPS network in the area has substantially expanded in recent 

years. However, because deformation is slow, it is important to mitigate any transient 

tectonic and non-tectonic signals to obtain the most accurate long-term interseismic 

motion and use robust estimation of strain rates. We use data from all GPS stations in the 

region, including both long-running continuous and semi-continuous stations. We model 

and remove postseismic displacements at these stations using source parameters for 41 

events, dating back to the 1700 Cascadia megathrust earthquake, which contribute 

significantly to the deformation field within the central Basin and Range. We also remove

correlated noise from the time series with the Common Mode Component Imaging 

technique. We find that removal of both the postseismic transients and common-mode 

noise substantially reduces the uncertainties and spatial variation in the velocities. We 

find east–west extension across the Las Vegas Valley of 0.5 – 0.6 mm/yr. The interseismic

strain rate field, calculated with the final velocities, reveals higher strain rates through 

southern Nevada than in previous studies, with rates within Las Vegas Valley of 8.5 ± 2.4 
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x10−9 yr−1. Our results confirm shear along the Pahranagat Shear Zone but the estimated 

amplitude is strongly affected by postseismic relaxation.   



82

3.4 Introduction

The American Southwest is tectonically complex, exhibiting a broad range of 

deformation regimes which are driven in part by inland accommodation of deformation 

due to the Pacific – North American plate motion. The eastward transfer of deformation is

facilitated by shear along the Eastern California Shear Zone (ECSZ) and Pahranagat 

Shear Zone, and extension throughout the Basin and Range, including the Central Nevada

Seismic Belt (CNSB) and Wasatch Fault Zone (Figure 3.1) (e.g., Dixon & Xie, 2018; 

Flesch et al., 2007; Frankel et al., 2008; Hammond & Thatcher, 2004; Kreemer et al., 

2010). Throughout this region, a number of large earthquakes have occurred over the 

years, e.g., Owens Valley (1872), Sonora (1887), Pleasant Valley (1915), Dixie Valley 

(1954), Hebgen Lake (1959), Landers (1992), Hector Mine (1999). The 2008 Mw 6.0 

Wells earthquake showed that significant earthquakes can occur in very low strain rate 

areas, and cause considerable damage (dePolo & Pecoraro, 2011). Because deformation 

rates are particularly low, but not zero, within the central Basin and Range (Hammond et 

al., 2014; Kreemer et al., 2010), any lingering transient postseismic deformation from 

these earthquakes, could be significant compared to the steady component of interseismic

strain accumulation. Because proper constraints on the interseismic strain rate are 

essential for seismic hazard assessment, postseismic transients must be accounted for.  

In the most recent investigation of strain rates across the central Basin and Range, 

which included the Las Vegas Valley, Kreemer et al., (2010) used GPS data, in 

conjunction with seismicity, to provide constraints on deformation and identify the 
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Pahranagat Shear Zone. That study, however, was severely limited by the sparsity of data 

at the time, with only 105 GPS stations across the entirety of their study area. 

Consequently, this led to some open-ended interpretations of their results. Since then, the 

GPS network has experienced rapid growth, and the density of stations in the central 

Basin and Range has been greatly improved (Blewitt et al., 2018), in part by the 

installation of the semi-continuous MAGNET network (Blewitt et al., 2009). The 

addition of these stations provides the opportunity to significantly improve the resolution 

of the deformation field.

In addition, Kreemer et al., (2010) did not account for transient signals or regional

common mode in their time series. One of the strongest sources of transient motion in 

GPS time series is postseismic deformation, which has been shown to produce signals 

hundreds of kilometers from the source that can last decades to hundreds of years 

(Broermann et al., 2021; Freed et al., 2007; Hammond et al., 2009; Hearn, 2003). 

Considering the proximity of the central Basin and Range to the large earthquakes 

produced in neighboring regions, it is likely that GPS velocities are strongly affected. 

Additionally, hydrologic loading has been shown to be prevalent in GPS time series 

(Amos et al., 2014; Argus et al., 2017; Young et al., 2021), and regional common mode 

noise plays a key role in station time series scatter (Kreemer & Blewitt, 2021; Tian & 

Shen, 2016; Wdowinski et al., 1997), and can affect velocity estimation (Kreemer & 

Blewitt, 2021; Márquez‐Azúa & DeMets, 2003; Santamaría-Gómez & Mémin, 2015; 

Serpelloni et al., 2013).  
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In this study, we produce the most robust interseismic strain rate field for the 

central Basin and Range to date. We calculate corrections for postseismic deformation, 

hydrologic loading, and common mode for all stations within the study area and produce 

maps of our revised velocity and strain rate fields. These results are compared to those of 

the uncorrected field and we investigate their implications for fault slip rates within the 

Las Vegas Valley through a GPS derived velocity budget and block modeling. Our results

improve constraints on interseismic deformation throughout the central Basin and Range 

and provide insight into the associated seismic hazard of the region, with special attention

to the Las Vegas urban area.   
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Figure 3.1: Location map of our study area within the American Southwest. Black dots
show the location of all available GPS stations in the region. Blue and red dots represent
GPS stations  considered  in  this  study,  with  blue  dots  showing the  location  of  semi-
continuous MAGNET stations and red dots showing continuous stations. Green lines, and
their respective focal mechanisms, represent the location of fault traces for the earthquake
models used to  calculate  postseismic deformation at  GPS stations.  Bold labels are as
follows: SAFZ – San Andreas Fault Zone, ECSZ – Eastern California Shear Zone, CNSB
– Central Nevada Seismic Belt, YM – Yucca Mountain Nuclear Waste Repository, LV –
Las Vegas, PSZ – Pahranagat Shear Zone, LM – Lake Mead, NASB – Northern Arizona
Seismic Belt, GSL – Great Salt Lake, WFZ – Wasatch Fault Zone, LP – Lake Powell, and
CP – Colorado Plateau. Italicized labels show GPS station locations whose time series are
shown in Figures 4 and S3.3 – S3.7. Orange arrow labels reflect general regional velocity
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trends and orientation with respect to the NA reference frame of Kreemer et al., (2014).
Thin black lines represent regional faults and the dashed black line indicates the bounds
of  the Colorado Plateau.  Inset  shows the  location of  the study area  compared to  the
western United States with focal mechanisms for all earthquake models. Pink lines are
used as pointers. 

3.5 Methods And Data Preparation

3.5.1 GPS Data

We use GPS data from the Nevada Geodetic Laboratory (NGL), where solutions 

are produced in the IGS14 reference frame using the GipsyX software (Altamimi et al., 

2016; Bertiger et al., 2020; Blewitt et al., 2018, see the Data and Resources section). We 

use 445 stations, which span the region between the SAFZ, the CNSB, the Wasatch Fault 

Zone, and the Colorado Plateau (Figure 3.1), and were measured during the timeframe of 

our study, 1999 – 2021.5 (further description in the Removing Common Mode 

Components section below). These stations represent a combination of long-running 

continuous stations from the NSF supported Network of the Americas, semi-continuous 

Mobile Array of GPS for Nevada Transtension (MAGNET) (Blewitt et al., 2009), and 

commercial and regional networks. The MAGNET network was installed and observed 

by the NGL over the last decade to complement and densify the continuous GPS network.

The presence of the 107 MAGNET stations used in this study improves the median 

distance to the ten nearest stations by 24.4%, from 50.3 km to 38.0 km, across the central 

and southern Basin and Range. This is particularly important for refining our 
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understanding of deformation across the Pahranagat Shear Zone and Las Vegas Valley, 

for which the Kreemer et al., (2010) study was limited to only a few stations. 

Prior to the corrections described below, each station undergoes inspection for 

steps and problem data in the time series. Velocities are then calculated with MIDAS 

(Blewitt et al., 2016), producing our “original” velocity data set. These velocities still 

include effects from postseismic deformation, hydrologic loading, and common mode 

errors. 

3.5.2 Removing Postseismic Relaxation

Many large earthquakes have occurred throughout the western United States, with

historical events along the plate boundary (San Francisco 1938/1906, Fort Tejon, 

Cascadia, etc.), CNSB earthquakes (Dixie Valley, Pleasant Valley, etc.), modern events 

(Hector Mine, Ridgecrest, El Mayor Cucapah, etc.), and others (Hebgen Lake, Sonoran, 

etc.). Considering the central location of our study area within the greater plate boundary 

zone, it is likely that large earthquakes throughout the entire western United States may 

have affected, to some degree, the deformation field of our study area. To properly assess 

the interseismic velocity field, it is necessary to consider all significant earthquakes in the

western United States and produce, and ultimately remove, a cumulative postseismic 

deformation model. In total, we identify 41 events to consider as potential contributors to 

the postseismic deformation field of our study area (Table 3.1). We consider most events 
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greater than Mw 6.0 since 1989, events above Mw 6.8 since the 1812 Wrightwood event, 

and include the 1700 Mw 9.1 Cascadia megathrust event. 

To calculate the postseismic displacements attributed to these events, we use the 

PSGRN/PSCMP software, which applies a layered viscosity model and accounts for 

gravitational effects (Wang et al., 2006). For the majority of the events, displacement 

time series are produced using previously published earthquake source slip models 

acquired from the SRCMOD database (see the Data and Resources section), or obtained 

from the literature (Table 3.1). Adopted slip models are input with their original 

geometries, with some simple models only using 1 – 3 fault slip planes and other, more 

complex models, using tens to hundreds to define each event. For the remaining events, 

we produce our own models based on a combination of published literature, moment 

tensors, and expected magnitudes. Fault traces and focal mechanisms of the considered 

events are shown in Figure 3.1. For the viscosity structure, we adopt the model of 

Broermann et al., (2021), which was derived for the Southern Basin and Range and the 

Colorado Plateau, and used for all earthquake models (Broermann et al., 2021) (Table 

3.2). As shown by Guns & Bennett (2020), this viscosity structure is quite similar to those

produced for several studies throughout Southern California and the Basin and Range 

where the majority of our earthquakes occurred. However, Hammond et al. (2009) and 

Dickinson et al. (2016) estimate that viscosities are higher than those of Broermann et al. 

(2021) for the CNSB. Variability in viscosity structures throughout the western United 

States is indeed expected, especially when comparing viscosity of the Southern Basin and
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Range to Cascadia. A three-dimensional viscosity structure of the entire western United 

States would therefore need to be derived. We leave this task, however, to future studies, 

and emphasize that we find that Broerman et al. (2021) provides a reasonable viscosity 

structure for the majority of our events since most fall within regions where similar 

viscosities have been identified.  

 Model postseismic time series are produced for each event at each GPS station 

which we sum to create composite time series. This composite postseismic correction is 

then removed from all GPS time series in the study area. While PSCMP provides co-

seismic offsets in the solution, we limit our model to the postseismic component and 

allow steps for modern events to be accounted for in the MIDAS velocity calculation.
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Table 3.1: List of earthquake models used to calculate postseismic deformation at GPS stations with expected and modeled
magnitudes. Model complexity is indicated by N Subfaults. Further details are provided in Table S3.1. 

Event Date Author Expected
Mw

Modeled
Mw

N
Subfaults

Borah Peak 1983OCT28 Mendoza & Hartzell (1988) 6.82 6.77 128

Cascadia 1700JAN26 Pollitz et al. (2008) 9.1 9.07 16

Cedar Mountain 1932OCT21 Hammond et al. (2009) 7.1 7.13 1

Central Idaho 2020MAR31 USGS (2020) 6.46 6.45 500

Dixie Valley 1954DEC16 Hodgkinson et al. (1996) 6.9 6.94 1

El Mayor–Cucapah 2010APR04 Wei et al. (2011) 7.2 7.24 386

Fairview Peak Complex 1954DEC16 Hodgkinson et al. (1996) 7.3 7.25 3

Fort Tejon 1857JAN09 This study 7.9 7.87 2

Gulf of California 1 2009AUG03 Hayes (2009) 6.9 6.85 144

Gulf of California 2 2009AUG03 Broermann et al. (2021) 6.2 6.24 1

Gulf of California 3 2012APR12 Broermann et al. (2021) 6 5.99 1

Gulf of California 4 2012APR12 Broermann et al. (2021) 7 7.03 1

Hebgen Lake 1959AUG18 Barrientos et al. (1987) 7.3 7.26 1

Hector Mine 1999OCT16 Salichon et al. (2004) 7.14 7.1 144

Imperial Valley 1940MAY18 Broermann et al. (2021) 6.9 6.86 1

Kern County 1952JUL21 Bawden, (2001) 7.3 7.28 2

Laguna Salada 1892FEB23 Broermann et al. (2021) 7.05 7.05 1
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Landers 1992JUN28 Hernandez et al. (1999) 7.22 7.18 48

Loma Prieta 1989OCT18 Emolo & Zollo (2005) 6.91 6.87 7840

Mendocino Triple Junction 1 1980NOV08 Rollins & Stein (2010) 7.3 7.34 1

Mendocino Triple Junction 2 1991AUG17 Rollins & Stein (2010) 7.1 7.1 1

Mendocino Triple Junction 3 1992APR25 Rollins & Stein (2010) 6.9 6.92 1

Mendocino Triple Junction 4 1994SEP01 Rollins & Stein (2010) 7 7.02 1

Mendocino Triple Junction 5 2005JUN15 Shao & Ji (2005) 7.2 7.22 119

Mendocino Triple Junction 6 2014MAR10 USGS (2017) 6.8 6.83 1

Masset 2012OCT28 S. Wei (2012) 7.83 7.67 189

Monte Cristo 2020MAY15 Zheng et al. (2020) 6.5 6.5 2

Napa 2014AUG24 Gallovič (2015) 6.07 6.2 320

Nisqually 2001FEB28 USGS (2015) 6.8 6.8 1

Northridge 1994JAN17 Zeng & Anderson (2000) 6.71 6.64 1728

Owens Valley 1872MAR26 Haddon et al. (2016) 7.4 7.47 1

Parkfield 2004SEP28 Ji (2004) 5.9 5.99 200

Pleasant Valley 1915OCT03 Hammond et al. (2009) 7.4 7.43 1

Ridgecrest 1 2019JUL04 Jin & Fialko (2020) 6.4 6.5 108

Ridgecrest 2 2019JUL06 Jin & Fialko (2020) 7.1 7.12 420

San Francisco 1838 1838JUN25 Smith & Sandwell (2006) 7.4 7.42 1

San Francisco 1906 1906APR18 Song et al. (2008) 7.91 7.89 48

San Simeon 2003DEC22 Johanson & Bürgmann (2010) 6.5 6.52 250
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Sonoran 1887MAY03 Broermann et al. (2021) 7.5 7.49 1

Stillwater 1954AUG24 Hodgkinson et al. (1996) 6.6 6.62 1

Wrightwood 1812DEC08 Wang et al. (2009) 7.5 7.5 1

Table  3.2: Postseismic  viscosity  structure adopted  from Broermann et  al.,  (2021).  Here,  ρ  is  density,  η 1 is  the transient
viscosity, η2 is the steady-state viscosity, and α is the ratio between the effective and unrelaxed shear modulus.

Layer Depth (km) Vp (km/s) Vs (km/s) ρ (kg/m3) η1 (Pa – s) η2 (Pa – s) α

1 0 – 15 6.17 3.58 2760 0 0 1

2 15 – 30 6.44 3.66 2820 0 8.32E+19 1

3 30 – 60 7.93 4.41 3270 3.55E+18 3.55E+19 0.5

4 60+ 7.93 4.41 3270 6.03E+17 6.03E+18 0.5
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3.5.3 Removing Hydrologic Loading

The recent drought in the western United States has increased the impact of 

surface mass load variation on the modern deformation field. Both horizontal and vertical

GPS data have been shown to be particularly sensitive to hydrologic variation (Amos et 

al., 2014; Argus et al., 2017; van Dam et al., 2001; Fu et al., 2013; W. C. Hammond et al.,

2019; Kreemer & Zaliapin, 2018; Young et al., 2021). While the hydrologic cycle imparts

load variation throughout the entire region, three distinct sources of surface loading are 

present within the study area. These are Lake Mead to the east of Las Vegas, Lake Powell

in southern Utah, and Great Salt Lake in northern Utah (Figure 3.1). Each of which have 

well documented historical water levels and defined shorelines allowing load induced 

displacements to be calculated. While the surface levels of Lake Mead and Lake Powell 

show significant decline in recent years, the narrow widths of the lakes suggests only 

GPS stations in the near field are likely to be significantly affected. The regional impact 

of these loads is likely to be minor; however, for the best inference of the interseismic 

velocity field, it is necessary to account for all known signals. 

We obtain surface water level time series from the Bureau of Reclamation for 

Lake Mead and Lake Powell, and through the National Water Information System for 

Great Salt Lake (see Data and Resources section). Time series of load induced surface 

displacements at nearby GPS stations are then calculated with the software LoadDef 

(Martens et al., 2019), using deviations in the historical surface water levels as loads 

applied to shoreline geometries and the Preliminary Reference Earth Model as the solid 
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earth model (Dziewonski & Anderson, 1981). While (Young et al., 2021) showed that 

GPS stations near Great Salt Lake were affected by both surface and groundwater load 

variation, in this study we make no attempt to model water variation beyond the edges of 

the lakes and leave additional hydrologic signals throughout the study area to be 

addressed through common mode filtering. We remove the predictions of the load 

displacement models from the postseismic corrected time series of each GPS station. 

Velocities estimated from these time series are referred to as our “corrected” data set.  

   

3.5.4 Removing Common Mode Components

Scatter in GPS time series influences uncertainty in velocities. Some of scatter is 

noise caused by multipath, monumentation issues, and processing errors; however, a 

portion of it can be attributed to regional common mode noise [see He et al. (2017) for an

overview]. This is where time series exhibit scatter that is spatially correlated over 

multiple adjacent stations, separated by up to hundreds of kilometers, and can be caused 

by atmospheric effects, unmodeled hydrologic load changes, and other un/under-modeled

signals (Bogusz et al., 2015; van Dam et al., 2007; Kreemer & Blewitt, 2021; Springer et 

al., 2019; vanDam et al., 1994). It has been shown that regional common mode can alter 

station velocities (Kreemer & Blewitt, 2021; Márquez‐Azúa & DeMets, 2003; 

Santamaría-Gómez & Mémin, 2015; Serpelloni et al., 2013). While this is often a small 

effect, the low levels of deformation within the central Basin and Range require all 

potential biases to be addressed. To account for this, we follow Kreemer and Blewitt, 
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(2021) to produce common mode component filtered time series for all GPS stations in 

the study area. While some common mode identification methods rely only on the longest

running stations in a region, Kreemer and Blewitt (2021) relies on robust statistics, 

allowing all but the most sparsely observed (i.e., semi-continuous) stations to be used. In 

order to take advantage of this method, it is necessary to include a set of core, long term 

stations which span the duration of the study period. This provides the baseline upon 

which the common mode of shorter duration stations may be evaluated. To best define the

broad, long term common mode across the central Basin and Range, our study area is 

expanded to include additional stations beyond its extent which contain >95% data across

the timeframe of 1999 – 2021.5, totaling 20 core stations. This timeframe provided the 

best trade-off between the number and distribution of core stations, while retaining as 

much data as possible, and we use it as our study period. Following calculation of the 

common mode for each station, it is removed from the corrected time series and new 

velocities are calculated, producing our corrected and filtered “final” data set. 
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3.5.5 Strain Rate Calculations 

We opt to produce two sets of strain rate estimates using two methods, using the 

results of the first method as an a priori constraint of the second. Our first method is the 

MELD algorithm, which provides robust strain rate estimates, realistic uncertainties, and 

relies on median statistics (Kreemer et al., 2018, 2020). The use of medians in this 

method helps to account for poor data but also tends to provide smoother results than 

other methods. The second method is the Haines and Holt method, which calculates strain

rates using bi-cubic spline interpolation (Beavan & Haines, 2001; Holt & Haines, 1993; 

Holt et al., 2000). A key benefit of the Haines and Holt method is the ability to input a 

priori uncertainties. This allows the model to be adjusted according to expected variation 

in the deformation field. In the case of our study, strong gradients extending from the 

ECSZ to the central Basin and Range would likely result in ECSZ strain leaking eastward

if uniform uncertainty was applied. To address this, and to take advantage of the robust 

nature of the MELD solution, we use the second invariant of the MELD solution to adjust

the input a priori uncertainties of Haines and Holt. This allows the model to better 

account for the expected variation in strain rate across the region. We determine our 

preferred model by scaling the uncertainties until we reach a χ2 misfit equal to 4, thus 

setting the misfit equivalent to 2σ of the data. While Kreemer et al. (2010), used 

seismologic data in conjunction with GPS data to produce their strain rate estimates, we 

rely purely on GPS data. Solutions are produced for the final velocities as well as the 
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original velocities, allowing for comparison between the observed modern field and our 

corrected interseismic field.  

3.5.6 Las Vegas Block Modeling

Block modeling is an analysis framework for using geodetic and geologic data to 

estimate fault slip rates. In these models the GPS data constrain the motion of blocks 

whose boundaries are faults that are locked at the surface. Because the motion is 

measured during the interseismic period with GPS, the strain accumulation near the faults

associated with locking is taken into account (Mccaffrey, 2002; Meade & Hager, 2005). 

Gradients in the GPS velocity field are thus separated analytically into components of 

Euler rotation of blocks and strain accumulation on faults. To derive our block model, we 

follow Hammond et al., (2011). Block boundaries are defined using fault traces obtained 

from the USGS Quaternary Fault and Fold database (U.S. Geological Survey et al., 

2022). Individual segments are aligned with the traces of significant faults and are 

extrapolated and simplified as needed to produce a set of contiguous representative 

blocks. In some places it is necessary to assign a boundary where no faults are known to 

complete a block. For these locations, relative block motion is allowed so blocks can 

move as required by the GPS velocity data, but no shallow locking is assumed or slip rate

estimated. We represent the tectonics of southern Nevada with 19 distinct blocks, that are 

bounded on their perimeters by 119 fault segments. The solutions produced by this 

method use prior uncertainty thresholds to provide balanced damping to the vertical axis 
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spin rates and fault slip rates. To identify a model that finds a balance between the need to

fit the GPS data, and also to be kinematically parsimonious, we test a range of solutions 

varying these parameters and identify the solution which has both a low data misfit and 

low slip rate model norm. For this data set, we identify the optimal a priori uncertainty in 

rotation rate as 3 x10−9 rad/yr and the uncertainty in slip rates as 0.2 mm/yr. With these 

values, we produce models using both the final and original velocity fields and compare 

estimated slip rates for the Eglington/Decatur and Frenchman Mountain sections with the 

observed GPS velocity budget for Las Vegas. 

3.6 Results 

3.6.1 Postseismic Correction within the CBR

Because central Basin and Range deformation rates are very low, the recurrence 

time between large earthquakes on a specific fault is generally longer than the time 

needed for most of the postseismic relaxation to occur. Thus, each fault is for most of its 

cycle, experiencing a strain rate near its long term average interseismic rate. So, when we

subtract our modeled postseismic relaxation field, which represents deformation 

associated with a few specific recent earthquakes, from the observed GPS velocity field, 

the result is an approximation of the long term average interseismic deformation field. 

Thus, the composite postseismic model gives an indication of the difference between the 

long term average interseismic motion and the field that is detected now with 

contemporary GPS measurements. Figure 3.2 shows the postseismic relaxation field 

predicted by our model and shows that the crust throughout the entire region is 
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substantially affected by postseismic transients. Here, velocities are calculated for each 

composite model across the study period (1999 – 2021.5), and the background color 

reflects the associated dilatational strain rate, calculated with MELD. While the strongest,

and most variable, relaxation occurs along the SAFZ, broad regional relaxation extends 

well beyond the ECSZ into the central Basin and Range, with a rotational pattern driven 

by the Cascadia and SAFZ events. Within the Central Basin and Range itself, the 

relaxation field exhibits southeasterly movement, with the area around Las Vegas moving

at ~2 mm/yr. The shear associated with this model is focused along the SAFZ and to a 

lesser extent the CNSB; however, we find that shear is also observed to span the region 

between Las Vegas and the Owens Valley Fault Zone (Figure S3.1).

We find that the majority of postseismic deformation is primarily driven by a few 

large events; however, the cumulative effect of smaller events is significant. Figure S3.2 

shows the postseismic response to individual events for station UNR1, which is located 

inside the city limits of Las Vegas. The largest trends are found in the east component due

to Fort Tejon (1857), San Francisco (1906), and Cascadia (1700), which amounts to 1.05, 

0.64, and −0.48 mm/yr respectively over the duration of observation at UNR1 (Table S2).

The north component is most affected by Hector Mine (1999), Landers (1992), and Fort 

Tejon with trends of −0.39, −0.37, and 0.28 mm/yr respectively. When considering low 

displacement events (i.e., those whose induced trends within the Las Vegas Valley are 

under 0.10 mm/yr), we find that the cumulative effect of these events is comparable to 
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that of Cascadia and El Mayor–Cucapah in the north component, and San Francisco 

(1938) in the east (black lines in Figure S3.3). 

While the modeled trends for each event reveal a strong influence on the 

velocities of the stations, it is important to assess the influence of individual events on the

strain rate field within Las Vegas Valley. We produce strain rate models for each event 

and present the second invariant, dilatation, and shear strain rates in Table S3.2. The 

largest postseismic strain rates within the Las Vegas Valley are produced by the Fort 

Tejon, Ridgecrest, Owens Valley, and Landers earthquakes, with rates of 2.94, 1.59, 1.49, 

and 1.28 x10−9 yr−1 respectively. We find that strain rates for the combined model of 

events which exhibited trends lower than 0.10 mm/yr in both components, is comparable 

in magnitude to that of Cascadia, with second invariant and dilatational strain rates of 

0.79 x10−9 yr−1 and −0.51 x10−9 yr−1 respectively. Considering the values for the full 

composite model within Las Vegas Valley are 4.36 x10−9 yr−1 and −1.40 x10−9 yr−1, these 

results indicate the cumulative impact of low impact events plays an important role on the

strain rate field and justifies our consideration of them.   
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Figure  3.2: Modeled  postseismic  relaxation  field.  Black  arrows  represent  relaxation
velocities at the GPS stations. Modeled velocities are calculated with MIDAS over the
study period  of  1999-2021.5.  Green  lines  indicate  the  location  of  fault  traces  of  the
earthquake models. Background shading indicates the dilatation component of the strain
rates attributed to this model, calculated with MELD. Here, reds indicate extension and
blues indicate contraction.  
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3.6.2 Corrected GPS Timeseries

Time series are noticeably improved following our corrections. A comparison of 

the east and north components of station UNR1 is shown in Figure 3.3, as well as their 

respective residuals following a fit for trend, annual/semi-annual terms, and steps. Here, 

time series for each data set are shown relative to the final solution and are plotted 

alongside the postseismic model which estimates a net displacement of 38 mm in the east

and 25 mm in the north over ~17 years. The largest earthquakes during duration of this 

station’s time series are El Mayor–Cucapah in 2010 and the Ridgecrest events in 2019, 

shown by vertical red lines on the figure. We note that El Mayor–Cucapah introduces 

curvature in the north component while Ridgecrest affects the east component. For both 

cases, the postseismic models straighten the time series and improve the residual fit. 

Following filtering, a strong annual signal is present in the east component and becomes 

clearer in the north. The residual scatter in both components is greatly reduced with most 

deviations observed in the original data are removed. 

Additional plots for stations ECHO, FERN, P626, TIVA, and P006, whose 

locations are distributed around the study area (Figure 3.1), are provided in the 

Supplemental Material (Figures S3.3 – S3.6). These plots highlight not only consistent 

data improvements but also the variability of the magnitude of the postseismic field 

across the study area. Figure S3.7 shows a comparison for station P006, which is located 

near the center of mass of Lake Mead on the Middle Point Islands, and includes the 

hydrologic model and all three components. We find the vertical displacements due to 
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load changes on Lake Mead are substantial and dominate the vertical signal for this 

station. The horizontals are less substantial, with the east component showing minimal 

variability due to its location relative to the center of the load. The north component 

shows more displacement and its removal improves the residuals slightly.  
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Figure 3.3: Time series comparison for station UNR1, located within Las Vegas. (a) East
component.  Black  dots  represent  original  positions.  The  thick  black  line  is  the
postseismic deformation model for this  station.  Grey dots are  the positions  following
postseismic  and hydrologic  model  corrections.  Red  dots  represent  the  positions  after
corrections  and common mode filtering.  All  time series  are  detrended relative  to  the
corrected and filtered final solution.  (b) East residuals.  (c)  North component.  (d)  North
residuals. Vertical black lines indicate the times of equipment related steps in the time
series and the red vertical lines represent the El Mayor–Cucahpah (2010) and Ridgecrest
(2019) earthquakes.  

3.6.3  Velocity Uncertainty Reduction 

The combination of postseismic and hydrological loading corrections with 

common mode filtering, substantially reduces station velocity uncertainties. Figure 4 

shows a comparison between the uncertainties of the original, corrected, and final 
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velocity fields calculated with MIDAS. While traditional least squares uncertainties are 

based on formal propagation of assumed levels of noise of the data, MIDAS derives its 

uncertainties from the scatter of inter-annual coordinate differences, and will result in 

improved uncertainties when accurate models are applied (Blewitt et al., 2016). The 

scatter plot shows that both the original and corrected solutions exhibit slightly higher 

uncertainties in the east component compared to the north, and that this is reversed 

following filtering. Median uncertainties per data set are shown in Table 3.3. We find that

the postseismic correction reduces time series residual scatter, thus lowering velocity 

uncertainties on those stations affected by postseismic curvature. This improvement is 

significant with a median uncertainty reduction of 17.7% in the east and 14.5% in the 

north compared to the base uncertainties. Following filtering, the final velocity 

uncertainties are again substantially improved, resulting in a decrease of 62.1% and 

53.8% in the east and north components relative to the original velocity uncertainties. 
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Figure  3.4: (a)  Histogram of GPS station MIDAS velocity  uncertainties in the north
component. (b) Scatter plot of east and north uncertainties with a thin black equivalency
line. (c) Histogram of GPS station MIDAS velocity uncertainties in the east component.
Black  bars  (dots)  represent  the  uncertainties  of  the  original  data,  blue  bars  (dots)
represent  corrected  uncertainties  (i.e.,  following  removal  of  the  postseismic  and
hydrologic loading models), and red bars (dots) represent the corrected and filtered final
uncertainties (i.e. corrections for both postseismic and hydrologic loading with common-
mode filtering).  
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Table 3.3: Median MIDAS horizontal velocity uncertainties with error bounds relative to
their trend, for the data sets shown in Figure 3.4. Error bounds for the uncertainties are
defined as 1.4826*MAD, where MAD is the median absolute deviation of the residual
scatter after removal of the estimated trend between the two components (Huber, 1981).
Note that the median uncertainties are substantially reduced in the corrected and filtered
solution, and that the scatter about their trend is equivalent.   

Velocity Data Set Component  (mm/yr) 

Original
East 0.203 ± 0.057

North 0.186 ± 0.067

Corrected
East 0.167 ± 0.039

North 0.159 ± 0.041

Corrected + Filtered
East 0.077 ± 0.044

North 0.086 ± 0.044

3.6.4 Corrected Velocity Field 

A comparison of our original and final velocity field is shown in Figure 3.5. Here 

velocities are presented relative to the stable Colorado Plateau with the original velocities

as black vectors and the corrected and filtered final velocities in red. To produce 

velocities relative to the Colorado Plateau, we identify the Euler rotation vector for all 

stations within its bounds, and then use it to rotate all velocities. Outliers (blue arrows) 

are identified as those whose magnitude differ by more than 0.9 mm/yr relative to a 

predicted velocity based on neighboring stations, using the technique of Kreemer et al. 

(2018). This threshold allows for variability in the field while quantitatively identifying 

distinct problem stations. 
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Station velocities increase rapidly beyond the border of the Colorado Plateau, 

introducing westward motion and shear along the eastern Pahranagat Shear Zone and 

southern Wasatch Fault. Velocities continue to steadily increase until reaching the ECSZ, 

where stations begin to exhibit more northward trends. We find that the final velocities 

produce significantly higher westward motions than observed in the original data set. 

This feature is driven strongly by corrections for the Fort Tejon and San Francisco 1906 

events and is particularly apparent across Las Vegas where velocities are nearly purely 

westward and along the Mojave Desert where velocities are doubled for most stations. 

The strong postseismic effect on the east component of the velocities for stations in 

Arizona, has been discussed by Broermann et al. (2021). Station uncertainties, shown by 

95% confidence ellipses, are significantly improved and are uniform across the region 

following CMC filtering. 
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Figure 3.5: GPS velocity field comparison. Velocities are shown relative to the Colorado
Plateau with 95% confidence ellipses. Black arrows represent velocities of the original
time  series  and  red  arrows  represent  the  corrected  and  filtered  final  velocities.  Blue
arrows identify outliers following corrections and filtering. Shaded rectangles identify the
bounds of Transects 1 – 3 (Figures 3.6 – 3.7) and Transect S1 (Figure S3.12). Faults are
shown as thin black lines and the dash-dotted black line represents the western edge of
the Colorado Plateau. Dashed lines indicate transect overlap. 
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3.6.5 Las Vegas Velocity Budget 

Closer inspection of the velocity field is provided through Transects 1 – 3 and S1 

(Figure 3.5). Transect 1 is oriented east–west and runs between the easternmost edge of 

the ECSZ, crosses Las Vegas and Lake Mead, and ends on the Colorado Plateau (Figure 

3.6). For all three data sets, the east component reveals a consistent velocity trend. 

Westward motion is increased by 2.5 mm/yr along the length of the transect. The north 

component, however, shows two distinct trends. We find that the area to the east of Las 

Vegas marks a transition zone between stable, near zero velocities to the east, and 

increasing northward velocities to the west. This transition occurs between the city limits 

of Las Vegas and the western edge of Lake Mead near the Frenchman Mountain fault.  

To examine the amount of extension observed across the faults of the Las Vegas 

Valley, we determine a GPS derived velocity budget. Trendlines are fit to each velocity 

data set between the eastern edge of Las Vegas and the ECSZ and their values are 

presented in Table 3.4. We find that the eastward velocity trend is more than twice as fast 

in the final solution compared to that of the original data, at a rate of 0.84 ± 0.29 

(mm/yr)/100 km versus 0.35 ± 0.23 (mm/yr)/100 km. The trend of the north component 

is reduced slightly to a rate of −0.69 ± 0.26 from −0.90 ± 0.35 (mm/yr)/100 km in the 

original data. The significance level of the east component trend is substantially improved

while the north component retains a similar level of significance following filtering. 

The two normal faults which bound the Las Vegas Valley are the 

Eglington/Decatur faults to the west and the Frenchman Mountain fault to the east. Since 
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the elastic deformation due to these locked normal faults extends away from the faults 

(Freund & Barnett, 1976), we define our velocity budget as the region between these 

faults plus an additional 20 km to the west and east, totaling 62.4 km. Applying the 

observed trends across our preferred budget zone, produces 0.52 ± 0.18 mm/yr (0.22 ± 

0.14 mm/yr) of eastward motion and 0.43 ± 0.16 mm/yr (0.56 ± 0.22 mm/yr) of 

southward motion for the final (original) data sets (Table 3.5). The final solutions are our 

preferred rates. Those of the original data set are clearly incorrect due to the strong 

impact of postseismic relaxation within the Las Vegas Valley. While a more fine-tuned 

viscosity model may change the corrected rates, this difference would likely be slight in 

comparison to the difference between our final and original rates. 
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Figure 3.6: GPS velocities in the east (a) and north (b) components along Transect 1 (see
Figure  3.5),  with  two  sigma  error  bars.  Transect  is  oriented  east–west.  Black  dots
represent velocities of the original data, grey dots represent the corrected velocities, blue
dots  represent  outliers  following corrections  and filtering,  and red  dots  represent  the
corrected and filtered final velocities. Solid lines represent the trends for each data set in
their respective colors. The black dotted (dash-dotted) lines represent the location of the
Eglington (Frenchman Mountain) faults and the dashed vertical line is the western edge
of the Colorado Plateau. The solid black vertical lines represent the western and eastern
edges of the Las Vegas Valley used to calculate the velocity budget. This accounts for an
additional 20 km to capture the zone of strain accumulation associated with the Eglington
and Frenchman Mountain faults. 
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Table 3.4: Velocity trends and their significance ratios, for the trendlines shown in Figure 3.6, along Transect 1.

Velocity Trends ΔVE [(mm/yr)/100 km] Significance
Ratio

ΔVN [(mm/yr)/100 km] Significance
Ratio

Original 0.35 ± 0.23 1.51 −0.90 ± 0.35 2.59

Corrected 0.74 ± 0.35 2.10 −0.70 ± 0.41 1.69

Corrected + Filtered 0.84 ± 0.29 2.89 −0.69 ± 0.26 2.63

Table 3.5: Las Vegas Valley velocity budget and reflective strain rates, per data set. The velocity budget is calculated as the
trend (see Table 3.4), over the distance between the Eglington and Frenchman Mountain faults, plus an additional 20 km to
both the west and east to account for off-fault deformation (62.4 km in total).

LV Valley 
Velocity Budget 

ΔVE (mm/yr) Velocity
Gradient

(1x10−9yr−1)

ΔVN (mm/yr) Velocity
Gradient

(1x10−9yr−1)

Original 0.22 ± 0.14 3.5 ± 2.3 −0.56 ± 0.22 8.9 ± 3.5

Corrected 0.46 ± 0.22 7.4 ± 3.5 −0.43 ± 0.26 7.0 ± 4.1

Corrected + Filtered 0.52 ± 0.18 8.4 ± 2.9 −0.43 ± 0.16 6.9 ± 2.6
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3.6.6 Pahranagat Shear Zone Transects

Transects 2 and 3 run parallel to each other and are orthogonal to the Pahranagat 

Shear Zone (Figure 3.7). The eastern Pahranagat Shear Zone is shown in Transect 2 and 

reveals a clear velocity gradient between GPS station ECHO and the Colorado Plateau. 

This zone accommodates a velocity trend of 1.46 ± 0.19 (mm/yr)/100 km (Table 3.6), 

with velocities on either side being stable. Along the western Pahranagat, shown by 

Transect 3, a much slower trend of 0.31 ± 0.25 (mm/yr)/100 km is observed. Notably, the 

trend across Transect 3 is substantially affected by the postseismic model with a corrected

trend that is half that of the original rate. This level of reduction is not observed in the 

eastern Pahranagat where the final velocities only indicate a slight reduction in the 

velocity trend.  
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Figure  3.7: (a) GPS velocities  perpendicular  to  Transect  2  (Figure  3.5).  Transect  is
oriented S18E and runs from eastern Nevada, crosses the eastern Pahranagat Shear Zone,
and the western Colorado Plateau. Key as described in Figure 3.6. Dashed line indicates
the western edge of the Colorado Plateau. (b) Velocities perpendicular to Transect 3. This
transect runs parallel to Transect 2 and crosses the western Pahranagat and Lake Mead.
Dashed line indicates the northern edge of Lake Mead. 
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Table 3.6: Perpendicular velocities per 100 km and their implied strain rates, by velocity data set, for the trend lines shown on
Transect 2 and 3 (Figure 3.7).  

Transect 2 Transect 3

ΔV
[(mm/yr)/100 km] 

Velocity Gradient
(1x10−9yr−1)

ΔV
[(mm/yr)/100 km]

Velocity Gradient
(1x10−9yr−1)

Original
Velocities

1.64 ± 0.11 16.41 ± 1.07 0.61 ± 0.26 6.06 ± 2.60

Corrected 1.28 ± 0.12 12.81 ± 1.21 0.33 ± 0.22 3.26 ± 2.20

Corrected +
Filtered

1.46 ± 0.19 14.57 ± 1.86 0.31 ± 0.25 3.15 ± 2.45
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3.6.7 Central Basin and Range Strain Rates

Strain rate estimates based on the final velocities, for both the MELD solution and

Haines and Holt solution, are shown in Figure 3.8. Here we present all strain rates that 

exceed 1σ. The strain rate patterns for both solutions are quite similar, with the Haines 

and Holt solution providing a more variable depiction of the deformation field. Both 

solutions observe the largest second invariant strain rates along the ECSZ and the 

Wasatch Fault Zone. Between these two features, a band of elevated strain rate (6 – 12 

x10−9 yr−1) is present, which crosses from the ECSZ near the Mojave Desert, runs through 

Las Vegas and the western edge of Lake Mead, and connects into the eastern Pahranagat 

Shear Zone and the southern Wasatch Fault. The largest dilatation values are observed 

along the Wasatch Fault Zone with elevated levels near Las Vegas. Low level dilatation 

(3 – 6 x10−9 yr−1) is found in the area connecting the southern Wasatch Fault to southern 

Nevada and western Arizona. Shear is primarily concentrated along the ECSZ and the 

eastern Pahranagat Shear Zone. Nearly pure east–west extension is shown by the 

principal axis across the majority of the study area with the exception of the ECSZ and 

the region between the Pahranagat Shear Zone and the CNSB. The latter is likely driven 

by GPS network geometry due to the sparsity of stations beyond the northern flank of the 

Pahranagat Shear Zone. This would lead to shear seemingly spreading across central 

Nevada and explains east–west extension within the Pahranagat Shear Zone, even though

our profiles clearly highlight shear there. The average second invariant strain rates for the

Las Vegas Valley are 8.5 ± 2.4 x10−9 yr−1 for the Haines and Holt solution, and 7.6 ± 2.7 
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x10−9 yr−1 for MELD. These values are higher than those estimated with the original 

velocities, which were 4.7 ± 1.4 x10−9 yr−1 for the Haines and Holt solution, and           

5.1 ± 3.5 x10−9 yr−1 for MELD. 

Comparison of these solutions to the strain rate solutions for the original 

velocities, reveals several distinct differences (Figure S3.8). Primarily, the band of higher 

strain rates that is observed to extend across Las Vegas, does not connect the ECSZ to the

Wasatch Fault Zone. Instead, the southern portion terminates to the southwest of Las 

Vegas and the northern arm continues westward along the Pahranagat Shear Zone rather 

than turning south toward Las Vegas. The original velocity solutions also suggest 

substantially higher shear across the Pahranagat Shear Zone with a clear connection 

between the southern Wasatch Fault and the ECSZ, at a latitude of ~37°. Notably, 

dilatation is much lower across the entirety of the study area in this solution. 
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Figure 3.8: Solutions for the MELD (a – c) and Haines and Holt (d – f) strain rate 
models for the final velocities. (a and d) Plots of second invariant strain rates overlain 
with normalized strain rate axis. Grey arrows indicate extension and black arrows 
indicate contraction. (b and e) Plots of the dilatational component of the strain rate. (c 
and f) Plot of the shear component of the strain rate. All plots are limited to strain rates 
greater than one sigma. 
 

3.6.8 Block Models

Our preferred block model, using the final velocities, is shown in Figure 3.9, and 

a comparison using the same uncertainty parameters, but with the original velocities, is 

shown in Figure S3.9. We find extension across most of the study area except for the 

Garlock Fault and the northernmost section of the Death Valley Fault. The RMS residual 

velocity of this model to the GPS data is 0.26 mm/yr in the east component, and 0.25 

mm/yr in the north component, and is substantially lower than the misfit produced with 

the original velocities (Table 3.7). The largest misfit is found at stations along the ECSZ, 

where velocities increase rapidly. In our preferred model we do not see the systematic, 

block wide, misfit observed in the original velocity model (Figures S3.10 – S3.11). 

Our preferred model estimates higher slip rates across the entirety of the study 

area compared to the original velocity model, with some of the fastest slip rates found 

along the fault segments that bound the Las Vegas Valley. These are the Eglington and 

Decatur faults on the western side of Las Vegas and the Frenchman Mountain Fault to the

east. We find the strike slip component on these faults to be particularly low and well 

below the significance thresholds, but the extensional component is significant. The 

average extensional slip rate, projected to the east–west component, are         



122

0.31 ± 0.11 mm/yr and 0.27 ± 0.13 mm/yr for the Eglington/Decatur and Frenchman 

Mountain Fault segments respectively. This reflects a total east–west extension rate 

across Las Vegas Valley of 0.59 ± 0.12 mm/yr, more than twice that produced by the 

original velocities. The north–south component of extension is much lower, at a rate of 

0.20 ± 0.12 mm/yr. 
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Figure 3.9: Plots of the preferred block model using the final velocities. This model used
an  a  priori  uncertainty  in  the  rotation  rate  of  β  =  3  x10−9 rad/yr,  with  an  a  priori
uncertainty in slip rates of γ = 0.2 mm/yr. (a) Fault slip rates. The thickness of the black
and red lines represents dextral and sinestral slip rates while the length of the blue and
cyan lines represents normal and thrust slip rates. Pink lines represent the bounds of the
block model and inactive (non-fault) block edges. (b) Rigid block component of motion
shown with the strain accumulation near faults to highlight relative block motion. Color
scale indicates the vertical axis rotation rate with an exaggeration factor of 1 x107. Pink
lines represent the initial block locations.
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Table 3.7: Extensional slip rates for Las Vegas Valley faults estimated by block models 1 and 2 (Figures 3.9 and S3.9). Block
model 1 used the final velocity data set and block model 2 used the original velocities. Slip rates are projected from the fault
segments to east–west and north–south orientations. The Eglington/Decatur fault rates represent the average extensional slip on
both fault segments directly west of Las Vegas. Similarly, the Frenchman Mountain rates reflect the average extensional slip on
all four fault segments east of Las Vegas. The total Las Vegas extensional slip rates are the sum of these values.  

Block Model 1 Block Model 2

Velocity Data Set Final Original

Component of Extension
East – West

(mm/yr)
North – South

(mm/yr)
East – West

(mm/yr)
North – South

(mm/yr)

Eglington/Decatur 0.31 ± 0.11 0.08 ± 0.11 0.11 ± 0.11 0.04 ± 0.11

Frenchman Mtn. 0.27 ± 0.13 0.12 ± 0.13 0.10 ± 0.13 0.05 ± 0.13

Total LV Extension Rate 0.59 ± 0.12 0.20 ± 0.12 0.22 ± 0.12 0.08 ± 0.12

GPS RMS Misfit (mm/yr) 0.26 0.25 0.41 0.55
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3.7 Discussion 

3.7.1 Velocity Field Corrections 

The corrections made to the velocity field in this study are substantial, with the 

postseismic model correcting the magnitudes and orientations of the velocity vectors and 

common mode filtering greatly reducing their MIDAS uncertainties. Postseismic 

deformation is pervasive within the central Basin and Range. Inspection of the individual 

models per GPS station, reveals the primary driving factor of the relaxation field is not 

the inclusion of specific large events but rather that it is driven by the sum of its parts. We

find that no single earthquake dominates the relaxation field across the central Basin and 

Range and that primary contributors vary across the study area, revealing a dynamic 

spatio-temporal interplay between positive and negative interference between 

earthquakes. This is illuminated by Table S3.2, which shows that while both the 

Ridgecrest and Landers events impart substantial strain rates, their dilatational 

components are equal and opposite, with Ridgecrest applying contraction to the valley at 

−1.26 x10−9 yr−1 and Landers applying extension at 1.26 x10−9 yr−1. A similar case can be 

made for the Wrightwood and El Mayor–Cucapah events, for which Las Vegas lies within

the compressional quadrant of the relaxation due to the Wrightwood event, and the 

extensional quadrant of El Mayor–Cucapah. Higher strain rates are produced when only 

considering the 11 strongest events compared to our composite model. This shows that 

the more subtle earthquakes temper the velocity gradients produced by the larger events 

within the Las Vegas Valley. 
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Often studies that model postseismic deformation focus on near field events 

(Dickinson et al., 2016; Guns & Bennett, 2020; Hammond et al., 2009), which for this 

study, would omit the Cascadia event. This would skew our velocity field within Las 

Vegas Valley by 0.48 mm/yr in the east component and would also omit a significant 

velocity gradient across the region as postseismic strain rates associated with the 

Cascadia event are high (relative to central Basin and Range strain rates), at         

0.88 x10−9 yr−1. Additionally, we note that for a given station, many of the models produce

undetectable levels of displacements and strain rates (i.e., <0.10 mm/yr, <0.25 x10−9 yr−1).

Individually, these events are inconsequential to the station’s velocity and the strain rate 

field; however, the sum of these trends can be comparable to some of the largest events 

and alter the velocity gradient of the region. These observations further highlight the 

necessity to account for all potential sources of postseismic deformation, including lower 

magnitude (e.g., Mw >6.5 close to the study area and within the GPS timeframe) or fairly 

distant events (e.g., 1000+ km for Mw 7+ events) when determining an interseismic strain

rate field. 

The uncertainty analysis reveals variability in the uncertainties by component. We

find the east component to exhibit higher uncertainties in both the original and corrected 

solutions but following filtering it is reversed. We propose that this is likely due to 

hydrologic loading signals present in the original data which are captured during filtering.

Throughout the central Basin and Range, mountain rages generally run north–south, 

meaning that hydrologic loads within the valleys will as well. As these loads vary, the 
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largest displacements would be oriented in an east–west direction, thus increasing east 

component variability in the time series. These motions would be correlated across 

nearby stations allowing them to be captured by Common Mode Component Imaging. 

  

3.7.2 Pahranagat Shear Zone

Kreemer et al. (2010) identified an active Pahranagat Shear Zone, which firmly 

connected the ECSZ to the southern Wasatch Fault and is strongly spatially correlated to 

the Southern Nevada Seismic Zone (dePolo & dePolo, 2012). Our results are particularly 

consistent with this interpretation when we use our original velocity data set (Figure 

S3.8), which is consistent with Kreemer et al. (2010) not accounting for transient signals 

in the time-series. Our corrected interseismic velocities reveal a diminished western 

Pahranagat, with as much as half of the shear originally observed attributed to 

postseismic relaxation (Figure 3.7). This indicates that rather than being a well-defined 

consistent structure, the Pahranagat Shear Zone is temporally variable, with the 

magnitude of its strain rates dependent on the current state of the postseismic relaxation 

field. These findings do not alter the tectonic importance of the Pahranagat Shear Zone, 

as it is strongly supported by seismicity, but shed light on its function within the central 

Basin and Range.
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3.7.3 Active Deformation Within the Las Vegas Valley

We see clear evidence, both in the original velocity data set and our final 

interseismic velocities, that there is active deformation across the Las Vegas Valley. 

Transect 1 shows that east–west extension between the ECSZ and the Colorado Plateau is

extremely coherent, with no significant deviations along its length. The lack of variation 

in the trend suggests fairly equal accommodation of extension on all faults along the 

transect, including the Eglington/Decatur and Frenchman Mountain faults. Previous 

studies found slip on the Frenchman Mountain fault to be less than 0.1 mm/yr (dePolo, 

1998; Slemmons, 1998), and while some evidence suggested slip rates for the Eglington 

fault could be as high as 1.0 mm/yr (dePolo & Ramelli, 1998), the USGS Quaternary 

Fault and Fold database lists both of these faults at rates under 0.2 mm/yr. While our 

original velocity block model does estimate rates close to 0.1 mm/yr for these faults, the 

results corrected for postseismic relaxation, hydrological loading and common mode 

noise suggest the rates on these faults are substantially higher, at values close to            

0.3 mm/yr (Table 7). Totaling 0.5 – 0.6 mm/yr of east–west extension across Las Vegas 

Valley. These results indicate the presence of substantially higher deformation rates than 

previously suggested. Further evidence is present in the strain rate solutions. We find 

average strain rates within the valley to be elevated at 8.5 ± 2.4 x10−9 yr−1. While this 

value is low in respect to highly seismogenic regions such as the ECSZ and SAFZ, 

comparison to a more extensional domain is more appropriate. For this we look to the 

2008 Wells earthquake in northeastern Nevada, where Hammond et al. (2014) shows 
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strain rates near the event are ~2 x10−9 yr−1. Although those rates are particularly low, they

are significantly greater than their quoted uncertainties and accumulated stresses were 

significant enough to produce a Mw 6.0 event which caused considerable damage to 

buildings in the town of Wells, Nevada (dePolo & Pecoraro, 2011). Considering our 

preferred strain rates are nearly five times higher (and ~2.5 times higher in the 

uncorrected data), we find the possibility of a significant event with Mw >6 quite 

reasonable given the level of deformation observed. 

3.8 Conclusions 

In this study we provide updated geodetic constraints on the interseismic 

deformation field within the central Basin and Range. We take advantage of the recent 

expansion of the GPS network, including 107 semi-continuous MAGNET stations, as 

well as several recently published processing methods, to obtain the most robust 

interseismic velocity field for the region to date. We pay careful attention to the removal 

of transient signals associated by postseismic and hydrologic load deformation and filter 

out the regional common mode noise. The combined corrections reduce velocity 

uncertainties dramatically with a total reduction of 62.1% in the east component and 

53.8% in the north. These corrections greatly affect the resulting strain rate field and alter

the implications of the hazard within the region. We find that strain rates within the Las 

Vegas Valley are much higher than in previous studies, as well as when compared to the 

original velocity strain rates, with our preferred value being 8.5 ± 2.4 x10−9 yr−1. 
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Using our final velocities, we produce a GPS velocity budget for the Las Vegas 

Valley. East to west trends are extremely consistent at a rate of 0.84 ± 0.29 (mm/yr)/100 

km, equivalent to 0.52 ± 0.18 mm/yr across the valley. Additionally, we produce a block 

model which estimates the combined east–west extension on the Eglington/Decatur and 

Frenchman Mountain faults to be 0.59 ± 0.12 mm/yr. We find that interseismic extension 

across the valley is more than two times faster after accounting for postseismic transients.

The combination of these results clearly supports the interpretation that crustal 

deformation is active within the Las Vegas urban area, at much higher long-term rates 

than previously estimated.
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3.9 Data And Resources 

 The Nevada Geodetic Laboratory provides GPS time series (Blewitt et al., 2018), 

as well as the MIDAS software (Blewitt et al., 2016), at http://geodesy.unr.edu (last 

accessed July, 2022). The LoadDef software is available at 

https://www.github.com/hrmartens/LoadDef (Martens et al., 2019) (last accessed May, 

2022). The MELD and Haines & Holt software are available upon request. Surface water 

level data was obtained through the Bureau of Reclamation for Lake Powell at 

https://www.usbr.gov/rsvrWater/HistoricalApp.html (last accessed February, 2022), and 

for Lake Mead at https://www.usbr.gov/lc/region/g4000/hourly/mead-elv.html (last 

accessed February, 2022). Great Salt Lake surface water level data was obtained through 

the National Water Information System at https://www.maps.waterdata.usgs.gov/mapper/ 

(last accessed February, 2022). Many of the fault slip models used in this study are 

available from the SRCMOD database at http://equake-rc.info/srcmod/ (last accessed 

May, 2022). The PSGRN/PSCMP software is available at 

https://github.com/pyrocko/fomosto-psgrn-pscmp (Wang et al., 2006) (last accessed May,

2022). All figures were produced using Generic Mapping Tools version 6.0.0 

(https://www.soest.hawaii.edu/gmt/; Wessel et al., 2019). The supplemental material 

contains Tables S3.1 – S3.2 and Figures S3.1 – S3.12. 
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3.13 Supplemental Material 

3.13.1 Description

The material provided in this file provides additional information to supplement the 

article listed above and includes Tables S3.1 – S3.2 and Figures S3.1 – S3.12. 
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3.13.2 Supplemental Tables 

Table S3.1:  Fault model parameters used to calculate postseismic deformation at GPS stations.  For earthquake type, N =
normal, T= thrust, RL = right lateral, and LL = left lateral. 
* Longitude and latitude values are approximate midpoints of individual fault sections. 
† Fault models with high slip resolution. Authors for individual models are listed in Table 3.1. 

Event Section Longitude* Latitude* Length Strike Dip Width Rake Type

Borah Peak † −113.8600 44.0600 52.0 152 49 26.6 −80 N

Cascadia 1 −125.5624 40.7657 126 358 9 63.9 110 T+RL

2 −124.9946 40.7855 126 358 9 63.9 110 T+RL

3 −125.6648 41.9021 126 358 9 63.9 110 T+RL

4 −125.0970 41.9219 126 358 9 63.9 110 T+RL

5 −125.7202 43.0018 126 359 9 63.9 110 T+RL

6 −125.1524 43.0117 126 359 9 63.9 110 T+RL

7 −125.8166 44.1484 133 359 9 63.9 110 T+RL

8 −125.2488 44.1583 133 358 10 57.6 110 T+RL

9 −125.8960 45.3381 137 358 9 63.9 110 T+RL

10 −125.3282 45.3579 137 358 10 57.6 110 T+RL

11 −125.9800 46.4954 105 358 9 63.9 110 T+RL

12 −125.4122 46.5152 115 358 10 57.6 110 T+RL

13 −126.2030 47.3882 100 337 8 71.9 90 T
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14 −125.5631 47.6382 125 337 10 57.6 90 T

15 −127.1808 48.7089 255 322 12 48.1 90 T

16 −126.7577 48.9694 255 322 13 44.5 90 T

Cedar Mountain 1 −117.9100 38.6310 65 344 80 15.2 180 RL

Central Idaho † −115.1361 44.4484 62.5 172 74 32 −24 LL+N

Dixie Valley 1 −118.1000 39.8000 24.3 8 49 9 ~ N+RL

El Mayor–Cucapah † −115.2670 32.3000 168 345 45 21 −156 RL+N

Fairview Peak 
Complex

1 −118.1170 39.2830 24.16 4 69 17 −61 N+RL

2 −118.0700 39.3230 13.2 356 64 17 ~ N+RL

3 −118.0900 39.4400 16 0 81 17 ~ N+RL

Fort Tejon 1 −119.3000 34.9050 130 315 90 15 180 RL

2 −118.8150 34.7675 95 290 90 15 180 RL

Gulf of California 1 † −112.8066 29.4094 108 137.8 74.87 20.8 172 RL

Gulf of California 2 1 −113.7280 29.3100 20 132 80 11 180 RL

Gulf of California 3 1 −113.0270 28.8370 15 311 90 11 178 RL

Gulf of California 4 1 −113.1040 28.6960 110 311 90 15 179 RL

Hebgen Lake 1 −111.2265 44.8238 24.1 114 50 15 −90 N

Hector Mine † −116.2700 34.5900 54 330 80 18 178.6 RL

Imperial Valley 1 −115.3820 32.7000 50 315 90 15 180 RL

Kern County 1 −118.8400 35.1320 29.7 51 75 21.7 ~ LL+T
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2 −118.7380 35.1985 23.6 51 75 11.9 ~ T+LL

Laguna Salada 1 −115.6400 32.4100 20 315 60 14 −139 RL+N

Landers † −116.4300 34.2000 80 330 90 15 180 RL

Loma Prieta † −121.8830 37.0410 35 130 70 14 140 RL+T

Mendocino Triple 
Junction 1

1 −124.6180 41.0850 100 51 89 10 27 LL+T

Mendocino Triple 
Junction 2

1 −125.3970 41.8210 30 46 86 15 28 LL+T

Mendocino Triple 
Junction 3

1 −124.1970 40.3010 21 350 12 16 94 T+RL

Mendocino Triple 
Junction 4

1 −125.6800 40.4000 15 274 65 7.5 176 RL+R

Mendocino Triple 
Junction 5

† −125.9812 41.2932 102 47 85 35 2.1 LL

Mendocino Triple 
Junction 6

1 −125.1340 40.8290 20 228 79 15 −2 LL

Masset † −131.9270 52.7690 210 319 29 90 112.3 T+RL

Monte Cristo 1 −117.9688 38.1581 17.2 67 83 22 −24 LL+N

2 −117.8369 38.1801 19.5 77 63 22 −24 LL+N

Napa † −122.3130 38.2200 15 155 82 10 −172 RL+N

Nisqually 1 −122.7270 47.1490 25 360 73 15 −91 N

Northridge † −118.5370 34.2130 18 122 40 24 97.6 T

Owens Valley 1 −118.1110 36.7255 111 341 80 15 ~ RL+N



148

Parkfield † −120.3670 35.8236 40 137 83 14.5 −179 RL

Pleasant Valley 1 −117.6540 40.2580 59 210 45 21.2 −90 N

Ridgecrest 1 † −117.5040 35.7050 ~ 225.5 88.85 ~ −4 LL

Ridgecrest 2 † −117.5990 35.7700 ~ 261.7 82.52 ~ 179.6 RL

San Francisco 1838 1 −122.0700 37.2700 140 318 90 15 180 RL

San Francisco 1906 † −122.5100 37.7800 480 325 90 12 180 RL

San Simeon 1† −121.2062 35.6588 ~ 295 44.5 ~ 120 RL+T

2† −120.8536 35.6310 ~ 116 31.7 ~ 120 RL+T

Sonoran 1 −109.2500 30.7500 108 175 68 18 −90 N

Stillwater 1 −118.5300 39.4200 24.9 25 87 13 ~ RL+N

Wrightwood 1 −117.6500 34.3700 85 295 90 15 180 RL
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Table S3.2: Individual postseismic model horizontal trends for GPS station UNR1, and model strain rates within the Las Vegas
Valley. Station UNR1 is located within Las Vegas. Velocities are calculated with MIDAS and input into MELD to calculate
strain rates. Table is sorted based on the magnitude of the second invariant strain rates. Three additional suites of model strain
rates are provided. Composite indicates all models were included. 
* High trend includes only those models whose trend at UNR1 is greater than 0.10 mm/yr in at least one component. Low
trend includes the remainder of the events.

UNR1 Postseismic
Model Trends (mm/yr)

Postseismic Model Strain Rates within
the Las Vegas Valley (1x10−9 yr−1)

Event Date Ve VN 2nd Invariant Dilatation Shear

Fort Tejon* 1857JAN09 1.05 0.28 2.94 −1.81 0.97

Ridgecrest 2* 2019JUL06 0.19 0.01 1.59 −1.26 0.30

Owens Valley* 1872MAR26 0.35 −0.14 1.49 −1.00 0.43

Landers* 1992JUN28 −0.14 −0.37 1.28 1.26 0.07

Hector Mine* 1999OCT16 −0.13 −0.39 1.28 1.38 0.03

San Francisco 1906* 1906APR18 0.64 −0.15 1.21 −0.66 0.46

Wrightwood* 1812DEC08 0.22 0.09 1.03 −0.50 0.44

El Mayor–Cucapah* 2010APR04 0.01 −0.27 0.90 0.56 0.29

Cascadia* 1700JAN26 −0.48 −0.20 0.88 −0.48 0.34

Pleasant Valley 1915OCT03 0.08 −0.08 0.34 −0.06 0.21

Fairview Peak
Complex*

1954DEC16 −0.08 0.11 0.33 0.20 0.10

San Francisco 1838* 1838JUN25 0.13 −0.01 0.25 −0.15 0.08

Cedar Mountain 1932OCT21 0.06 −0.04 0.21 −0.10 0.09
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Ridgecrest 1 2019JUL04 0.02 0.00 0.19 −0.16 0.03

Kern County 1952JUL21 0.06 0.00 0.18 −0.12 0.05

Monte Cristo 2020MAY15 0.01 −0.01 0.14 −0.06 0.07

Mendocino Triple
Junction 3

1992APR25 0.06 −0.02 0.14 −0.04 0.08

Dixie Valley 1954DEC16 0.02 −0.02 0.10 −0.02 0.06

Gulf of California 4 2012APR12 0.00 0.00 0.10 0.05 0.04

Mendocino Triple
Junction 1

1980NOV08 0.05 −0.02 0.09 −0.02 0.05

Hebgen Lake 1959AUG18 −0.02 −0.05 0.09 −0.02 0.05

Northridge 1994JAN17 −0.01 −0.02 0.08 0.01 0.05

Loma Prieta 1989OCT18 0.03 0.00 0.07 −0.04 0.03

Gulf of California 1 2009AUG03 0.00 0.00 0.07 0.04 0.02

Imperial Valley 1940MAY18 0.00 −0.02 0.06 0.05 0.01

Mendocino Triple
Junction 6

2014MAR10 −0.02 0.01 0.05 0.03 0.02

Mendocino Triple
Junction 4

1994SEP01 0.02 0.00 0.05 0.00 0.03

Laguna Salada 1892FEB23 0.00 −0.02 0.05 0.03 0.01

Stillwater 1954AUG24 0.01 −0.01 0.04 −0.02 0.02

Mendocino Triple
Junction 2

1991AUG17 0.01 0.00 0.03 −0.01 0.01

Borah Peak 1983OCT28 0.00 0.00 0.02 −0.01 0.00
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Sonoran 1887MAY03 −0.01 0.00 0.02 0.01 0.01

Mendocino Triple
Junction 5

2005JUN15 −0.01 0.00 0.02 0.00 0.01

San Simeon 2003DEC22 0.00 0.00 0.02 0.00 0.01

Gulf of California 2 2009AUG03 0.00 −0.02 0.02 0.00 0.01

Central Idaho 2020MAR31 0.00 0.00 0.01 −0.01 0.00

Masset 2012OCT28 0.00 0.00 0.01 0.00 0.00

Napa 2014AUG24 0.00 0.00 0.00 0.00 0.00

Nisqually 2001FEB28 0.00 0.00 0.00 0.00 0.00

Parkfield 2004SEP28 0.00 0.00 0.00 0.00 0.00

Gulf of California 3 2012APR12 0.01 −0.04 0.00 0.00 0.00

Composite 4.36 −1.40 2.24

High Trend Events 6.25 −2.60 2.91

Low Trend Events 0.79 −0.51 0.24
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3.13.3 Supplemental Figures 

Figure  S3.1: Shear  strain  rate  associated  with  the  postseismic  relaxation  field  with
normalized strain rate axis. Results are calculated with MELD using the velocities shown
in Figure 3.2. Grey arrows indicate extension and black arrows indicate contraction. Pink
lines represent the location of fault traces for the earthquake models.  
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Figure S3.2: Individual postseismic displacement models for GPS station UNR1, located
within Las Vegas for the east  (a) and north  (b) components. Labels identify individual
events and line colors reflect trends across the duration of the station. Solid black lines
reflect the cumulative displacements for models whose trends are less than ± 0.10 mm/yr
(grey lines). Note the difference in scales between the east and north components.  
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Figure S3.3: Time series comparison for station ECHO, located northeast of Las Vegas
within  the  Pahranagat  shear  zone.  (a) East  component.  Black  dots  represent  original
positions. Thick black line is the postseismic deformation model for this station. Grey
dots are the position following correcting positions with the postseismic model. Red dots
represent  the  positions  after  both  postseismic  correction  and common mode filtering.
Time  series  are  detrended  relative  to  the  corrected  and  filtered  solution.  (b) East
residuals. (c) North component. (d) North residuals. Vertical black line indicates the time
of an equipment related step in the time series and the red vertical line represents the El
Mayor–Cucahpah earthquake (2010).  
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Figure S3.4: Time series comparison for station FERN, located southeast of Las Vegas.
Key as described in  Figure S3.3. Vertical black line indicates the time of an equipment
related step in the time series. 
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Figure S3.5: Time series comparison for station P626, located southwest of Las Vegas in
the Mojave Desert. Key as described in Figure S3.3. Red vertical lines represent the times
of the El Mayor–Cucahpah (2010) and Ridgecrest (2019) earthquakes.   
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Figure S3.6: Time series comparison for station TIVA, located northwest of Las Vegas
near Yucca Mountain. Key as described in  Figure S3.3. Red vertical lines represent the
times of the Hector Mine (1999), El Mayor–Cucahpah (2010), Ridgecrest (2019), and
Monte Cristo (2020) earthquakes.   
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Figure S3.7: Time series comparison and hydrologic loading model for station P006,
located near Lake Mead.  (a) East component.  Black dots represent original positions.
Blue dots show the original positions with the loading model removed. Green line shows
the displacements at P006 due to load variation on Lake Mead. Thick black line is the
postseismic  deformation  model  for  this  station.  Grey dots  are  the  position  following
correcting positions with the postseismic model. Red dots represent the positions after
corrections  and common mode filtering.  All  time series  are  detrended relative  to  the
corrected  and  filtered  solution.  (b) East  residuals.  (c)  North  component.  (d)  North
residuals.  (e)  Up component.  (f)  Up residuals.  (g) Observed water level deviation for
Lake Mead during the time of station P006. Vertical black line indicates the time of an
equipment  related  step  in  the  time  series  and  the  red  vertical  lines  represent  the  El
Mayor–Cucahpah (2010) and Ridgecrest (2019) earthquakes.       
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Figure S3.8: Solutions for the MELD  (a – c) and Haines and Holt  (d – f) strain rate
models for the original velocities. (a and d) Plots of second invariant strain rates overlain
with  normalized  strain  rate  axis.  Grey  arrows  indicate  extension  and  black  arrows
indicate contraction.  (b and e) Plots of the dilatational component of the strain rate.  (c
and f) Plot of the shear component of the strain rate. All plots are limited to strain rates
greater than one sigma. 
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Figure S3.9: Plots of the block model using the original velocities and the same a priori
uncertainties in the rotation rate and slip rates as the corrected and filtered velocity block
model (β = 3 x10−9 rad/yr, γ = 0.2 mm/yr). (a) Fault slip rates. The thickness of the black
and red lines represents dextral and sinestral slip rates while the length of the blue and
cyan lines represents normal and thrust slip rates. Pink lines represents the bounds of the
block model and inactive (non fault) block edges. (b) Rigid block component of motion.
Color scale indicates the vertical axis rotation rate with an exaggeration factor of 1 x107.
Pink lines represent the initial block locations.



164

Figure  S3.10:  Block  model  fit  to  the  GPS  velocities  for  the  corrected  and  filtered
velocity model. (a) Velocity vector comparison. Here grey arrows represent velocities not
used in the block model. Red arrows represent input GPS velocities and green arrows are
the block model prediction. Residuals are shown as black arrows and have been scaled by
a factor of 3. Histograms of the east (b) and north (c) GPS residuals normalized by their
uncertainties. Histograms of the east (d) and north (e) GPS residuals. 
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Figure S3.11: Block model fit to the GPS velocities for the original velocity model. Key
as described in Figure S3.10.  
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Figure S3.12: GPS velocities along (a) and perpendicular (b) to Transect S1 (see Figure
S3.5), with two sigma error bars. Black dots represent velocities of the original data, grey
dots represent corrected velocities, and red dots represent the final velocities following
corrections  and  filtering.  No  outliers  (blue  dots)  are  present  along  this  transect.  The
dotted line represents the location of Yucca Mountain. 
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4.4 Abstract

Accurate positioning using the Global Positioning System (GPS) relies on 

accurate modeling of tropospheric delays.  Estimated tropospheric parameters must vary 

sufficiently to capture true variations in delay, otherwise systematic errors propagate into 

estimated positions, particularly in the vertical.  However, if the allowed tropospheric 

parameter variation is too large, the propagation of data noise into all parameters is 

amplified, reducing precision.  Here we investigate the optimal choice of tropospheric 

constraints applied in the GipsyX software, implemented as specified values of random-

walk process noise.  The commonly adopted default constraint for the zenith wet 

tropospheric delay (ZWD) is 3 mm/√(hr) (Bar‐Sever et al., 1998).  Using this default 

constraint, our investigation reveals spurious wave-like patterns of 5-minute estimates of 

vertical displacement with amplitudes ~100 m along the California coast, coincident with 

Winter Storm Ezekiel, November 27, 2019.  For this event, loosening the constraint to 24 

mm/√(hr) suppresses the spurious vertical waves and greatly reduces the scatter of 5-

minute vertical displacements.   More globally, looking at various stations through the 

year, variability of vertical positions is reduced when selecting a constraint of 6 

mm/√(hr).  Further improvement of 10% over the default constraint is achieved when 

optimizing the constraint for each station.  Best results are achieved, with 24% 

improvement, when optimizing the constraint with a daily value for each station.  Given 

that applying the current default value of 3 mm/√(hr) produces pervasive positioning 
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errors in GPS time series, we recommend at least loosening the constraint to 6 mm/√(hr) 

for ZWD (similarly scaled up for gradient estimation).
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4.5 Introduction

Sub-daily Global Positioning System (GPS) estimated station positions have a 

broad variety of scientific applications, including analyzing early co-/post-seismic 

mechanisms and earthquake early warning systems (Colombelli et al., 2013; Larson, 

2009; Melgar et al., 2012; Twardzik et al., 2019), meteorological applications such as 

water vapor and total electron content (Fu et al., 2021; Leontiev & Reuveni, 2017; Moore

et al., 2015; Rocken et al., 1997; Sun et al., 2021), and real-time volcano monitoring 

(Escayo et al., 2020; Larson et al., 2010). These applications require quality positions, 

and consistent repeatability, to distinguish true station motion.  The topic of this paper is 

on improving station coordinate estimation, particularly in the vertical, through improved

estimation of time-variable delay in the troposphere.  For example, of concern is the 

ability of the troposphere estimation strategy to capture variations in delay arising from 

rapidly evolving weather fronts (Gregorius & Blewitt, 1998; Gregorius & Blewitt, 1999; 

Luddington et al., 2010). Tropospheric delay models are conventionally separated into so-

called dry delay (~2 m) and a wet delay (~0.1 m).  The wet delay is caused by the 

interaction of the electromagnetic (EM) waves with the permanent dipole moment of 

molecules of  water vapor.  The dry delay is caused by the interaction of EM waves with 

the induced dipole moments of all gasses in the atmosphere (including a "dry" component

from water vapor).  In hydrostatic equilibrium, the dry delay relates to air pressure which 

is typically slowly varying and well modeled (Saastamoinen, 1973). However, the wet 
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component relates to water vapor, which can be highly variable and much more difficult 

to model (Bar‐Sever et al., 1998). 

To model tropospheric dry and wet delay, tropospheric mapping functions are 

used to map zenith dry delay (ZDD) and zenith wet tropospheric delay (ZWD) to the 

elevation angle of the satellite being observed.  Thus, all wet delays can be modeled by 

estimating a bias in the ZWD.  Moreover, the bias in ZWD can be estimated 

stochastically to allow for time variation (Tralli and Lichten, 1990).   More accurate 

models introduce two additional parameters to account for a 2D gradient in tropospheric 

delay (Bar Sever et al., 1998).  This approach is implemented in the GPS data analysis 

software "GipsyX" from the Jet Propulsion Laboratory (JPL), which is used for this study

(Bertiger et al., 2020).  

Note that residual errors in ZDD will be almost entirely absorbed by the estimate 

of ZWD;  therefore, GPS is mostly sensitive to zenith total delay,  ZTD = ZDD + ZWD.  

For purposes of accurate positioning (the objective of this paper), accurate estimation of 

ZTD is relevant.   For purposes of accurate estimation of integrated water vapor (IWV), 

accurate estimation of ZWD is relevant.

Current models of the zenith dry and wet mapping functions are based on 

numerical weather models (NWM).  For example, the Vienna Mapping Function Model 1

"VMF1" (Boehm et al., 2009), which is implemented in GipsyX, is based on the NWM 

of the European Center for Medium Range Weather Forecasting (ECMWF).  VMF1 

mapping functions are produced on a spatial grid in 6-hour intervals, which are then 
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interpolated to the required locations and epochs. Using GipsyX, the ZWD estimate is 

estimated stochastically (allowed to vary at each 5-min epoch), while being constrained 

by a random walk parameter.  Following Bar‐Sever et al., (1998), the default value in 

GipsyX for this parameter is 3 mm/√(hr) for the zenith delay, and 0.3 mm/√(hr) for the 

two (east and north) horizontal gradients.  Values approximately equivalent to these have 

often been used by studies (e.g., Geng et al., 2012, 2012; Sun et al., 2021; Xu et al., 

2013), and as well as GPS processing centers, e.g., the Nevada Geodetic Laboratory 

(NGL)  (Blewitt et al., 2018), the Automatic Precise Positioning Service (JPL, 2022), and

the  Geodetic Facility for the Advancement of Geoscience at Central Washington 

University (Herring et al., 2016).  If the real ZTD experiences a significant gradient, 

however, a strict random walk constraint would limit the ZTD estimate, and the 

additional displacement will propagate into the position of the GPS station. As weather 

fronts pass through a region, atmospheric moisture (and to some extent, atmospheric 

pressure) can vary rapidly, resulting in large, rapid variations in the real ZTD (Gregorius 

& Blewitt, 1998; Tralli & Lichten, 1990). 

For example, preliminary inspection of 5-minute vertical GPS positions across 

California on November 27, 2019 UTC, reveal significant apparent displacements.  

During this time, an extratropical cyclone experienced explosive cyclogenesis as it passed

through California, as part of Winter Storm Ezekiel.  Not only are the displacements large

(~100 mm), they are also observed to travel along the coast, starting north of San 

Francisco, CA at the start of the day, and ending near Los Angeles, CA, by the end of the 
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day (Figure 4.1, Video S4.1). When observed in transect (Figure 4.2), these 

displacements appear wavelike, with a consistent propagation speed. While studies have 

linked atmospheric pressure loading to GPS displacements (Martens et al., 2020; 

Tregoning & Dam, 2005), the atmospheric loading displacements caused by the cyclone 

are too broad, and of low magnitude (~3 mm over several hours) (GFZ, 2022), to explain 

the regionally variable displacements.  Figure 4.3  shows a comparison between vertical 

displacement and radar reflectivity on November 27, 2019 at 09:00 UTC (Herzmann, 

2022), revealing a strong spatial correlation.  



175

Figure 4.1: Observed 5-minute GPS vertical displacements in 1.5-hour intervals between
01:30 and 13:30  UTC on November  27,  2019.  Data  have  been  filtered  with  Robust
Network Imaging (Kreemer et al., 2020), and are produced using current NGL processing
standards, with the default ZWD random walk constraint of 3 mm/√(hr). The color bar is
set  such  that  colors  begin  near  the  average  global  vertical  position  uncertainty  and
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saturate  at  two  sigma.  Reds  indicate  observed  uplift  and  blues  reflect  observed
subsidence.  Small  black  dots  indicate  GPS station  locations,  and the  black  rectangle
represents the bounds of the transect shown in Figures 4.2, 4.8, and S4.5. 

Figure 4.2: Wiggleplot of observed GPS vertical displacements along the transect shown
in Figure 4.1 for November 26 – 27, 2019. Data have been smoothed with LOESS local
regression, with a smoothing factor of 0.10. Black horizontal bar represents 00:00 UTC
on  November  27.  Note  the  consistent  band  of  uplift  which  propagates  southward,
beginning at the transition to November 27, near the start of the transect, and continues
through the entire day. 
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Figure  4.3:  Data snapshots on November 27, 2019, at  09:00 UTC for California and
Nevada. (a) Observed GPS vertical displacements. (b) Radar reflectivity. (c) Zenith total
delay (ZTD) deviation. For each station, the median ZTD across November 26  –  27 is
removed.  (d) Integrated  water  vapor  inferred  by  GPS.  Note  the  spatial  correlation
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between vertical uplift and observed radar reflectivity. Data presented in panels a, c, and
d have been filtered with Robust Network Imaging.

Additionally, the displacements are spatially correlated with elevated ZTD 

deviation and water vapor values. While these displacement patterns are fairly localized,

Figure S4.1 shows similar displacements, correlated with radar reflectivity along the 

eastern United States, at the same epoch as shown in Figure 4.3 (Video S4.2). These 

displacements, however, are coherent over hundreds of kilometers and are of larger 

magnitude (~150 mm). A primary driver of precipitation is the interaction of cool and 

warm air masses. As a cool air mass moves under the warm air mass, it pushes moisture 

higher into the atmosphere allowing it to condense as it cools, forming precipitation. The 

spatial correlation between the observed vertical displacements and precipitation suggests

that they are dominated by errors related to atmospheric variability associated with the 

weather fronts of the storm.

Gregorius & Blewitt (1999) investigated the impact of weather fronts on vertical 

GPS positions. Their results revealed that vertical repeatability was significantly 

improved when considering a random walk constraint of 8 mm/√(hr) on days when fronts

passed over the stations. That study, however, was limited to 21 globally distributed 

stations, preventing substantial investigation into regional and climactic aspects of 

varying the constraint. In the time since, GPS data processing methods have greatly 

improved and the global GPS network has experienced significant expansion (Blewitt et 

al., 2018), improving the ability to distinguish the sensitivity of five-minute GPS 
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positions to the chosen random walk constraint, at both local and global scales. In this 

study, several suites of 5-minute GPS time series are produced, featuring different levels 

of ZTD random walk, and we investigate both the impact on positions during the passing 

of Winter Storm Ezekiel, as well as its effect on global data quality. After which, we 

provide recommendations for future processing strategies to improve 5-minute GPS 

positioning quality.  

4.6 Methods

4.6.1 Data Analysis Strategy Using GipsyX

Except where noted, this investigation uses JPL's GipsyX software (Bertiger et al.,

2020) with NGL's standard production data analysis strategy for kinematic precise point 

positioning.  The strategy is based on the precise point positioning concept by Zumberge 

et al.(1997) with fixed satellite orbits and clock biases, but with station coordinates 

estimated freely at every 5-min epoch.  GPS satellite positions and clocks are from JPL's 

"final" product line.   Batch solutions are generated for 24-hour GPS days for each station

individually using undifferenced carrier phase and pseudorange data every 5-minute 

epoch from all satellites in view for elevation angles of e >=7°, with observation weights 

that scale with σ2=1/sin(e). Station clock biases and station coordinates are estimated with

loose constraints so that they are data driven.  Ionospheric delay is calibrated using a 

linear combination of dual-frequency GPS data and is modeled to higher order using a 

conventional model of the Earth's magnetic field together with JPL data products on 
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ionospheric total electron content. As outlined in the introduction, tropospheric modeling 

uses VMF1 data products (Boehm et al., 2009) for ZDD and ZWD, and for dry and wet 

mapping function parameters. Residual ZTD variation is estimated as a random walk in 

ZWD with a default constraint of 3 mm/√(hr) for the zenith delay, and 0.3 mm/√(hr) for 

the two horizontal gradients (Bar Sever et al., 1998). The overall level (starting value) of 

residual ZTD is estimated very loosely with a 0.5 m constraint.  Carrier phase bias 

parameters are introduced for each station-satellite arc and for detected integer 

discontinuities, some of which may be automatically resolved prior to least-squares 

estimation (Blewitt et al., 1990). All parameters (typically about 70 per station day) are 

estimated simultaneously using a square root information filter. GipsyX then constrains 

real-valued estimates of carrier phase biases with the a priori knowledge that they are 

linear combinations of integer wavelengths (Bertiger et al., 2010). This improvement is 

propagated through to all parameters. Finally, for each daily GipsyX batch solution, 24-

hour constant coordinates are estimated by computing the weighted mean of the 5-minute

coordinate solutions.  This final step (outside of GipsyX) allows us to evaluate the impact

of estimation strategy on daily coordinate repeatability. 

4.6.2 Proxy for Tropospheric Errors

Here we use the 5-minute vertical GPS position variations as a proxy for errors in 

ZTD estimation. This proxy method assumes that errors in ZTD caused by rapid variation
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(that exceed the random walk constraints) will generate much larger vertical position 

errors than real vertical displacement (from atmospheric pressure and surface water 

loading).  More generally, we consider this also a proxy for the more traditionally 

estimated station positions as constant over each 24-hour GPS day, an assumption that 

can be tested by investigating the daily mean coordinate solutions.  The assumption is 

that 24-hour position estimates are optimized (have the least error) when 5-minute 

vertical position estimates have the smallest variation.

4.6.3 Rationale for Loosening Random Walk Constraints

As a preliminary study, we investigated GPS positions along the coast of 

California on November 26 – 27, 2019 UTC. These days are chosen to facilitate 

comparison between a day without a passing storm system (November 26), and the 

atmospheric turbulence produced by Winter Storm Ezekiel on November 27.  

If the default random walk constraint of 3 mm/√(hr) is appropriate, and the 

observed displacements are associated with an un-modeled geophysical signal, then 

loosening the random walk will amplify the mapping of measurement noise into the 5-

min vertical positions (owing to correlations between vertical and ZTD parameters). This 

would increase station 5-min vertical coordinate root mean square (RMS) scatter while 

preserving the original signal. However, if the random walk constraint is too tight, 

loosening its value will allow the ZTD estimate to better account for atmospheric 
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variability, and errors in 5-minute vertical positions should decrease as systematic error is

reduced. This would reduce station RMS and suppress the apparent displacements. 

To further investigate the random walk constraints under more typical conditions, 

we then expand our study to the global network and explore the regional and temporal 

aspects of loosening the constraints.  We also look at the effect of loosening constraints 

on 24-hour constant estimates of vertical coordinates, which is of interest for 

investigations of slow deformations of the Earth. 

4.6.4 Test Tropospheric Estimation Strategies

To address the above goals, daily batches of 5-minute GPS vertical data are 

produced for November 26 – 27, 2019 UTC, as well as for the first two days of each 

month of 2021. We adhere to the NGL standard data analysis strategy (Section 2.1) but 

with a suite of test estimation strategies for which we increase the random walk constraint

for ZWD incrementally between the default value of 3 mm/√(hr) and up to 48 mm/√(hr). 

Table 4.1 shows the constraints used for the specified test estimation strategies. Note that 

the horizontal gradient constraints are equivalently increased, at a value that is 10% of the

zenith constraint.
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Table 4.1: Specified test estimation strategies

Random Walk Constraint [mm/√(hr)]

Strategy
Name

Strategy
ID

Zenith Wet
Delay

Gradient
East

Gradient
North

TROPx01* 01   3 0.3 0.3

TROPx02 02   6 0.6 0.6

TROPx04 04 12 1.2 1.2

TROPx08 08 24 2.4 2.4

TROPx12 12 36 3.6 3.6

TROPx16 16 48 4.8 4.8

*Default strategy in GipsyX (Bar Sever et al., 1998).

Henceforth, we will refer to specified strategy either by its full name or 

identification (ID) number, where ID is the scaling factor of the default strategy.  These 

test strategies generate our “uniform” random walk solutions, in the sense that each 

strategy is applied to all stations for all days tested without attempt to optimize based on 

location or time.  For the purpose of this study, we focus on the results of the vertical 

component as our proxy for tropospheric error. Estimation of all other parameters is kept 

at the default settings (Section 4.6.1), thus isolating the impact of loosening the random 

walk constraints of the tropospheric parameters. 

In addition to the uniform random walk data sets, two data sets are produced in 

which the random walk is allowed to vary per station. The first, our “station specific” 

data set, identifies a characteristic station specific random walk constraint, which most 

frequently minimizes the RMS of 5-min vertical estimates for each station during 2021. 

The second, our “daily optimal” data set, identifies the solution which minimizes the 
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RMS 5-minute vertical for each station, on each day, producing a time variable random 

walk data set. For consistency within the global analysis, we limit stations to those who 

produced data on all 24 days of our study, resulting in 5819 stations and 139,656 station 

days.  

4.7 Results 

4.7.1 Loosening Constraints for Winter Storm Ezekiel 

Loosening the random walk constraints clearly improves vertical data quality at 

stations along the coast of California on November 26 – 27, 2019 UTC. Figure 4.4 shows

a comparison of vertical displacements and ZTD estimates for GPS stations P194, 

CAND, and CBHS. These stations are distributed across California with P194 located 

north of San Francisco, CAND located near Parkfield, and CBHS located northwest of 

Los Angeles. On November 26, station positions are consistent; however, on November 

27, displacements of up to 105 mm are observed as the storm progresses southward along

the coast. Across both days the ZTD estimates are smooth. Upon loosening the random 

walk constraint to 12 mm/√(hr) (four times looser, strategy TROPx04), the majority of 

the observed vertical deviations associated with the storm are suppressed and the station 

ZTD estimate becomes more variable. While the signal from the storm shows slightly 

more improvement with strategy TROPx08 at 24 mm/√(hr), station scatter begins to 
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increase. This is shown through the 5-minute vertical repeatability values presented in

Table 4.2.  Repeatability is defined as 1.4826*MAD, where MAD is the median absolute 

deviation of the time series (Huber, 1981).  Here we see that station P194 shows the best 

repeatability on November 27, with a random walk of 6 mm/√(hr). Stations CAND and 

CBHS are both most improved at 12 mm/√(hr); however, each of these stations show 

lower repeatability values up to a random walk of 36 mm/√(hr), compared to the default 

value. Notably, while these stations do not see improvements in repeatability on 

November 26, they do not exhibit a significant reduction in data quality until the random 

walk is eight times looser. 



186

Figure  4.4:  Vertical  displacement  and zenith tropospheric  delay  comparison for  GPS
stations P194, CAND, and CBHS. Data are shown for November 26 – 27, 2019 for the
default strategy TROPx01, and the TROPx04 and TROPx08 solutions. P194 is located
north of San Francisco, CA, CAND is located near Parkfield, CA, and CBHS is located
northwest of Los Angeles, CA. Vertical black line identifies the change of day. 
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Table 4.2: 5-min vertical repeatability for specified strategies.

Strategy ID

01 02 04 08 12 16

Station Station 5-Min Vertical Repeatability (mm)

November 26, 2019

P194 *12.5 *12.5 12.9 13.5 14.2 15.4

CAND *14.1 14.6 14.2 15.9 17.3 18.6

CBHS *15.7 15.8 16.2 18.7 19.9 21.3

November 27, 2019

P194 18.2 *14.0 14.5 14.6 14.6 16.2

CAND 17.7 14.9 *13.4 15.6 16.6 18.2

CBHS 26.1 19.0 *14.9 16.5 19.3 19.5

*Optimal solutions for given station and day

The passage of Winter Storm Ezekiel greatly affected regional vertical data 

quality. Figure 4.5 shows a comparison of station 5-min vertical RMS and repeatability 

for all stations within the bounds of Figure 4.1, for different processing strategies. Data 

are separated by date, with red representing the data from the calm November 26, 2019, 

and blue for the stormy November 27, 2019, with black representing the combination of 

these dates. During the storm, station RMS values are elevated at 28.2 ± 12.9 mm, 

compared to 17.6 ± 5.1 mm on the prior day, when using the default random walk 

constraint (Table S4.1). When loosening its value for the stormy day, results are similar at

the TROPx04 and TROPx08 levels. Comparison of the distribution of vertical RMS 

between the TROPx01 and TROPx08 solutions, shows that for the TROPx08 RMS 

values become more localized near ~20 mm, rather than being broadly distributed (Figure
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S4.2). For both solution sets, RMS and repeatability are substantially improved at ~15% 

and ~21% respectively. On November 26, the calmer day, the largest data quality 

improvement is produced using the TROPx02 solution, with RMS and repeatability 

improved by 5.1% and 11.4% respectively. The combination of these dates sees large 

improvements in repeatability, at 28.6% for the TROPx08 solution. The majority of the 

storm can be accounted for with the TROPx04 solution; however, to fully remove the 

spatial signal, the TROPx08 solution is required (Figure 4.6). At this level, vertical 

displacements are no longer spatially correlated with the observed radar reflectivity and 

are now better correlated with deviations in the ZTD estimate and water vapor levels 

(Figure 4.7). We find that where systematic displacements were previously observed in 

the vertical displacements (Figure 4.2), no consistent trends are observed at the TROPx08

level (Figure 4.8). The ZTD and water vapor estimates reveal the opposite, with the 

TROPx08 solution exhibiting increased variability at the times where large vertical 

displacements were estimated when using the default random walk (Figures 4.9, 4.10, 

S4.3, S4.4, and S4.5). A comparison of the TROPx01 and TROPx08 solutions, can be 

viewed in Videos S4.1, S4.3, and S4.4, which provide a time lapse of vertical 

displacement, ZTD deviation, and water vapor for each solution on November 27, 2019. 

We observe similar results, with large vertical displacements being suppressed and 

reallocated to the ZTD estimate by the TROPx08 solution, in the eastern United States 

(Videos S4.2, S4.5, and S4.6). These findings reveal that 5-minute GPS repeatability can 

be substantially improved on both stormy and calm days by loosening the random walk 
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constraint. The choice of this value however, is dependent on the complexity of 

atmosphere on the day in question, and varies from station to station.

Figure  4.5:  Comparison  of  solutions  for  GPS stations  in  California  and  Nevada  on
November 26 – 27 for different strategies.  (a) Median RMS and its (b) repeatability by
solution. Percent difference for solutions relative to the TROPx01 solution for  (c) the
median  station RMS and its  (d) repeatability.  Horizontal  dotted  black line represents
equivalence to the TROPx01 solution. Values are presented in Table S4.1. 
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Figure 4.6: Corrected 5-minute GPS vertical displacements in 1.5-hour intervals between
01:30  and  13:30  UTC  on  November  27,  2019  for  the  TROPx08  solution.  Key  as
described in Figure 4.1. 
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Figure  4.7:  Same as  Figure 4.3 except for the TROPx08 solution [24 mm/√(hr)]. Note
that  vertical  displacements  are  now  suppressed  and  the  correlation  of  the  ZTD  and
integrated water vapor estimates, to the radar reflectivity, in increased. 
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Figure  4.8:  Wiggleplot  of  corrected  GPS  vertical  displacements  along  the  transect
identified in  Figure 4.1 for November 26 – 27,  2019, for the TROPx08 solution [24
mm/√(hr)]. Data have been smoothed with LOESS local regression, with a smoothing
factor of 0.10. Black horizontal bar represents November 27 00:00 UTC. Note that the
systematic displacements shown in Figure 4.2 are suppressed. 
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Figure 4.9: Observed zenith tropospheric delay deviation, in 1.5-hour intervals between
01:30 and 13:30 UTC, on November 27, 2019. For each station, the median zenith delay
across November 26 – 27 is  removed.  Data have been filtered with Robust Network
Imaging and are produced using a random walk of 3 mm/√(hr). Small black dots indicate
GPS station locations.  
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Figure 4.10: Corrected zenith tropospheric delay deviation in 1.5-hour intervals between 
01:30 and 13:30 UTC on November 27, 2019, for the TROPx08 solution. For each 
station, the median zenith delay across November 26 – 27 of the TROPx01 solution is 
removed. Data have been filtered with Robust Network Imaging and small black dots 
indicate GPS station locations.  
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4.7.2 Regional Data Quality

To investigate the effect on the global GPS network of altering the random walk 

constraint, we first consider its regional impact. Figure 4.11 shows a comparison between

median station 5-min vertical RMS and repeatability of the 2021 data for several regions 

around the globe. Substantial variation is present in the median station RMS, with the 

lowest values when using the default random walk, produced by stations in New Zealand 

and the polar region (which we define as stations located at a latitude >|±60°|), at 17.2 

mm and 16.6 mm, respectively (Table 4.3). The highest median RMS values are found in 

Central and South America, with values of 30.8 mm and 25.4 mm, respectively. A 

similarly large range is observed in station repeatability, with regions exhibiting scatter 

between 5.2 mm and 10.3 mm. We find that all regions, except for the polar stations, 

show improvements by loosening the random walk constraint, and that solutions between

6 mm/√(hr) and 24 mm/√(hr), all perform better than the 3 mm/√(hr) solution. The 

optimal value for most regions is 6 mm/√(hr), however, with respect to repeatability, 

Central America, Japan, and New Zealand show equivalent improvements with both the 6

mm/√(hr) and 12 mm/√(hr) solutions. Improvements in median RMS range between 4% 

– 9% with the TROPx02 solution, and Central America improves by 10% with the 

TROPx04 solution. We find that for station repeatability, most regions improve by 10% – 

14% with the TROPx02 solution. Two exceptions are the polar region, which shows no 
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change, and Japan which improves by 21%.  Regional data quality is significantly 

reduced at the 36 mm/√(hr) and 48 mm/√(hr) levels. 

When considering the variable random walk data sets, both are found to improve 

data quality relative to the uniform default value, with the daily optimal solution showing

substantial improvements (Table 4.4). Globally, median RMS and repeatability are 

improved by 4% and 10% when applying a characteristic station specific random walk 

constraint. For the daily optimal data set, these improvements increase to 10 and 24 

percent, with station repeatability in Japan improved by 29%. These results reveal that the

global GPS network is particularly sensitive to the level of the applied random walk 

constraint. 
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Figure 4.11: Global 2021 data set comparison by region and processing strategy of the
(a) median station vertical RMS,  (b) its repeatability,  (c)  the percent difference of the
median station vertical RMS relative to the TROPx01 solution, and (d)  its repeatability
relative to the TROPx01 solution . Horizontal black line represents equivalence to the
TROPx01 solution. Regions are as follows: NA – North America, CA – Central America,
SA – South America, EU – Europe, JPN – Japan, AU – Australia, NZ – New Zealand, and
Polar represents stations at latitudes >|±60°|. Note that all except the polar region, exhibit
improvements in both RMS and repeatability in the 6 – 12 mm/√(hr) range. Values are
presented in Table S4.2.
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Table 4.3: Median station 5-min vertical RMS and repeatability by region of the global 2021 data sets, for the current, station
specific, and daily optimal processing strategies.  

Region Median RMS ± Repeatability (mm)

Current RW Station Specific RW Daily Optimal RW

NA 20.8 ± 7.3 20.2 ± 6.7 19.0 ± 5.5

CA 30.8 ± 10.3 27.1 ± 8.5 25.8 ± 7.6

SA 25.4 ± 8.5 24.0 ± 7.6 23.0 ± 7.0

EU 18.1 ± 5.9 17.3 ± 5.3 16.3 ± 4.6

JPN 22.7 ± 8.6 21.1 ± 7.1 19.8 ± 6.1

AU 22.4 ± 6.5 21.1 ± 5.8 20.1 ± 5.0

NZ 17.2 ± 5.3 16.8 ± 5.0 15.7 ± 4.0

Polar 16.6 ± 5.2 16.5 ± 5.0 15.9 ± 4.6

Global 20.7 ± 7.4 19.9 ± 6.7 18.7 ± 5.6
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Table 4.4: Median station 5-min vertical RMS and repeatability percent difference relative to the TROPx01 solution, of the
station specific and daily optimal results presented in Table 4.3.  

Region Station Specific RW Daily Optimal RW

Median RMS
Percent Difference

Repeatability Percent
Difference

Median RMS
Percent Difference

Repeatability
Percent Difference

NA 3 8 9 24

CA 12 18 16 26

SA 6 11 9 18

EU 4 10 10 23

JPN 7 17 13 29

AU 6 11 10 23

NZ 2 6 9 25

Polar 1 3 4 11

Global 4 10 10 24
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4.7.3 Regional Variation

Closer inspection of the regional distribution of 5-min vertical RMS values, 

reveals substantial variation dependent on the local climate. Areas where continental and 

maritime tropical air masses are typically present, exhibit elevated annual RMS values, 

while locations where maritime and continental polar air masses are expected, tend to 

exhibit the lowest RMS values. In North America, this is dramatically present, with much

of the southeastern United States exhibiting RMS values >24 mm, while the western and 

central states exhibit RMS values under 20 mm (Figure 4.12). The sharp gradient 

between low and elevated RMS values aligns well with the interaction of dry 

southeastbound continental polar air masses, with moist northeastbound tropical air 

masses from Mexico and the Gulf of Mexico (Aguado & Burt, 2013). Similar 

distributions are observed between the Mediterranean region and northern Europe (Figure

S4.7), as well as between southern and northern Japan (Figure S4.10), with areas of 

consistent maritime/tropical air masses exhibiting elevated station RMS. 
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Figure  4.12:  (a) Median  annual  vertical  RMS;   (b) median  annual  vertical  RMS
smoothed by Robust Network Imaging, for GPS stations in the United States, Central
America, and the Caribbean. Results are for the TROPx01 strategy. 
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 Figure 4.13 shows distributions of Robust Network Imaged median vertical RMS,

and it’s percent difference relative to the TROPx01 solution, for the United States, 

Central America, and the Caribbean, for the TROPx02, TROPx04, station specific, and 

daily optimal strategies. Results are limited to the 2021 data. The TROPx02 solution 

shows that most stations show improvements at a random walk of 6 mm/√(hr), with the 

exception of Utah, Colorado, Arizona, and New Mexico, which exhibit reductions of less 

than 3%. The largest improvements are observed in the southeastern United States and 

the Caribbean. At the TROPx04 level, the majority of the western and central United 

States see reductions in data quality of up to 12%, however, Florida, Georgia, South 

Carolina, and the Caribbean see larger improvements than the TROPx02 solution. 

When considering a station specific random walk, all regions are improved or 

equivalent to the TROPx01 solution, but the majority is improved by less than three 

percent. Only the eastern seaboard and the Caribbean exhibit improvements greater than 

nine percent. The attributed characteristic random walk values, per station, are shown in

Figure 4.14. Note that most of the continental interior tends toward the default random 

walk as optimal, while RMS values in the eastern United States are most frequently 

minimized at random walk values of 6 and 12 mm/√(hr). In both Europe and Japan, the 

majority of stations exhibit a characteristic random walk higher than 3 mm/√(hr) (Table 

4.5, Figures S4.9 and S4.12). Globally, 47.7% of stations retain 3 mm/√(hr) as their 

characteristic random walk constraint. 
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The largest improvements are observed with the daily optimal strategy. Here, all 

regions exhibit improvements, with most regions greater than 6%, and much of the 

southeastern United States and the Caribbean improves by more than 18%. Similar levels 

of improvements are observed with each processing strategy in Europe (Figure S4.8), and

Japan (Figure S4.11), with Japan showing significant improvements with the daily 

optimal strategy, at 29%. 
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Figure  4.13:  Comparison of  (a,  c,  e, and g) Robust Network Imaged median annual
vertical RMS and its (b, d, f, and h) percent difference relative to the TROPx01 solution
for the (a and b) TROPx02, (c and d) TROPx04, (e and f) station specific, and (g and h)
daily  optimal  processing  strategies  for  GPS  stations  in  the  United  States,  Central
America, and the Caribbean. 

Figure 4.14: Characteristic station random walk constraint for GPS stations in the United
States, Central America, and the Caribbean. Values reflect the processing strategy which
most frequently minimizes station RMS in 2021. 
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Table  4.5:  Percentage of stations per characteristic random walk constraint, by region.
Values  indicate  the  percentage  of  stations  which  most  frequently  exhibit  the  lowest
station  RMS per  strategy.  Distributions  are  plotted  in  Figures  4.14,  S4.9,  and S4.12.
Globally, only three stations are characteristic at 24 mm/√(hr).

Strategy ID

01 02 04

Region Percentage of Stations Station Count

NA 56.5 31.8 11.7 3003

EU 42.6 50.3 6.9 923

JPN 27.6 54.0 18.4 976

Global 47.7 40.4 11.8 5819

4.7.4 Annual Variability

A strong annual signal is present in both the station vertical RMS and its 

repeatability, and substantial variation is present between regions. As expected, the 

annual signal is opposite between northern hemisphere (Figure 4.15), and southern 

hemisphere regions (Figure 4.16). These figures reflect the annual component of the fit to

daily median vertical RMS and repeatability values, for each region, on the days 

processed in 2021. Results for each strategy are then compared to the TROPx01 solution. 

Peak amplitudes are found during the summer months, when the troposphere is thickest 

(Rieckh et al., 2014). We find that for all cases, the TROPx02 solution performs 

equivalent to, or better than, the TROPx01 solution. The TROPx04 solution performs 

better than current processing during the summer months, by hemisphere, but under 

performs during winter, and the TROPx08 solution rarely performs better than the 
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TROPx01 solution. The characteristic station specific solution always performs better 

than the TROPx01 solution, however, it typically under performs during the summer 

months compared to the TROPx02 solution. The largest improvements to both RMS and 

repeatability are found in the summer months. In terms of median RMS, the peak 

improvements for North America, Europe, Japan, South America, and Australia are 12%, 

13%, 16%, 11%, and 11% respectively. For station repeatability, peak improvements are 

24%, 24%, 29%, 22%, and 25% respectively. Each of which are roughly twice the level 

of improvement achieved by the TROPx02 and station specific solutions. These results 

highlight significant annual variability in data quality, dependent on the choice of the 

random walk constraint. 

4.7.5 Daily Position Improvements

Inspection of the daily positions of our 2021 dataset reveals that a majority of 

stations exhibit improvements at looser random walk values than the default constraint. 

To determine this, we calculate the annual RMS improvement for each station. This is 

defined as √(RMS12-RMS02), where RMS1 represents the station RMS values of the 

TROPx01 solution, and RMS0 represents the value which best minimizes the station 

RMS by strategy. We find that 32% of stations retain the TROPx01 strategy, while the 

rest of the stations exhibit improvements (Figure S4.13). The median improvement for 

the global daily positions is 4.5 ± 2.8 mm. These results indicate that the improvements 
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exhibited at the 5-minute processing level by loosening the random walk constraint, 

propagate into the daily positions. 

Figure  4.15:  Annual component by processing strategy of  (a, e,  and i) the fit  to the
median station vertical RMS, (b, f, and j) it’s percent difference relative to the TROPx01
solution,  (c, g, and k) the fit to the station vertical repeatability, and  (d, h, and l) it’s
percent difference relative to the TROPx01 solution, for (a – d) North America, (e – h)
Europe, and (i – l) Japan. Here, TROPxSS and TROPxOP reflect the station specific and
daily optimal data sets respectively. 
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Figure 4.16: Annual component by processing strategy of (a and e) the fit to the median
station vertical RMS, (b and f) it’s percent difference relative to the TROPx01 solution,
(c and g) the fit to the station vertical repeatability, and (d and h) it’s percent difference
relative to the TROPx01 solution, for (a – d) South America and (e – h) Australia. Here,
TROPxSS  and  TROPxOP  reflect  the  station  specific  and  daily  optimal  data  sets
respectively.  Note that for median station vertical RMS, the TROPx02 and TROPxSS
solutions are nearly identical. 
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4.8 Discussion

4.8.1 Weather and Sub-daily Positioning

We present clear evidence that the vertical displacements observed by 5-minute 

GPS time series in California on November 27, 2019, occur due to rapid atmospheric 

variation caused by the storm. When using the default random walk constraint of 3 

mm/√(hr), ZTD estimates are extremely smooth temporally, regardless of atmospheric 

variation. This can be seen in Figure 4.4, where the TROPx01 solution shows minimal 

short-term (under two hour) variability on both the calm November 26, and the turbulent 

November 27, 2019. Relaxing the random walk constraint, allows rapid variation 

between high- and low-pressure fronts to be better accounted for, resulting in 

substantially improved position time series, and more dynamic ZTD estimates. While 

large improvements in data quality during the storm are achieved using random walk 

constraints of 12 and 24 mm/√(hr), we also find that on the calm day, both the 6 and 12 

mm/√(hr) solutions produce improved positions, relative to the default solution. This 

highlights that, although there wasn’t significant weather occurring on November 26, 

2019 across California, loosening the random walk during more typical atmospheric 

conditions, improves data quality. Not only can data improvements be observed along the

coast of California, but also regionally across the eastern United States on November 27, 

showing that limitation on the spatial scale and distribution of potential ZTD estimation 
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improvements, when loosening the random walk, is purely dependent on the scale of the 

boundary between air masses. 

Another factor that sees improvement, is the day-to-day coherency for both station

position and ZTD. Often, when combining multiple days of sub-daily time series, there is

a step in the data at the day transition. This is driven by differences in the models 

between days, but we find a large portion can be accounted for by allowing the ZTD 

more freedom (Figure 4.4). With a looser random walk constraint, the data is able to 

overcome discrepancies between the model and observations and is more consistent 

across the day transition. While we focus on improving positioning, the corrected ZTD 

estimates result in improved water vapor estimates. Indicating that meteorological studies

can be improved as well by loosening the random walk constraint. 

4.8.2 Implications of Global Network Positioning Improvements

At the global scale, regional and temporal variability in the optimal level of the 

random walk constraint is substantial for both the uniformly applied, and station variable 

approaches. We show that for regions which tend to experience polar air masses (i.e., 

higher latitudes and most of the western and central United States), this value is generally

appropriate. However, substantial reduction of station time series scatter is possible for 

the rest of the global network at values of 6 mm/√(hr) or higher. Coastal regions, where 

tropical air masses tend to be present, require the loosest random walk constraint, and 
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exhibit improvements often greater than 15%. A spatially variable random walk 

constraint approach has not been applied to large network analysis in the past, however, 

the prevalent heterogeneity of characteristic random walk values shown in Figures 4.14, 

S9, and S12, reveal an excellent opportunity to improve global data repeatability in future

reanalysis. 

While we focus here on sub-daily GPS positioning, Figure S4.13 clearly shows 

that these corrections propagate into improved daily positions since they are derived from

these sub-daily observations. This raises clear implications for all aspects of GPS 

analysis, including improved station velocity estimates, reference frame identification, 

and satellite orbit determination.

4.8.3 Recommended Processing Strategies  

In this study, we explored three types of random walk constraint applications, the 

uniform value, characteristic station specific, and daily variable applications. Using a 

uniform value is the default approach for GPS processing. We show that while for some 

regions data quality improves dramatically as the random walk is loosened (i.e., the 

southeastern United States, the Mediterranean, and southern Japan, see Figures 4.13, 

S4.8, S4.11), other areas see large reductions (i.e., the western/central United States). 

This trade off may be acceptable for localized studies which produce their own data, 

however, for global network processing, increasing the random walk constraint >12 
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mm/√(hr) uniformly, is not advised. Nevertheless, global data quality is improved by a 

random walk of 6 mm/√(hr), with only a few regions showing minor reductions, and is 

our recommended threshold for uniform application. 

Applying characteristic station specific random walk constraints is of course 

better than the uniform method, as it allows for regional climatic variability to be 

accounted for. Additionally, in terms of global network processing, it would be a simple 

adjustment to the current processing flow since it would only require defining a suite of 

values for the network. The characteristic random walk values could then be interpolated 

to the position of newly installed stations until enough data is present to define the 

station. With this approach, 52% of stations globally can be improved with this simple 

adjustment.

The daily variable approach produced superior results compared to the other data 

sets. This is because it is able to account for, not just regional climate variability, but 

temporal variability associated with both annual fluctuations and passing weather 

systems. For small scale studies producing their own data, it is highly recommended to 

test and identify daily station specific random walk values, regardless of the study area, 

as we find that even in polar regions (which showed no improvement by loosening the 

random walk), repeatability is substantially improved (Table 4.5). In terms of global 

network processing, identifying daily optimal random walk constraints using the methods

applied here, would scale poorly and would need to be identified during the processing 

flow. 
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An alternative, which would not be as computationally expensive, would be to 

define an annual random walk per station. As shown in Figures 4.15 and 4.16, annual 

variation is significant, and peak improvements are obtained during the summer by looser

solutions. Often with the TROPx04 strategy performing better than the TROPx02 and 

characteristic strategies. Thus, a time variable random walk per station could range from 

the TROPx01 strategy, for winter months and the TROPx04 strategy for summer, by 

determining a seasonal amplitude and phase term per station.  We leave determination of 

an efficient identification method to future studies, but note that for the 2021 data set, 

63.8% of station days exhibited RMS reductions by allowing the random walk to vary 

each day, per station. 

 

4.9 Conclusions

In this study, we present a sensitivity analysis of the ZTD random walk constraint 

on 5-minute GPS positions at local and global scales. We show that station RMS and 

repeatability can be improved by loosening the random walk constraint from the GipsyX 

default value of 3 mm/√(hr) to 6 – 24 mm/√(hr). The choice of the optimal threshold, 

however, is strongly dependent on the atmospheric, regional, temporal, and climatic 

conditions of the station. We find that during Winter Storm Ezekiel of November 2019, 

using a random walk constraint of 24 mm/√(hr) more adequately accounts for variations 

in the ZTD, improving station repeatability by 21%. Additionally, on the calmer day prior
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to the storm, November 26, 2019, station repeatability is improved by 11% when 

loosening the random walk to 6 mm/√(hr). Showing that during more typical atmospheric

conditions, station data quality can be improved by loosening its value as well. 

In the global analysis, we find that there is substantial opportunity to improve data

quality by loosening the random walk, with the largest impact on station repeatability 

exhibited by stations in Japan. Median vertical RMS and station repeatability are most 

improved when using a random walk of 6 – 12 mm/√(hr), and (with the exception of 

polar stations which do not typically improve), improve by 4% – 9% and 10% – 21% 

respectively. Additionally, we show that that the improvements observed in the 5-minute 

timeseries, propagate into the daily station vertical position. Regional heterogeneity in the

optimal level of the random walk constraint is substantial, indicating a variable approach 

is more appropriate. Tests of two variable random walk methods each show significant 

improvements relative to the default random walk. When defining characteristic random 

walks for individual stations, we find global repeatability to improve by 10%, 

alternatively, when applying daily optimal station specific random walks, global station 

repeatability is improved by 24% and in Japan by 29%. While the daily optimal random 

walk method is preferred, it is difficult to scale to global network analysis and will be 

addressed in future studies. Defining characteristic random walk values would be a 

simple adjustment in the data flow and could be implemented rapidly, resulting in 

significant improvements in station repeatability for global GPS network processing. At 
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minimum, for uniform application within the GipsyX software, increasing the default 

value of the random walk constraint to 6 mm/√(hr) is recommended. 
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4.11 Supplemental Material 

4.11.1 Description

This material consists of Tables S4.1-S4.2, Figures S4.1-S4.11, and Videos S4.1-S4.6.
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4.11.2 Supplemental Tables

Table S4.1: Median station vertical RMS, its repeatability, and their percent differences
relative to current processing, for GPS stations in California and Nevada on November 26
– 27 at different processing levels. Data are plotted on Figure 4.5. 

TROPx** Median RMS ±
Repeatability (mm)

RMS Percent
Difference

Station Repeatability
Percent Difference

Nov. 26-27, 2019

01 21 ± 9.3 ~ ~

02 19.7 ± 8.2 6.2 12.7

04 19.5 ± 7.0 7.1 25.4

08 20.4 ± 6.7 2.9 28.6

12 21.8 ± 7.1 -3.8 23.8

Nov 26, 2019

01 17.6 ± 5.2 ~ ~

02 16.7 ± 4.6 5.1 11.4

04 17.1 ± 4.6 2.8 11.4

08 18.2 ± 4.7 -3.4 8.6

12 19.85 ± 5.3 -12.8 -1.4

Nov. 27, 2019

01 28.2 ± 12.9 ~ ~

02 26.15 ± 10.9 7.3 15.5

04 23.85 ± 10.1 15.4 21.3

08 24.1 ± 10.2 14.5 20.7

12 25.6 ± 10.8 9.2 16.1
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Table S4.2: Global median vertical RMS, its repeatability, and their percent difference
relative to the TROPx01 solution, by region and processing strategy. 

TROPx** Median RMS ±
Repeatability (mm)

RMS Percent
Difference

Repeatability
Percent Difference

Region - Station Days

North America – 70,320

01 20.8 ± 7.3 ~ ~

02 20.0 ± 6.4 4 12

04 20.9 ± 6.7 0 8

08 23.5 ± 7.9 -13 -8

12 26.0 ± 9.0 -25 -24

16 28.4 ± 10.2 -37 -41

Central America – 1,344

01 30.8 ± 10.3 ~ ~

02 28.0 ± 8.9 9 14

04 27.7 ± 8.9 10 14

08 30.9 ± 10.1 0 2

12 33.9 ± 11.7 -10 -14

16 36.6 ± 13.0 -19 -26

South America – 4,560

01 25.4 ± 8.5 ~ ~

02 24.0 ± 7.6 6 11

04 25.0 ± 7.9 2 7

08 28.1 ± 9.2 -11 -9

12 31.3 ± 10.4 -23 -23

16 34.1 ± 11.6 -34 -37

Europe – 20,688

01 18.1 ± 5.9 ~ ~

02 17.1 ± 5.2 6 13
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04 17.7 ± 5.3 2 10

08 20.1 ± 6.2 -11 -5

12 22.3 ± 7.1 -23 -20

16 24.4 ± 8.0 -35 -35

Japan – 24,192

01 22.7 ± 8.6 ~ ~

02 20.9 ± 6.8 8 21

04 21.6 ± 6.8 5 21

08 24.3 ± 7.9 -7 9

12 27.1 ± 9.2 -19 -7

16 29.7 ± 10.5 -31 -22

Australia – 5,184

01 22.4 ± 6.5 ~ ~

02 21.0 ± 5.6 6 14

04 21.6 ± 5.9 4 9

08 23.9 ± 6.8 -7 -5

12 26.5 ± 7.7 -18 -18

16 28.8 ± 8.6 -29 -32

New Zealand – 3,312

01 17.2 ± 5.3 ~ ~

02 16.4 ± 4.6 5 14

04 17.1 ± 4.6 1 14

08 19.1 ± 5.2 -11 3

12 21.3 ± 6.2 -24 -15

16 23.2 ± 7.1 -35 -33

Polar – 4,656

01 16.6 ± 5.2 ~ ~

02 16.7 ± 5.2 -1 0

04 17.8 ± 5.8 -7 -11
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08 20.1 ± 6.8 -21 -31

12 22.1 ± 7.6 -33 -46

16 24.1 ± 8.3 -45 -60

Global – 138,656

01 20.7 ± 7.4 ~ ~

02 19.7 ± 6.5 5 12

04 20.5 ± 6.7 1 10

08 23.1 ± 7.9 -12 -6

12 25.7 ± 9.0 -24 -22

16 28.0 ± 10.1 -35 -36
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4.11.3 Supplemental Figures  

Figure S4.1: Data snapshots on November 27, 2019 at 09:00 UTC for the eastern United
States.  (a) Observed  GPS  vertical  displacements. (b)  Radar  reflectivity.  (c) Zenith
tropospheric delay (ZTD) deviation. For each station, the median ZTD across November
26 – 27 is  removed.  (d) Observed water  vapor.  Note  the  spatial  correlation between
vertical uplift and observed radar reflectivity.  Data presented in panels a, c, and d have
been filtered with Robust Network Imaging. 
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Figure S4.2:  Histograms of station 5-min vertical RMS for GPS stations in California
and Nevada on November 26 – 27. Red represents the TROPx01 [default, 3 mm/√(hr)]
solution and blue represents the  TROPx08 [24 mm/√(hr)] solution.
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Figure S4.3: Observed GPS derived water vapor in 1.5-hour intervals between 01:30 and
13:30  UTC  on  November  27,  2019.  Data  have  been  filtered  with  Robust  Network
Imaging and are produced using a random walk of 3 mm/√(hr). Small black dots indicate
GPS station locations.  
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Figure S4.4: Corrected GPS derived water vapor in 1.5-hour intervals between 01:30 and
13:30 UTC on November 27, 2019, for the TROPx08 solution. Data have been filtered
with Robust Network Imaging and small black dots indicate GPS station locations.  
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Figure  S4.5: Wiggleplots  of  zenith  tropospheric  delay  (ZTD)  deviations  along  the
transect identified in Figure 4.1 for November 26 – 27, 2019, for (a) current processing
and (b) the TROPx08 solution. For the TROPx08 versions, deviations are relative to the
median station value across November 26 – 27 for the TROPx01 solution. Data have
been  smoothed  with  loess  local  regression  with  a  smoothing  factor  of  0.10.  Black
horizontal bar represents the start of November 27. Note that the ZTD estimates of the
TROPx08 solution exhibit more variability. 
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Figure  S4.6: Same as  Figure  S4.1 except  for  the  TROPx08 Solution.  Note  that  the
vertical displacements are corrected and the gradient of water vapor between air masses
is much sharper. 
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Figure S4.7: (a) Median annual RMS and  (b) Robust Network Imaged median annual
RMS, for GPS stations across Europe. Results are for the TROPx01 solution. 
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Figure S4.8: Comparison of  (a, c,  e, and g) Robust Network Imaged median annual
RMS and its (b, d, f, and h) percent difference relative to the TROPx01 solution for the
(a and b) TROPx02, (c and d) TROPx04, (e and f) Station specific, and (g and h) daily
optimal processing strategies for GPS stations across Europe. 

Figure  S4.9: Characteristic  station  random  walk  constraint  for  GPS  stations  across
Europe. Values reflect the processing strategy which most frequently minimizes station
RMS. 
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Figure S4.10: (a) Median annual RMS and (b) Robust Network Imaged median annual
RMS, for GPS stations in Japan. Results are for the TROPx01 solution. 



236



237

Figure S4.11: Comparison of  (a, c, e, and g) Robust Network Imaged median annual
RMS and its (b, d, f, and h) percent difference relative to current processing for the (a
and b) TROPx02, (c and d) TROPx04,  (e and f)  Station specific, and (g and h) daily
optimal processing strategies for GPS stations in Japan. 

Figure S4.12: Characteristic station random walk constraint for GPS stations in Japan.
Values reflect the processing strategy which most frequently minimizes station RMS. 
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Figure S4.13: Global daily position vertical RMS improvement for the 2021 data set.
Values are defined following √(RMS12-RMS02). Here, RMS1 represents the station RMS
values of the TROPx01 solution, and RMS0 represents the value which best minimizes
the station RMS by strategy. Note that solutions which maintain the TROPx01 solution as
optimal, and thus show no difference, are not plotted here. There are 1356 stations (32%),
which retain the TROPx01 strategy. 
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4.11.4  Supplemental Videos

Video  S4.1: Observed  (a) GPS  vertical  displacement,  (b)  zenith  tropospheric  delay
(ZTD) deviation, and (c) GPS derived water vapor, in five minute increments beginning
on November 27,  2019 00:00 UTC. Data have been smoothed with Robust  Network
Imaging and were produced using a random walk of  3 mm/√(hr). Black dots represent
GPS station locations. (d) Wiggle plot of observed vertical displacements for November
26 – 27, 2019. The bounds of the transect are shown by the black rectangle in panel a.
Horizontal black line represents the current epoch shown in panels a – c. 
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Video S4.2:  Same as Video S4.1, except for the eastern United States during the same
timeframe, for current processing. 
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Video  S4.3: Corrected  (a) GPS  vertical  displacement,  (b)  zenith  tropospheric  delay
(ZTD) deviation, and (c) GPS derived water vapor, in five minute increments beginning
on November 27,  2019 00:00 UTC. Data have been smoothed with Robust  Network
Imaging and are for the TROPx08 solution. Black dots represent GPS station locations.
(d) Wiggle plot of observed vertical displacements for November 26 – 27, 2019. The
bounds of the transect are shown by the black rectangle in panel a. Horizontal black line
represents the current epoch shown in panels a-c. 
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Video S4.4: Comparison of the (a-c) TROPx01 solution to the (d-f) TROPx08 solution
for (a,d) GPS vertical displacement, (b,e) zenith tropospheric delay (ZTD) deviation, and
(c,d) GPS derived water vapor.
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Video S4.5: Same as Video S4.2, except for the TROPx08 solution. 
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Video S4.6:  Same as Video S4.4, except for the eastern United States during the same
timeframe. Comparison between the TROPx01 and TROPx08 solutions.  
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5

Discussion and Conclusions
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The findings presented in these studies highlight the prevalence, and impact, of 

subtle deformation signals observed by GPS time series in the western United States. 

Within each chapter, we present methods to identify and/or correct unique signals at 

daily, sub-daily, and multi-year time frames. We show how, when left unaccounted for, 

these signals can modify velocity fields, increase station uncertainties, and can lead to 

altered interpretations of the results. A range of deformation sources are investigated and 

we rely on recently published robust analysis methods, as well as the rapid expansion of 

the GPS network over the last fifteen years, to distinguish them. While these studies are 

focused on deformation within the western United States, their impact is broad, as they 

highlight the sensitivity of GPS positions to subtle signals and the necessity to account 

for all transient signals to produce robust analyses. The main conclusions for each chapter

and their broader impacts are presented in the following paragraphs. 

In the first chapter, we investigate the sensitivity of GPS stations to drought at 

small spatial scales. Many studies have used GPS data, in conjunction with Gravity 

Recovery and Climate Experiment (GRACE) data, to quantify hydrologic load variation 

at regional and continental scales. These studies typically only rely on the vertical GPS 

component and do not explore load variation below the spatial resolution of GRACE. 

Considering many water resources are stored in areas smaller than what can be resolved 

by GRACE, it is important to identify methods with which to quantify this variation. To 

address this, we focus on Great Salt Lake (GSL), in Utah, which lost 1.89 m of water 

during the 2012 – 2016 drought. The GPS stations near the lake show a clear three-
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dimensional change in trend during this period, however, we find that these 

displacements cannot be explained solely by the unloading of the lake. Following a 

sensitivity analysis of groundwater load distributions, we find that three-dimensional 

GPS is able to quantify both the unloading of the lake and nearby groundwater. This is 

achieved by considering radial rings of groundwater around the lake and the inferred 

groundwater loss is substantial (10.9 ± 2.8 km3), at twice the volume observed on the lake

(5.58 ± 0.11 km3). While the the choice of using rings is a simple model to represent the 

true complex distribution of groundwater, we find that well observations within the 

loaded region support our distribution. These findings identify substantial mass loss 

during the drought and reveal that three-dimensional GPS data is useful to quantify small 

scale hydrologic variation. Such usage of GPS data would be quite beneficial to water 

resource managers, particularly when considering water resources which are difficult to 

quantify such as aquifers. In our analysis, we assess the limitations of the current GPS 

network around GSL and find that a denser network is required to improve the resolution 

of the load distribution. Future studies near GSL, would greatly benefit from an expanded

GPS network to better understand groundwater variation. An option to address areas with 

sparse data would be to install a semi-continuous network. Such a network could be 

applied across a variety of scales (i.e., around GSL or smaller aquifers), to efficiently 

increase the resolution of the network and quantify multi-year hydrologic variation. 

The inclusion of the horizontal components in this study better constrains our 

results and reveal variability in station horizontal velocities dependent on the hydrologic 
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cycle. This factor is of particular interest for studies inspecting regional velocity fields 

since short duration or semi-continuous stations will exhibit bias depending on the time 

in which they recorded data. Since our study, a few stations near GSL have been installed 

or re-occupied, and the lake entered another period of decline beginning in 2020. Data for

these stations show similar displacements to those presented in this study, however, 

velocities of new stations will be heavily biased by the new drought signal. Our findings 

highlight the necessity to account for hydrologic variation in order to robustly investigate 

GPS velocity fields near large water storages. 

Further support of our load distribution is found in the seismicity analysis which 

finds that within the load region, seismicity is modulated by the hydrologic cycle. We 

find that as stresses on faults under the load are reduced during dry periods, earthquakes 

occur ~20% more frequently while seismicity outside of the load shows no such 

relationship. These findings indicate that near GSL, hydrologic unloading plays a larger 

long term role than hydrologic processes acting upon the faults themselves, which would 

reveal the opposite trend. This is of particular interest considering that since this study 

was prepared, the surface elevation of GSL has continued to decline to the lowest level 

on record and the lake is as risk of drying up completely. The findings presented in this 

study would suggest that, in the event of a fully emptied GSL, seismicity near GSL would

then be less affected by the hydrologic cycle, resulting in more consistent earthquake 

rates.  
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The most robust interseismic velocity field produced to date for the central Basin 

and Range is presented in the second chapter. Since deformation rates are particularly low

here, it is crucial to account for any subtle transient signals present in the timeseries. To 

address this, corrections for postseismic deformation, hydrologic loading, and regional 

common mode error are produced. We find that postseismic deformation substantially 

alters the velocity field, and that the common mode correction greatly reduces station 

uncertainties. Our final velocity field exhibits median velocity uncertainties which are 

62.1% and 53.8% lower, in the east and north components, relative to the original 

velocity uncertainties. Strain rates within the Las Vegas Valley are high, at 8.5 ± 2.4 

x10−9yr−1, and our velocity budget for the valley finds 0.52 ± 0.18 mm/yr of east–west 

extension. 

Our revised geodetic constraints on deformation within the central Basin and 

Range are important for revising future seismic hazard models within the region. 

Particularly with respect to the hazard near Las Vegas, for which our results clearly 

support that deformation is active within the valley. We show that the long term 

interseismic trends within Las Vegas are substantially higher than previously estimated 

due to postseismic deformation. The relaxation field is oriented such that our original 

dataset, and that of previous studies of the region, reflect slower extension across the 

valley. This shows that although the Eglington/Decatur and Frenchman Mountain faults 

are not particularly known for their modern seismicity rates, the combination of their long
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term extension rates and the elevated strain rates within the valley, suggest seismic hazard

is higher than previously suggested. 

Accurate modeling of zenith tropospheric delays (ZTD) plays a key role in 

producing quality GPS positions. When the delay estimate is too strict (or too loose), 

however, systematic errors (increased data noise) propagate into the position. In the final 

chapter, we present a sensitivity analysis of the tropospheric random walk constraint, at 

both local and global scales, in 5-minute GPS positioning. We find that spurious vertical 

displacements observed during Winter Storm Ezekiel on November 27, 2019 along the 

coast of California, are suppressed when using a random walk constraint of 24 mm/√(hr) 

(eight times looser than the default value), improving station timeseries RMS and 

repeatability by 15% and 21% respectively. The loosened constraint allows the ZTD 

estimate to better account for rapid variation of atmospheric conditions, preventing 

additional displacements from propagating into the position of the station. 

When the random walk constraint is chosen correctly, 5-minute GPS time series 

become substantially straighter. This is of particular importance for any sub-daily 

analysis of co-seismic displacements and early postseismic relaxation. In the event that 

an earthquake occurs during the passing of a weather front, which is not an unlikely 

occurrence, additional displacements when the random walk constraint is too strict could 

lead to incorrect estimation of the displacement field. This raises concern for the 

application of GPS based earthquake early warning systems which are dependent on 

accurate displacement fields. An overly strict random walk constraint could result in 
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either over or under estimating the magnitude of the event, of which minimizing both 

aspects are of key concern for proper early warning systems. A similar case can be made 

for assessing early postseismic deformation, in which additional displacements associated

with ZTD underestimation could lead to altered estimates of postseismic parameters, and 

for any studies investigating crustal deformation over hourly time frames. Each of these 

aspects can be improved by ensuring proper ZTD estimation. 

We find that global GPS network vertical RMS and repeatability is improved by 

4% – 9% and 10% – 21% respectively by region, when using a random walk of 6 

mm/√(hr). While these errors can produce substantial spurious displacements within the 

5-minute GPS time series, they propagate subtly into the daily positions, revealing a 

significant source of vertical station scatter which is readily correctable. The vertical 

component exhibits generally 2 – 3 times higher uncertainties than the horizontals and we

find that by identifying the optimal random walk per station, we can improve station 

daily vertical position RMS values for 68% of the global network. This raises clear 

implications for improving our understanding of vertical displacement fields. As 

described in Chapter 2, many studies have relied on vertical displacements to better 

understand hydrologic variations, and reduced vertical scatter due to properly identified 

random walk constraints will improve model accuracy. This pertains to any modeling 

which relies on vertical displacement fields as a constraint (e.g., volcanic, seismic, or 

pressure loading).  



252

The results of this study clearly show that adjustments to the ZTD random walk 

constraint are necessary in future re-analysis of the global GPS network. We find that a  

variable constraint yields greater improvements due to regional heterogeneity of optimal 

station random walk values, compared to the default uniform value approach. This is 

driven by climactic, temporal, and geographic factors. When applying a characteristic 

random walk constrain to each station, global station vertical repeatability can be 

improved by 10%, however, the improvement is substantially larger when identifying the 

daily optimal random walk per station at 24%. While the characteristic approach would 

be simple to apply, this method is unable to account for annual variability. The daily 

optimal approach, while clearly the best choice, would scale poorly to global GPS 

analysis. Thus, in order to account for both regional and temporal variability, defining an 

annual sinusoidal random walk constraint per station would be the optimal approach for 

improving station repeatability while also being able to scale to global network analysis. 

Such an approach would capture most of the improvements observed by the daily optimal

method and is expected to attain ~20% global improvement in station repeatability. At 

minimum, it is strongly recommended to loosen the uniform random walk to 6 mm/√(hr).
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