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PREAMBLE 

The research presented in this thesis is written with the intention of future publication in a 

peer-reviewed scientific journal. I will be the primary author on the paper, with Peter 

Weisberg as second author, and Tom Dilts and Chris Kratt as subsequent co-authors. 

Hence, I use pronouns in the plural rather than the singular throughout this thesis.  

 

ABSTRACT 

The spread of invasive plant species severely alters wildfire regimes, degrades critical 

habitat for native species, and has detrimental impacts on ecosystem function, rangeland 

productivity, and long-term carbon storage dynamics. Remote sensing technology has 

greatly improved our understanding of invasive plant ecology and ability to map and 

monitor plant invasions. Mapping plant invasions to the species level with conventional 

satellite and airborne data has proven challenging, however, because many invasive 

species occur at fine spatial scales or are mixed with native species, and satellite passes 

may occur too infrequently to capture important phenological stages. Imagery derived 

from readily deployable Unmanned Aerial Vehicles (UAVs) offers high-resolution data 

over carefully timed acquisition dates during the growing season.  However, some 

challenges remain that are particular to high spatial resolution imagery, where excessive 

detail from shadows and canopy gaps often result in misclassification, inaccuracy, and a 

“salt-and-pepper” effect in the final classification. The addition of textural and vegetation 

height data to a purely spectral pixel-based approach has the potential to mitigate these 

challenges and improve species-level vegetation classification. Using UAV imagery 
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acquired at specific phenological stages, we investigate which combinations of spectral, 

textural, vegetation height, and multi-temporal techniques best separate two invasive 

annual grasses, cheatgrass and medusahead, to the species level. 

 

We selected five study sites ranging in area from 8 to 36 hectares (ha) in Paradise Valley, 

Nevada, which feature a variety of invasive and native species that are typical of the 

Great Basin region. For three carefully selected dates over the growing season during 

which cheatgrass and medusahead were most spectrally distinct, we conducted UAV 

flight campaigns and collected field data on vegetation composition. Imagery was 

processed in photogrammetric software to produce orthomosaics, digital terrain models, 

and digital surface models from which vegetation height was derived. Texture analysis 

was performed over the acquired raster data products. Multi-date spectral, textural, and 

vegetation height variables were used to predict vegetation class type using Random 

Forest machine learning methods.  

 

The overall goal of this research is to further remote sensing methods for vegetation 

classification of invaded landscapes to the species level. We investigated which 

combinations of spectral, textural, vegetation height, and multitemporal techniques best 

separate two invasive annual grasses - cheatgrass and medusahead. To explore the impact 

of explanatory variables in our classification, all possible additive combinations of our 

variables were calculated. We found that multi-temporal texture variables and vegetation 

height added additional levels of information to our classification and, when combined 
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with multi date spectral information, achieved the highest overall accuracy. Our model 

resulted in a robust classification across several diverse study sites.  
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Distinguishing invasive annual grasses to the species level, using phenology-based 

spectral, textural, and structural data derived from Unmanned Aerial Vehicle 

imagery 

 

ABSTRACT 

We capitalized on species-specific differences in plant phenology and use high-resolution 

Unmanned Aerial Vehicle (UAV) imagery to classify invasive annual grasses (cheatgrass 

(Bromus tectorum) and medusahead (Taeniatherum caput-medusae) to the species level 

and distinguished them from native rangeland species. UAVs can produce images at the 

centimeter scale, largely avoiding the 'mixed-pixel problem' where larger pixels 

encompass multiple cover types and plant species. However, purely pixel-based 

approaches at high spatial resolutions often result in misclassification due to excessive 

detail arising from plant structural features like leaf angle, canopy gaps, or shadows. Our 

study addressed this challenge by employing a novel combination of spectral, textural, 

vegetation height, and multitemporal phenology-based data in a Random Forest 

classification. Exploratory data analysis illustrated unique patterns in the distributions of 

spectral, textural, and vegetation height data for each vegetation class type. After iterating 

through all possible model combinations of our variables, we found that the top six best 

performing models utilized texture and height variables in addition to phenology-based 

spectral data. Our approach proved generalizable across multiple large rangeland sites 

and distinguished invasive plant species from one another and from the dominant species 

of native vegetation within which they are embedded, increasing the utility of remote 

sensing data in invasive species management. Scaling our classification to regional or 
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continental levels and incorporating historical imagery would allow for risk assessments 

of future invasion and further our knowledge of invaded plant communities.  

 

KEYWORDS: invasive species, cheatgrass, Bromus tectorum, medusahead, 

Taeniatherum caput-medusae, weed detection, texture analysis, UAV, phenology 

 

INTRODUCTION 

Invasive annual plants are transforming arid and semiarid ecosystems into low-diversity, 

wildfire-prone, and economically unproductive grassland monocultures (Abatzoglou and 

Kolden 2011; Heywood, 1989; Mack et al., 2000; Walker and Steffen, 1997). With 

climate change and large-scale disturbances accelerating the spread of invasive annual 

grasses, the efficient control of emerging infestations is critical for slowing the rate of 

invasion and promoting rangeland biodiversity in regions that are potentially at risk 

(Archer and Predick 2008; Davies and Johnson 2008). Efforts to control the expansion of 

invasive plants are, however, limited by imperfect knowledge of spatial distribution. 

Traditional field-based surveys can collect detailed and accurate data regarding the 

spatial distribution, population size, and trends of plant communities (Sutherland, 2006), 

however, field surveys are generally limited to small, sampled areas and specific field 

seasons (Kerr and Ostrovsky, 2003). Often used in accordance with field-based data, 

remotely sensed data has been widely used in mapping and monitoring the distribution 

and abundance of invasive plant species (Bradley, 2014; Huang and Asner, 2009; Joshi et 

al., 2004). For targeted weed control applications, understanding patterns of species 

composition and diversity at the species level is essential for site-specific weed mapping 
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and the early detection of new invasions (Marushia et al., 2010). To address the existing 

limitations of high spatial resolution imagery and develop generalizable classifications of 

invasive annual plants to the species level, we combine phenology-based spectral, 

textural, and vegetation height information within a Random Forest classification 

framework. This additional representation of landscape characteristics builds upon and 

extends previous studies which exclusively use spectral attributes to classify invasive 

plants (de Sá et al., 2018; Doody et al., 2014; Weisberg et al., 2021).  

 

Like much of the Western United States, the once diverse Great Basin ecosystems are 

rapidly converting to winter annual grasslands containing prevalent exotic species such as 

cheatgrass (Bromus tectorum), medusahead rye (Taeniatherum caput-medusae), and 

wiregrass (Ventenata dubia) (Davies and Johnson, 2008; Hironaka, 1994; Tortorelli et al., 

2020). With the introduction of exotic annual grasses and domestic livestock from 

Eurasia, native perennial grasses were overgrazed and replaced by winter annual grasses 

over the last 200 years (Young and Longland 1996). Non-native grasses continue to 

expand into shrubland ecosystems, causing rapid conversion into annual grasslands and 

consequently altering fuel load, critical habitat for native species, ecosystem functions, 

rangeland productivity, and dynamics of long-term carbon storage (D'Antonio and 

Vitousek 1992; Brooks et al., 2004; Bradley et al., 2006). This results in dense 

monocultures that can reestablish more quickly than native species after a fire event, 

ratcheting up the dominance of invasive grasses following each successive disturbance 

(D'Antonio and Vitousek 1992; Melgoza et al., 1990).  
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Our study focuses on two invasive grass species of significant concern for management 

and conservation: cheatgrass and medusahead. These highly competitive species spread 

over short distances by wind and water, while at large distances they are effectively 

dispersed by attaching to animals, humans, and machinery (Davies and Sheley, 2007; 

Hulbert, 1955). While cheatgrass is a well-established invader in the Great Basin region, 

the rapid spread of medusahead has been more recent (Nafus and Davies, 2014; Young 

1992). Thus, development of new remote sensing approaches for early and species-

specific detection of cheatgrass and medusahead invasions will be timely and 

advantageous for allowing range managers to control their further spread. 

 

Historically, species-specific mapping has been limited by the relatively low spatial and 

temporal resolutions of aerial and satellite imagery platforms, which are too coarse to 

identify isolated individuals or small patches of invasives and unable to differentiate 

spectrally similar vegetation types (Carson et al., 1995; Lawrence et al., 2006). Several 

studies have successfully mapped invasive plants to the species level by employing 

phenology-based multitemporal imagery for classification (Carson et al., 1995; Everitt et 

al., 1992; Peterson, 2005; Schriever and Congalton, 1995; Singh et al., 2018). Species-

specific differences in phenology provide an opportunity to distinguish invasive species 

from one another and the ecosystem in which they are embedded. The phenology of a 

plant during the growing season, including life-cycle events such as emergence, 

flowering, or senescence, emphasizes the spectral differences between vegetative types 

(Justice et al., 1985; Reed et al., 1994). For example, saltcedar (Tamarix spp.) invasions 

were effectively mapped using images from late fall when foliage is a distinct orange-
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yellow color as opposed to other riparian species (Ji and Wang, 2016). Species can be 

separated based on varied phenological stages within the same image, or when phenology 

differs between images (Singh et al., 2018).  

 

Invasive annual grasses such as cheatgrass have been classified using intra-annual 

spectral differences between active and senescent periods (Boyte et al., 2019; Peterson, 

2005), or by using plant-specific responses to inter-annual variability in precipitation 

(Balch et al., 2013; Bradley and Mustard, 2005; Bradley and Mustard, 2006). While these 

approaches are successful at identifying invasion patterns at regional scales, multiple 

species of similar phenology are consequently grouped together and do not generate the 

species-specific classifications required for more targeted management.  

 

Although our two species of interest are similar in structure and stature, identification to 

species is possible because the phenological attributes of each are distinctive from one 

another and from native vegetation (Figure 1). Cheatgrass reaches peak greenness early 

in the season, develops a reddish seedhead, and becomes senescent in late spring when 

native species are still green (Figure 1A, 1B, and 1C) (Peterson, 2005). While other 

annual grasses are brown, medusahead turns a bright yellow-green color in spring and 

early summer. As the plant matures over the growing season, it stays green longer than 

cheatgrass and other forbs (Figure 1D and 1E). Nearing senescence, medusahead 

becomes a pale-yellow color and eventually tan (Figure 1F) (Ndzeidze, 2011).  
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Figure 1. UAV imagery emphasizing differences in plant phenology for cheatgrass and 
medusahead. Panels show quadrat frames for (A) cheatgrass mid-May; (B) cheatgrass 
early June; (C) cheatgrass early August; (D) medusahead mid-May; (E) medusahead 
early June; (F) medusahead early August. 
 
 
In 2017, Weisberg and co-authors used multitemporal UAV imagery to distinguish 

multiple co-occurring species of invasive annual grasses from each other and from native 

Intermountain West vegetation, based on phenological differences in the timing of plant 

life phases over the course of a growing season. By oversampling eight different dates of 

UAV imagery, a species-specific classification was best optimized using three flight 

dates: May 19th, June 1st, and July 20th (Weisberg et al., 2021). This three-date model 
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resulted in high classification accuracies for cheatgrass and medusahead and reasonable 

overall accuracy, considering the high number of class types (a total of 9 class types) 

(Weisberg et al., 2021).  

 

While phenology has proven successful in separating cheatgrass and medusahead in a 

pixel-based classification (Weisberg et al., 2021), challenges remain with the use of high 

spatial resolution imagery, such as UAV imagery. Pixel-based landcover classifications at 

high spatial resolutions frequently contain excessive spatial detail caused by variations in 

features such as leaf angle, shadows, and canopy gaps, often resulting in misclassification 

arising from a “salt-and-pepper” effect (de Jong et al., 2001; Kelly et al., 2004; Van de 

Voorde et al., 2007). There has been success in overcoming this challenge by using 

texture, object-oriented, or spatialized classification which use a pixel’s neighborhood 

characteristics in addition to its spectral characteristics (Blaschke et al., 2000; Dell’Acqua 

and Gamba, 2006; Yoon et al., 2005). While spectral features provide the average tonal 

variation in various bands of the electromagnetic spectrum, textural features provide 

information about the spatial distribution of tonal variations across pixels within a single 

band (Haralick et al., 1973). Such textural information obtained within the spatial 

neighborhood of a pixel provides additional information regarding distinct spatial 

structures that can be linked to specific vegetation types (Coburn and Roberts, 2004; Ge 

et al., 2006; Riou and Seyler, 1997).  

 

A wide variety of approaches exist to describe landscape texture, but perhaps the most 

widely used technique involves gray-level occurrence and co-occurrence metrics within a 
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moving window, or kernel (Haralick and Shanmugam, 1974; Haralick et al., 1973). First-

order texture statistics summarize the counts, or occurrences, of pixel values within the 

moving kernel of a designated window size (Unser, 1986). Second-order texture metrics, 

also referred to as co-occurrence measures, incorporate the relationship between 

neighboring pixels. Smooth textures are characterized by within-feature variability that is 

lower than between-feature variability, whereas for coarse textures, the converse is true 

(Ferro and Warner 2002; Haralick et al., 1973). This characteristic of texture is favorable 

when separating relatively smooth surfaces in an image (water or bare ground) from 

coarser surfaces (urban or vegetated areas) (Laliberte and Rango 2009). At detailed 

resolutions, texture can be used to differentiate patches of grass from shrubs, which have 

coarser texture due to shadows, branches, and twigs juxtaposed with foliage (Laliberte 

and Rango 2009). Classification accuracy is often improved with inclusion of texture, 

particularly for high-resolution data such as UAV imagery (Feng et al., 2015).  

 

Plant species differ in height, making variation in vegetation height another key 

expression of plant structure. Several studies have reported an increase in overall 

classification accuracy with the inclusion of structure and height data, particularly in 

heterogeneous landscapes, as opposed to using only spectral variables (Räsänen and 

Virtanen, 2019; Rosso et al., 2006; Straatsma and Baptist, 2008). In fact, detailed 

vegetation height information can readily be calculated from aerial imagery flown with 

sufficient overlap using photogrammetric techniques (e.g. structure-from-motion; 

Westoby et al., 2012). Orthomosaic and height models derived from 3-dimensional UAV 

data have been reported to accurately classify vegetation using image segmentation and 
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decision trees (Fraser et al., 2016; van Iersel et al., 2018). In the low-Arctic, Fraser et al. 

(2016) calculated vegetation heights at the 1cm scale using structure-from-motion 

methods in the monitoring of short-statured tundra vegetation. This additional 

information derived from UAV imagery can be utilized in classifications capturing fine-

scale heterogeneity of vegetation at local scales.  

 

By capitalizing on differences in plant phenology and the ability of Unmanned Aerial 

Vehicles (UAVs) to capture detailed imagery inexpensively and reliably over multiple, 

frequent, user-defined time periods, we have previously been able to differentiate 

individual species of invasive annual grasses (medusahead rye vs. cheatgrass) that co-

occur over much of the western United States (Weisberg et al., 2021). Our objective is to 

refine this multi-temporal methodology by incorporating additional levels of vegetation 

complexity beyond phenology, with the addition of texture and vegetation height (Figure 

2). We further extend the approach to a larger and more heterogeneous study area, 

leading to a more generalizable assessment and technique. Our analysis investigates three 

main questions (1) How does our methodology perform for larger, more numerous, and 

more diverse landscapes? (2) Which combinations of spectral, textural, vegetation height, 

and multitemporal information sources best distinguish two invasive annual grasses, 

cheatgrass and medusahead, to the species level? (3) Which variables contribute the most 

to classification performance? 
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Figure 2. A conceptual illustration of texture and height for class types which are 
representative of a sagebrush steppe ecosystem, ranging from bare soil to sagebrush. The 
dotted line represents the theoretical path of a bumblebee as it maintains a constant 
elevation above the upper surface of vegetation. The flatness of the bee’s dotted line 
represents low texture, while irregularity in the dotted line represents high texture. 
Samples of imagery illustrate the variability in pixel values within the moving kernel 
window for each vegetation type. The downward-facing column graph demonstrates 
relative texture values between vegetation types, irrespective of vegetation height. Bare 
soil and annual grasses have low texture values, while bunchgrass and sagebrush are 
characterized by high texture. 
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METHODS 

Our methodological processes can be broken down into five core steps: data collection, 

image processing, extracting variables, image classification, and accuracy analysis 

(Figure 3). The first step, data collection, involves all field-based acquisitions of 

vegetation data, UAV imagery, and ground control points. Once UAV imagery is 

collected, image processing requires the registration, orthorectification, and mosaicking 

of UAV images to generate raster file data. Because our approach is inherently an 

iterative process, steps one and two are repeated in June and August before the extraction 

of variables in step three. After all dates of imagery are processed, pure patches of 

vegetation are photo-interpreted, texture analysis is performed, vegetation height is 

calculated, and RGB spectral data is extracted in step three. In step four of image 

classification, Random Forest (RF) is applied to the response variable (photo-interpreted 

vegetation class type) and predictor variables (phenology-based spectra, texture, and 

vegetation height). Finally in step five, accuracy analysis is performed by predicting the 

model to validation data of vegetation data collected in the field. Depending on model 

performance, explanatory variables are refined to generate the most predictive model. 

Once the top model is determined, classification maps are aggregated to a coarser 

resolution for the final classification map.   
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Figure 3. Flow chart of methodology illustrating the overall processes for classifying 
invasive annual grasses to the species level. Numbered segments from 1 to 5 represent 
the order in which steps are performed.   
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Study Area and Site Selection 

The study system of Paradise Valley, Nevada provided an excellent test case for our 

methodological comparisons because it features multiple invasive species of concern to 

land managers, as well as a diversity of plant community types that are representative of 

the Great Basin (Table 1). The study was conducted during the summer of 2019 within 

five separate study sites, ranging from 8 – 36 hectares (37 – 109 acres) in area and 

elevations ranging from 4787 – 5430 meters. All five study sites total to 94 hectares, 

encompassed by a larger area of approximately 3300 hectares (Figure 4). The region is 

characterized as the Upper Lahontan Basin, Semiarid Uplands, and High Lava Plains 

ecoregions (Griffith et al., 2016). The heterogeneous vegetation communities are 

dominated by various native and introduced bunchgrasses, Wyoming big sagebrush 

(Artemisia tridentata ssp. wyomingensis), bulbous bluegrass (Poa bulbosa), antelope 

bitterbrush (Purshia tridentata), rubber rabbitbrush (Ericameria nauseosa), wild rye 

(Leymus cinereus), tumble mustard (Sisymbrium altissimum), Russian thistle (Kali 

tragus), cheatgrass, and medusahead rye. Soil textures within the study area typically 

include fine sandy loams and clay loams (US Geological Survey, USA; USGS). 
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Table 1: Environmental data and vegetation descriptions for each of the five study sites. 
MAP = Mean Annual Precipitation, MAT= Maximum annual temperature. 
 

Site Area 
(ha) 

MAP 
(mm) 

MAT 
(°C) 

Elevation 
(m) 

Vegetation 

PV1 36 315 31.3 4908 

 

• Mixed medusahead in sagebrush understory 
 

• Perennial forbs, e.g., lupine 
 
• Sagebrush distributed throughout the site 

 

PV2 15 319 31.8 4787 

 

• Large pure monocultures of medusahead on 
south side of road 

 
• Dense cheatgrass in southeast corner of site 

 
• Sagebrush and bitterbrush, particularly on 

north side of road 
 
• Great Basin wildrye and Russian thistle 

 

PV3 8 318 31.1 4879 

 

• Large pure monocultures of medusahead 
 

• Some cheatgrass near road edges and shrubs 
 
• Some bulbous bluegrass and perennial forbs 

 
• Sagebrush and bitterbrush shrubs 

 

PV5 23 386 30.1 5430 

 

• Medusahead monocultures throughout, 
particularly in northern half of the site 
 

• Pure cheatgrass monocultures in center and 
northeast corner of site 

 
• Dispersed sagebrush and rabbitbrush shrubs 

throughout the site 
 
• Seeded crested wheatgrass throughout the 

site 
 
• Some tumble mustard, native perennial forbs, 

and wild rye 
 

PV6 12 317 31.3 5040 

 

• Pure medusahead monocultures, particularly 
in the southeast quadrant of the site 
 

• Cheatgrass monocultures dispersed 
throughout the site 

 
• Increasing number of sagebrush shrubs with 

distance from road 
 
• Crested wheatgrass throughout the site 
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Figure 4. Study sites in Paradise Valley, Nevada, United States. Inset photographs 
illustrate variations in vegetation between sites (see Table 1).  
 

UAV Flights 

UAV data were collected using a Phantom 4 Pro quadcopter (DJI, Shenzhen, Guangdong, 

China), carrying a true-color RGB camera. The true-color RGB camera is equipped with 

a one-inch CMOS (complementary metal oxide semiconductor) sensor with ISO values 

ranging from 100-12,800 and an image resolution of 20 megapixels (5472 x 3078 pixel). 

This sensor produces visible band spectrum (RGB) true color imagery in RAW file 

format. A previous study of phenology-based methodology for mapping invasive plant 

species in the Great Basin found that optimal models using only true-color imagery (i.e. 

without infra-red bands) require the acquisition of at least three sampling dates over the 
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growing season (mid-May, early June, and late July/early August) (Weisberg et al., 

2021). Therefore, flights were conducted during the following time intervals: May 3 - 5, 

June 4 - 5, and August 12 – 14. These flight dates were selected to maximize spectral 

variation between medusahead and cheatgrass arising from differences in their vegetative 

and reproductive phenology. UAV images were captured mid-day, ± two hours from 

solar noon to mitigate variability in overall illumination and shadows cast by landscape 

features. The flight path contained 80% forward overlap and 90% side overlap, to ensure 

sufficient overlap for successful image mosaicking during processing. Aerial photographs 

were taken at an altitude of 34 meters above the UAV launch point, resulting in a 

resolution of one centimeter per pixel, and captured at a speed of five meters per second. 

Five ground control point (GCP) tiles were placed within each study plot for the duration 

of the study and verified within drone images to accurately geo-reference images using a 

Trimble GPS Geo 7x Handheld (Trimble Inc., Sunnyvale, California, USA) with up to 1 

cm horizontal and 1.5 cm vertical accuracy.   

 

Collection of Vegetation Data for Model Training and Validation 

Two forms of vegetation data were used to develop classification models, including both 

field data collected from botanical surveys in quadrat frames, and photo-interpreted 

patches from high-resolution UAV imagery. This approach allowed for model validation 

that was independent of the data used to develop the vegetation classification. Within 

pure patches of photo-interpreted vegetation types, points were randomly sampled and 

used for training data (n = 33,658 points total). We used validation data from two 

separate sources including field validation data from quadrat frames (n = 4,617 points 



17 
 

total) and sampled points from a randomly selected subset of photo-interpreted polygons 

across all study sites (n = 16,989 points total).  

 

Field data was collected for 1-m2 quadrat frames across each of the five study areas (n = 

65 quadrat frames total) on the day of each UAV flight. Quadrat frames were placed 

within areas of relatively homogenous and representative vegetation. Sites PV1 and PV3 

did not contain any pure cheatgrass quadrat frames, due to large mixtures of co-existing 

vegetation. For each one-meter quadrat frame, GPS field measurements were taken using 

Trimble GPS Geo 7x Handheld (Trimble Inc., Sunnyvale, California, USA) with up to 1 

cm horizontal and 1.5 cm vertical accuracy and detailed information regarding plant 

species and plant functional types were recorded. Within UAV imagery, randomly 

sampled points were extracted from quadrat frame locations and constrained by a 

minimum sampling distance of 5 cm. Vegetation data, broadly representative of Great 

Basin plant communities, was then aggregated to include five different class types: bare 

soil, bunchgrass, cheatgrass, medusahead, and shrubs. 

 

To obtain training data, pure patches of each vegetation type were manually photo-

interpreted from UAV imagery across all study sites (n = 300 polygons total). The 

average size of photo-interpreted polygons was 0.25m2 and ranged between 0.01m2 - 

1.07m2. Photo-interpreted patches were randomly sampled throughout study sites, 

allowing the proportions of data in each class to be representative of the actual 

proportions within the study site while capturing different soil types and micro-

environments across the entire landscape. Using a minimum sampling distance of 5 cm to 
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reduce spatial autocorrelation, points were randomly sampled from within photo-

interpreted polygons. The proportions of vegetation classes in the training data sample 

ranged between 10% - 26% (Table 2). To further validate model results after our initial 

classification, polygons of photo-interpreted vegetation data were randomly selected and 

partitioned into 50% training and 50% validation data (n = 150 polygons each, training = 

16,989 points, validation = 16,669 points). Random selection of photo-interpreted 

polygons allowed for spatial independence of training versus validation data.  

 

Table 2. Proportions of each vegetation class within training data. Sample points were 
randomly selected within photo-interpreted polygons. 
 

Class Type Percentage of points within the Training Data Sample Size (Points) 

Bare Soil 18 % 6081 

Bunchgrass 10 % 3428 

Cheatgrass 20 % 6849 

Medusahead 26 % 8618 

Shrub 26 % 8832 

 

Image Processing 

Using raw UAV data collected in the field, overlapping images were processed in 

Pix4Dmapper Pro software (Pix4D, Switzerland). GCPs were positioned within the UAV 

point cloud for densification. The differences between known and interpolated locations 

resulted in an average root mean square error (RMSE) of 2.9cm. Pix4D uses Structure 

from Motion-Multiview Stereo (SfM-MVS) photogrammetric techniques to tie 
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overlapping images. The absolute position of the point cloud and matched pixels was 

reconstructed in a 3D dense point cloud using the X,Y,Z position and spectral 

information stored for each point. Finally, from the 3D dense point cloud a mesh is 

interpolated using Inverse Distance Weighting to generate the Digital Surface Model 

(DSM) and Digital Terrain Model (DTM) rasters at 5cm spatial resolution and 

orthomosaic rasters at 1cm spatial resolution. Reflectance calibration was not performed 

during image processing; the lack of calibration is partially mitigated by UAV flights 

consistently near solar noon and use of band ratios as the spectral predictor variables. To 

achieve greater spatial alignment of imagery within each site, all orthomosaic, DTM, and 

DSM rasters were georeferenced into a NAD83 UTM Zone 11 projection using ArcMap 

(ESRI, USA, CA). Reliable landmarks, such as fence posts, were used in accordance with 

the coordinate locations of GCP tiles and quadrat frames to georeference orthomosaic 

images, resulting in an average RMSE of 0.036m.  

 

Phenology-based Spectral Information for Predictor Variables 

In addition to performing UAV flights near solar noon, band ratios were calculated using 

red, green, and blue bands derived from all orthomosaic images to account for spatial and 

temporal variability in overall illumination. Each spectral band was divided by the sum of 

all spectral bands (e.g. (Green/(Red + Green + Blue)) to relativize overall illumination on 

a per-pixel basis. The spectral attributes of band ratios represented the unique 

phenological characteristics of vegetation class types across May, June, and August 

imagery in the classification (Table 3).  
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Texture Analysis for Predictor Variables 

In addition to spectral information from red, green, and blue bands, first-order occurrence 

measures were used to derive texture metrics that added information on two-dimensional 

spectral heterogeneity to our classification (Figure 5). The occurrence measure tool in 

ENVI software (Version 5.0, Harris Geospatial, Broomfield, Colorado, United States) 

was used over the green band from the orthomosaic image to derive three texture metrics: 

entropy, skewness, and variance for all dates and sites. The green band was selected for 

texture analysis because chlorophyll in vegetation absorbs red and blue wavelengths 

while reflecting green wavelengths, thus best representing the highest signal of vegetation 

(Curran, 1980; Whittingham, 1974). Texture variables were selected depending on each 

unique capacity to characterize and highlight variation in species characteristics (Table 

3). Entropy, skewness, and variance were calculated using histogram measures based on 

pixel values within a moving kernel window.  

 

Entropy measures the complexity of pixel values within a moving window by calculating 

a greyscale diversity index (Shannon, 1948; Wood et al., 2012). The value of entropy 

increases with spectral heterogeneity, greater evenness, and a greater number of differing 

greyscale values within the moving window. An orderly kernel window of identical pixel 

values indicates low entropy (Haralick et al., 1973). Thus, entropy values can isolate 

complex (sagebrush) from less complex (grass monocultures) variations in vegetation 

(Figure 5B) (Hall-Beyer 2000).   
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Boundaries and edges of landscape features are often blurred in aerial imagery. 

Histogram measures, such as variance and skewness, are commonly used to reduce 

spectral noise and improve classification accuracy by emphasizing boundaries between 

features (Kumar et al., 2015). Skewness is calculated as the symmetry or asymmetry from 

the mean in a normal distribution (Irons and Peterson,1981). Data within a window is 

symmetrical if skewness equals zero. When skewness deviates from zero in the positive 

or negative direction, the frequency distribution is more asymmetrical and considered 

skewed. Edges within the image are enhanced while vegetation patch interiors contain 

uniform distributions of points (Figure 5C) (Xu et al., 2015).  

 

In a digital image, variance calculates the dispersion of values within the kernel around 

the mean. First-order occurrence variance differs from traditional variance of grey levels 

in the original image due to combinations of reference and neighbor cell values used to 

determine dispersion around the average (Haralick and Shanmugam, 1974; Haralick et 

al., 1973). Because variance equals zero in areas of equal intensity, boundaries between 

landscape features are identified in abrupt transitions, resulting in classifications 

identifying differing class types (Figure 5D) (Kumar et al, 2015). Ground-based 

vegetation quantification methods commonly use vegetation structure to evaluate habitat 

variation, making variance an ecologically relevant texture metric (Wood et al., 2012). 
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Figure 5. Sample maps illustrating first-order occurrence measures after texture analysis. 
(A) June orthomosaic for reference. Texture metrics used for predictor variables include 
(B) entropy, (C) skewness, and (D) variance.  
 

The optimal neighborhood size for calculation of texture metrics has been found to be 

class-specific (Coburn and Roberts, 2004). At our PV6 site we investigated two window 

sizes that best encompassed entire shrubs, the largest features for our study region. We 

found that a window size of fifteen-by-fifteen pixels (Overall = 72%, Kappa = 64%) 

obtained greater separability between class types than a seven-by-seven window size 

(Overall = 46%, Kappa = 28%). Accordingly, all texture metrics were calculated using a 

fifteen-by-fifteen kernel window.  

 

Surface Analysis for Predictor Variables 

In addition to the textural measures describing spectral variability or complexity in two-

dimensional (2D) space, we also modeled vegetation height to provide 3D information 

for our classification (Table 3). Digital Surface Models (DSM) are an above-ground 

measurement of the landscape surface, encompassing natural and artificial features in the 

environment (Figure 6B). Contrarily, Digital Terrain Models (DTM) are digital 

representations of underlying ground elevation, removing all natural and built features 
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(Figure 6C). Using the high-resolution 2D information (X,Y) and altitude (Z value) 

derived from UAV imagery for each site, vegetation height differences (ΔH) were 

produced without influence from the underlying topography by subtracting the DTM 

from the DSM (ΔH = DSM - DTM) (Figure 6D) (Weidner and Förstner, 1995). The 

DTM and DSM for the June date of imagery were selected because vegetation height for 

all classes was at peak during this time. The final height variable was transformed to a 

1cm resolution to match RGB variables, while retaining original 5cm pixel values.  

 

Figure 6. Sample maps illustrating the calculation of vegetation height. (A) June 
orthomosaic for reference. (B) DSM of above ground landscape features. (C) DTM of 
underlying ground elevation. The remainder from subtracting the DSM and DTM is (D) 
vegetation height.  
 

Exploratory Data Analysis of Training Data 

Exploratory data analysis (EDA) was used to determine how predictor values distinguish 

vegetation class types from one another at the species level. Within the photo-interpreted 

polygons used for training data, EDA illustrated the distributions of predictor variables 

with each vegetation class type. The minimum, maximum, range, and median values of 

each explanatory variable was calculated for each vegetation class type. Rather than 

interpreting red, green, and blue bands individually, we analyzed the more ecologically 



25 
 

relevant green band ratio to visualize overall greenness of spectral data as a surrogate for 

plant productivity.  

 

Model Classification and Comparison 

The Random Forest machine learning method (RF) was used because of its ability to 

handle complex and high-dimensional remote sensing datasets, such as UAV imagery 

(Akar and Güngör, 2012; Breiman, 2001; Cutler et al., 2007). RF was applied to the 

response variable (vegetation class type) and predictor variables (phenology-based 

spectral, textural, vegetation height characteristics) using R statistical package 

randomForest (Version 4.6-14; Breiman et al., 2018) to create a classified vegetation 

map. RF is a nonparametric classification and regression tool which uses a bootstrap 

method to generate an ensemble of decision trees based on predictor variables, without 

prior consideration of the response variable (Breiman, 2001). Two hyperparameters, 

ntrees and mtry, determine the number of trees in the forest and the number of variables 

randomly sampled at each split respectively. We found that hyperparameter tuning 

beyond the default parameters did not significantly affect model performance, and so 

default values were used where ntrees was set at 1000 and mtry was set to the square root 

of the number of predictors.  

 

Model predictions were validated using vegetation field data derived from quadrat 

frames, and then evaluated with classification confusion matrices to compare actual 

values against predicted values. Training and validation data within individual sites were 

used to generate single-site models for analyzing the generalizability of a single 
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classification model containing phenology-based spectral, textural, and vegetation height 

characteristics. To better understand the unique contribution of each study site and assess 

the generalizability of a combined site model, five different models were calculated by 

iteratively excluding each study site while incorporating the remaining four sites.  

 

Next, training and validation data were combined across all five sites to determine the 

most important combinations of variables in the RF model. Model comparisons were 

produced by iterating through all possible additive combinations (a total of 31 

combinations), without repetition, of all predictor variables. Starting with spectral, 

textural, and height only models, the unique contributions and synergistic effects of 

response variables were determined by comparing model improvement with the addition 

of each variable. Predictor variables for the final classification were selected based on the 

top performing model using overall accuracy, Cohen’s kappa, and balanced accuracy for 

cheatgrass and medusahead. 

 

To further verify the results of the top performing model, the same 31 combinations of 

phenology-based spectral, textural, and vegetation height models were applied to training 

and validation data derived from randomly partitioned polygons of photo-interpreted 

vegetation data. Results from this classification were compared against the model 

predictions of the initial model containing both photo-interpreted data for training and 

quadrat frame data for validation.   
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Post-classification, the RF model incorporating all five study sites was aggregated using a 

majority filter. The 1cm resolution of the RF classification contained pixels smaller than 

vegetative objects of interest, providing excessive detail. Therefore, following RF 

classification at the 1cm level, multiple scales of aggregation were compared for the 

classification. After analyzing model fit for multiple window sizes up to a 5cm x 5cm 

neighborhood, a 2 cm x 2cm majority filter was chosen for the final classification 

(Supplementary Table 1).  

 

Quantifying the Importance of Predictor Variables  

To determine the relative importance of predictor variables in our top model, mean 

decrease in accuracy (MDA) was calculated as the mean of differences in prediction 

accuracy between randomly permutated out-of-bag observations (data withheld from the 

RF model) and the original observations (Cutler et al., 2007). MDA quantified variable 

importance for class discrimination by calculating loss in model accuracy with the 

exclusion of each variable. Greater loss in classification accuracy resulted in higher 

importance for the variable. Variable importance was normalized by dividing the sum of 

each variable type (spectral, textural, and vegetation height) and the sum of all 

explanatory variables.  
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RESULTS 

Exploratory Data Analysis of Training Data 

Within the photo-interpreted polygons used for training data, distributions of phenology- 

based spectral, textural, and vegetation height, variables varied consistently across the 

five vegetation types (Figure 7 and Supplementary Table 2). As expected, bare soil 

exhibited the lowest median greenness over the entire season (May = 0.329, June = 

0.330, August = 0.312; Figure 7A). Bunchgrass generally exhibited the highest median 

greenness values (May = 0.377, June = 0.378, August = 0.343), with shrubs second (May 

= 0.343, June = 0.351, August = 0.346). The two invasive annual grass species showed 

differing temporal progressions of greenness ratio, as expected from species-specific 

differences in phenology. Median greenness of medusahead increased gradually over the 

growing season (May = 0.334, June = 0.340, August = 0.342), while median greenness of 

cheatgrass was higher in May (0.344) but then decreased in June (0.330) during the 

cheatgrass red phase before senescence in August (0.336).  
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Variability in the distributions for textural variables (entropy, skewness, and variance) 

separated vegetation class types on a spectrum of fine to coarse textures (Figure 7B, 7C, 

and 7D, and Supplementary Table 2). Of all five class types, bare soil exhibited relatively 

unchanged median texture values across May, June, and August, due to the homogenous 

nature of bare ground and rock spectral reflectance. Sagebrush and bunchgrass exhibited 

high median entropy (Sagebrush: May = 4.368, June= 4.301, August = 4.369, 

Bunchgrass: May= 4.113, June=3.930, August=4.016) and variance (Sagebrush: May = 

787.490, June = 660.900, August = 778.270, Bunchgrass: May = 382.300, June = 

246.610, August = 301.200) due to a greater complexity of pixel values caused by the 

inherent mixture of photosynthetic, non-photosynthetic, and shadow pixels these 

vegetation types contain within the kernel window. Shrub and bunchgrass types typically 

exhibited intermediate skewness (Sagebrush: May = -7.610•10-6, June = -1.010•10-5, 

August = -8.512•10-6, Bunchgrass: May = 1.510•10-5, June = 2.274•10-5, August = -

8.342•10-6), where spectral values within the neighborhood kernel were as likely to be 

above as below the mean. 

 

As with greenness, texture values for cheatgrass and medusahead differed from one 

another and co-existing vegetation over the course of the growing season (Figure 7B, 7C, 

and 7D, and Supplementary Table 2). Texture values for medusahead gradually became 

more fine, as seedlings emerged from the characteristic thatch layer of the previous year’s 

litter. Median entropy (May = 3.979, June = 3.941, August = 3.646) and variance (May = 

272.690, June = 249.670, August = 126.963) decreased slightly over the growing season, 

indicating greater homogeneity and uniformity of texture as medusahead stayed green 
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later in the season. However, entropy (May =4.014, June = 3.721, August = 3.852) and 

variance (May =300.220, June = 150.600, August = 203.730) for cheatgrass were more 

varied due to spatial variability in phenology as cheatgrass reached senescence. Both 

invasive grasses of interest exhibited higher negative skewness in August (Medusahead = 

-2.430•10-4, Cheatgrass = -7.649•10-5) when compared to bunchgrass (-8.342•10-6) and 

sagebrush (-8.512•10-6), suggesting large areas of relatively uniform reflectance with 

scattered small patches of other cover types. Cheatgrass exhibited more intermediate 

skewness compared to medusahead, likely due to the smaller patches of cheatgrass versus 

the extensive medusahead monocultures present in our study landscape. 

 

Distributions of vegetation height further distinguished the five classes, in particular 

serving to distinguish the two perennial types (shrubs and perennial bunchgrasses) from 

the two annual grass species (cheatgrass and medusahead) (Figure 7F). Shrub species 

exhibited the widest range of height values (1.469), with bunchgrass second (0.992). A 

diversity of height values within these classes is expected because of the spectrum of 

species that shrub class types (e.g. sagebrush, bitterbrush) and bunchgrass class types 

(e.g. crested wheatgrass, squirreltail) include. Median heights for cheatgrass (0.122) and 

medusahead (0.130) were similar, though the range in height for cheatgrass (0.512) was 

slightly lower than medusahead (0.649). This pattern may be explained by the denser and 

taller thatch layer that medusahead creates, while cheatgrass does not exhibit the same 

characteristic.  

 

 



32 
 

Comparison Among Sites 

Individual classifications using all predictor variables for each of the five study sites 

showed overall accuracies ranging from 0.696-0.934 (Table 4). All sites predicted 

cheatgrass and medusahead with reasonable or high balanced accuracy, ranging between 

0.502-0.925. The PV5 site was predicted with the highest overall accuracy of 0.934 and 

Kappa Coefficient of 0.875. Sites PV1 and PV2 displayed overall accuracies near 0.840. 

The PV6 site displayed the lowest overall accuracy at 0.696, though site PV3 displayed 

the lowest Kappa at 0.460. 

 

Table 4. Overall accuracies, Kappa statistics, cheatgrass balanced accuracy, and 
medusahead balanced accuracy for PV1, PV2, PV3, PV5, and PV6 individual-site 
classifications. Training data consisted of randomly sampled points within pure patches 
of photo-interpreted vegetation. Validation data was derived from majority vegetation. 
cover from 1-m2 quadrat frames. 
 

 
 

 

Site Overall Accuracy Kappa Cheatgrass Medusahead 

PV1 0.860 0.655 N/A 0.916 

PV2 0.826 0.668 0.502 0.850 

PV3 0.736  0.460 N/A 0.833 

PV5 0.934 0.875 0.925 0.912 

PV6 0.696 0.576 0.845 0.734 



33 
 

Iterative site exclusions resulted in overall accuracies ranging between 0.670-0.758 

(Table 5). Excluding site PV1 increased all statistical metrics, however overall accuracy 

only increased 0.061 versus using all study sites. When site PV2 was excluded from the 

classification, model performance declined. Exclusions of sites PV4, PV5, and PV6 were 

comparable to the classification using all five sites. 

 
Table 5. Overall accuracies, Kappa statistics, cheatgrass balanced accuracy, and 
medusahead balanced accuracy for differing combinations of study site exclusions. 
Training data consisted of randomly sampled points within pure patches of photo-
interpreted vegetation. Validation data was derived from majority vegetation cover from 
1-m2 quadrat frames. 
 

Site Overall Accuracy Kappa Cheatgrass Medusahead 

Using All Sites 0.745 0.611 0.765 0.834 

Excluding PV1 0.806 0.707 0.805 0.897 

Excluding PV2 0.670 0.509 0.755 0.791 

Excluding PV3 0.745 0.614 0.785 0.796 

Excluding PV5 0.750 0.6158   0.726 0.820 

Excluding PV6 0.758 0.614 0.747 0.844 

 
 
 
Model Comparisons and Selection of Predictors 

Based upon the combined model across five study sites, a comparison of all 31 possible 

combinations of spectra, texture, and height demonstrated that the top performing 

multitemporal model uses information from phenology-based spectra, entropy and 
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skewness texture, and vegetation height variables to classify invasive annual grasses to 

the species level (Overall Accuracy = 0.747, Kappa = 0.613, Cheatgrass = 0.763, 

Medusahead = 0.833) (Table 6). However, this model is only slightly more predictive 

than remaining models that incorporate some combination of spectra, texture, and 

vegetation height. The difference in the overall accuracy for the top six models are of 

near identical predictive power, therefore the top model with fewer variables was more 

parsimonious. 

 

Table 6. Model comparisons ranked by overall accuracy and Cohen’s kappa for all study 
sites combined. Training data consisted of photo-interpreted patches of vegetation. 
Validation data consisted of vegetation field data. The top six models are highlighted in 
grey. 
 

 Experiment Overall Cheatgrass Medusahead 

  Accuracy Kappa Accuracy Accuracy 

1 RGB All Dates + Entropy + Skewness + Height 0.747 0.613 0.763 0.833 

2 RGB All Dates + Entropy + Skewness + Variance + Height 0.745 0.611 0.765 0.834 

3 RGB All Dates + Entropy + Variance + Height 0.742 0.608 0.767 0.830 

4 RGB All Dates + Skewness + Variance + Height 0.742 0.606 0.762 0.830 

5 RGB All Dates + Variance + Height 0.742 0.606 0.766 0.827 

6 RGB All Dates + Entropy + Height 0.739 0.602 0.757 0.829 

7 RGB All Dates + Entropy + Skewness 0.732 0.589 0.762 0.807 

8 RGB All Dates + Skewness + Height 0.730 0.586 0.738 0.819 

9 RGB All Dates + Skewness + Variance 0.726 0.582 0.761 0.801 

10 RGB All Dates + Entropy + Skewness + Variance 0.725 0.579 0.757 0.803 

11 RGB All Dates + Entropy 0.720 0.574 0.754 0.800 

12 RGB All Dates + Entropy + Variance 0.717 0.570 0.755 0.800 

13 RGB All Dates + Variance 0.717 0.570 0.753 0.794 
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14 RGB All Dates + Height 0.716 0.567 0.732 0.814 

15 RGB All Dates + Skewness 0.708 0.554 0.748 0.780 

16 RGB Only, All Dates 0.682 0.515 0.729 0.763 

17 Entropy + Skewness + Height 0.512 0.294 0.520 0.704 

18 Entropy + Skewness + Variance + Height 0.504 0.284 0.515 0.700 

19 Skewness + Variance + Height 0.500 0.281 0.5112 0.701 

20 Entropy + Variance + Height  0.492 0.267 0.514 0.697 

21 Skewness + Height 0.487 0.268 0.498 0.699 

22 Skewness + Variance 0.4847 0.253 0.57764 0.639 

23 Entropy + Skewness + Variance 0.483 0.251 0.581 0.637 

24 Entropy + Skewness 0.481 0.248 0.575 0.634 

25 Entropy + Height 0.475 0.252 0.494 0.693 

26 Entropy Only 0.464 0.224 0.564 0.614 

27 Entropy + Variance 0.462 0.225 0.569 0.619 

28 Variance + Height 0.453 0.231 0.499 0.685 

29 Variance Only 0.440 0.201 0.549 0.602 

30 Skewness Only 0.438 0.194 0.530 0.609 

31 Height Only 0.376 0.162 0.479 0.606 

 

The phenology-based spectral variables (three RGB band ratios over three dates) 

contributed the most to our overall classification. When comparing the RGB, entropy, 

variance, skewness, and height only models, the RGB only model (model 22) resulted in 

the best performing model with an overall accuracy of 0.682 and Kappa of 0.515. The 

addition of one or several textural and height variables further increased the predictive 

power of the classification when added to RGB spectral bands (models 1-15). When any 

combination of RGB, texture, and height variables are all three incorporated into the 

classification (models 1-6, 8), the model always performed better than any RGB and 
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texture model (models 9-13, 15) or RGB and height model (model 14), with the 

exception of model 7. The top six best performing models included both texture and 

height variables in addition to the multi-temporal RGB band ratios. 

 

To further validate our model results, RF models incorporating the same 31 combinations 

of spectral, textural, and vegetation height variables were also applied to photo-

interpreted vegetation data for which digitized polygons (patches of vegetation) were 

randomly portioned into training and validation data (Supplementary Table 3). The RGB 

only model performed the best (Overall Accuracy = 0.901, Kappa =0.896) compared to 

the entropy, variance, skewness, and height only models. Any additive combination of 

RGB, textural, height variables increased overall model performance within 0.030. The 

top seven best performing models similarly exhibited at least some combination of RGB, 

texture, and/or height variables. While improvement was lower, the accuracy rankings of 

our classification as assessed using independent photo-interpreted validation data 

parallels that of our validation using field data from quadrat frames, confirming the 

predictive power of our model.   

 

Final Model Validation 

Using training data of photo-interpreted vegetation and validation data of field data taken 

from GPS-located quadrat frames, the best ranking model aggregated to the 2cm scale 

resulted in higher accuracy across all metrics. Balanced accuracy for the two invasive 

annual grasses of interest included cheatgrass at 0.931 and medusahead at 0.833 (Table 

7). Cheatgrass and medusahead were predicted at high sensitivity (true positives; 
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Cheatgrass =  0.915, Medusahead = 0.942) and high specificity (true negatives; 

Cheatgrass = 0.947, Medusahead = 0.958). The bunchgrass and bare soil types were 

slightly underpredicted, while shrubs were slightly overpredicted. When cheatgrass and 

medusahead were misclassified, the two annual grass species were generally confused 

with one another more than with bare, bunchgrass, and shrub types (0.614 of cheatgrass 

misclassifications were classified as medusahead, 0.822 of medusahead misclassifications 

were classified as cheatgrass). Given that training and validation data were collected 

across multiple and distinct locations within our study area, these results illustrate the 

high generalizability of our model within the Paradise Valley landscape. 
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Contributions of Predictors to Classification of Vegetation Types 

Using mean decrease accuracy (MDA), the normalized variable importance for the top 

model using all spectral, entropy, skewness, and height variables indicated that the sum 

of phenology-based RGB spectral data was most important for class discrimination 

(MDA = 0.609) (Figure 8). The sum of texture variables also greatly contributed to class 

discrimination (MDA = 0.522). Vegetation height contributed to class discrimination the 

least (MDA = 0.072). 

 

Figure 8: Variable importance plot (calculated by mean decrease accuracy) for summed 
predictor variables in the RF classification using all spectral, textural and vegetation 
height data. Variables are listed in decreasing importance. 
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Final Classification Map Identifying Invasive Annual Grasses to the Species Level 

The random forest model containing spectral, textural, and vegetation height information 

successfully differentiated the two invasive annual grasses from one another and from co-

occurring vegetation (Figure 9). Comparing ground truth data with the classification map 

shows that patches of cheatgrass, displayed in a golden-brown color, were differentiated 

well from the matrix of medusahead. There was some confounding of medusahead and 

bare soil, likely due to the bare soil spectra reflectance being similar to medusahead litter. 

Individual sagebrush shrubs were separated from one another, with minimal salt-and-

pepper effects within shrub canopies. Shadows caused by other landscape features, such 

as dense thatch, were sometimes incorrectly classified as bunchgrass. 

 

Figure 9. August UAV orthomosaic for site PV6 pictured left, featuring three vegetation 
quadrat frame samples. Final classification map for bare, bunchgrass, cheatgrass, 
bunchgrass, and sagebrush class types is pictured right. The final model utilized spectral, 
textural, and vegetation height data.  
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DISCUSSION  

Our research demonstrates that the combination of multi-date textural information and 

photogrammetrically estimated vegetation height successfully improves a multi-temporal 

classification of invasive plant species. This improvement could arise from the 

hierarchical structure of tree-based models inherent in the RF approach. For example, 

vegetation height readily separates taller vegetation (shrub, bunchgrass) from shorter 

vegetation and bare ground (Figure 7E). Once these types have been separated, the 

texture variables can effectively distinguish shrub from bunchgrass, and cheatgrass or 

medusahead from bare ground (Figure 7B, 7C, 7D). Our methodology proved to be 

generalizable across multiple large rangeland landscapes containing a variety of native 

and invasive species. 

 

Our invasive annual grass species of interest were predicted with high accuracy using the 

top-ranking model. Cheatgrass was predicted with 0.931 balanced accuracy, while 

medusahead was predicted at 0.950 balanced accuracy. When these species were 

misclassified, they generally were confused with one another versus the other vegetation 

types. Cheatgrass was slightly overpredicted and medusahead was slightly underpredicted 

in our classification. An overprediction (fewer false negatives, but more false positives) is 

preferred if the goals are to locate all cheatgrass patches regardless of cost and effort 

(Jiménez-Valverde et al., 2011), but at the expense of spending time and resources 

visiting sites that may not contain cheatgrass. An underprediction (fewer false positives, 

but more false negatives) may be preferred if the goal is to capture most medusahead 
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sites and there is significant cost to visiting incorrectly classified medusahead sites 

(Jiménez-Valverde et al., 2011).  

 

Challenges for Remote Sensing of Invasive Plants to the Species Level 

Phenological variation within and between plant species remains a notable challenge for 

mapping invasive plants to the species level. Previous studies have demonstrated that 

invasive plants can be separated from co-occurring vegetation, due to differences in the 

spectral characteristics of phenology during the growing season (Carson et al., 1995; 

Everitt et al., 1992; Peterson, 2005; Schriever and Congalton, 1995; Singh et al., 2018). 

In the Western United States, both Boyte et al. (2019) and Peterson et al. (2005) 

quantified percentage of annual grass groundcover, focusing on cheatgrass, by using 

several dates of imagery depicting normalized difference vegetation index (NDVI) of 

early spring green-up and early summer senescence. However, these approaches were 

challenged with separating cheatgrass from vegetation of similar phenology. For 

example, in Peterson et al. (2005) the estimated percent cover of cheatgrass also 

contained species of an invasive annual mustard (Lepidium perfoliatum) and a native 

perennial grass (Poa secunda) which had similar phenological characteristics to 

cheatgrass, thus resulting in overestimations of cheatgrass cover.  

 

Other studies have capitalized on the plant-specific response of inter-annual rainfall to 

separate cheatgrass from co-occurring vegetation in the Great Basin (Bradley and 

Mustard, 2005; Bradley and Mustard, 2006; Balch et al., 2013). In a high rainfall year, 

annual grasses such as cheatgrass grows taller and establish in greater density, and 
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subsequentially exhibit higher greenness than in a low rainfall year. Meanwhile, shrub 

and perennial bunchgrasses exhibit less change in productivity due to adaptation for 

variance in rainfall. This approach allows mapping of cheatgrass invasions over large 

spatial extents, but repeatability is limited by time series data requiring both dry and wet 

years and selecting optimal Landsat scenes within the narrow window of peak cheatgrass 

productivity. While these classification techniques generate useful predictions of 

population patterns and percent cover, they are not species-specific and often result in 

aggregations of functional vegetation types (such as “early-season annuals”) having 

broadly similar phenological characteristics (Bradley, 2014). 

 

An additional challenge in using high-resolution mapping of invasive vegetation involves 

excessive detail caused by shadows and canopy gaps in vegetation. While there has been 

success using readily deployable, high spatial resolution imagery (such as UAV imagery) 

to get to the species level (Weisberg et al., 2021), purely pixel-based approaches can be 

less effective at high spatial resolutions and often result in misclassification and 

inaccuracy (de Jong et al., 2001; Kelly, et al., 2004). Consistent with the results of 

previous studies (Blaschke et al., 2000; Dell’Acqua and Gamba, 2006; Yoon et al., 2005), 

we found that inclusion of textural and height characteristics used in combination with 

the multitemporal spectral characteristics of a pixel improved the predictive skill of our 

classification (Overall Accuracy = 0.747, Kappa = 0.613, Cheatgrass = 0.763, 

Medusahead = 0.833 using RGB, entropy, skewness, and height vs. Overall Accuracy = 

0.682, Kappa = 0.515, Cheatgrass = 0.729, Medusahead = 0.763 using RGB only). Where 

entirely pixel-based models often result in spectral confusion of vegetation types in 
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classifications utilizing high-resolution data such as UAV imagery, spatial variation in 

texture has previously been shown to improve the separability between class types (Feng 

et al., 2015). For instance, in Wisconsin marshes where cattails (Typha spp.) invade in 

high density monocultures, Boers and Zedler (2008) used the unique texture of cattails 

exhibiting dark circular features distinct from surrounding vegetation to map invasion 

rate over time. In addition, the inclusion of vegetation height derived from UAV data has 

been shown to increase the robustness of vegetation models (Fraser et al., 2016; van 

Iersel et al., 2018). While our study used single-date imagery of peak vegetation height 

data, van Iersel et al., (2018) used multi-date UAV imagery to derive temporal greenness 

as well as temporal vegetation height as a proxy for plant phenology in non-woody 

floodplain vegetation monitoring. Because invasive annual grasses typically emerge prior 

to native vegetation, this framework could potentially be applied in arid and semi-arid 

landscapes, such as our study region, to further the utility of vegetation height in a 

species-specific classification. 

 

Caveats and Limitations of our Approach  

Spatial variability in phenology is a remaining challenge for our species-specific 

classification approach, in which environmental variation and biological events can 

impact fine-scale variation in species phenology and thus the generalizability of 

phenology-based classifications (Andrew and Ustin, 2009; Weisberg et al., 2021). 

Particularly in arid and semi-arid ecosystems, pulses of plant emergence, growth, and 

reproductivity are directly linked to sporadic interannual rainfall (Chesson et al., 2004). 
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Unfortunately, accounting for inter-annual and intra-annual spatial variability in 

phenology for a given landscape and year is difficult to obtain prior to data collection.  

 

Land-based digital cameras, or PhenoCams, offer a potential solution to this problem by 

providing high-frequency or continuous high-resolution data quantifying phenological 

variation, such as leaf flushing and senescence (Alberton et al., 2017; Klosterman et al. 

2014; Richardson et al., 2009). This approach is ideal for observing phenological 

differences due to its low cost, low effort, easy installation, and ability to monitor 

simultaneous sites at high frequencies (e.g., hourly, daily) (Alberton et al., 2014).  

 

Often with little consideration for how texture may vary over the growing season, texture 

analysis most commonly utilizes single-date imagery. Few studies have exploited 

variations in the phenology of texture for image classification (e.g. Culbert et al., 2009). 

One such study, Almeida et al. (2014), found that high levels of variation in image 

texture, associated with fine-scale temporal variation in vegetation greenness , were 

useful in characterizing deciduous (A. tomentosum) and evergreen (M. 

rubiginosa) species from one another. Incorporating the phenology of texture improved 

our ability to classify invasive annual grasses to the species level and partially mitigated 

the problem of interannual and spatial variability in plant phenology. Because we used 

the same dates of imagery for spectral and textural data, future research is needed to 

identify specific times during the growing season when texture measures best separate 

species of interest. 
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While our study investigated two fixed window sizes for all texture variables, several 

studies have suggested multi-scale methods for optimizing structural data in landscape 

classifications (De Siqueira et al., 2013; Lan and Liu, 2018; Marceau et al., 1990). This 

approach allows for differing scales, shapes, and orientations of geometric window sizes, 

to better account for variation in landscape features (Franklin et al., 1996; Woodcock and 

Strahler, 1987). For instance, at high resolutions invasive grasses may exhibit optimal 

window sizes at fine scales, while an optimal window for sagebrush may require coarser 

scales. Rather than using a single window size, further investigation of appropriate 

textural information at varying scales could improve our multitemporal approach. 

 

Though occurrence texture measures mitigate misclassifications within a moving kernel, 

our UAV-based classification is challenged by translating across scales from patches of 

vegetation to individual plants. Our approach uses photo-interpreted vegetation data at 

the patch scale, but extracts spectral, textural, and height-based structural information at 

the 1cm pixel-level, resulting in occasional misclassification of pixels within vegetation 

patches. Such problems of high-resolution “noise” could be alleviated using an object-

based image analysis (OBIA) approach, which partitions images into homogenous 

“image-objects” prior to classification (Blaschke, 2010; Chabot et al., 2016; Huang et al, 

2020). OBIA methods differ from traditional pixel-based classifiers by segmenting 

defined parameters and combining neighboring pixels of similar shape, spatial, spectral, 

textural, contextual, and temporal data into a spatial image object (Hay et al., 2002; Ma et 

al., 2015; Ryherd and Woodcock, 1996). Thus, intra-class spectral variability caused by 

canopy gaps, shadows, and texture can be reduced by using OBIA techniques, 
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particularly in high-resolution images (Torres-Sánchez et al., 2015). OBIA has been used 

in various remote sensing applications including forest mapping, rangeland monitoring, 

urban mapping, and precision agriculture (de Castro et al. 2020; Feng et al. 2015; 

Honkavaara et al., 2013; Lu et al., 2010; Wallace et al., 2012; Weisberg et al., 2007). 

This technique could be an especially useful addition to our classification approach as 

OBIA functions at an appropriate scale relative to vegetation (Booth et al., 2005; 

Marceau and Hay, 1999). Ecologically meaningful features can be derived from these 

delineated objects, thus furthering our understanding of ecological processes and changes 

in the spatial pattern of vegetation (Hay et al., 2002).  

 

Potential Applications for Resource Management and Ecological Restoration 

Our methodology can further target control efforts according to the density, size, and 

composition of invasive vegetation. With repetitive sampling, our species-level 

classification allows for the early detection of new invasions (e.g. Ishii and Washitani, 

2013). Because cost and effort are most feasible with the smaller scale of new invasions 

versus large, established infestations, the subsequent the rate of invasion is slowed while 

rangeland biodiversity is promoted (Baena et al., 2017; Panetta, 2009). Furthermore, 

historical records of invasive spread provide a useful tool for assessing the effectiveness 

of introduced weed management and control (Morin et al., 2009). Henderson (1999) 

suggests that control effectiveness can be determined at landscape scales by comparing 

invasive distribution in historical maps before and after the implementation of a weed 

control program. The change and rate of invasion over time can be evaluated with this 

approach, allowing for the further prioritization of control efforts and resources.  
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Our presence-absence data of invasive species occurrence could be integrated with 

bioclimatic variables for species distribution modeling (SDM) (Piiroinen et al., 2018). 

Across Western sagebrush ecosystems, Pastick et al. (2021) quantified historical (1985-

2019), present (2020), and future (2025-2040) percent cover of invasive annual grasses 

with the use of field and remotely sensed data in relation to environmental variables (i.e. 

climate, topography, wildfire, transportation vectors). SDMs were generated from the 

probability of past state transitions, rate of change, and potential drivers of invasive 

grasses, allowing estimation of susceptibility to invasion over large areas. Because SDMs 

can identify suitable habitats and predict areas at high risk for future invasion, this 

approach provides a powerful tool for conservation, planning, and prioritized 

management efforts (Ahmed et al., 2020). In fact, predictions derived from SDMs have 

impacted global policy strategies and development in organizations such as United 

Nations Environment Programme, the Convention of Biological Diversity, Organization 

for Economic Co-operation and Development, European Union, Conservation 

International, International Union for Conservation of Nature, World Wildlife Fund, and 

more (Cayuela et al. 2009). This application is particularly relevant considering future 

climate change scenarios and modified disturbance regimes, in which invasive annual 

grasses are expected to expand into previously uninvaded areas, while at the same time, 

native sagebrush ecosystems are becoming less resistant to invasion (Boyte et al., 2016; 

Chambers et al., 2014; Chambers and Pellant, 2008; Pastick et al., 2021).  
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Expanding our multitemporal, phenology-based, UAV classification to satellite imagery 

would provide the opportunity to facilitate further management actions by capturing the 

general distribution of weeds over the entirety of a region rather than within a single site 

or several sites (Martin et al., 2018). Satellite imagery contains data over wide ranges but 

typically covers a mixture of vegetation types due to meter-level resolution. Contrarily, 

UAV imagery provides centimeter-level detail and greater flexibility in temporal 

resolutions but at the cost of covering smaller landscapes. Several studies have 

successfully combined these two modes of remote sensing to map invasive plants 

(Gränzig et al. 2021; Kattenborn et al. 2019). In mapping invasive shrubs (Ulex 

europaeus), Gränzig et al. (2021) successfully used UAV-based reference data to train a 

large-scale classification of Sentinel-2 data using optimal phenological times where Ulex 

europaeus exhibited distinct flowering phenology compared to co-existing vegetation. 

Over the extent of the Chiloé Island in south-central Chile, Kattenborn et al. (2019) 

combined UAV with multitemporal Sentinel-1 and Sentinel-2 imagery to classify three 

invasive plant species (Acacia dealbata, Pinus radiata, and Ulex europaeus) depending 

on intraspecific variability in canopy structure, texture, and the flowering stage. In a 

similar application, our results could serve as a basis for scaling to satellite-level 

classifications, allowing for large-scale monitoring and broad scale maps of plant 

invasion patterns.  
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Conclusion 

We demonstrated the usefulness of a multitemporal classification that exploits differences 

in growing-season phenology, texture, and vegetation height derived from UAV imagery 

to classify invasive plants to the species level. Despite several caveats and inherent 

limitations of our methodology, our model resulted in a robust classification and offers 

exciting opportunity for future directions and applications. Early detection of new 

invasions and control effectiveness monitoring is possible with repetitive sampling and 

through incorporating historical imagery with our approach. Additionally, previous 

studies have demonstrated success in scaling detailed vegetation classifications derived 

from UAV imagery to satellite imagery, attaining comprehensive monitoring at regional 

and continental levels (Gränzig et al., 2021; Kattenborn et al., 2019). Future phenological 

research is needed for large-scale, species-specific modeling to facilitate resource 

management, targeted ecological restoration, and improved understanding of invaded 

ecosystems. 
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SUPPLEMENTARY MATERIALS 

Post-classification aggregation comparisons 

While the 1cm scale classification was used to train the RF model, predictions were 

aggregated based on the majority pixel values for model validation. We found the 2cm 

scale classification to perform the best out of multiple resamples, with an overall 

accuracy of 87% and a Cohen’s Kappa Coefficient of 80% (Supplementary Table 1). 

Accuracy in cheatgrass predictions improved from being underpredicted at the 1cm scale 

to being slightly overpredicted at the 2cm scale.  

 

Supplementary Table 1. Comparison of overall accuracies using all spectral, textural, and 
height-based data for each aggregated scale. 
 

Scale Overall Accuracy Kappa Cheatgrass Medusahead 

1cm 0.747 0.613 0.763 0.833 

2cm 0.923 0.885 0.931 0.950 

3cm 0.917 0.876 0.927 0.944 

5cm 0.882 0.823 0.895 0.921 
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Statistics for Exploratory Data Analysis 

Supplementary Table 2. Median (Minimum, Maximum) values over the growing season 
for predictor variables of photo-interpreted vegetation types used as training data. 
Vegetation height was only calculated for June, during peak height.  
 

  MAY JUNE AUGUST 

G
R

E
E

N
N

E
SS

 

Bare 0.329 
(0.309, 0.338) 

0.330 
(0.310, 0.341) 

0.312 
(0.312,0.339) 

Bunchgrass 0.377 
(0.332, 0.690) 

0.378 
(0.325, 0.636) 

0.343 
(0.303, 0.379) 

Cheatgrass 0.344 
(0.310, 0.479) 

0.330 
(0.318, 0.419) 

0.336 
(0.316, 0.349) 

Medusahead 0.334 
(0.316, 0.377) 

0.340 
(0.321, 0.411) 

0.342 
(0.328, 0.356) 

Sagebrush 0.343 
(0.000, 0.500) 

0.351 
(0.294, 0.720) 

0.346 
(0.290, 0.500) 

E
N

T
R

O
PY

 

Bare 3.477 
(2.506,4.445) 

3.346 
(2.201, 4.299) 

3.265 
(1.843, 4.419) 

Bunchgrass 4.113 
(2.996, 4.782) 

3.930 
(2.697, 4.672) 

4.016 
(2.978, 4.740) 

Cheatgrass 4.014 
(3.069, 4.558) 

3.721 
(2.863, 4.445) 

3.852 
(2.829, 4.459) 

Medusahead 3.979 
(3.195, 4.724) 

3.941 
(2.914, 4.587) 

3.646 
(2.311, 4.344) 

Sagebrush 4.368 
(2.441, 4.823) 

4.301 
(3.346, 4.870) 

4.369 
(3.201, 4.916) 

SK
E

W
N

E
SS

 

Bare -3.027•10-4 

(-2.611•10-2, 2.526•10-2) 
-7.876•10-4 
(-5.790•10-2, 4.201•10-4) 

-7.876•10-2 
(-2.080•10-1,4.313•10-2) 

Bunchgrass 1.510•10-5 
(-1.355•10-3, 2.334•10-3) 

2.274•10-5 
(-7.235•10-3, 5.532•10-3) 

-8.342•10-6 
(-2.472•10-3, 1.889•10-2) 

Cheatgrass 2.748•10-5 
(-1.399•10-3, 4.150•10-3) 

2.191•10-5 
(-3.441•10-3, 6.733•10-3) 

-7.649•10-5 
(-4.381•10-3, 3.760•10-3) 

Medusahead -4.093•10-6 
(-1.812•10-3, 2.049•10-3) 

2.196•10-5 
(-2.545•10-3, 4.958•10-3) 

-2.430•10-4 
(-4.471•10-2, 2.944•10-2) 

Sagebrush -7.610•10-6 
(-2.001•10-3, 3.362•10-2) 

-1.010•10-5 
(-1.847•10-3, 1.130•10-3) 

-8.512•10-6 
(-1.231•10-3, 1.344•10-3) 

V
A

R
IA

N
C

E
  

Bare 103.180 
(10.180, 1471.590) 

74.784 
(5.524, 856.360) 

64.177 
(2.522, 1211.850) 

Bunchgrass 382.300 
(27.850, 2552.910) 

246.610 
(15.410, 1840.15) 

301.200 
(26.920, 2529.370) 

Cheatgrass 300.220 
(33.430, 1541.040) 

150.600 
(21.800, 1193.300) 

203.730 
(19.410, 1184.460) 



64 
 

 

Medusahead 272.690 
(41.610, 2112.320) 

249.670 
(22.470, 1353.440) 

126.963 
(6.561, 846.273) 

Sagebrush 787.490 
(12.540, 3401.270) 

660.900 
(70.100, 5654.100) 

778.270 
(42.680, 5012.830) 

V
E

G
E

T
A

TI
O

N
 H

E
IG

H
T 

Bare  0.131 
(-0.069, 0.376) 

 

Bunchgrass  0.348 
(0.029, 1.021) 

 

Cheatgrass  0.122 
(-0.009, 0.503) 

 

Medusahead  0.130 
(-0.004, 0.645) 

 

Sagebrush  0.859 
(-0.036, 1.433) 
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Model verification using only photo-interpreted vegetation data 

Photo-interpreted polygons of vegetation data were randomly split into 50% training and 

50% validation data. All additive combinations of spectral, textural, and vegetation height 

variables were applied to the RF model using photo-interpreted polygons only 

(Supplementary Table 3). The top model resulted in an overall accuracy of 0.929, Kappa 

of 0.906, and balanced accuracies of cheatgrass at 0.906 and medusahead at 0.946. 

Accuracy statistics and model combinations generally follow the same pattern as 

compared to models using photo-interpreted data for training and quadrat frame data for 

validation, indicating a robust model. This model verification further strengthens the 

interpretation that texture and vegetation height information improved our classification. 

 

Supplementary Table 3. Overall models ranked by overall accuracy and Cohen’s kappa 
using PV1, PV2, PV3, and PV6. Training and validation data consists of randomly 
partitioned photo-interpreted patches of vegetation. The top five models are highlighted 
in grey. 
 
 Experiment Overall Cheatgrass Medusahead 

  Accuracy Kappa Accuracy Accuracy 

1 RGB All Dates + Entropy + Skewness 0.929 0.906 0.906 0.946 

2 RGB All Dates + Skewness + Variance 0.928 0.905 0.903 0.946 

3 RGB All Dates + Entropy + Skewness + Variance 0.927 0.904 0.905 0.944 

4 RGB All Dates + Entropy + Skewness + Variance + Height 0.927 0.903 0.903 0.945 

5 RGB All Dates + Entropy + Variance 0.926 0.903 0.901 0.943 

6 RGB All Dates + Entropy + Skewness + Height 0.925 0.900 0.894 0.947 

7 RGB All Dates + Skewness + Variance + Height 0.924 0.900 0.893 0.947 

8 RGB All Dates + Entropy 0.924 0.900 0.899 0.944 

9 RGB All Dates + Variance 0.923 0.898 0.893 0.946 
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10 RGB All Dates + Entropy + Variance + Height 0.923 0.898 0.896 0.944 

11 RGB All Dates + Entropy + Height 0.922 0.897 0.890 0.946 

12 RGB All Dates + Variance + Height 0.922 0.897 0.890 0.945 

13 RGB All Dates + Skewness + Height 0.920 0.894 0.881 0.949 

14 RGB All Dates + Skewness 0.916 0.889 0.884 0.940 

15 RGB All Dates + Height 0.908 0.878 0.863 0.940 

16 RGB Only 0.901 0.869 0.863 0.930 

17 Skewness + Variance + Height 0.738 0.656 0.735 0.785 

18 Entropy + Skewness + Variance + Height 0.737 0.655 0.736 0.786 

19 Entropy + Skewness + Height 0.734 0.651 0.727 0.783 

20 Entropy + Variance + Height  0.701 0.609 0.710 0.775 

21 Skewness + Height 0.690 0.595 0.680 0.745 

22 Entropy + Skewness 0.688 0.589 0.700 0.773 

23 Skewness + Variance 0.688 0.589 0.708 0.774 

24 Entropy + Skewness + Variance 0.686 0.587 0.702 0.775 

25 Entropy + Height 0.676 0.578 0.671 0.764 

26 Variance + Height 0.668 0.567 0.667 0.762 

27 Entropy + Variance 0.638 0.525 0.680 0.750 

28 Entropy Only 0.632 0.516 0.667 0.743 

29 Skewness Only 0.620 0.502 0.662 0.709 

30 Variance Only 0.611 0.491 0.666 0.732 

31 Height Only 0.464 0.310 0.560 0.603 

 

 
 
 


