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ABSTRACT 

Ecosystems often contain a few cosmopolitan species and a large number of rare 

species. Despite their relative low abundance and biomass, rare species support the 

multifunctionality and resilience of ecosystems. Therefore, empirical studies on rare and 

range-restricted species can increase our understanding of eco-evolutionary 

underpinnings of species and ecosystem persistence, and generate sufficient knowledge 

to design effective conservation programs. These research studies can also benefit 

conservation programs for rare and range-restricted species, which are often prioritized. 

This research focuses on Ivesia webberi, a federally threatened perennial forb and the 

vegetative communities that harbor the species. Specifically, empirical studies 

investigated the following: (1) species-environment relationship of I. webberi using 

iterative and multi-year ecological niche modeling with complementary model-guided 

sampling, to describe and predict suitable habitats; (2) the relationship between soil seed 

bank and aboveground vegetation in plant communities where I. webberi is found, to 

understand the regeneration niche of I. webberi and assess ecological resilience of the 

vegetative communities; (3) genetic diversity, structure, and functional connectivity 

among I. webberi populations in order to characterize genetic resources and therefore 

evolutionary potential; (4) the relationships between genome size variation and 

bioclimatic variables within I. webberi and among Ivesia taxa; and (5) seed viability of I. 

webberi, including spatiotemporal variability and storage behavior. 

Findings from the 5-year iterative niche modeling study resulted in the discovery 

of seven novel populations, an expansion of the known species distribution range, and 

identification of important environmental drivers of the ecological niche of I. webberi. 
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Native species richness was higher in aboveground vegetation in the sampled sites where 

I. webberi occurs while the soil seed bank is dominated by invasive annual grasses. This 

resulted in low floristic similarity between the aboveground vegetation and the soil seed 

bank, and highlights the importance of seeding with native plants and control of invasive 

plant species to maintain the ecological legacies of these sites in the Great Basin Desert. 

Genetic diversity is relatively low across I. webberi populations and exhibited significant 

spatial genetic structure; functional connectivity was influenced by synergistic effects of 

geographic distance and landscape features. However, I. webberi exhibits a significant 

temporal, not geographical, variation in seed viability, and seed viability potentially 

reduces with storage time suggesting a recalcitrant behavior. Seed viability can be 

reliably estimated and monitored using non-destructive x-ray imagery and multispectral 

imaging techniques. 

An 8-fold variation in genome size of 31 Ivesia taxa was observed, ranging from 

0.73 pg/2C in I. baileyi var. beneolens to 5.91 pg/2C in I. lycopodioides ssp. 

megalopetala. This genome size variation significantly correlated with actual 

evapotranspiration and seed size. Inference from genome size suggest that all sampled 

Ivesia are diploid with 28 chromosomes. Similar significant correlations between 

intraspecific genome size variation in I. webberi and evapotranspiration and seed size 

were observed; genome size was larger in I. webberi populations closer to the species’ 

range center and smaller towards the margin. Relatively small genome sizes and their 

correlations with functional trait and energy availability indicate that genome size has 

adaptive significance for these desert-adapted species. Overall, the findings of these 

studies have advanced scientific knowledge on the eco-evolutionary processes in a range-
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restricted plant species in the Great Basin Desert, and provide useful information to 

design effective conservation programs.  
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Life on earth is supported by plant species and vegetation provides the foundation 

for all terrestrial ecosystems. Therefore, local and global loss of plant diversity will 

severely impact other groups of species and human well-being (Díaz et al., 2007; 

Brummitt et al., 2015a). About 600 plant species have gone extinct (Humphreys et al., 

2019; Lughadha et al., 2020) and one-third of all angiosperms are threatened (Brummitt 

et al., 2015b; Pimm and Joppa, 2015; Corlett, 2016). Global assessment of the 

International Union of Conservation of Nature (IUCN) Red List of Threatened Species 

(IUCN, 2020) as well as national biodiversity risk assessments in Canada and the United 

States show that habitat loss and fragmentation are the biggest threat to terrestrial plant 

species (Wilcove et al., 1998; Venter et al., 2006; Venter et al., 2016; Tilman et al., 2017; 

Díaz et al., 2019; Figueiredo et al., 2019; Lughadha et al., 2020). Habitat loss and 

fragmentation are attributed to growth in human population and economic development 

(Losfeld et al., 2015; Tilman et al., 2017), with reports showing that over 50% of 

terrestrial ecosystems have been modified by human activities (Millennium Ecosystem 

Assessment, 2005; Lander et al., 2019). Furthermore, deforestation, illegal trade and 

overharvest make overexploitation the second biggest threat to biodiversity (Goettsch et 

al., 2015; Food and Agriculture Organization [FAO], 2016). Invasive species are linked 

with local extirpation and reduction of native plant diversity, as well as alterations in 

wildfire regimes and soil nutrients (Pyšek et al., 2012; Thomas and Palmer, 2015). 

Despite an increase of 1 °C in global average temperature (IPCC, 2014), empirical 

support for anthropogenic climate change driven plant extinction is limited (Le Roux et 

al., 2019; Lughadha et al., 2020), but climate change may impact plants synergistically 

with other drivers of biodiversity loss (Oliver and Morecroft, 2014; Bidartondo et al., 
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2018). Moreover, studies have shown shifts in plant species phenology, community 

composition, and species ranges to higher latitudes and elevation (Hijioka et al., 2014; 

Morueta-Holme et al., 2015; Panetta et al., 2018; Diez et al., 2020), in addition to 

predicted future species range contraction and increased wildfires (Warren et al., 2018; 

Gomes et al., 2019). 

Habitat loss and fragmentation reduce the population habitat area, create edge 

effects, and increase interactions with the surrounding landscape matrix, resulting in 

variations in species richness and abundance in the fragmented habitats (Fontúrbel and 

Murúa, 2014; Aguilar et al., 2019). Furthermore, habitat fragmentation alters among-

population gene flow patterns (Rymer et al., 2015), impacts plant reproduction and 

reduces seed dispersal (Cheptou et al., 2017; Lander et al., 2019), and potentially reduces 

available resources (Herrera et al., 2011; Fontúrbel and Murúa, 2014). Additionally, 

landscape alterations resulting in demographic stochasticity can severely impact plant-

animal interactions, especially obligate pollination and dispersal mutualisms (Ollerton et 

al., 2011; Rossetti et al., 2017). Reduced gene flow due to habitat fragmentation can 

result in spatial genetic structure, inbreeding and genetic drift, which can cause reduced 

neutral and adaptive genetic diversity (Aguilar et al., 2008; Lander et al., 2019). 

Inbreeding depression in plant populations can reduce seed set and seedling survival, 

ultimately resulting in reduced population viability and persistence (Byrne et al. 2007; 

Brudvig et al., 2015).  

Biogeography theory predicts that when faced with climate changes, plant species 

can acclimate (through physiological adjustment and phenological plasticity), adapt (by 
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directional selection and local adaption), move to new sites with suitable conditions, or 

go extinct (Morueta-Holme et al., 2015; Corlett, 2016; Panetta et al., 2018). In support of 

these predictions, studies have demonstrated the impacts of anthropogenic climate change 

resulting in shifts in plant phenology, species range, genetic diversity, physiology and 

behavior (Franks et al., 2014; Lenoir and Svenning; 2015; Thackeray et al., 2016; Yu et 

al., 2017). Migration rates and dispersal capacity for many plant species are inherently 

low (Aitken et al., 2008), which is further inhibited by natural and anthropogenic barriers 

to movement (Mills and Schwartz 2005; Partel et al., 2005) and the decline in the 

abundance of animal-dispersers due to overexploitation or habitat modifications 

(Harrison et al., 2013). Different plant species in a vegetative community may respond to 

climate change differently resulting in phenological mismatches that can impact species 

interactions and coevolutionary processes, leading to novel plant communities (Enquist et 

al., 2014; Morellato et al., 2016). Further, climate change may favor early regeneration of 

many invasive plant species, giving them access to environmental resources and 

facilitating their colonization, a concept known as priority effect (Zhang et al., 2011; 

Alexander and Levine, 2019; Grainger et al., 2019). This gives many invasive species 

competitive advantage over native seedlings; thus, they reduce recruitments into native 

populations and become ecosystem engineers (Porté et al., 2011; Dickson et al., 2012). 

Generalists and widely distributed plant species may adapt quickly to 

environmental changes due to their wide climatic niche breadth, reduced dependence on 

specific ecological interactions, and greater ability for phenological and physiological 

shifts (Sheth and Angert, 2014; Yu et al., 2017). Conversely, many range-restricted 

species and species with small and isolated populations are more prone to stochastic 
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demographic and environmental processes, inbreeding depression and random genetic 

drift (Reed, 2004; Harnik et al., 2012). Many studies have established the strong 

relationships between geographic range size and climatic niche breadth, and predict 

greater extinction risks for range-restricted species under climate change (Cardillo et al., 

2019; Vincent et al., 2020). Roughly 36% of the known 435,000 plant species are 

endemic to a small region (Enquist et al., 2019), while over 62% of the North American 

flora are range-restricted (Mills and Schwartz, 2005). Further, the western United States 

have a disproportionately high species richness of endemic flora (Mills and Schwartz, 

2005; Kraft et al., 2010) and endemic lineages of evolutionary significance (Thornhill et 

al., 2017; Mishler et al., 2020), including 151 endemic plants in the Great Basin Desert 

(Ricketts et al., 1999; Nachlinger et al., 2001). Many hypotheses have been proposed to 

explain differences in the geographic range sizes among plant species, focusing on 

climatic history (Enquist et al., 2019), geological history (Jansson, 2003), evolutionary 

history (Gaston, 1996), dispersal and colonization ability (Lowry and Lester, 2006), 

ecological specializations (Wamelink et al., 2014; Cardillo et al., 2019), environmental 

heterogeneity (Baldwin 2005; Kraft et al., 2010), and niche breadth (Gaston and Spicer, 

2001), among others. The richness of rare and endemic flora in the Great Basin Desert 

and the adjacent California Floristic Province has been attributed to the region’s 

particular geological history, topographic complexity, and significant microclimatic 

gradients (Lesica et al., 2006; Cassel et al., 2009; Kraft et al., 2010). 

In light of the current and predicted future environmental pressures on 

biodiversity, it is important to investigate the effect of contemporary environmental 

changes (that is, habitat loss) on threatened plant species (Montoya et al., 2010; Rybicki 



6 
 

 
 

et al., 2020). Equally important are empirical investigations that assess the capacity of 

populations and species to respond to future changes (e.g., Segan et al., 2016; Razgour et 

al., 2019). Such studies could involve comparative approaches to assess the response of 

congenerics sharing the same evolutionary history, but varying climatic niche breadth and 

geographical distributions (e.g., Sáyago et al., 2018; Fortunel et al., 2020). Furthermore, 

such studies can be expanded to evaluate the ecological resilience of ecosystems to 

habitat fragmentation, biological invasion, and climate change (e.g., Rogora et al., 2018; 

Angeler et al., 2019). Such studies will advance scientific understanding to identify 

important functional traits that can ensure the persistence of species and 

multifunctionality of ecosystems under several environmental pressures. Findings from 

such studies can also inform the design of effective conservation programs for threatened 

species. 

The Great Basin Desert is a cold desert receiving most of its annual precipitation 

in the winter (Comstock and Ehleringer, 1992). Most of the pre-European settlement 

changes in vegetation cover were attributed to historical climate change (Grayson, 2011), 

but human activities in the last 150 years have resulted in rapid land cover changes that 

impacted wildfire regimes and facilitated colonization by invasive and nonnative annual 

grasses (Wisdom et al., 2005; Morris and Rowe, 2014). Furthermore, a 0.7 to 1.4 °C 

increase in temperature has been reported for the Great Basin Desert (Wagner, 2003; 

Snyder et al., 2019), which may be associated with the decline in snowpack (Mote et al., 

2005), early arrival of spring season, and dramatic interannual variation in precipitation 

(Baldwin et al., 2003; Chambers, 2008). A 2 to 5 °C warming is predicted for the region 

over the next 100 years, which may increase the colonization and invasion success of the 
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C4 invasive grasses and further impact wildfire regimes in the Great Basin Desert (Smith 

et al., 2000; Cubashi et al., 2001; Westerling et al., 2006; Chambers, 2008). For these 

reasons, the Artemisia spp. (sagebrush) ecosystem of the Great Basin Desert is one of the 

most critically endangered habitats in the United States (Noss et al., 1995; Stein et al., 

2000), with over 600 native plants considered species of conservation concern 

(Nachlinger et al., 2001). 

Ivesia webberi A. Gray (Webber’s ivesia or wire mousetail) is one of the native 

plant species of conservation concern in the Great Basin Desert. The perennial forb, 

belonging to the Rosaceae family, grows on shallow rocky clay soils in sparsely 

vegetated low sagebrush (Artemisia arbuscula) communities in mid-elevation areas, near 

the northern Sierra Nevada eastern foothills and the western fringes of the Great Basin 

Desert (Witham, 2000; US Fish and Wildlife Service [USFWS], 2014). Throughout its 

range, the species is threatened by invasive non-native plant species, including Bromus 

tectorum (cheatgrass), Taeniatherum caput-medusae (medusa head) and Poa bulbosa 

(bulbous bluegrass), which have been observed in 12 I. webberi sites (USFWS, 2014). 

Most of the known locations for this species experienced wildfires over the past 40 years, 

and 11 I. webberi sites are adjacent to and/or intersected by road development and off-

highway vehicle (OHV) use (USFWS 2014). The main concern, however, is the 

increased economic development and urbanization in Northern Nevada, which threatens 

many of the adjacent I. webberi locations. 

Identification of species-specific threats remains critical to conservation efforts 

(Visconti et al., 2016), especially for range-restricted and threatened species that are 
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already vulnerable to genetic, environmental, and demographic stochasticity (Schwartz et 

al., 2006). An empirical assessment of how species respond to environmental changes 

will advance scientific knowledge on species-environment relationship and provide 

adequate information required for effective conservation of susceptible populations and 

species (Pacifici et al., 2015; Yu et al., 2017). Despite conservation research and 

prioritization on rare species (Myers et al. 2000, Sadler and Bradfield, 2010), 

conservation is challenging due to the lack of knowledge on biology, reproduction and 

distribution for many of these species (Smart et al., 2015). This is particularly true of I. 

webberi. Although it is listed on the U.S. Endangered Species Act (e.g., Federal Register 

2014a, 2014b), the development of strategic management plans for this species is 

impeded by a lack of basic knowledge on reproductive biology, population viability, 

regeneration niche, genetic diversity and structure, pollinators and dispersers, and 

species-environment relationships. 

The federal listing of the species as “threatened” has facilitated protection of its 

most vulnerable habitat patches by fencing. However, it is not enough to protect the 

habitats of imperiled species, especially those with small populations, such as observed in 

I. webberi. Conservation actions must include empirical studies and management to 

optimize gene flow and maintain genetic diversity among and within the populations. I. 

webberi produces dry, indehiscent achenes, which are not adapted for long-range 

dispersal. Furthermore, dispersal is suspected to be impeded by the north-south mountain 

ranges and increasing urbanization, therefore I. webberi response to future environmental 

change may be limited to phenological shifts, local adaptation, or extirpation (Berg et al., 

2010). Empirical studies have shown that the persistence of plant populations under rapid 
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climate change could be achieved with phenotypic plasticity (Vitasse et al., 2010; Nicotra 

et al., 2010). However, studies have also demonstrated a positive relationship between 

genetic diversity and phenotypic plasticity in plant populations in response to changing 

environments (van Kleunen and Fischer, 2005; Gratani, 2014). Therefore, the 

evolutionary potential of plant populations to adapt to environmental changes is 

dependent on their genetic diversity.  

Species niches and distributions are determined by species interactions, dispersal 

capacity, and environmental requirements (Costa et al., 2018). Ecological theory predicts 

unimodal species-environment relationships whereby niches are constrained at the 

extremes of environmental gradients (Austin, 1999; Costa et al., 2018). Therefore, 

species distribution models (SDM) are used to investigate species-environment 

relationships, quantify niche breadth, and predict rarity, extinction risks, and species 

responses to future environmental changes (Kotiaho et al., 2005; Broennimann et al., 

2006; Jiménez-Valverde et al., 2011). However, SDMs are fitted with the assumption that 

the species range is known and all biologically relevant environmental variables were 

included (Wisz et al., 2008; Elith and Leathwick, 2009). This is often not the case with 

range-restricted species that may not be in equilibrium with their environment, whose 

occurrence records are based on geographically biased sampling, and which are less well 

studied and hence whose biologically relevant environmental conditions are at best 

assumed (Lomba et al., 2010; Jarnevich et al., 2015). Predictions from poorly-fitted 

models can misinform management decisions for rare species (Ramesh et al., 2020). 

Species distribution models were fitted for Ivesia webberi in chapter 1, using an iterative 

and multiyear modeling approach, accompanied by model-guided field surveys to the 
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predicted suitable sites for field validation. The iterative niche modeling approach and 

field surveys generate additional novel presence and absence points that can refine 

scientific understanding of the species-environment relationships and improve the 

predictive ability of the ecological niche models.  

Land use changes caused by anthropogenic habitat fragmentation remains the 

greatest threat to global biodiversity (Danneyrolles et al., 2019; Lughadha et al., 2020), 

and in particular to biodiversity in the Great Basin Desert (Morris and Rowe, 2014). The 

local and global impacts of habitat loss and fragmentation on biodiversity are severe to 

the extent that many conservation programs now focus on ecological restoration to 

reverse the biodiversity loss (Haapalehto et al., 2017). Therefore, it is not surprising that 

2021-2030 was dubbed the “UN Decade on Ecosystem Restoration” (United Nations 

Environment Agency, 2019). However, effective ecological restoration of degraded and 

disturbed landscapes to historical legacies partly depends on the ecological resilience of 

the ecosystem, which in turn, relies on the preservation and germination of the soil seed 

bank of native plant communities, post-disturbance (Korb et al., 2005; Ma et al., 2019; 

Mndela et al., 2020). The Great Basin Desert plant communities are dominated by 

perennial species (Allen and Nowak, 2008; Martyn et al., 2016), many of which are 

lithophytes, chasmophytes and long-lived plants that undergo clonal reproduction or have 

a mixed strategy of seed and vegetative reproduction, have low and infrequent seed 

production, poor dispersal mechanism, and have seeds that form a transient seed bank 

(Goodwillie et al., 2005; Pekas and Schupp, 2013). Therefore, the focus of chapter 2 was 

on the quantification of the soil seed bank and the relationship with aboveground 

vegetation in the sites that harbor I. webberi. Such information can contribute to an 
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understanding of the regeneration niche of I. webberi and predict secondary succession 

events in the native plant communities, post-disturbance. This is particularly important 

for I. webberi that has been observed to regenerate both from dormant vegetative 

structures and seed germination. 

Chapter 3 assesses the neutral genetic diversity and gene flow rates among the 

known populations of I. webberi using Euclidean distance, environmental variables, land 

cover, and the predicted habitat suitability maps, to test for isolation by distance, by 

environment, and by landscape resistance. This allows us to evaluate spatial genetic 

structure in I. webberi, from which we can make inference on the effect of habitat 

fragmentation and disturbances on gene flow and species’ capacity to adapt to future 

environmental changes. Additionally, inferences can be drawn on the mating system 

exhibited by this species. Field observations indicate that I. webberi primarily regenerates 

annually from dormant underground vegetative structures, but seed regeneration has also 

been observed. Vegetative reproduction may support population persistence under habitat 

fragmentation, disturbance, and climate change (Bellingham, 2000; Lander et al., 2019), 

but pollination and seed-based regeneration are necessary to maintain genetic diversity, 

dispersal, and establishment in new sites (Lander et al., 2019). However, previous studies 

show that species with a long history of self-compatibility or mixed mating strategies can 

persist in fragmented habitats because detrimental recessive alleles and products of 

deleterious mutations can be purged from the populations (Husband and Schemske, 1996; 

Aguilar et al., 2019). 
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Identifying the functional traits related to phenotypic plasticity and niche breadths 

can be used to assess plants’ response to environmental change (Berg et al., 2010; 

Gratani, 2014; Costa et al., 2018). Genome size, also known by nuclear DNA content and 

C-value, is the total amount of DNA in an unreplicated haploid nucleus of an organism 

(Greilhuber et al., 2005). Previous studies have reported positive correlations between 

genome size and nucleus weight, RNA and protein content, cell size, flower and fruit 

size, and minimum generation time in herbaceous plants (Bennett, 1987). Additional 

empirical evidence shows a positive correlation between genome size and seed size 

(Chung et al., 1998; Beaulieu et al., 2007), guard cell and epidermal cell sizes (Beaulieu 

et al., 2008; Hoang et al., 2019), leaf length and width (Chung et al., 1998), and mitotic 

cell cycle duration (Francis et al., 2008; Hodgson et al., 2010). The correlation of genome 

size with these physiological plant traits suggests that genome size may have adaptive 

significance by influencing the life history strategy, plant distribution and phenology of 

plants (Knight and Ackerly, 2002; Hodgson et al., 2010; Dušková et al., 2010). Within a 

species, genome size variations have also been reported and attributed to differing 

selection and evolutionary processes that occur in the genetically isolated populations 

(Šmarda and Bureš, 2010; Bilinski et al., 2018). Therefore, chapter 4 investigates the 

adaptive significance of genome size variations among 31 Ivesia taxa and 11 I. webberi 

locations. 

Post-disturbance restoration projects of plant communities in the Great Basin 

Desert rely on accurate knowledge of species regeneration biology, including seed 

viability and storage behavior. Moreover, ex situ conservation, via seed banking and 

other methods, is recommended as a management strategy for nationally or globally 
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threatened plant species under the Global strategy for plant conservation (GSPC) of the 

United Nations’ Convention on Biological Diversity (CBD) (CBD, 2019). However, 

there is limited empirical knowledge on the seed storage behavior for most of the 

threatened plant species, the focus of the GSPC (Hay and Probert, 2013; Wyse and 

Dickie, 2017). The seeds of many plant species can be dried and stored for longer periods 

of time without losing their viability, but others lose their seed viability with storage time 

and desiccation, hence they are not suitable for seed banking (Roberts, 1973; Hay and 

Probert, 2013). Therefore, chapter 5 of this dissertation focuses on investigating the 

storage behavior of I. webberi seeds, identifying populations that produce seeds with 

higher viability, interannual variations in seed viability and the potentials of 

discriminating between viable and nonviable seeds using non-destructive seed testing 

methods. These investigations will inform the decisions on populations to select for seed 

harvesting, strategies to ensure effective seed banking, and approaches for reducing the 

cumulative loss of stored seeds from periodic seed viability monitoring. 

These studies have conservation applications for the management of Ivesia 

webberi and the ecosystem that harbors it. The gene flow patterns, genetic diversity and 

structure in I. webberi populations can help managers assess how the species is 

responding to the effects of current anthropogenic and natural landscape features on gene 

flow, and how the species would respond to future environmental changes. Given lack of 

species-specific empirical studies on many Great Basin Desert plant species, findings 

from this study can be extrapolated to other threatened and range-restricted plant species 

with niche breadth, mating systems, and functional traits similar to I. webberi. 

Furthermore, the iterative niche modeling approach explained in this research can be 
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applied to other rare and native plants with few occurrence records. Model-guided 

vegetative sampling can lead to the discovery of new locations and an expansion of their 

geographic range. A characterization of the soil seed bank in the mid-elevation sites 

where I. webberi is located and its relationship with the aboveground vegetation can help 

managers predict future secondary succession in these sites and design ecological 

restoration programs that can decimate the populations of the invasive plant species and 

facilitate the recovery of the resident native flora. Moreover, post-disturbance ecological 

restoration programs in the Great Basin Desert such as native plant seeding and the ex-

situ conservation can benefit immensely from an understanding of the seed storage 

behavior, while seed banking practices can be modified to use nondestructive methods 

for seed viability testing. 
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ABSTRACT 

Despite the immense benefit of niche modeling to the management of rare and 

threatened species, it is often challenging to fit these models with high predictive 

accuracy for species with occurrence records that are commonly few, spatially biased, 

and incomplete. In this study, we applied an iterative niche modeling approach to guide 

prospective field sampling, improve niche model formulation, and better understand 

ecological influences on the distribution of Ivesia webberi. Six of the 72 assembled 

variables selected from three successive reduction analyses were used to fit preliminary 

niche models, from which the top three predictor variables were used for final niche 

modeling in each iteration. The iterative niche models were fitted using Boosted 

Regression Trees, Random Forests, Maximum Entropy, Artificial Neural Networks, 

Generalized Additive Models and Generalized Linear Models, and evaluated using true 

skill statistic, area under curve of the receiver operating characteristic, specificity, and the 

continuous Boyce index. Weighted average ensembles of the single models were used to 

produce geographic habitat suitability projection maps, which were used to design field 

sampling. New spatial data from the field sampling were added to the dataset for 

subsequent modeling. The environmental conditions of both the original and novel 

species occurrences were plotted in principal component analysis (PCA) ordination 

space. The degree of similarity among the geographical predictions of the iterative niche 

modeling was assessed using niche overlap analysis. Iterative niche modeling and model-

guided field surveys resulted in the discovery of seven novel locations and expanded the 

northern reach of the distribution range by 65 km. Perennial herbaceous layer and 

topographic position index were the two most important ecological drivers of I. webberi 
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niche across all four modeling iterations. PCA ordination showed that the new occurrence 

points filled the realized niche space for I. webberi and slightly expanded climatic and 

topographic breadth of the species in ordination space. This study demonstrated that 

model-guided sampling and iterative niche modeling can advance scientific 

understanding of the species-environment interactions, ecological niche, and geographic 

distributions of rare species, which is crucial for effective conservation. 

 

KEYWORDS: species distribution models, habitat suitability, iterative niche modeling, 

BIOMOD2, niche breadth, Ivesia webberi, Great Basin Desert  
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INTRODUCTION 

Species with restricted geographical distributions, small population sizes and 

narrow ecological tolerance ranges are more vulnerable to future environmental change 

and thus, are commonly prioritized for conservation (Lavergne et al. 2005, Lomba et al. 

2010, Sousa-Silva et al. 2014). Ecological niche modeling (ENM), also referred to as 

species distribution modeling (SDM) or climatic envelope modeling, has become an 

important conservation tool for the management of species at risk because it can be used 

to identify environmental factors that support the persistence of the species (Jiménez-

Valverde, Lobo, & Hortal, 2008; Jiménez-Valverde, Peterson, Soberón, Overton, Aragón, 

& Lobo, 2011), and limiting factors that restrict their geographical distributions (Gorban, 

Pokidysheva, Smirnova, & Tyukina, 2011). ENM can also be used to evaluate degree of 

rarity of species (Broennimann, Thuiller, Hughes, Midgley, Alkemade, & Guisan, 2006), 

and identify areas that may serve as future climatic refugia (Petitpierre, Kueffer, 

Broennimann, Randin, Daehler, & Guisan, 2012; Sousa-Silva et al., 2014). Furthermore, 

niche models are often integrated into models of landscape connectivity, population 

genetic and metapopulation dynamics (e.g., Ikeda, Max, Allan, Lau, Shuster, & Whitham, 

2016; Keeley, Beier, Keeley, & Fagan, 2017; Banerjee, Mukherjee, Guo, Ng, & Huang, 

2019), or used for mapping the phylogenetic diversity of an area (e.g., Scherson, 

Thornhill, Urbina‐Casanova, Freyman, Pliscoff, & Mishler, 2017). 

Understanding the distribution of rare species is critical for effective conservation 

planning, but with incomplete and spatially biased occurrence records, modeling the 

niches of rare species with high predictive accuracy can be challenging (Hernandez, 

Graham, Master, & Albert, 2006; Wisz, Hijmans, Li, Peterson, Graham, Guisan, & 
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NCEAS Predicting Species Distributions Working Group, 2008), a condition referred to 

as the rare species modeling paradox (Lomba et al., 2010). Furthermore, correlative 

species distribution models (SDM) are fitted with an underlying assumption that species 

are in equilibrium with their environment (i.e., temporal and spatial stationarity) and that 

all important and biologically-relevant variables have been included in the niche model 

(Elith & Leathwick, 2009). This presents challenges to modeling rare species because the 

inclusion of many predictors when the number of occurrences are few can lead to model 

overfitting (Stockwell & Peterson, 2002; Wisz et al., 2008; Jarnevich, Stohlgren, Kumar, 

Morisette, & Holcombe, 2015). Moreover, limited knowledge on species-environment 

relationships for rare species makes predictor variable selection challenging and 

subjective (Aranda & Lobo, 2011). Consequently, poorly fit models and misjudgements 

of model predictions can lead to over- or underestimation of the rare species’ niche, 

resulting in poor management decisions (Ramesh, Gopalakrishna, Barve, & Melnick, 

2017; Burns, Clemann, & White, 2020). Therefore, niche models for rare species are 

recommended only for hypothesis testing for further sampling and possible discovery of 

novel populations (Stockwell & Peterson, 2002; Wisz et al., 2008; Jarnevich et al., 2015). 

Predicted habitat suitability maps from preliminary niche modeling can be used to 

stratify and optimize sampling efficiency (Chiffard, Marciau, Yoccoz, Mouillot, 

Duchateau, Nadeau, …, Besnard, 2020). This niche-based sampling approach (Guisan, 

Broennimann, Engler, Vust, Yoccoz, Lehmann, & Zimmermann, 2006) can reduce 

spatial bias in the presence/true absence points (Singh, Yoccoz, Bhatnagar, & Fox, 2009), 

and result in the discovery of novel locations of the studied taxa and thus the correction 

of species range boundaries to encompass larger areas (de Siqueira, Durigan, de Marco 
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Junior, & Peterson, 2009; Deb, Jamir, & Kikon, 2017; Burns, Clemann, & White, 2020). 

Integrating the new spatial data from niche-based sampling in subsequent iterations can 

help increase the predictive accuracy of niche models for rare species and facilitates 

identification of biologically-relevant environmental factors (Rinnhofer, Roura-Pascual, 

Arthofer, Dejaco, Thaler-Knoflach, Wachter, …, Schlick-Steiner, 2012). 

However, niche model performance can vary widely among different algorithms 

(Pearson et al. 2006, Thuiller et al. 2009, Marmion et al. 2009, Oppel et al. 2012, Li and 

Wang 2013), and this inter-model variation and uncertainty can be significant when 

fitting niche models for species with fewer occurrences (Araújo et al. 2005, Hernandez et 

al. 2006, Wisz et al. 2008). Therefore, comparative niche modeling with different 

algorithms (Stockwell and Peterson 2002, Araújo et al. 2005, Wisz et al. 2008), and 

combining models from different algorithms into an ensemble model (Araújo and New 

2007, Thuiller et al. 2009) are recommended. This is because ensemble predictions 

minimize the prediction errors and uncertainties while retaining the true signals of 

species-environment relationships in each algorithm (Araújo and New 2007, Marmion et 

al. 2009, Dormann et al., 2018). 

The aim of this study was to evaluate the ability of niche-based sampling and an 

iterative modeling approach to predict the niche of a rare plant (Ivesia webberi A. Gray), 

relative to an effort that used only the limited presence/absence data available at the 

outset of our study. Therefore, we asked the following questions: (1) How does additional 

spatial data from niche-based sampling alter our understanding of the species-

environment relationships for I. webberi? (2) To what extent did additional spatial data 

alter the habitat suitability map projections from the modeling iterations? (3) Do 
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modeling iterations in tandem with model-guided sampling significantly improve the 

predictive accuracy of niche models for Ivesia webberi? (4) How did the performance of 

modeling algorithms change with additional spatial data across iterative niche models? 

(5) Did ensemble models perform better than single niche models across iterative niche 

models? 

 

METHODS 

Species and occurrence data 

Ivesia webberi is a perennial forb restricted to the eastern foothills of the Sierra 

Nevada and the adjacent western edge of the Great Basin Desert. At the outset of our 

study, it had been recorded from 21 locations, most of which are spatially aggregated and 

have been under human and biological invasion pressures. The species was estimated to 

have originated between 1.3 and 3.8 million years ago (Töpel, Antonelli, Yesson, & 

Eriksen, 2012), and may be one of the many Great Basin Desert neoendemics and 

phylogenetically young taxa that have not had enough time to fully colonize their range 

(Kraft, Baldwin, & Ackerly, 2010; Thornhill, Baldwin, Freyman, Nosratinia, Kling, 

Morueta-Holme, …, Mishler, 2017). 

Initial niche modeling started in 2015 with 21 occurrence points and 758 absence 

points obtained from the Nevada Natural Heritage Program (NNHP). Absence points 

were collected from historical surveys by NNHP botanists and citizen scientists in areas 

where I. webberi was not detected. Additional spatial points were added following 

iterative modeling and field validation (described below) to predicted suitable habitats. 
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The absence points were thinned using a distance of 7.5 km in spThin R package (Aiello‐

Lammens, Boria, Radosavljevic, Vilela, & Anderson, 2015) to reduce the effect of spatial 

aggregation, and were merged with the presence points for niche modeling (Table 1). 

Additionally, absence points within 5 km of an occurrence point were removed to avoid 

false negatives. In all modeling iterations, the absence points were more than the 

presence points in order to reduce prevalence in the spatial data set, and avoid an 

overprediction of the geographical distribution for the rare I. webberi (Jiménez-Valverde, 

Lobo, & Hortal, 2009). 

Study extent 

The study extent was defined by a 60 km buffer from marginal ranges of known 

populations as of 2015. Field surveys indicate that this species occurs in or near 

ephemeral washes and forest dry meadow gaps in mostly gentle slope areas (Witham, 

2000). Also, the species produces relatively heavy achene seeds which are not adapted 

for long-range dispersal. Therefore, the study area was restricted within this narrow 

range, excluding the expansive adjacent unsuitable areas of playas in the central Great 

Basin Desert. 

Predictor variables 

A total of 72 predictor variables describing edaphic, topographic, land cover, 

vegetative cover, and climatic factors were assembled for fitting niche models for Ivesia 

webberi (see Table S1 in Supporting Information). To avoid overfitting and maintain a 

1:10 predictor variable to occurrence points ratio (Harrell, Lee, & Mark, 1996), the full 

set of predictor variables were reduced to six uncorrelated predictors (Table 2, Figure S1) 
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using a combination of the Kendall r correlation coefficient (r > 0.6), feature selection 

runs in Boruta R package (Kursa & Rudnicki, 2010), and recursive feature elimination 

algorithm in caret R package (Kuhn, 2008).  

The climatic variables (actual evapotranspiration, minimum annual temperature 

and annual precipitation) were downsampled from the PRISM climatic data (1971-2000) 

normals (Daly, Halbleib, Smith, Gibson, Doggett, Taylor, … Pasteris, 2008) from 800 m 

to 30 m spatial resolution using ordinary kriging and the Climatic Water Deficit Toolbox 

(Dilts, 2014; Dilts, Weisberg, Dencker, & Chambers, 2015; see Table S1). The cosine 

aspect was derived from slope using the formula: θ × cos(α), where θ is slope (in 

percentage), and α is aspect (in radians), while slope was calculated from the 1 arc-

second digital elevation models (DEM; USGS, 2017). Perennial herbaceous vegetative 

cover is considered both a biotic and land cover layer in this modeling framework. It is a 

vegetation type raster layer obtained from the Multi-Resolution Land Characteristics 

(MRLC) development of the 2016 U.S. National Land Cover Database (NLCD; Xian, 

Homer, Meyer, & Granneman, 2013). Topographic Position Index (TPI) was calculated 

from the DEM as in Weiss (2001). 

Modeling algorithms 

Six algorithms were used for Ivesia webberi niche modeling: Generalized linear 

models (GLMs; McCullagh and Nelder 1989), Generalized additive models (GAMs; 

Hastie and Tibshirani 1990), boosted regression trees (BRTs; Elith et al. 2008), random 

forests (RF; Breiman 2001), maximum entropy (MAXENT; Phillips et al. 2006), and 

artificial neural networks (ANN; Ripley 1996). Preliminary models also included surface 
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resistance envelopes (SRE) which were dropped from the final modeling due to poor 

model performance. 

Generalized linear models (GLMs) 

GLMs are extensions of linear models assuming a parametric relationship 

between species distributions and the environmental variables. By using the appropriate 

link function, GLMs allow a non-Gaussian transformed species occurrence to be modeled 

as a linear function of environmental variables (Guisan et al. 2002). Unlike linear models, 

GLMs allow for the distribution of errors in different families, including binomial. In 

GLMs-based niche modeling, polynomial terms are recommended (Aguirre-Gutiérrez et 

al. 2013, Shabani et al. 2016). 

Generalized Additive Models (GAMs) 

GAMs are non-parametric extensions of the GLMs that allow for flexible 

modeling of species’ non-linear response to environmental variables using smoothing 

functions computed independently for each of variable and used to build the final model 

(Guisan et al. 2002, Segurado and Araújo 2004). This is useful because species-

environment relationships are often skewed and non-linear (Austin 2002, 2007). 

Boosted Regression Trees (BRTs) 

BRT is a machine learning algorithm comprising classification and regression 

trees, and boosting algorithm to produce a final model with high performance from many 

weak, simpler models (De’ath 2007, Elith et al. 2008). BRTs make recursive splits using 

values of the variables or variable interactions that minimize prediction errors in a 
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stepwise manner and weighting subsequent trees by the residuals of the first trees, all 

decision trees are then combined by collapsing the weakest splits to optimize model 

performance based on specific rules of tree complexity and regularization (De’ath 2007, 

Elith et al. 2008). Many studies have reported superior performance of BRTs to 

regression models (e.g., Moisen et al. 2006, Leathwick et al. 2006, García-Callejas et al. 

2016), and BRTs are shown to be less sensitive to species with fewer and clumped 

distribution in environment space (Elith et al. 2008). 

Maximum Entropy (MAXENT) 

MAXENT is a machine learning algorithm that estimates the suitability of a site 

for a particular species by fitting the unknown probability distribution of maximum 

entropy to the predictors (Phillips et al. 2006). It does this iteratively by comparing values 

of predictor variables at species occurrence points to predictor variable values in the 

random background points, within different modeling functions (e.g., linear, quadratic, 

etc.), at the same time avoiding overfitting by regularization mechanisms (Phillips et al. 

2006, Phillips and Dudík 2008). It is robust to modeling the niche of species with fewer 

and incomplete occurrence points and it does not require absence points, therefore it is 

often used to fit niche models for rare species (Moreno et al. 2011, Merow et al. 2013). 

Random Forests (RF) 

RF, another tree-based machine-learning algorithm, uses the classification and 

regression trees to produce hundreds of random trees with a bootstrapped subset of the 

predictor variables at each node iteratively (Breiman 2001, Prasad et al. 2006, De’ath 

2007). The resulting trees are averaged to produce the final model, using bootstrap 
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aggregating (or “bagging”) method (Cutler et al. 2007). Optimizing parameters such as 

the number of variables used and number of trees was recommended to help minimize the 

generalization (“out-of-bag”) error (Prasad et al. 2006, Gromping 2009). Fitted trees in 

the forest used fewer predictors, therefore there is low correlation with the predictors 

used, while all of the trees were averaged to produce the final tree thereby reducing 

chances of overfitting, bias and uncertainty (Prasad et al. 2006, Wiesmeier et al. 2011). 

Artificial Neural Networks (ANN) 

ANN development was inspired by brain structure, comprising artificial neurons 

(processors), organized into three layers that compute species-environment relationship 

through a network of links and their associated functions (Li and Wang 2013). ANN is 

composed of three layers that represent the predictor variables, intermediate (hidden) 

layer and the output layer (Lek and Guegan, 1999). The intermediate layer is like a black 

box that processes predictor variable values using a function which can operate as 

regression or classification tree depending on the predictor variable (Li and Wang 2013). 

ANN was included in this modeling based on earlier studies that reported its superior 

model performance (e.g., Segurado and Araújo 2004). 

Niche modeling, projections, and field validation 

The niche models were fitted iteratively in 2015, 2018, 2019 and 2020, hereafter 

called iterative niche models (Fig. 1). For each model iteration, the six predictor variables 

were used to fit preliminary models, from which the top three predictors were selected for 

the final modeling. All preliminary, final and iterative niche modeling was implemented 

in BIOMOD2 package in R (Thuiller et al. 2009, R Core Team 2020). We used default 
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BIOMOD modeling settings as recommended by Thuiller et al. (2009). GLMs were 

generated using quadratic terms in a stepwise approach, and using the Akaike 

information Criterion (AIC) for model selection. BRT models were generated by fitting 

2500 trees and three cross-validations, while GAMs were analyzed with a spline 

smoothing function. We used five cross-validations to select the optimal hidden layers in 

ANN models, we fitted 500 random forest models, and ran MAXENT models with 

10,000 background points, using linear, quadratic and product features but with logistic 

model output (Phillip and Dudík 2008, Thuiller et al. 2009, Aguirre-Gutiérrez et al. 

2013). Due to the small number of occurrence points, spatial data was not partitioned to 

independent training and test data; rather all iterative niche models were fitted with 10 

replicates each for the six algorithms using 80% of the data for cross-validation (Araújo 

et al. 2005, Thuiller et al. 2009). Ensembles of best single models (TSS > 0.7) were also 

fitted for all model iterations. 

An initial niche model was fitted in 2015 with 21 occurrence points and 53 

spatially thinned true absence points (Table 1) from which habitat suitability map 

projections were generated. The original 758 absence points were overlaid on the 

predicted habitat map in ArcGIS software and suitable areas that had not been previously 

surveyed were selected for field validation, however the field sampling was limited to 

public lands and sites under protection. Additionally, since many of the occurrence points 

were spatially aggregated, predicted suitable sites adjacent to existing locations of I. 

webberi (that is, adaptive cluster sampling; Thompson 1990) were also surveyed. This 

resulted in the generation of about 900 true absence points and three new locations, 

which were added to existing data for modeling iteration in 2018. 
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Niche modeling in 2018 used 26 occurrence and spatially thinned absence points. 

The 26 occurrence points included the original 21 points, the three new locations and 

spatial adjustment of existing locations. For example, the USFWS population 

designations clustered multiple locations into one population. The disaggregation of these 

subpopulations resulted in three additional presence points. All absence points were 

overlaid on the resulting habitat suitability map projection from which sites for field 

validation were selected for sampling. Ground truthing resulted in the discovery of a new 

location and 229 absence points, which were added to the dataset for modeling iterations 

in 2019. Predicted habitat maps from the 2019 modeling iteration were used to select 

sampling sites for field validation in 2020. Absence points were overlaid on the 

prediction map, and predicted suitable sites in close proximity to known occurrences (i.e., 

adaptive cluster sampling) were selected for field validation. This resulted in the 

discovery of four new locations, which increased the spatial points to 31 occurrences and 

2289 absence points (Table 1), which were used for the most recent modeling iteration. 

In all final modeling iterations, replicates of all single models with TSS ≥ 0.7 

were averaged into an ensemble model (Araújo & New, 2007; Marmion, Parviainen, 

Luoto, Heikkinen, & Thuiller, 2009; Thuiller et al., 2009), which was also evaluated 

using TSS and AUC. The ensemble model with the highest TSS was used to generate 

maps of projected habitat suitability that were used for the model-guided field sampling. 

On the predicted habitat maps, areas with a ≥ 0.5 probability of occurrence were 

considered suitable, based on the recommendation for fitting niche models for species 

with few occurrence points (Araújo & Peterson, 2012). All model-guided field surveys 
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were conducted between May and June of each year when the plants are in flower to 

ensure optimal detection. 

We used a different niche modeling approach to assess overfitting in the iterative 

models where overfitting is indicated by a large difference between observed accuracies 

for a fitted model using the training data set, and accuracies for models developed using 

spatially independent test data. The same spatial dataset used for the iterative niche 

modeling each year were partitioned into three spatial blocks, two of which were used for 

training while the third block was used for testing. Blocking is a nonrandom allocation of 

spatial data to reduce the effect of spatial bias and autocorrelation in the resulting models 

(Valavi, Elith, Lahoz-Monfort, & Guillera-Arroita, 2019). In this study, we partitioned 

the entire study area into six latitudinal and longitudinal bins, which were then clustered 

into three spatial blocks. Due to the data requirements of different algorithms, we limited 

the niche modeling to random forest, maximum Entropy, and Artificial Neural Networks. 

Overfitting was assessed as a difference between the training and test AUC (Warren & 

Siefert, 2011). 

Assessment of niche model performance 

Multi-metric model comparison is recommended for evaluating models generated 

from different algorithms, because each metric assesses a different aspect of model 

performance (Elith and Graham 2009, Escober et al. 2018). In order to produce model 

predictions with maximal accuracy and minimal omission errors, true statistic skill (TSS; 

Allouche et al. 2006), area under the curve (AUC) of the receiver operating 

characteristics (ROC) plot (Hanley and McNeil 1982), specificity and Continuous Boyce 
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index (CBI; Boyce et al. 2002) were used to evaluate the performance of the fitted niche 

models. 

TSS is computed as TSS = sensitivity + specificity – 1, thus considering both 

commission and omission errors, and accuracy (Allouche et al. 2006). The main strength 

of TSS is that it is not sensitive to species prevalence (Allouche et al. 2006, Beaumount et 

al. 2016). Specificity measures the probability of a model correctly classifying an absence 

point (Allouche et al. 2006). However, both TSS and specificity are threshold-based 

metrics, using a default or defined threshold to predict the suitability of a grid based on 

the confusion matrix, while AUC is a threshold-independent metric. Sensitivity values 

are plotted against specificity values to produce the ROC plot, from which the AUC score 

is obtained (Fielding and Bell, 1997), therefore it could be interpreted as the average 

sensitivity across all values of specificity, or vice versa (Liu et al. 2011). Experts have 

cautioned that AUC weights commission and omission errors equally, and it is sensitive 

to overfitting when the test data is not independent (Lobo et al. 2008, Warren and Seifert 

2011). In spite of this, AUC is the most commonly used model performance metric (Lobo 

et al. 2008). The Continuous Boyce Index (CBI) is the Spearman rank correlation 

between model predictions and the occurrence points used in the modeling (Boyce et al. 

2002, Hirzel et al. 2006). It was developed originally for assessing the accuracy of 

presence-only models, but can be used for all niche modeling frameworks (Breiner et al. 

2015). 
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Assessment of differences among iterative niche models 

Model performance was assessed for each year of iterative niche modeling. 

Generalized Linear mixed effect models (GLMM) were used to account for the random 

effect of years of iterative modeling on the difference in predictive performance of each 

of the six algorithms, using the scores of the performance metrics. In the GLMM, values 

of the performance metric (response variable) were regressed against the six algorithms, 

while the years of iterative modeling was included as a random effect. 

Furthermore, niche overlap analysis was performed on the ensemble predictions 

of habitat suitability for each modeling iteration, using the I similarity metric, which is 

based on the Hellinger distance (Warren, Glor, & Turelli, 2008). Niche overlap analysis 

is a cell-by-cell comparison of geographical predictions of occurrence and randomization 

tests to quantify niche differences and assess their statistical significance (Warren, Glor, 

& Turelli, 2008). The similarity metric of the niche overlap analysis, as implemented in 

the nicheOverlap function of the dismo R package, ranges from 0 to 1 representing the 

degree of similarity between two niche model projections (Warren, Glor, & Turelli, 2008; 

Hijmans, Phillips, Leathwick, & Elith, 2017). Additionally, the number of predicted 

suitable raster cells (≥ 0.5 probability of occurrence) was counted.  

Additionally, we conducted principal component analysis (PCA) to assess 

changes in the ecological niche of I. webberi due to the novel locations and additional 

absence points. This complements the niche overlap analysis and corrects for a possible 

overestimation of the similarities among the predicted niches (Broennimann, Fitzpatrick, 

Pearman, Petitpierre, Pellissier, Yoccoz, …, Guisan, 2012). PCA was implemented in 

FactoMineR R package (Lê, Josse, & Husson, 2008), which uses a singular value 
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decomposition method that examines covariances and correlations among individuals 

(Wall, Rechtsteiner, & Rocha, 2003). We conducted PCA using the six uncorrelated 

predictor variables and I. webberi occurrence data for the 2015 iterative modeling and all 

new presence points derived as from the 2020 spatial data. The PCA bivariate plot of the 

first two PCA axes included two convex hulls representing original and new presence 

points. In addition, we also plotted boxplots of the six environmental predictors between 

the original I. webberi points and the new locations discovered during the model-guided 

surveys. 

 

RESULTS 

Does iterative niche modeling improve our understanding of species-environment 

relationships for I. webberi? 

The iterative niche modeling and model-guided field surveys resulted in the 

discovery of seven new locations of I. webberi and also expanded the northern 

distribution range by 65 km. The positions of the new occurrence points on the PCA 

bivariate plot in relation to the original presence points show that the new locations filled 

the realized niche space and slightly expanded the climatic breadth for the I. webberi 

ecological niche (Fig. 2). The first two axes together explained 49% of the variation in 

the data. Axis 1 represents climatic and topographic gradients, while axis 2 represents 

gradients in the available energy and cosine aspect (Table 3). The boxplots show that 

some of the novel locations expanded the range for actual evapotranspiration, summer 

precipitation, and monthly minimum temperature and (Fig. 3a, d, f, respectively), but the 



49 
 

 
 

sites were within the range of the original occurrence for the remaining three predictors 

(Fig. 3b, c, and e). 

The variable importance plots showed that the perennial herbaceous layer and 

topographic position index (TPI) consistently contributed the most to I. webberi niche 

across all niche modeling iterations (Fig. 4a-d). AET, indicating the available energy, was 

the third predictor in the 2015 niche model iteration (Fig. 4a), cosine aspect layer, 

illustrating exposure to sunlight, came third in both the 2018 and 2019 modeling 

iterations (Fig. 4c-d), while mean summer precipitation was the third predictor for the 

2020 niche modeling (Fig. 4d). 

The response plots show that the probability of I. webberi occurrence was 

optimized between 25- and 33-mm summer precipitation, sites with ≥20% native 

perennial herbaceous occurrence, and topographic positions that are either gentle lateral 

valleys or gentle lateral ridges, but never in flat areas (Fig. 5). 

To what extent did additional presence and absence data alter the habitat suitability 

map projections? 

Niche overlap analysis showed a slight but gradual dissimilarity among the 

ensemble habitat suitability map projections across the modeling iterations (Fig. 6a-d; 

Table 4). Furthermore, the percentage of the ensemble predicted suitable raster cells 

(using 0.5 threshold) decreased from 5.98% in 2015, to 3.10% in 2018, 3.06% in 2019, 

but slightly increased to 3.34% in 2020. Together, both results indicate that additional 

presence and absence points slightly altered the geographic projections of the iterative 

niche modeling. 
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Does iterative modeling improve the niche of Ivesia webberi? 

Both TSS and AUC scores decreased from 2015 to 2019 iterative niche models, 

and slightly increased in the final niche model iteration (Fig. 7a and b). Tukey post-hoc 

comparison test on the MMLR analysis for both the TSS and AUC values showed that 

2015 niche models were significantly different from 2019 and 2020 modeling iterations 

(p<0.05; Table 5). The 2018 iterative models were also significantly different from 2019 

(p<0.05; Table 5). Furthermore, CBI values decreased between 2015 and 2018 niche 

models, but slightly increased in 2019 and 2020 iterations (Fig. 7c). Specificity values 

increased consistently with years of iterative modeling (Fig. 7d). However, Tukey post-

hoc comparison test on the MMLR of both CBI and specificity metrics were not 

significantly different (Table 5). The difference in the training and test AUC values from 

the niche modeling with spatial blocks shows overfitting in both the 2015 and 2019 

iterative niche models, while the 2018 and 2020 iterative niche models did not exhibit 

overfitting (Table 6). 

How did the performance of modeling algorithms change across iterative niche 

models? 

Across all four model performance metrics used, RF and GLM had the best and 

worst performance respectively across the years of iterative modeling (Fig. 8a-d), but the 

difference was not greater than expected by chance (MLM; p>0.05). However, when 

accounting for the effect of years of iterative modeling, Tukey post-hoc test on the 

GLMM analysis showed that TSS values from GLM niche models were significantly 

lower than for GBM (adjusted p<0.01), RF (adjusted p =0.01), and MAXENT models 
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(adjusted p=0.03). Similar results were obtained using AUC values showing that AUC 

values for GLM models was significantly lower than GBM (adjusted p=0.01) and RF 

models (adjusted p=0.01). 

For CBI, while accounting for the year effect using GLMM, MAXENT was 

significantly different (p=0.03), but the difference was lost in the Tukey post-hoc 

correction. For specificity, RF and ANN had the highest and lowest specificity 

respectively. Tukey post-hoc test on the multivariate multiple regression showed that 

ANN niche models were significantly lower to GAM (adjusted p=0.04), GBM (adjusted 

p=0.01), GLM (adjusted p=0.01), and RF (adjusted p=0.01). Similar results were 

obtained in GLMM where the effect of iterative modeling was accounted for: ANN was 

significantly lower than the remaining algorithms - GAM (adjusted p=0.01), GBM 

(adjusted p=0.01), GLM (adjusted p=0.01), MAXENT (adjusted p=0.03), and RF 

(adjusted p=0.01). 

Did ensemble modeling perform better than single algorithms? 

Based on TSS and AUC, the default BIOMOD metrics for ensemble models, 

ensemble models performed better than all single models (Fig. 9a-b), however this 

difference was only significant between ensemble and GLM niche models from the 

Tukey post-hoc test on a linear regression (adjusted p=0.01) on the TSS metric, but not 

for the AUC metric. While accounting for the year effect, Tukey post-hoc test on the 

GLMM showed significant difference between ensemble models and ANN (adjusted 

p=0.02), and GLM (adjusted p=0.01) for the TSS metric, and only GLM (adjusted 

p=0.01) for the AUC metric. 
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DISCUSSION 

Strengths and weaknesses of the iterative modeling approach 

The discovery of seven novel localities and an overall expansion of Ivesia 

webberi’s known geographical range underscores the importance of iterative niche 

modeling to guide field surveys, identify biological relevant ecological factors that 

support species persistence, and accurately map their geographical distributions. Previous 

studies have reported the discovery of new localities from niche model guided field 

surveys (e.g., Aitken, Roberts, & Schultz, 2007; Williams, Seo, Thorne, Nelson, Erwin, 

O’Brien, & Schwartz, 2009; de Siqueira, Durigan, de Marco Jr., & Peterson, 2009; 

Newbold, Reader, El-Gabbas, Berg, Shohdi, Zalat, … Gilbert, 2010; Rebelo & Jones, 

2010; Le Lay, Engler, Franc, & Guisan, 2010; Menon, Choudhury, Khan, & Peterson, 

2010; Särkinen, Gonzáles, & Knapp, 2013; Groff, Marks, & Hayes, 2014; McCune, 

2016; Deb, Jamir, & Kikon, 2017; Burns et al., 2020). This study and other similar 

studies demonstrate that the discovery of new locations can result in an expansion of the 

known distribution range of the study species and lead to increased understanding of the 

niche and species-environment relationships (Rinnhofer et al., 2012; Young Fairchild, 

Belcher, Evangelista, Verdone, & Stohlgren, 2019; Chiffard et al., 2020). Iterative 

ecological modeling is not limited to niche models, but has also been recommended for 

accurate forecasting of plant response to climate change (White, Yenni, Taylor, 

Christensen, Bledsoe, Simonis, & Ernest, 2018). 

When occurrence points are few, the chances of model prediction errors are high 

because of an inflation of the influence of spatial bias and high risk of violating 
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stationarity assumptions in the niche models (Wisz et al., 2008; Lobo & Tognelli, 2011; 

Galante, Alade, Muscarella, Jansa, Goodman, & Anderson, 2018). Moreover, the ability 

of models to reliably identify relevant drivers of a species distribution is reduced (Wisz et 

al., 2008; Galante et al. 2018). Therefore, commission errors do not necessarily mean a 

failure of the model to characterize suitability accurately, but may highlight potential 

suitable but unsampled sites or an incomplete model due to the absence of important 

variables (Araújo & Peterson, 2012). Therefore, when modeling the niches of rare species 

with few occurrences, locations of commission errors should be considered potential 

suitable habitats which can be validated through an adaptive sampling strategy. 

Novel locations of a species have both conservation and ecological significance. 

In this study, we observed slight dissimilarities among the geographic projections of the 

iterative niche models for I. webberi, which highlights the role of additional spatial data 

in the model predictions. However, niche overlap metrics do not indicate the 

directionality or type of difference in the niche, and do not provide a quantitative 

indication of the position and breadth of the niches, thus, they cannot tell us if the 

modeled niches have expanded, shrunk or remained the same (Broennimann et al., 2012). 

Both the boxplots and the PCA bivariate plot show that the novel presence points 

expanded the climatic breadth of I. webberi ecological niche. Previous studies have 

reported similar ecological significance of additional occurrence in niche modeling and 

predictions (Rinnhofer et al., 2012; Chiffard et al., 2020). Overall, the niche model 

projections are congruent with field observations in that I. webberi is spatially distributed 

in climatically suitable sites, on gentle slopes, dominated by mixed perennial herbaceous 

and shrub vegetation and gravely bare ground (see Figures S2-14).   
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Conversely, absence points can have significant effects on model predictions. In 

this study, we observed decreasing performance in the iterative niche models which can 

be attributed to an increase in the number of absence points. Absence points in niche 

models can represent sites with unsuitable climatic conditions, abiotically suitable sites 

but the species cannot naturally reach due to limited dispersal or the species is 

competitive excluded, and sites where the species was present but not detected (Lobo, 

Jiménez-Valverde, & Hortal, 2010). Sites that are environmentally unsuitable for a 

species represent true absence while the other two absence types can introduce noise into 

bioclimatic envelopes and reduce the reliability of potential niche predictions (Lobo, 

2008; Lauzeral, Grenouillet, & Brosse, 2012). Different algorithms have varying 

statistical artefacts to deal with noisy absences, inevitably resulting in uncertainty in the 

prediction of spatial distributions (Lauzeral, Grenouillet, & Brosse, 2012). Therefore, 

absence points generated from field sampling of locations of commission errors should be 

treated with caution because their inclusion in iterative niche models can result in the 

underprediction of the potential niche. Conversely, additional absence points resulting 

from iterative niche modeling will reduce the absence ratio and increase specificity in the 

model predictions. This trend was observed in our study and has also been observed in 

previous studies (Chiffard et al., 2020).  

A common limitation of ecological niche modeling for rare species is the lack of 

true absence points; therefore, many modelers are restricted to generating and using 

pseudo-absence points (Barbet-Massin, Jiguet, Albert, & Thuiller, 2012). However, niche 

models that used true absence points performed better than those that used pseudo-

absence points (Elith et al. 2006, Elith et al. 2011, Drake 2014). However, many state and 
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federal conservation agencies in the United States have repositories of historical 

vegetative sampling that can help overcome the lack of true absence points for niche 

modeling. We recommend the development of open-source flora databases from these 

site-specific plant surveys which can be used to generate true absence points for 

ecological niche modeling. 

Considerations regarding the choice of predictor variables 

The perennial herbaceous layer, which is a spatial distribution of native grasses, 

forbs and cacti (Wickham et al, 2014), consistently contributed the most to all niche 

models. This may be partly due to that fact that biotic variables help reduce commission 

errors by predicting suitability only in areas with favorable abiotic and biotic conditions 

(de Araújo et al. 2014), which can only be captured in the fine-scale modeling used in 

this study (Heikkinen et al. 2007a, Muñoz-Mas et al. 2017). The niche models showed 

that I. webberi are located in sites with moderate to high perennial herb cover, which may 

reflect the abundance and coexistence of I. webberi and native shrubs such as A. 

arbuscula observed in known sites. The significant contribution of the perennial herb 

layer to I. webberi niche models validates previous studies that showed the importance of 

biotic interactions in niche models (e.g., Araújo and Luoto 2007, Heikkinen et al. 2007b, 

Meier et al. 2010, Bateman et al. 2012). It is widely believed that climatic factors 

influence species distributions at coarse scale, and the effect of biotic interactions are 

more appropriately captured at smaller spatial resolutions (Whittaker et al. 2001, Pearson 

and Dawson 2003, McGill 2010, Ashcroft et al. 2011, but see Meier et al. 2010, Bateman 

https://www.sciencedirect.com/science/article/pii/S0075951116301402#!
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et al. 2012, de Araújo et al. 2014), a concept formally described as the Eltonian noise 

hypothesis (Soberón and Nakamura 2009). 

In this study, we incorporated biotic interactions in five ways: a) modeling at fine 

scale (30 m) to capture the floristic heterogeneity, since some of I. webberi locations are 

in forest gaps, b) inclusion of forest cover to illustrate competitive biotic interaction since 

I. webberi does not grow under the trees, c) inclusion of remotely sensed modified soil-

adjusted vegetation index (MSAVI) and the normalized difference vegetation index 

(NDVI), d) inclusion of Artemisia arbuscula spatial distribution, which is recorded in all 

I. webberi sites, and e) inclusion of layers of spatial distribution of annual and perennial 

herbs in the Great Basin Desert (Wickham et al. 2014). However, all predictor variables 

representing biotic interactions, except the perennial herbaceous layer, were excluded 

following the three variable reduction processes. Additionally, preliminary modeling 

efforts (not reported here) that included layers of spatial distributions of Artemisia 

arbuscula and other native Great Basin Desert shrubs, suggesting facilitative biotic 

interaction, did not improve niche models. This is possibly due to the fact that I. webberi 

occupies a small portion of the distribution range of these native shrubs, which suggests a 

lack of true ecological fidelity between I. webberi and A. arbuscula. Previous studies 

have also included biotic interactions (competition, facilitation and resource availability) 

as spatial distribution layers of other species (e.g., Meier et al. 2010, Linder et al. 2012, 

Blois et al. 2013, Pellissier et al. 2013, de Araújo et al. 2014, Anderson 2016), co-

occurrence matrix of vegetation types (e.g., Pellissier et al. 2010, Kissling et al. 2012, 

González-Salazar et al. 2013, Pollock et al. 2014), species’ functional traits (e.g., Kraft et 

al. 2008, Morales-Castilla et al. 2015), remotely sensed vegetation indices and image 
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texture which are proxies for species richness, plant productivity and habitat 

physiognomy (Oindo and Skidmore 2002, Zimmerman et al. 2007, Buermann et al. 

2008), and mechanistic niche models (Peterson and Soberón 2005). 

Experts have discouraged the use of topographical variables for niche modeling 

because such variables have no direct relationship with species, but are proxies of 

climatic variables and hydrological processes (Austin 2007). However, the Great Basin 

Desert and the adjacent Sierra Nevada Range are home to relatively young neo-endemic 

plant taxa, and the origin and spatial endemism of these young endemics is attributed to 

several environmental factors including topographic heterogeneity (Kraft et al. 2010, 

Thornhill et al. 2017). Furthermore, topographic variables have been reported as an 

important driver of species diversity in plants, amphibians, birds and mammals (O’Brien 

et al. 2000, Hortal et al. 2009, Albuquerque et al. 2019). Therefore, topographic variables 

are more than just micro-climate proxies for I. webberi, but they may also delineate the 

slope positions of the sites where the species may occur. Furthermore, species were 

reported to change their topographic positions due to variations in climatic conditions at 

fine scales (Guisan and Zimmerman 2000), which may explain why I. webberi was fitted 

in niche models to occur in either gentle lateral slopes or ridges. This validates field 

reports that have observed that known populations of I. webberi occur in mid-elevation, 

gentle slope areas (Witham 2000, USFWS 2014). Previous studies have also 

acknowledged the contribution of topographic variables in species distribution modeling 

for plant species (e.g., Guisan et al. 1999, Chardon et al. 2014, Kübler et al. 2016). 
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In this study, summer precipitation was the third important predictor for the 2020 

niche modeling iteration, replacing AET and cosine aspect in the previous modeling 

iterations. I. webberi seeds are not adapted for long distance dispersal common with 

wind-dispersed seeds, but gravity-assisted seed dispersal by surface run-off resulting in 

the colonization of empty microsites and decolonized roads and trails have been 

observed. Therefore, summer precipitation may play an important role in the I. webberi 

climatic niche and seed dispersal. Moreover, summer precipitation represents rainfall 

seasonality that has been linked with annual grass dominance in the Mediterranean region 

(Clary 2008). Chen et al. (2019) also reported that increase in summer precipitation 

facilitates seed dormancy for spring germinating annual plant species in a cold desert. 

Water, sourced mainly from precipitation, is the principal limiting factor for plant 

physiology and growth in the Great Basin Desert (Donovan and Ehleringer 1994). Not 

only do climatic variables have an impact on species distributions (Bellard et al. 2012, 

Araújo and Rozenfeld 2014), they also influence the phenology of winter and spring 

annuals and perennials in the Great Basin Desert. For example, the timing of I. webberi 

regeneration from seeds and vegetative caudices is determined by increase in soil 

temperature which results in gradual snow melt and availability of soil moisture (Witham 

2000, USFWS 2014). 

Comparison of modeling algorithms 

Rare species are given conservation priority and ecological niche models can 

inform the management of such imperiled species. Therefore, it is important to use 

modeling algorithms that are less sensitive to prevalence and biased occurrence records, 
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while also having high predictive ability. In this study, machine learning algorithms, 

especially random forests and boosted regression trees, performed excellently in fitting 

the niche model of Ivesia webberi. This result is congruent with literature and 

demonstrates the statistical ability of machine learning algorithms in fitting niche models 

of species with fewer occurrences (Marmion et al. 2009, Mi et al. 2017). Moreover, the 

spatial distribution of co-occurring species, that is, biotic variables, is often influenced by 

abiotic variables (Anderson 2013); therefore, abiotic variables used for niche modeling 

may have incorporated the non-independent effects of biotic interactors (Costa et al. 

2010, Brewer and Gaston 2003, Soberón and Nakamura 2009). Machine learning 

algorithms were reported to be ideal for modeling the non-independent effects of biotic 

interactors (Elith and Graham 2009, Latimer et al. 2009, Anderson 2016).  

Conversely, GLM had the poorest model performance based on TSS and AUC, 

while ANN and MAXENT models performed poorly under the continuous Boyce index 

and specificity respectively. This is congruent with previous studies where RF was 

reported to have had the highest model performance while GLMs had the lowest, 

especially when an independent test data was not used (Oppel et al. 2012, Guo, Lek, Ye, 

Li, Liu, & Li 2015). Previous studies have shown that GLMs are sensitive to prevalence 

in the dataset (Fielding and Bell 1997), but produce a more reliable spatial interpolation 

(Iturbide, Bedia, & Gutiérrez 2018). 

However, fitting weighted mean ensemble models using the models with high 

predictive performance from the six single algorithms produced the best overall model 

performance. The superior model performance of ensemble models over single 
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algorithms is well established in literature, and demonstrates their ability to reduce 

prediction errors (Marmion et al. 2009, Li and Wang 2013, Guo et al. 2015). 

Conclusion and future directions 

Occurrence points for rare species are often incomplete and variable selection for 

niche modeling is commonly based on expert knowledge rather than from empirical 

studies; therefore, predictions and transferability of such niche models can be suspect. In 

this study, we explored the efficacy of two main approaches for addressing the challenges 

associated with niche modeling for rare species: ensemble modeling, and iterative niche 

modeling. Ensemble modeling helps to reduce prediction error that can arise from using 

incomplete and biased occurrence data for rare species, while iterative niche modeling 

and model-guided field surveys can reduce the spatial bias, allow for model fine tuning 

that can improve model performance, and increase the chances of detecting novel species 

locations that can either fill the realized niche space or expand species niche breadth and 

geographical distribution range. These two approaches increased the scientific 

understanding of species-environment relationships for I. webberi. Furthermore, our work 

also highlights the value of incorporating biotic predictor variables in ecological niche 

modeling. Future directions in this study should intensify model-guided surveys to 

unsampled areas, especially through collaborative efforts with citizen scientists, and the 

resulting spatial data should be used for further iterative niche modeling.   
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TABLES 

Table 1. Iterative niche modeling across five years with increasing number of presence 

and absence points for Ivesia webberi 

Year Presence 

points 

Raw absence 

points 

Thinned 

absence 

Predictor variables used for final 

modeling 

2015 21 758 53 Perennial herbaceous, topographic 

position index (TPI), and annual 

evapotranspiration 

2018 26 1652 90 Perennial herbaceous, TPI, and cosine 

aspect 

2019 27 1881 75 Layers of perennial herbaceous, TPI, 

and cosine aspect 

2020 31 2289 102 Perennial herbaceous, TPI, and 

annual precipitation 
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Table 2. The six uncorrelated predictor variables used to fit preliminary niche models for 

Ivesia webberi. The three predictor variables used for the iterative niche models were 

selected from this pool. All predictors were downscaled from 4 km to 30 m resolution 

Predictor variable Relationship with species 

Actual 

evapotranspiration 

(AET) 

An estimate of the amount of water removed from an area by 

both evaporation and transpiration. AET, a direct predictor, is 

a proxy estimate of plant productivity. 

Cosine aspect  Higher values indicate more north-facing slope aspects, which 

receive less sunlight. 

Perennial herbaceous 

vegetative cover 

A spatial vegetative cover delineation representing native 

grasses, perennial forbs, and cacti, which includes areas of I. 

webberi distribution. We considered this as a representation 

of biotic interactions covering the coexistence of all native 

forbs in I. webberi communities. 

Minimum annual 

temperature 

A direct predictor that potentially influences plant distribution 

(Araújo and Rozenfeld 2014). Vegetative and seed 

regeneration of I. webberi are dependent on cold stratification 

that characterizes late winter and early spring seasons. 

Summer precipitation A direct predictor that potentially influences plant 

distribution. Summer precipitation causes surface runoffs 

which facilitate localized gravity-enhanced seed dispersal and 

colonization of empty niches. 
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Topographic position 

index (TPI) 

A scale-dependent variable describing the elevation of a cell 

in relation to the mean elevation of the neighboring cells. At 

the scale of 333 m, TPI distinguishes between mountains and 

valleys in the study area. The study area is characterised by 

topographic heterogeneity which can limit dispersal and 

distribution, and also act as a proxy for climatic variables. 
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Table 3. The relationship between the environmental variables and the first two axes of 

the principal component analysis based on Ivesia webberi presence and true absence 

points. Values represent correlation between the environmental variables and PC axes 

Environmental variables PC1 (28.7%) PC2 (20.3%) 

Actual evapotranspiration -0.154 -0.607 

Cosine aspect 0.159 0.791 

Perennial herbaceous layer 0.015 0.436 

Mean summer precipitation 0.868 -0.122 

Minimum annual temperature -0.742 0.121 

Topographic position index 0.605 -0.051 
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Table 4. Similarity measure among the ensemble-projected habitat suitability from 

iterative niche modeling. Similarity was assessed using the niche overlap function in 

dismo R package 

Iterative models 2015 2018 2019 2020 

2015 1    

2018 0.946 1   

2019 0.927 0.989 1  

2020 0.894 0.882 0.845 1 
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Table 5. Adjusted p values from the pairwise Tukey post-hoc test on the multivariate 

multiple linear regression on four performance metrics of the niche model iterations from 

2015 to 2020 for Ivesia webberi. P values < 0.05 are in bold text 

Pairwise comparisons TSS AUC Boyce Index Specificity 

2015: 2018 0.19 0.25 0.12 0.90 

2015: 2019 0.01 0.01 0.53 0.99 

2015: 2020 0.01 0.02 0.66 0.88 

2018: 2019 0.01 0.01 0.82 0.74 

2018: 2020 0.13 0.47 0.70 0.99 

2019: 2020 0.67 0.25 0.99 0.72 
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Table 6. AUC values for the iterative niche models from a separate niche modeling using 

blocking to partition spatial data into training and test data. Block AUC and test AUC 

represent average values of the model replicates from random forest, artificial neural 

networks and maximum entropy 

Iterative model Block AUC Test AUC Difference AUC 

2015 0.81 0.47 0.34 

2018 0.63 0.59 0.04 

2019 0.66 0.46 0.20 

2020 0.47 0.52 -0.05 
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FIGURE LEGENDS 

Figure 1. A diagram illustrating the iterative niche modeling framework for fitting Ivesia 

webberi ecological niche 

Figure 2. PCA biplot of the environmental predictors that influence the Ivesia webberi 

niche in the western Great Basin Desert. 2015 represents the initial spatial data used for 

the first niche model iteration, while 2020 represents all new spatial data added to the 

iterative niche models from 2016-2020. Both “a” and “p” represent absence and presence 

points respectively 

Figure 3a-f. Box plots representing environmental conditions in the original occurrence 

points compared to those in the novel locations. The environmental conditions represent 

the six uncorrelated predictor variables, including (a) actual evapotranspiration, (b) 

cosine aspect, (c) perennial herbaceous cover, (d) summer mean precipitation, (e) 

topographic position index, and (f) minimum monthly temperature 

Figure 4. Variable contributions to the iterative niche modeling for Ivesia webberi from 

a) 2015 to d) 2020. The three predictors used for each year of iterative modeling were 

selected from the preliminary modeling. Herb represents the perennial herb layer, TPI 

stands for topographic position index at 333 m, AET stands for cumulative actual 

evapotranspiration, aspect represents cosine aspect, while precip stands for summer mean 

precipitation 

Figure 5. Response plots showing the predicted probability of Ivesia webberi occurrence 

in a) topographic position index, b) annual precipitation, and c) perennial herb spatial 

distribution layer. The response plots were generated using the Random forest models 

Figure 6a-d. Maps of predicted suitable areas and geographical distribution of Ivesia 

webberi in the western Great Basin Desert, with occurrence points overlay. Red colored 

pixels represent areas of predicted high probability of I. webberi occurrence, yellow 

pixels represent intermediate probability of species occurrence, while blue pixels are 

predicted areas of zero to low probability of occurrence. The occurrence points in green 

are the original I. webberi occurrence points used for niche modeling, while yellow 

colored occurrence points represent the novel population 

Figure 7. Values for the a) area under curve (AUC) of the receiver operating 

characteristic (ROC) plot, b) continuous Boyce index (CBI), c) specificity, and d) true 

statistic skill (TSS) metrics across the years of iterative niche modeling (shown in x 

axes). Niche models for 2015 and 2018 were the highest and lowest respectively 

Figure 8. Model performance of the six algorithms based on the a) area under curve 

(AUC) of the receiver operating characteristic (ROC) plot, b) continuous Boyce index 

(CBI), c) specificity, and d) true statistic skill (TSS), after accounting for the effect of 

years of iterative modeling 
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Figure 9. Comparative model performance between ensemble and single algorithm-based 

niche models for Ivesia webberi, after accounting for the effect of years of iterative 

modeling in a) TSS, and b) AUC metrics  
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SUPPLEMENTAL INFORMATION 

Table S1. List of 72 predictor variables assembled for fitting the ecological niche models 

of Ivesia webberi. They were reduced to six uncorrelated (r<0.59) predictors using 

Kendall r correlation, and feature selection runs in Boruta R package and RFE function in 

caret R package 

Predictor name Description and source 

Elevation A 30 m (1 arc second) digital elevation model (DEM) from 

National elevation dataset (USGS, 2017) 

Slope Slope layer was calculated from the USGS (2017) DEM layer, 

using the slope tool in ArcMap version 10.7 

Curvature Curvature layer was calculated from the USGS (2017) DEM 

layer, using the slope tool in ArcMap version 10.7 

Land cover Sourced from the 30 m U.S. National Land Cover Dataset 

(NLCD) 2011 product (Homer, Dewitz, Yang, Jin, Danielson, 

Xian, … Megown, 2015) 

Sine aspect Sine aspect was calculated in ArcMap version 10.6.1 using 

USGS (2017) DEM and the slope layers 

Cosine aspect  Cosine aspect was calculated in ArcMap version 10.6.1 using 

USGS (2017) DEM and the slope layers, the formula: = θ × 

cos(α), where = θ is slope (in percentage), and α is aspect 

(in radians) 

Cosine aspect at 45° Cosine aspect was calculated in ArcMap version 10.6.1 using 

USGS (2017) DEM and the slope layers, the formula: = θ × 

cos(α), where = θ is slope (in percentage), and α is aspect 

(in radians). Here, aspect is tilted at 45° 
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Hillshade  A topographic layer calculated from the USGS (2017) DEM 

layer, using the hillshade tool in ArcMap version 10.6.1 

Topographic position index 

(TPI33) 

Calculated from USGS (2017) DEM in ArcMap version 10.6.1, 

using formula introduced by Weiss (2001), and a 33 m 

neighborhood 

Topographic position index 

(TPI333) 

Calculated from USGS (2017) DEM in ArcMap version 10.6.1, 

using formula introduced by Weiss (2001), and a 333 m 

neighborhood. At 333 m scale, the entire landscape is classified 

into either a valley or a mountain range 

Topographic wetness index Calculated from USGS (2017) DEM following the formula of 

Beven & Kirkby (1979) and is defined using the following 

formula: ln(upslope area / tan(slope)). 

Annual herb cover Data was sourced from the Multi-Resolution Land 

Characteristics (MRLC) development of the U.S. National 

Land Cover Database (NLCD) 2016 Shrub component products 

(Xian, Homer, Meyer, & Granneman, 2013) 

Bare ground  

Artemisia tridentata cover 

Perennial herbaceous cover 

Soil litter  

Artemisia spp. cover 

Shrub layer 

Shrub height 

Sagebrush height 

Forest cover A 30 m raster layer developed by the United States Forest 

Service (USFS) from multispectral LANDSAT imagery 

(Coulston, Moisen, Wilson, Finco, Cohen, & Brewer, 2012) 
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Modified soil-adjusted 

vegetation index (MSAVI2) 

Vegetation indices were created in Google Earth Engine, using 

remotely sensed data between January 1985 and December 

2010, from LANDSAT 5, 7 and 8 images, using code 

developed by Brehm & Matos (2019) 

Normalized difference 

vegetation index (NDVI) 

Solar radiation Solar radiation was calculated using a hemispherical viewshed 

algorithm (Fu & Rich, 2002) on the USGS (2017) DEM layer, 

in ArcMap version 10.6.1. Solar radiation was calculated for 

one day each in the four seasons: Julian days 1, 90, 225 and 

287 for winter, spring, summer and fall respectively (except for 

leap years where Julian days 91, 226 and 288 represent spring, 

summer and fall respectively). Five-year interval area solar 

radiation was calculated between 1975 and 2018. 

Available water content 

(AWC) 

Edaphic layers sourced from POLARIS, a 30 m probabilistic 

soil series map of the United States (Chaney, Wood, 

McBratney, Hempel, Nauman, Brungard, & Odgers, 2016) Soil mean CaCO3 

Soil mean clay 

Soil mean silt 

Soil mean sand 

Soil mean pH 

Soil mean bulk density 

Soil organic matter 

Depth to restrictive layer 

(bedrock) 
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Soil class A gridded soil survey dataset (gSSURGO) developed by the 

USDA Natural Resources Conservation Service (Soil Survey 

Staff, 2017) 

Geology Layer obtained from the Geologic maps of U.S. states (Horton, 

San Juan, & Stoeser, 2017) at 

https://mrdata.usgs.gov/geology/state 

Cumulative annual actual 

evapo-transpiration (AET) 

Water balance variable calculated from 800 m 1971-2000 

PRISM climate normals (Daly et al., 2008), available water 

capacity (Chaney et al., 2016), and the 1-arcsecond DEM 

(USGS, 2017) combined in the Climatic Water Deficit Toolbox 

for ArcGIS (Dilts, 2014). Methods are described in Dilts, 

Weisberg, Dencker, & Chambers (2015). AET represents the 

simultaneous availability of water and energy to support plant 

productivity. 

Cumulative annual climatic 

water deficit (CWD) 

Water balance variable calculated from 800 m 1971-2000 

PRISM climate normals (Daly et al., 2008), available water 

capacity (Chaney et al., 2016), and the 1-arcsecond DEM 

(USGS, 2017) combined in the Climatic Water Deficit Toolbox 

for ArcGIS (Dilts, 2014). Methods are described in Dilts et al. 

(2015). CWD is a measure of aridity and is difference between 

evaporative demand and supply 

Cumulative annual potential 

evapo-transpiration (PET) 

Water balance variable calculated from 800 m 1971-2000 

PRISM climate normals (Daly et al., 2008), available water 

capacity (Chaney et al., 2016), and the 1-arcsecond DEM 
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(USGS, 2017) combined in the Climatic Water Deficit Toolbox 

for ArcGIS (Dilts, 2014). Methods are described in Dilts et al. 

(2015). PET was calculated using the Thornthwaite approach 

outlined in Lutz et al. (2010). 

Cumulative annual soil 

water balance (SWB) 

Water balance variable calculated from 800 m 1971-2000 

PRISM climate normals (Daly et al., 2008), available water 

capacity (Chaney et al., 2016), and the 1-arcsecond DEM 

(USGS, 2017) combined in the Climatic Water Deficit Toolbox 

for ArcGIS (Dilts, 2014). Methods are described in Dilts et al. 

(2015). SWB represents the amount of soil water storage 

summed across all months of the year. 

Absolute cumulative soil 

water balance 

Absolute value of the SWB. Calculated using 800 m resolution 

PRISM climatic data 1970-2001 normals (Daly et al., 2008), in 

BIOLCLIM (Booth, Nix, Busby, & Hutchinson, 2014) 

Cumulative annual water 

supply (WS) 

Water balance variable calculated from 4 km 1971-2000 

PRISM climate normals (Daly et al., 2008), available water 

capacity (Chaney et al., 2016), and the 1-arcsecond DEM 

(USGS, 2017) combined in the Climatic Water Deficit Toolbox 

for ArcGIS (Dilts, 2014). Methods are described in Dilts et al. 

(2015). WS is the sum of rainfall and snowmelt in all months in 

the calendar year 

Monsoonality Proportion of annual precipitation falling between July and 

September (Romme, Allen, Bailey, Baker, Bestelmeyer, 

Brown, ... & Miller, 2009). Original data source from 4 km 
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resolution PRISM climatic data normals 1971-2000 (Daly et 

al., 2008) 

Heatload Static measure of solar radiation exposure based on slope, 

aspect, and latitude, based on methods published in McCune 

and Keon (2002). DEM derivatives were based on the 1-

arcsecond National Elevation Dataset (USGS, 2017). 

Minimum monthly 

temperature 

Based on the 4 km PRISM climatic data normals 1971-2000 

(Daly et al., 2008) 

Maximum monthly 

temperature 1970-2001 

Minimum annual 

temperature  

Minimum spring 

temperature  

Minimum fall temperature 

Minimum summer 

temperature 

Minimum winter 

temperature 

Maximum spring 

temperature 

Maximum summer 

temperature 

Maximum fall temperature 
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Maximum winter 

temperature 

Annual monthly 

precipitation 

Fall seasonal precipitation 

Spring seasonal precipitation 

Summer seasonal 

precipitation 

Winter seasonal 

precipitation 

Temperature range 

Ratio of AET and CWD Water balance variables calculated from 4 km 1950-2015 

PRISM climate monthly data (Daly et al., 2008), available 

water capacity (Chaney et al., 2016), and the 1-arcsecond DEM 

(USGS, 2017) combined in the Climatic Water Deficit Toolbox 

for ArcGIS (Dilts, 2014). PRISM climate data were 

downscaled from 4 km using the delta method and the PRISM 

1971-2000 normals. Variables are described in Barga, Dilts, & 

Leger (2018). 

Ratio of AET and PET 

Ratio of SWB and AET 

Ratio of WS and AET 

Positive difference between 

AET and SWB 

Absolute ratio of SWB and 

AET 

Spring ratio of WS and the 

greater of AET or SWB 

Precipitation seasonality Based on PRISM climatic data normals 1971-2000 (Daly et al., 

2008), in BIOCLIM (Booth et al., 2014). 
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April snowpack (1951 – 

1980) 

Water balance variables calculated from 4 km 1950-2015 

PRISM climate monthly data (Daly et al., 2008), available 

water capacity (Chaney et al., 2016), and the 1-arcsecond DEM 

(USGS, 2017) combined in the Climatic Water Deficit Toolbox 

for ArcGIS (Dilts, 2014). PRISM climate data were 

downscaled to 800 m using the delta method and the PRISM 

1971-2000 normals. Variables are described in Barga et al. 

(2018). 

April snowpack (1981 – 

2010) 

Recharge 1951-1980 

Recharge 1981-2010 
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Figure S1. Correlation plot of the six uncorrelated predictor variables used for the iterative niche modeling of Ivesia webberi A. 

Gray. AET = actual evapotranspiration, cosaspect = cosine aspect, precip = summer mean precipitation, herb = perennial herb 

vegetative cover, mintemp = minimum annual temperature, tpi333 = topographic position index calculated at 333 m
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Figure S2. Photo illustrating the vegetative cover in Ivesia webberi site at the Hallelujah 

Junction Wildlife Area (USFWS-designated unit 4). Photo taken by Israel Borokini in 

June 2020.  
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Figure S3a. Photo illustrating the vegetative cover in Ivesia webberi site at the Dog 

Valley Meadows, near Verdi NV (USFWS-designated unit 5a). Photo taken by Israel 

Borokini in June 2018.  
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Figure S3b. Photo illustrating the vegetative cover in Ivesia webberi site at the Dog 

Valley Meadows, near Verdi NV (USFWS-designated unit 5a). Photo taken near the 

historical California trail marker by Israel Borokini in June 2017. 
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Figure S4. Photo illustrating the vegetative cover in Ivesia webberi site at the Dog Valley 

Meadows, near Verdi NV (USFWS-designated unit 5b). Photo taken by Israel Borokini 

in May 2017.  
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Figure S5. Photo illustrating the vegetative cover in Ivesia webberi site at the Ivesia flat 

on Peavine Mountain Range (USFWS-designated unit 8). Photo taken by Israel Borokini 

in June 2018.  
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Figure S6. Photo illustrating the vegetative cover in Ivesia webberi site in the Humboldt-

Toiyabe National Forest, near the Nevada-California Stateline (USFWS-designated unit 

9a). Photo taken by Israel Borokini in June 2018.  
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Figure S7. Photo illustrating the vegetative cover in Ivesia webberi site in the Humboldt-

Toiyabe National Forest, near the Nevada-California Stateline (USFWS-designated unit 

9b). This site is characterized by mosaics of I. webberi-Balsamorhiza hookeri and the 

invasive Taeniatherum caput-medusae (green patches). Photo taken by Israel Borokini in 

June 2018.  
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Figure S8. Photo illustrating the vegetative cover in Ivesia webberi site in the Humboldt-

Toiyabe National Forest, near the Nevada-California Stateline (USFWS-designated unit 

10). Photo taken by Israel Borokini in June 2018.  
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Figure S9. Photo illustrating the vegetative cover in Ivesia webberi site near Dutch Louie 

Flat on the Carson Range (USFWS-designated unit 14). Photo taken by Israel Borokini in 

June 2018.  
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Figure S10. Photo illustrating the vegetative cover in Ivesia webberi site at the base of 

the Carson Range near Caughlin Ranch neighborhood (USFWS-designated unit 15). I. 

webberi grows under the dense tufts of Bromus tectorum (senesced plants) and 

Taeniatherum caput-medusae which invaded the site. Photo taken by Israel Borokini in 

June 2018.  
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Figure S11. Photo illustrating the vegetative cover in one of the newly discovered Ivesia 

webberi sites on a private property adjacent to the Humboldt-Toiyabe National Forest. 

Photo taken by Israel Borokini in May 2020.  



118 
 

 
 

  

Figure S12. Photo illustrating the vegetative cover in one of the newly discovered Ivesia 

webberi sites, the second patch on the same private property adjacent to the Humboldt-

Toiyabe National Forest. Photo taken by Israel Borokini in May 2020.  
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Figure S13. Photo illustrating the vegetative cover in one of three newly discovered 

Ivesia webberi sites in the Hallelujah Junction Wildlife Area. This site is located in the 

southern end of the western portion of the Wildlife Area. Photo taken by Israel Borokini 

in May 2020.  
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Figure S14. Photo illustrating the vegetative cover in one of the newly discovered Ivesia 

webberi sites on public land managed by the Bureau of Land Management Eagle Lake 

District, along the Smoke Creek Road, northeast of Honey Lake, off U.S. 395 highway in 

California. This site extends the northern distribution range of I. webberi by 65 km. I. 

webberi is found along a long but narrow stretch of ephemeral dry wash surrounded by 

Bromus tectorum and Taeniatherum caput-medusae monocultures. Photo taken by Israel 

Borokini in May 2020.  
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ABSTRACT 

Questions: The soil seed bank is an important ecosystem component that can be pivotal 

for long-term persistence of many plant species, especially after disturbances followed by 

the invasion of alien weeds. However, many Great Basin Desert perennials produce fewer 

viable seeds, while large areas of the Great Basin are currently invaded by alien weeds. 

This could result in dissimilarity in floristic composition between the aboveground 

vegetative community and the soil seed bank, causing abrupt plant community shifts 

following disturbance. Therefore, we asked what is the relationship in the floristic 

composition between the aboveground communities and the soil seed bank in sites where 

the threatened Ivesia webberi occurs?  

Location: The Great Basin Desert, United States. 

Methods: We used Dice-Sorensen’s similarity index to estimate similarity between the 

standing vegetation and the soil seed bank. Redundancy analysis and variation 

partitioning were used to quantify the relationship between the total abundance of the 

sampled aboveground flora and the soil seed bank, accounting for effects of spatial 

processes and environmental variables describing climate, soils, and vegetation in the 10 

sites. 

Results: Findings reveal high dissimilarity in species assemblage and abundance between 

the aboveground plant communities and the soil seed bank. Most of the dominant native 

plant species sampled in the standing vegetation were absent in the soil seed bank, and 

the soil seed bank was dominated by invasive alien weeds.  



123 
 

 
 

Conclusions: Divergence in the floristic composition between the aboveground 

communities and the soil seed bank in I. webberi habitat indicates low resilience and high 

risk of native species loss following perturbation. Post-disturbance succession in these 

plant communities may be largely dominated by invasive annual species; therefore, 

reduction of invasive species and native plant seeding may be necessary to sustain the 

ecological legacies of the desert ecosystem. 

 

Keywords: Ivesia webberi, invasive species, community assemblage, redundancy 

analysis, soil seed bank, variation partitioning, ecological resilience, ecological 

restoration, native plant seeding, Great Basin Desert 

 

Data accessibility statement: Data used in this study are published in Knowledge 

Network for Biocomplexity: doi:10.5063/F1FN14J7.  
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INTRODUCTION 

An assessment of the relationship between the aboveground plant community and 

the soil seed bank is critical to understanding the ecological resistance and resilience of 

an ecosystem and post-disturbance successional pattern (Korb, Springer, Powers, & 

Moore, 2005; Ma et al., 2019; Mndela, Madakadze, Nherera-Chokuda, & Dube, 2020). 

Such an understanding is needed to support successful restoration efforts, and reverse 

biodiversity loss (Ma, Zhou, & Du, 2010; Haapalehto et al., 2017). However, the majority 

of studies that investigated the association between the aboveground plant communities 

and the soil seed bank reported low floristic similarity, and many soil seed banks are 

dominated by native and exotic annual ruderal and early-successional species (Peco, 

Ortega, & Levassor, 1998; Decocq et al., 2004; Hopfensperger, 2007; Bossuyt & 

Honnay, 2008). This raises questions concerning the role of the soil seed bank in 

fostering plant community resilience to disturbance (Kalamees & Zobel, 2002; Gioria & 

Pyšek, 2016). 

The Great Basin Desert plant communities are dominated by perennial species 

(Kemp, 1989; Allen & Nowak, 2008). Many of these species produce fewer healthy seeds 

which have limited dispersal capacity, and form a transient seed bank (Lee, 2004; 

Goodwillie, Kalisz, & Eckert, 2005; Pekas & Schupp, 2013). Most studies in the Great 

Basin Desert have reported dissimilarities in the aboveground vs. belowground floristic 

composition (Pekas & Schupp, 2013; Martyn, Bradford, Schlaepfer, Burke, & Lauenroth, 

2016), suggesting a limited role of the soil seed bank in the regeneration of desert 

perennial species (Bossuyt & Honnay, 2008; Allen & Nowak, 2008; Gomaa, 2012). 
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Moreover, vegetative recovery is not dependent on the seed bank alone, as regrowth from 

surviving vegetative structures of perennial plants can be quite important (Milberg, 1993; 

Bullock, Hill, Silvertown, & Sutton, 1994). For arid ecosystems in particular, the soil 

seed bank can be vulnerable to surface disturbance as the seed density is highest within 

the top 5 cm of the soil (Walters, 2004; DeFalco, Esque, Kane, & Nicklas, 2009).  

Plant community structure in the Great Basin Desert has been significantly altered 

as a result of the spread of invasive species, intense grazing, climatic stress, increased 

frequency and intensity of wildfires, and heavy recreational land use (Cox & Allen, 2008; 

Balch, Bradley, D’Antonio, & Gómez-Dans, 2013; Coates et al., 2016; Pilliod, Welty, & 

Arkle, 2017). These disturbances deplete the soil seed bank for most native plant species, 

and reduce the ecological resistance and resilience to invasive alien weeds and 

disturbance (Chambers et al., 2007; Brooks & Chambers, 2011). Consequently, the Great 

Basin Desert is listed as the third most endangered ecosystem in the United States (Stein, 

Kutner, & Adams, 2000; Nachlinger, Sochi, Comer, Kittel, & Dorfman, 2001). Experts 

have therefore cautioned that the remaining native vegetation in the Great Basin Desert 

could be lost to invasive alien weeds (Wisdom & Chambers, 2009). 

In this study, we investigated the relationship in species composition between the 

soil seed bank and the aboveground plant communities for 10 sites occupied by the 

threatened I. webberi, listed under the United States Endangered Species Act of 1973 

(ESA; 16 U.S.C. § 1531 et seq.). These sites were selected with a focus on understanding 

the regeneration dynamics of I. webberi and the role of the soil seed bank in maintaining 

these plant communities that are currently threatened by the invasive, nonnative weeds. 
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Therefore, we asked the following questions: 1) What is the degree of similarity between 

the species assemblage in the aboveground vegetation and the soil seed bank of the sites 

where I. webberi occur? 2) Is there a significant relationship between the soil seed bank 

and the aboveground plant communities in these sites? 3) If so, what proportion of the 

aboveground plant community structure is explained by the soil seed bank in comparison 

to other environmental variables? Given a high density of nonnative and invasive annual 

plant species in the study sites, and based on existing literature (e.g., Humphrey & 

Schupp, 2001; Hopfensperger, 2007; Vanstockem, Ceusters, Van Dyck, Somers, & 

Hermy 2018; Barga & Leger, 2018), we predict high dissimilarity between the 

aboveground vegetation and the soil seed bank in these relatively undisturbed sites. We 

defined the soil seed bank as a collection of viable but ungerminated seeds, originating 

from standing, but also locally extirpated plants and vegetation from neighboring sites 

(Baskin & Baskin, 1998; Boussyt & Honnay, 2008; Solomon, 2011).  

 

METHODS 

Study sites  

I. webberi (Rosaceae; Flora of North America) is a federally-listed threatened 

perennial forb, narrowly distributed along the eastern foothills of the northern Sierra 

Nevada and western margin of the Great Basin Desert (Figure 1). There are 16 known 

populations, most of which are located in small and isolated habitat patches that are 

dominated by nonnative and invasive annual grasses including Bromus tectorum and 

Taeniatherum caput-medusae. I. webberi regenerates mainly from the dormant root 
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caudex in late winter or early spring (Witham, 2000), but age-class difference, 

colonization of bare-soil microsites created by the decommissioned roads, and field 

detection of seedlings in many of the sites indicate additional recruitment from seeds. 

This necessitates the importance of characterizing the soil seed bank in the sites 

harboring the species to assess the potential implications for persistence of this threatened 

forb under current disturbance levels. 

Only 10 of the 16 known sites with I. webberi populations were accessible for this 

study, but were representative of the spatial distribution of the species (Figure 1). 

Climatic conditions at these sites are typical of the Great Basin Desert, which is 

influenced by rain shadow effects from the Sierra Nevada and Cascade Mountain ranges, 

and is therefore characterized by relatively mild winters and hot summers (Svejcar, Boyd, 

Davies, Hamerlynck, & Svejcar, 2017). Across the sites, temperature ranged from an 

average of -6 °C in the winter to an average of 28 °C in the summer, while annual 

precipitation varies between 25 and 33 cm. The areal extent of the selected sites for this 

study varies widely (Table 1) based on the patch occupancy of I. webberi estimated by 

the U.S. Fish and Wildlife Service (USFWS), which may indicate the relative suitability 

of ecological conditions at these sites for this species. The soil across these 10 study sites 

is characterized by argillic (clayey) subsurface horizon of volcanic origin overlaid by 

rocky pavement soil surface (USFWS, 2014). Over the past 30 years, all 10 sites have 

experienced varying degrees of grazing, off-highway vehicle use, wildfires and extensive 

colonization by nonnative and invasive plants (Witham, 2000; USFWS, 2014). 
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Soil seed bank sampling and estimation 

 To characterize species composition of the soil seed bank, 20 soil samples were 

collected in November 2015 from each site (n = 200), after seed set and before the soil 

was covered in snow (Allen & Nowak, 2008). At each site, collection points were 

randomly selected within I. webberi patches (Adams, Marsh, & Knox, 2005). Within a 1 

m2 quadrat placed at each of the collection points, three soil samples were collected from 

the top 3 cm, and combined as one sample. Due to a rocky surface pavement above a 

thick and hard argillic subsurface horizon in all sites (USFWS, 2014), the chosen soil 

depth is expected to capture optimal seed density in the soil seed bank. 

The seedling emergence method was used to quantify species composition of the 

soil samples (Thompson & Grime, 1979). This method is preferable for plant 

communities in desert and grassland ecosystems (ter Heerdt, Verweij, Bekker, & Bakker, 

1996), which often produce small seeds that could be lost using seed extraction methods 

(Gonzalez & Ghermandi, 2012). Importantly, the emergence method estimates the 

abundance of viable, non-dormant seeds (Tessema, de Boer, Baars, & Prins, 2012). 

Germination trials of the collected soil seed bank were implemented in the 

Greenhouse complex at the University of Nevada, Reno. Soil samples were left to dry for 

one month, and the soil was then sieved with 50 mm mesh to remove rocks. The soil 

samples were spread evenly over 1 m thick vermiculite on 25 × 25 cm, 5 cm deep nursery 

trays (n = 200), which were divided into four blocks (Espeland, Perkins, & Leger, 2010). 

The greenhouse was maintained under an ambient temperature of 21 ˚C, during the day 

and 16 ˚C at night, to enhance optimal germination in a stratified environment 
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(Humphrey & Schupp, 2001). To ensure equal exposure to light, the positions of the trays 

in the four blocks were changed every month (Sileshi & Abraha, 2014). Randomized 

sampling and cold-moist stratification conditions in the greenhouse were used to mitigate 

potential limitations of the seedling emergence method, which may not account for 

dormant and ungerminated seeds (Allen & Nowak, 2008; Gonzalez & Ghermandi, 2012). 

The soil samples were subjected to sequential treatments to enhance the 

probability of all seeds germinating. Transitioning each tray to the next treatment was 

done when no additional germination was observed in the trays after one week. The first 

treatment was a 2-minute daily watering which continued for five months until all 

germination ceased. This was followed by a dry phase for four weeks, to mimic natural 

fluctuations in soil moisture which is required for germination of some desert seeds 

(Baskin & Baskin, 1998; Meyer, Quinney, Nelson, & Weaver, 2007). The dry phase was 

followed by another daily watering phase for four weeks, the application of gibberellic 

acid to break seed dormancy of some species, and finally, the application of vinegar and 

sugar solution, which has been reported to stimulate seed germination through 

mycorrhizal association (Mu, Uehara, & Furuno, 2003). Also, the soil was stirred once 

every two months to allow for repeat germination of new seedlings (Ma et al., 2010). The 

experiment was ended when no additional seedling emerged for two consecutive weeks.  

Germinated seedlings were identified and removed, or potted for later 

identification, to reduce seedling competition and facilitate optimal germination of seeds 

in the soil samples (Ma et al., 2010; Aponte, Kazakis, Ghosn, & Papanastasis, 2010; 

Gomaa, 2012). The number of species (species richness) and number of individuals for 
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each species (species abundance) per site was recorded. Five morpho-species were also 

included, as they could not be identified to species. In addition, some seedlings did not 

survive beyond the seed-leaf stage and could not be identified. This is a common issue 

with employing the seedling emergence method, which has been reported in previous 

studies in the Great Basin Desert (see Allen & Nowak, 2008; Martyn et al., 2016). 

Vegetative community sampling 

In May 2016, the 10 study sites were revisited for plant community sampling. 

Twenty locations were randomly selected at each site using a stratified random sampling 

strategy focusing on I. webberi occupied patches. For each sampling point, we used a 1 

m2 quadrat to record total plant cover, plant richness, abundance, elevation and GPS 

coordinates. For each site, we also recorded soil type, dominant vegetation, distance (m) 

to major/minor road, disturbance intensity and physiognomic description. As in the soil 

seed bank estimate (section 2.2 above), species richness was taken as the number of 

species per site, while the total number of individuals per species was summed and used 

as species abundance per site. Disturbance intensity was described using an ordinal 

ranking of five classes as described in Appendix S1. Cover was measured as the total 

land area covered by plants and their shadows, estimated by eye as percentage of the 

quadrat. Percentage total vegetation cover for each site was obtained from the mean 

percent cover for the 20 quadrats sampled. 

Environmental predictor variables 

 In addition to the field data, we also included 10 geospatial variables describing 

climate (seasonal mean temperature and precipitation for winter, spring, fall and summer, 
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and solar radiation), and soil properties (soil mean clay, silt and sand). Selected predictor 

variables represented different components of water availability for plants, as is expected 

to be limiting for vegetation in arid ecosystems. However, the set of 17 predictor 

variables was reduced to six uncorrelated variables (r < 0.59) using an informed 

interpretation of Kendall correlation coefficients. The five selected abiotic variables, 

including solar radiation, soil mean clay, vegetation cover, and mean temperature for 

spring and winter seasons, together with the soil seed bank richness and diversity, were 

used as predictor variables (Table 2). Soil seed bank diversity was taken as the effective 

number of species, which are natural numbers produced from converting the logarithmic 

values of the Shannon-Wiener H’ index for each site (Jost, 2006). Spatial variables were 

computed as the principal coordinates of the neighbor matrix (PCNM, Borcard & 

Legendre, 2002; Dray, Legendre, & Peres-Neto, 2006), obtained from the truncated 

pairwise geographical distance matrix among sampling sites. The resulting eight 

independent and orthogonal PCNM eigenvalues were further reduced to one spatial 

variable (PCNM dimension 8) following forward variable selection runs, which was used 

for variation partitioning. 

Statistical analysis 

 Dice-Sorensen’s quantitative similarity index was used to estimate similarities in 

species composition between the aboveground plant communities and the soil seed bank 

for each site (Osem, Perevolotsky, & Kigel, 2006). We also used transformation-based 

redundancy analysis (tb-RDA) to assess variation in the Hellinger-transformed species 

abundance across all sites, as explained by linear gradients in the five abiotic variables, 
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and soil seed bank richness and diversity. The choice of RDA over canonical 

correspondence analysis (CCA) was supported by a linear relationship of species data to 

gradients of environmental predictors in a detrended correspondence analysis (DCA; Hill, 

1979), following the recommendation of Lepš & Šmilauer (2003). Permutation tests 

(10,000 Monte-Carlo permutations) were used to evaluate the overall RDA model fitness 

relative to a permuted data, the significance of the constrained axes, and the partial 

effects of the variables used. 

Variation partitioning was used to quantify the proportion of variation in the plant 

communities explained by the soil seed bank, abiotic and spatial variables (Borcard, 

Legendre, & Drapeau, 1992). The variables were clustered into climatic (seasonal mean 

temperatures for winter and spring, and solar radiation), site conditions (soil mean clay 

content and vegetation cover), soil seed bank (richness and diversity), and a spatial 

variable. Data analyses were done in R statistical software version 3.5.3 (R Core Team, 

2019), using functions in various packages including vegan (Oksanen et al., 2019), 

phytools (Revell, 2012), and ecodist (Goslee & Urban, 2007). The raw data used for this 

study were published in Knowledge Network for Biocomplexity (Borokini, Weisberg & 

Peacock, 2020). 

 

RESULTS  

Floristic structure and association of the aboveground plant community with the 

soil seed bank 
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There was a 37% overall similarity in the floristic composition between the 

aboveground vegetation (hereafter, AGV) and the soil seed bank (hereafter, SSB) 

community (Table 3), with 21 species in common out of 82 total species. Species 

richness and diversity were higher in the AGV but total species abundance was higher in 

the SSB (Table 3). The AGV had higher richness of native perennial flora, in contrast to 

higher species richness of annuals in the SSB, but the dominance of invasive species in 

both the AGV and the SSB was apparent (see Appendix S2). Only one site had a 

disproportionately low abundance of invasive plants, which also had the highest species 

diversity in both the AGV and the SSB, and a significantly low similarity (Sorensen’s 

index w = 1441, p < 0.001) between the AGV and the SSB (Table 3). Ivesia webberi was 

recorded in the AGV but not in the SSB of all studied sites. 

Effect of environmental variables on the structure of the aboveground plant 

community 

The transformation-based redundancy analysis illustrated key relationships among 

the environmental variables and the aboveground plant community structure in the 

sampled sites. The tb-RDA model was significantly different than a random model of 

permuted data (F = 2.24, p < 0.004), produced seven constrained axes capturing 88.67% 

of the variance in the AGV data, 50.15% of which was captured in the first RDA axis (F 

= 5.24, p < 0.006) and the second RDA axis (F = 3.62, p < 0.04). The first ordination axis 

describes a gradient from sites with warmer winter temperatures, higher solar radiation 

and greater overall vegetation cover, all of which were associated with greater levels of 

invasive B. tectorum dominance, to sites with colder winters, lower solar radiation and 

lower cover, associated with dominance of invasive Draba verna (Figure 2). Along axis 
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2, soil mean clay content was positively correlated with seed bank diversity, both of 

which were negatively correlated with seed bank richness and abundance of invasive 

plants (Figure 2). This suggests that sites with higher abundance of invasive B. tectorum 

and D. verna have lower seed bank diversity. Correlation among the environmental 

variables (Table 2) is congruent with their contribution to the structure of the sampled 

aboveground plant communities in ordination space, however these correlations were not 

statistically significant. The ordination biplot also showed that some sites have higher 

abundance of invasive B. tectorum, and D. verna (Figure 2). Species diversity in the SSB 

was the only variable with significant partial effects on the RDA model (Table 4). 

Quantifying the relationship of the environmental variables and aboveground plant 

community composition 

Climatic variables explained most of the variance in the sampled plant 

communities, followed by the soil seed bank, site properties and lastly the spatial 

variable. The variance explained by the synergistic effect of the environmental variables 

was much lower, except for the variance shared among the grouped climate, site and seed 

bank variables (Figure 3). Overall, 61% of the variation in the aboveground plant 

communities was explained by the environmental variables. 

 

DISCUSSION 

An assessment of soil seed banks and their floristic similarities with the 

aboveground vegetation could be used to infer the ability of a vegetative community to 

maintain its ecological integrity post-disturbance. In this study, we observed high 

dissimilarity in the floristic composition of the aboveground communities and the soil 
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seed bank in the 10 sites occupied by Ivesia webberi. This dissimilarity is due primarily 

to the absence in the seed bank of the majority of the native plant species recorded in the 

standing vegetation. The majority of native plants in the Great Basin Desert produce 

fewer seeds (Guo, Rundel, & Goodall, 1998; Lucero & Callaway, 2018) compared to the 

prolific seed production in the invasive alien grasses (Gioria & Osborne, 2010; Gremer & 

Venable, 2014; Martyn et al., 2016), which could result in greater sampling of the soil 

seed bank of invasive plant species than the native plants. Furthermore, native plants may 

be represented in the pool of seedlings that died before they could be identified during the 

study, or could have dormancy requirements that were not met in our experimental 

conditions. However, the seedling mortality observed in this study is similar to previous 

studies that reported high seedling mortality of native plants in the Great Basin Desert 

(James, Svejcar, & Rinella, 2011; Boyd & Lemos, 2015). Species compositional 

dissimilarity between AGV and SSB has been previously reported in many ecosystems 

including grasslands (Peco et al., 1998; Valkó et al., 2014), heathland (Valbuena & 

Trabaud, 2001), salt marshes (Egan & Unger, 2000), alpine sites (Ma et al. 2010), 

wetlands (Jutila, 2003; Aponte et al., 2010), forest-grassland mosaic (Díaz-Villa, 

Marañón, Arroyo, & Garrido, 2003), natural and planted forests (Lemenih & Teketay, 

2006), and particularly for desert ecosystems (Guo, Rundel, & Goodall, 1999; Gomaa, 

2012), including the Great Basin desert (Martyn et al., 2016; Barga & Leger 2018).  

The redundancy analysis showed an association of greater vegetation cover, 

especially of the invasive B. tectorum, with warmer winter temperatures and higher solar 

radiation. Similar relationships with incident solar radiation have been observed from 

studies elsewhere in the Great Basin (Condon, Weisberg, & Chambers, 2011; Williamson 
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et al., 2020). Warmer winter temperatures result in rapid snowmelt and increasing soil 

moisture which supports regeneration of winter annuals, such as the invasive B. tectorum. 

Furthermore, reduced snowpack decimates the population of the snow molds which 

damage B. tectorum seedlings (Smull, Pendleton, Kleinhesselink, & Adler, 2019).  

Alien plant invasions are well known to lead to plant community homogenization 

through the suppression of native plant species (Richardson, Macdonald, & Forsythe, 

1989; Hejda, Pyšek, & Jarošik, 2009). Consistent with this, we observed an inverse 

relationship between the abundance of invasive plants and species diversity. For example, 

the only site with low abundance of invasive plants also had the highest native plant 

species richness and diversity in both the aboveground vegetation and the soil seed bank.  

Additionally, high abundance of invasive plants in the standing vegetation corresponded 

with high abundance in the soil seed bank, which was also associated with reduced 

diversity and richness of native plant species in the soil seed banks. These findings show 

that the plant community structure in the sampled sites is driven largely by the abundance 

of invasive species. This pattern is supported by earlier work that show that a large 

proportion of the standing vegetation and the soil seed bank in the Great Basin Desert has 

been invaded by nonnative plant species (Humphrey & Schupp, 2001; 2004; Cox & 

Allen, 2008; Aponte et al., 2010; Bradley et al., 2018). The disproportionately higher 

abundance of alien plant species in the sampled soil seed bank could have had negative 

effects on the emergence of native perennials and resulted in competitive exclusion of 

native plant seedlings (Brooks, 2000; Humphrey & Schupp, 2004; Chambers, Roundy, 

Blank, Meyer, & Whittaker, 2007).  
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Results of the variation partitioning analysis showed varying contributions of the 

environmental, spatial variables and the soil seed bank on the floristic assemblage and 

structure of the aboveground communities across the 10 studied sites. It is not surprising 

that climatic variables contributed the most to the plant community structure, because the 

regeneration of many Great Basin Desert flora, including I. webberi, is influenced by 

climatic factors, especially by winter and spring temperature (USFWS, 2014; Chick, 

Nitschke, Cohn, Penman, & Yoek, 2018). The contribution of the soil seed bank was also 

relatively high in the variation partitioning, but given a high floristic dissimilarity in the 

AGV and the SSB, the proportion explained by the soil seed bank is primarily due to the 

abundance of the invasive species. Furthermore, it is particularly interesting that the 

synergistic effects of climatic, site, and seedbank variables explained 11.5% of the 

aboveground plant community structure. This may highlight the relationship among 

surface and soil temperatures in winter and spring and the soil water retention capacity, 

which provide the natural stratification needed for seed germination and vegetative 

regeneration of perennials, as well as winter and spring annuals (Humphrey & Schupp, 

2001).  

The observed disparity between species composition of the aboveground plant 

community and the soil seed bank suggests that these study sites have low resistance and 

resilience to invasion by nonnative weeds following disturbance, and are in high risk of 

losing their ecological legacies. The selected sites in this study are of the mid-elevation I. 

webberi-Artemisia arbuscula vegetative association (USFWS, 2014), which experience 

frequent inter-annual soil moisture fluctuations (Chambers et al., 2007), and which may 

be vulnerable to shifts in species assemblages due to climate change (Kiss, Deák, Török, 
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Tóthmérész, & Valkó, 2018). Post-fire recovery of the dominant native perennials in 

these sites is weak and slow (Miller, Chambers, Pyke, Pierson, & Williams, 2013). This 

implies that post-disturbance plant early succession may be driven by invasive alien 

weeds (DiVittorio, Corbin, & D’Antonio, 2007; Gioria & Osborne, 2010; Morris, 

Monaco, & Sheley, 2011). However, given the natural history of these sites, and 

depending on the severity of the disturbance, some native perennials may regenerate from 

surviving vegetative structures. Overall, these findings caution against reliance on the soil 

seed bank for restoration of desert perennials (Laughlin, 2003; Maccherini & De 

Dominicis, 2003; Handlová & Münzbergová, 2006; Allen & Nowak, 2008; Gomaa, 

2012), underscore the importance of seeding with native plants as a key restoration 

program (Knutson et al., 2014; Svejcar, Boyd, Davies, Hamerlynck, & Svejcar, 2017), 

and highlight the importance of research and management practices aimed at controlling 

invasive plants (Elseroad & Rudd, 2011).  
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TABLES 

Table 1. Characteristics of the 10 Ivesia webberi study sites in the western Great Basin 

Desert, United States 

Unita Site location County 

and State 

Site 

area 

(m2)b 

Solar 

radiation 

(WH/ha)c 

Soil 

clay 

(%)d 

Elevation 

(m)e 

Disturbance 

rankf 

2 Near 

Constantia 

Lassen 

CA 

7,700 1.42 8 1435.97 2 

3 East of 

Hallelujah 

Junction 

Lassen 

CA 

1,400 1.47 8 1561.68 1 

5 Dog Valley 

Meadows 

Sierra CA 289,700 1.51 16 1834.70 1 

6 White Lake 

Overlook 

Sierra CA 54,900 1.47 11 1715.15 1 

7 Mules Ear flat Sierra CA 1,400 1.46 12 1680.01 1 

8 Ivesia flat Washoe 

NV 

3,000 1.43 10 1775.63 1 

11 Hungry Valley Washoe 

NV 

600 1.47 9 1599.01 3 

12 Black Springs Washoe 

NV 

25,500 1.46 14 1730.17 2 

13 Raleigh 

Heights 

Washoe 

NV 

38,600 1.48 14 1602.60 3 

16 Dante Mine 

Road 

Douglas 

NV 

2,300 1.54 12 1894.81 1 

aUSFWS unit assignment for the I. webberi populations (see USFWS, 2014); bSite area 

was calculated from USFWS (2014); cSolar radiation was calculated in ArcMap using 

hemispherical viewshed algorithm (Fu & Rich, 2002) in ArcMap version 10.6.1; dSoil 

mean clay content was extracted from soil series probabilistic map (Chaney et al., 2016) 

in ArcMap; eElevation was extracted from 30 m digital elevation model of (United States 

Geological Survey [USGS], 2016) in ArcMap; fDisturbance ranking was used (see 

Appendix S1).  
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Table 2. Correlation matrix of the predictor variables used for the redundancy analysis. 

The upper matrix contains the Kendall correlation coefficient, while the lower matrix 

contains the corresponding p values 

Predictor 

variable 

Solar 

radiation 

Winter 

temperature 

Spring 

temperature 

Soil clay 

content 

Vegetative 

cover 

Seedbank 

diversity 

Seedbank 

richness 

Solar radiation 1 0.43 0.54 0.52 0.01 0.41 -0.23 

Winter 

temperature 0.2194 

1 

0.51 -0.09 0.20 -0.41 0.22 

Spring 

temperature 0.1048 0.13 

1 

-0.24 -0.21 -0.28 0.60 

Soil clay 

content 0.1217 0.79 0.51 

1 

0.37 0.53 -0.10 

Vegetative 

cover 0.9945 0.58 0.57 0.29 1 0.21 0.43 

Seedbank 

diversity 0.2434 0.24 0.44 0.12 0.55 1 -0.42 

Seedbank 

richness 0.5178 0.55 0.07 0.79 0.21 0.23 1 
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Table 3. Species richness, abundance, diversity indices, effective number of species and similarity indices in the aboveground 

vegetation (AGV) and the soil seed bank (SSB) in 10 sampled Ivesia webberi sites 

Ivesia webberi 

sites 

Species richness Sorensen’s 

similarity index 

Species abundance H’ index (alpha diversity) Effective number of 

species 

AGV SSB AGV SSB AGV SSB AGV SSB 

Unit 2 18 18 0.28 3667 21439 1.23 0.32 3.41 1.38 

Unit 3 20 14 0.29 2323 6453 1.26 0.59 3.53 1.80 

Unit 5 34 14 0.21 1021 86 2.51 2.17 12.35 8.72 

Unit 6 26 16 0.33 2405 2031 2.33 0.54 10.32 1.72 

Unit 7a 26 16 0.33 9197 10472 1.40 0.85 4.07 2.33 

Unit 8 22 16 0.26 9091 2419 1.84 1.12 6.28 3.05 

Unit 11 24 21 0.31 3321 1304 0.64 1.11 1.89 3.04 

Unit 12 25 20 0.36 3300 7911 1.28 0.29 3.60 1.33 

Unit 13 20 18 0.26 5494 4371 1.84 0.58 6.26 1.79 

Unit 16 21 16 0.43 1211 1285 2.18 0.97 8.81 2.65 

Total 82** 32** 0.37** 41030 57771     

*Morphospecies were not included the soil seed bank data; **Species richness and similarity index in the total row for both 

the aboveground community and the soil seed bank is the overall species richness or similarity index, not a sum of all sampled 

sites in the rows above it.  
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Table 4. Permutation test for the redundancy analysis of the effects of the predictor 

variables on the plant community structure in the 10 Ivesia webberi sites. F and P 

distributions were generated using 10,000 permutations 

Variable df Variance F P 

Vegetative cover 1 0.036 1.521 0.169 

Solar radiation 1 0.044 1.873 0.074 

Mean winter temperature 1 0.040 1.693 0.115 

Mean spring temperature 1 0.037 1.569 0.148 

Soil mean clay content 1 0.040 1.692 0.111 

Seed bank species richness 1 0.035 1.475 0.184 

Seed bank species diversity 1 0.055 2.334 0.026 

Residual 2 0.047   
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FIGURE LEGENDS 

Figure 1. Global distribution of Ivesia webberi populations. Unit numbers follow the 

USFWS designations, circles represent the geographic center of extant, mapped 

occurrences, and circles of the same color indicate USFWS-designated subpopulations of 

the same population. Asterisk on unit 17 indicates it is a new proposed unit, as it was 

recently discovered. 

Figure 2. Redundancy analysis biplot of the predictor variables on the Hellinger-

transformed species abundance in the aboveground plant community. The biplot was 

scaled symmetrically by eigenvalues of both the species and site scores. Arrow length 

represents the strength of the variables in the ordination space, and the arrow direction 

illustrates the gradients. For clarity, species reported in at least seven sites were 

displayed. See Appendix S3 for a full list of all species and their associated acronyms 

used in this Figure. 

Figure 3. Venn diagram showing variation in the aboveground plant communities 

partitioned to variables associated individually with climate, site, soil seed bank and 

spatial properties across all 10 sampled Ivesia webberi sites. The values represent the 

adjusted R squared values of each fraction in the partitioning. 
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Appendix S1. Ranking of disturbance in Ivesia webberi sites 

Rank value Description 

1 No visible or current anthropogenic disturbance across the entire site 

2 Historical disturbance still visible, but discontinuous. For example, 

decommissioned off-highway roads where Ivesia is observed recovering. 

Disturbance affects less than 10% of site 

3 Minor anthropogenic activity, such as active minor road, with Ivesia 

occurring on both sides, infrequent cattle grazing, hiking trails, etc. 

Disturbance affects between 10 and 25% of site 

4 Moderate anthropogenic activity, including illegal dumping, and heavy 

grazing. Disturbance affects at least 50% of total site 

5 Heavy anthropogenic activity such as housing and urban development, 

recent wildfires (≤2 years ago), or other activities that can potentially 

extirpate the population. Disturbance affects between 50 and 100% of total 

site 
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Appendix S2. Species richness and abundance for the 10 sites harboring Ivesia webberi decomposed into their component annual 

and perennial, and native and alien species. The first values under each heading representing the species richness, while the values 

in parenthesis represent the total abundance count per site 

Site Name Richness and counts of  

annuals 

Richness and counts  

of perennials 

Richness and counts of  

natives 

Richness and counts of  

alien species 

AGV SSB* AGV SSB* AGV SSB* AGV SSB* 

Unit 2 4 (3138) 15 (21280) 14 (529) 3 (159) 15 (839) 12 (473) 3 (2828) 6 (20966) 

Unit 3 11 (2240) 12 (6451) 9 (83) 2 (2) 18 (487) 9 (331) 2 (1836) 5 (6122) 

Unit 5 8 (369) 9 (71) 26 (652) 3 (12) 30 (773) 7 (64) 4 (248) 5 (19) 

Unit 6 10 (1615) 11 (1989) 16 (790) 4 (37) 21 (1080) 13 (143) 5 (1325) 2 (1883) 

Unit 7a 11 (8809) 11 (10215) 15 (388) 3 (255) 23 (3393) 10 (731) 3 (5804) 4 (9739) 

Unit 8 8 (7542) 11 (2363) 14 (1549) 3 (49) 19 (2104) 10 (251) 3 (6987) 4 (2161) 

Unit 11 8 (3169) 18 (1281) 16 (152) 3 (23) 20 (228) 14 (80) 4 (3093) 7 (1224) 

Unit 12 10 (2736) 17 (7865) 15 (564) 3 (46) 20 (668) 14 (234) 5 (2632) 6 (7677) 

Unit 13 10 (4913) 14 (4022) 10 (581) 3 (348) 15 (857) 12 (514) 5 (4637) 5 (3856) 

Unit 16 9 (903) 13 (1246) 12 (308) 2 (38) 16 (554) 11 (201) 5 (657) 4 (1083) 

Total 31 (35434) 23 (56783) 51 (5596) 4 (969) 70 (10983) 20 (3022) 12 (30047) 7 (54730) 
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Appendix S3. List of all species recorded in the aboveground plant communities and the soil seed bank in the 10 sampled sites 

where Ivesia webberi occurs 

# Species name* Code Species abundance Life form Distribution 

Aboveground Soil seed bank 

1 Acmispon americanus ACAM 3 0 annual native 

2 AG AG 0 4 morphospecies N/A 

3 Agoseris heterophylla AGHE 4 0 annual native 

4 Agropyron cristatum AGCR 2 0 perennial alien 

5 Aliciella leptomeria ALLE 0 3 annual native 

6 Allium lemmonii ALLE 7 0 perennial native 

7 Alopecurus pratensis ALPR 18 0 perennial alien 

8 Alyssum desertorum ALDE 40 40 annual native 

9 Antennaria dimorpha ANDI 695 0 perennial native 

10 Antennaria luzuloides ANLU 231 0 perennial native 

11 Arenaria kingii var glabrescens ARKG 290 0 perennial native 

12 Artemisia arbuscula ARAR 324 44 perennial native 

13 Artemisia tridentata ARTR 1 0 perennial native 

14 Astragalus andersonii ASAN 217 0 perennial native 

15 Balsamorrhiza hookeri BAHO 25 0 perennial native 

16 Blepharipappus scaber BLSC 210 39 annual native 

17 Bromus japonicus BRJA 211 0 annual alien 

18 Bromus tectorum BRTE 9557 446 annual alien 

19 Camissonia pusilla CAPU 255 450 annual native 

20 Castilleja chromosa CACH 5 0 perennial native 

21 Collinsia parviflora COPA 38 35 annual native 

22 Crepis acuminata CRAC 4 0 perennial native 

23 Crepis occidentalis CROC 269 0 perennial native 

24 Cryptantha pterycarya CRPT 2 299 annual native 

25 Cusickiella douglasii CUDO 63 3 perennial native 

26 Danthonia unispicata DAUN 31 0 perennial native 

27 Descurainia sophia DESO 0 7 annual alien 
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28 Draba verna DRVE 15805 50908 annual alien 

29 Elymus elymoides ELEL 594 0 perennial native 

30 Ephedra sp EPSP 7 0 perennial native 

31 Epilobium brachycarpum EPBR 230 0 annual native 

32 Ericameria nauseosa ERNA 3 0 perennial native 

33 Ericameria parryi ERPA 7 0 perennial native 

34 Erigeron bloomeri ERBL 37 0 perennial native 

35 Eriogonum caespitosum ERCA 69 0 perennial native 

36 Eriogonum douglasii ERDO 62 0 perennial native 

37 Eriogonum microthecum ERMI 10 0 perennial native 

38 Eriogonum nudum ERNU 6 0 perennial native 

39 Erodium cicutarium ERCI 3499 0 annual alien 

40 Gutierrezia sarothrae GUSA 14 0 perennial native 

41 Holosteum umbellatum HOUM 2598 2681 annual native 

42 Chorizanthe watsonii CHWA 7 0 annual native 

43 Chrysothamnus viscidiflorus CHVI 2 0 perennial native 

44 Chrysothamnus viscidiflorus var 

puberulus CHVP 3 0 perennial native 

45 Idahoa scapigera IDSC 0 301 annual native 

46 Ivesia aperta var canina IVAC 2 0 perennial native 

47 Ivesia webberi IVWE 1253 0 perennial native 

48 Juncus bufonius JUBU 62 11 annual native 

49 Lactuca serriola LASE 1 0 annual alien 

50 Lagophylla ramosissima LARA 404 9 annual native 

51 Lepidium perfoliatum LEPE 1 0 annual alien 

52 Lewisia rediviva LERE 108 0 perennial native 

53 Leymus cinereus LECI 1 0 perennial native 

54 Lithophragma glabrum LIGL 0 852 perennial native 

55 Lomatium macrocarpum LOMA 204 0 perennial native 

56 Lomatium nudicaule LONU 3 0 perennial native 

57 Lotus sp. LOSP 3 0 annual native 

58 Lupinus argenteus LUAR 1 0 perennial native 
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59 Lupinus lepidus var sellulus LULS 30 0 perennial native 

60 Lupinus malacophyllus LUMA 40 70 perennial native 

61 Macrosteris gracilis MAGR 139 16 annual native 

62 Madia exigua MAEX 10 16 annual native 

63 Mimulus susksdorfii MISU 0 38 annual native 

64 Muilla transmontana MUTR 8 0 perennial native 

65 N N 0 1 morphospecies N/A 

66 Navarretia breweri NABR 15 0 annual native 

67 Nestotus stenophyllus NEST 33 0 perennial native 

68 Orobanche corymbosa ORCO 1 0 annual native 

69 Pectocarya setosa PESE 2 8 annual native 

70 Penstemon roezlii PERO 30 0 perennial native 

71 Perideridia bolanderi PEBO 1 0 perennial native 

72 Phlox longifolia PHLO 51 0 perennial native 

73 Plagiobothrys tenellus PLTE 28 0 annual native 

74 Plectritis macrocera PLMA 38 1 annual native 

75 Pleicanthus spinosus PLSP 5 0 perennial native 

76 Poa bulbosa POBU 297 0 perennial alien 

77 Poa secunda POSE 443 0 perennial native 

78 Prunus andersonii PRAN 2 0 perennial native 

79 Purshia tridentata PUTR 3 0 perennial native 

80 Ranunculus testiculatus RATE 0 538 annual alien 

81 Rigiopappus leptocladus RILE 498 229 annual native 

82 Salsola tragus SATR 609 76 annual alien 

83 Sidalcea Code 2 0 perennial native 

84 Sisymbrium altissimum SIAL 44 74 annual alien 

85 Stipa sp STSP 32 0 perennial native 

86 T T 0 1 morphospecies N/A 

87 Tetradymia canescens TECA 10 0 perennial native 

88 Tragopogon dubius TRDU 3 0 annual alien 

89 Trifolium lemmonii TRLE 38 0 perennial native 

90 U U 0 1 morphospecies N/A 
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91 Vulpia microstachys VUMI 1117 558 annual native 

92 Wyethia mollis WYMO 3 0 perennial native 

93 Y Y 0 12 morphospecies N/A 

*Species names follow the scientific nomenclature in the Flora of North America Flora   
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ABSTRACT 

Habitat protection is not sufficient to conserve range-restricted species with disjunct 

populations. It is also critical to characterize gene flow among the populations and factors 

that influence functional connectivity in order to design effective conservation programs. 

In this study, we genotyped 314 individuals of Ivesia webberi, a United States federally 

threatened Great Basin Desert perennial forb using six microsatellite loci, to estimate 

genetic diversity and population genetic structure, as well as rates and direction of gene 

flow among 16 extant I. webberi populations. We also assessed the effects of Euclidean 

distance, landscape features, and ecological dissimilarity on the genetic structure in the 

sampled populations, as well as the relationship between I. webberi genetic diversity and 

floristic diversity in the vegetative communities. The results show low levels of genetic 

diversity (He = 0.200–0.441; Ho = 0.192–0.605) and high genetic differentiation among the 

populations. Genetic diversity was structured along geographic and latitudinal gradients, 

indicating isolation by distance and central-marginal patterns. Genotype cluster 

membership supports west to east gene flow for populations near the species’ range 

center. Populations at the range margins have significantly higher genetic distances, 

higher relatedness, and evidence of genetic bottlenecks. Pairwise genetic distance 

strongly correlates with actual evapotranspiration and precipitation, indicating a pattern 

of isolation by environment. An inverse of habitat suitability, but not land cover, 

contributes to an isolation by landscape resistance and highlights the importance of 

maintaining suitable habitats that act as corridors to facilitate functional connectivity. The 

significant correlation between pairwise genetic distance and dissimilarity in the soil seed 
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bank suggest that annual regeneration of the floristic communities contributes to the 

genetic diversity in I. webberi. 

 

Keywords: gene flow, Ivesia webberi, central marginal hypothesis, isolation by distance, 

species-genetic diversity, isolation by environment 

 

DATA ACCESSIBILITY STATEMENT: Data generated or analyzed during this study 

are included in this article and the supplementary information files. The microsatellite 

loci and primers used in this study were developed and described in the Dobeš and 

Scheffknecht (2012) paper.  
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INTRODUCTION 

Effective species conservation involves not only protecting habitat, but also 

maintaining genetic diversity within and among populations in order to ensure 

evolutionary potential on the rapidly changing landscapes of the Anthropocene (Murphy 

et al., 2010; Spear et al., 2010; Auffret et al., 2017). Gene flow among populations is 

critical to the maintenance of genetic variation (Cruzan, 2001; Hughes et al., 2008; 

Ellstrand, 2014), especially among spatially discrete populations of organisms (Peacock 

and Smith, 1997; Consuegra et al., 2005; Shirk et al., 2010; Neville et al., 2016). For 

species found in naturally fragmented habitats gene flow among populations may be 

constrained by both distance and movement across unsuitable habitat (Templeton et al., 

1990; Peacock and Smith, 1997; Murphy et al., 2010). Such varied landscapes may then 

produce a pattern of isolation by resistance, which could impede successful 

recolonization of locally extirpated habitat patches (McRae, 2006; McRae and Beier, 

2007; Zeller et al., 2012). In addition, local adaptation to divergent micro-ecological 

conditions, or isolation by environment, can also contribute to differentiation among 

populations and limit successful recolonization potential (Wang and Bradburd, 2014; 

Sexton et al., 2014). 

For narrowly distributed endemic species found on spatially complex landscapes, 

habitat fragmentation, degradation and climate change are likely to elevate the risk of 

both population isolation and extinction probability (Zwick, 1992; Dirnböck et al., 2011; 

Canales‐Delgadillo et al., 2012). Therefore, characterizing patterns of gene flow, levels of 

genetic diversity and population genetic structure among populations of rare, endemic 

and threatened species is critical for informing conservation actions that facilitate 
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functional connectivity (Nevill et al., 2017) and the identification of evolutionarily 

significant units (Peacock and Dochterman, 2012, Brown et al., 2016). 

Here we characterize genetic diversity and population genetic structure in Ivesia 

webberi A. Gray, in the Rosaceae family, a federally listed (United States Endangered 

Species Act 1973 ESA; 16 U.S.C. § 1531 et seq.) and narrowly distributed endemic 

perennial forb, found at the western edge of the Great Basin Desert (Figure 1; USFWS, 

2014), in order to assess the effects of both natural history and landscape viscosity on 

dispersal and gene flow in this species. The geological history, basin and range 

topography and significant microclimatic gradients of the Great Basin Desert (Cassel et 

al., 2009; Kraft et al., 2010), together with the effects of historical climatic cycles, have 

shaped the distribution of native species in the Great Basin Desert resulting in many local 

distributed and endemic plant species. At the time of this study I. webberi was known 

from only 16 spatially discrete populations (additional populations were discovered after 

sampling occurred, see Figure 1) found at mid-elevation sites in Great Basin habitat in a 

narrow band along the eastern edge of the Sierra Nevada, together with other native Great 

Basin plant species including Artemisia arbuscula and Balsamorhiza hookeri. These sites 

have been impacted by severe historical and current anthropogenic disturbance including 

livestock grazing, wildfires, urbanization, off-highway vehicle (OHV) use and climate 

change, and are currently threatened by encroachment of invasive plants, such as Bromus 

tectorum, Taeniatherum caput-medusae and Poa bulbosa (USFWS, 2014).  

We employ nuclear microsatellite genetic markers to: (a) measure levels of 

genetic diversity, effective population size (Ne) and rates and direction of gene flow for I. 

webberi populations; (b) estimate the effect of Euclidean distance, landscape features, 
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and ecological dissimilarity on the genetic structure in the sampled populations; and (c) 

investigate a relationship between I. webberi genetic diversity and floristic diversity in 

the vegetative communities. Due to the spatial configuration of these populations, we also 

(d) test the central-marginal hypothesis (CMH), which predicts decreased gene flow and 

increased pairwise genetic differentiation among populations towards the edge of the 

species range (Eckert et al., 2008; Pfenninger et al., 2011; Micheletti and Storfer, 2015). 

We predict a spatial genetic diversity pattern related to landscape features as well as 

effective resistance to gene flow by anthropogenic disturbance among the sampled I. 

webberi populations. Following the predictions of the central-marginal hypothesis, 

populations closer to the species’ range center should have the highest genetic variation. 

We also predict genetic bottlenecks among I. webberi populations due to the past and 

current anthropogenic landscape perturbations 

 

MATERIALS AND METHODS 

Study species 

I. webberi is a perennial forb that produces clusters of small greenish-gray leaves 

(i.e., 25 cm diameter) that grow at ground level and small bright yellow flowers. 

Flowering occurs between May and June. Occupied sites are sparsely vegetated flat, 

bench or terrace locations in shallow, rocky and with clay soils. All sampled I. webberi 

populations are located between 1364 and 1900 meters within the transition zone between 

the eastern edge of the northern Sierra Nevada and the northwestern edge of the Great 

Basin (United States Fish and Wildlife Service, 

https://www.fws.gov/nevada/nv_species/webber_ivesia.html).  

https://www.fws.gov/nevada/nv_species/webber_ivesia.html
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  I. webberi reproduces vegetatively from the dormant root caudex as well as 

sexually from seeds. The showy yellow flowers produced by I. webberi are visited by 

native Hymenopterans, Dipterans, and Lepidopterans and therefore, the species is thought 

to be entomophilous. However, little is known about the dispersal dynamics of this 

species (USFWS, 2014). The species produces dry indehiscent achene fruits, which are 

not adapted for long-range dispersal, but abscise into rock crevices that characterize the 

soil surface in all sites (Witham, 2000; USFWS, 2014). There are no known seed 

dispersers for this species, but there is localized seed dispersal to bare-soil microsites due 

to gravity-assisted surface runoff from summer precipitation that results in recruitment 

from seedlings and colonization of unoccupied bare-soil sites. Therefore, gene flow 

among I. webberi populations is thought to be more likely from pollen movement among 

populations than from seed dispersal (Ennos, 1994). However, it is not yet established if 

the I. webberi floral insect visitors are pollinators. Nevertheless, foraging distance and 

hence potential pollen dispersal in some Hymenopterans ranged from 200 m to 6 km 

(Pasquet et al., 2008; Albrecht et al., 2009). 

Sample collection, DNA extraction, PCR amplification, and genotyping 

Five leaves were collected per plant from 24 randomly selected plants in each of 

the 16 sampled I. webberi populations (Table 1). The leaves were stored in paper 

collection bags with silica gel to facilitate drying of samples at room temperature. GPS 

coordinates of each sample were also recorded using Garmin eTrex 20x.  

Five mg of leaf tissue from each plant sample (n = 384) were processed using a 

TissueLyser II (QIAGEN Inc., Valencia, CA, USA). Genomic DNA was extracted using 
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the protocol described in the DNeasy96 Plant Extraction Mini kit (QIAGEN). DNA per 

sample was quantified at the Nevada Genomics Center (https://www.unr.edu/genomics) 

using the PicoGreen dsDNA assay (ThermoFisher, Waltham, MA, USA). DNA 

concentration was determined using a standard curve equation following DNA detection 

under the Fluoroskan Microplate Fluorometer (ThermoFisher, Waltham, MA, USA). 

No microsatellite loci have been developed for I. webberi nor for any species in 

this genus. We tested 20 microsatellite loci developed from Potentilla pusilla (Dobeš and 

Scheffknecht, 2012) for use with I. webberi (Table 2). Potentilla is phylogenetically 

related to Ivesia (Töpel et al., 2012) and the developed markers were reported to be 

polymorphic and cross-amplified with other species, at success rates ranging from 86 to 

97% (Dobeš and Scheffknecht, 2012). Six microsatellite loci amplified consistently in I. 

webberi and were further optimized for this study. PCR amplification was carried out in a 

Labnet International Inc. MultiGeneTM OptiMax thermal cycler (115V model) in 10.0 µl 

reaction volumes in a 96-well format using the Qiagen Multiplex PCR kit, which contains 

HotStarTaq DNA polymerase, dNTPs, and PCR buffer at a 2× concentration. The six 

primer pairs were amplified in single or multiplexed PCR reactions with a final 

concentration of 0.05 M of each tailed forward primer and 0.1 M of each reverse 

primer. Each PCR reaction included 5 µl of Multiplex Mix, 20-50 ng of DNA, between 

0.1-0.2 µl of primer and approximately 4.5 µl of ultra pure molecular grade water with 

some reactions being combined post-PCR. PCR parameters included a 15 minute hot start 

at 95 ºC, then 41 cycles of 95 ºC for 30 seconds, followed by a touchdown annealing 

temperature that ranged between 65 to 55 ºC for 90 seconds with a final elongation step 

https://www.unr.edu/genomics
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of 72 ºC for 30 seconds. The touchdown annealing temperature begins with 7 cycles at 65 

ºC, 7 cycles at 61 ºC, 7 cycles at 58 ºC and 20 cycles are 55 ºC.  

PCR products were diluted to an appropriate concentration and 1 µl of diluted 

PCR product was added to 19 µl of Hi-Di Formamide/LIZ500 size standard (Applied 

Biosystems) by adding 5 µl of size standard for each 1 ml of Hi-Di Formamide. Fragment 

analysis was done on an Applied Biosystems (ABI) Prism 3730 DNA analyser at the 

Nevada Genomics Center (https://naes.unr.edu/genomics), and all alleles generated were 

scored, binned and genotyped  using the ABI GeneMapper software (version 5; Applied 

Biosystems, ThermoFisher Scientific). We also re-amplified 30% of the sample size 

(~115 samples) to validate genotyping reliability. Individual leaf samples that failed to 

amplify were removed from the analysis, thus reducing the sample size from 384 to 314 

(Table 1). 

Genetic analyses 

Population genetic diversity  

We used FSTAT 2.9.4 (Goudet, 1995) to test for Hardy–Weinberg equilibrium 

(HWE) across all loci, (Wright, 1969), calculate the number of alleles (Na), allelic 

richness (RS), the inbreeding coefficient (FIS), and determine whether linkage 

disequilibrium among loci was present within populations. We estimated genetic 

diversity (He, Ho) using Microsatellite Toolkit in Excel. MICROCHECKER v.2.2.3 (van 

Oosterhout et al., 2004) was used to test for departures from the Hardy-Weinberg 

equilibrium for each locus in each population in order to estimate the frequency of allelic 

dropout and null alleles. MICROCHECKER uses multiple null allele estimators, 
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including Chakraborty et al. (1992) estimator for null alleles, two Brookfield (1996) 

estimators, and the van Oosterhout (2004) estimator. Preferential amplification of shorter 

alleles (Wattier et al., 1998) can result in what appears as a deficit of heterozygotes, 

which is used to indicate large allelic dropout. Relatedness (r) among individuals within 

populations was calculated using the Ritland and Lynch equations (1999) in GENALEX 

v.6.5 (Peakall and Smouse, 2012). We tested for genetic bottlenecks per population using 

BOTTLENECK v.1.2.02 (Piry et al., 1999) under the single step (SSM) and the two-

phase (TPM) mutation models.  

Population genetic structure  

We used GENAlEx to estimate pairwise genetic differentiation among 

populations (FST) and STRUCTURE (v.2.3.4; Pritchard et al., 2007) to estimate the 

number of Bayesian genotype clusters (k) across all I. webberi populations, using a 

100,000 iteration burn-in followed by 10, 500,000 Markov Chain Monte Carlo (MCMC) 

replications per k. The optimal number of genotype clusters was determined using the Δk 

method (Evanno et al., 2005). AMOVA and principal coordinate analysis (PCoA) in 

GENAlEx were used to characterize the partitioning of genetic variation on the 

landscape. Effective population size (Ne) was calculated for each population and 

Bayesian genotype clusters were identified using the linkage disequilibrium (LD) method 

in NeEstimator v.2.0 (Do et al., 2014).  

Geographical distance, landscape barriers and ecological dissimilarity 

We assessed the influence of geographical distance (isolation by distance; IBD), 

land cover and inverse of habitat suitability (isolation by resistance; IBR), and ecological 
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dissimilarity (isolation by environment; IBE) on pairwise genetic distance among the 16 

I. webberi populations. Both IBD and IBR models were fitted using a linear mixed effects 

model framework in ResistanceGA R package v. 4.1-11 (Peterman, 2018). Slatkin’s 

linearized pairwise FST values, which accounts for microsatellite mutation following the 

single step model (Di Rienzo et al., 1994; Slatkin, 1995), were used as genetic distance 

(response variable), while pairwise geographical distance was estimated from the GPS 

coordinates of the polygon centroid for each population. Land cover was derived from the 

Multi-Resolution Land Characteristics (MRLC) development of the U.S. National Land 

Cover Database (NLCD) 2016 (Xian et al., 2013), while the habitat suitability map was 

produced from ensemble projection of niche modeling replicates from six algorithms 

with TSS≥0.7 (Appendix I; see Chapter 1). The choice of land cover layer was based on 

the hypothesis that gene flow in I. webberi is mainly pollen-based, since the achene seeds 

are not adapted for long range dispersal. Field observations show that I. webberi flowers 

are frequently visited by native Lepidopteran, Dipteran, and Hymenopteran insects. 

Studies show that the movement of these insects across the landscape is effectively 

impeded by roads and human settlements (Andersson et al., 2017; Corcos et al., 2019), 

thus a land cover layer is expected to illustrate landscape resistance. 

ResistanceGA uses a genetic algorithm from the GA R package to optimize the 

transformation and impact of resistance surfaces (Scrucca 2013, 2017; Peterman, 2018). 

Optimization of resistance surfaces in ResistanceGA include a transformation of 

continuous surfaces (e.g., raster layers) or an assignment of resistance values to the 

categorical landscape features (e.g., land cover), calculation of pairwise effective distance 

(e.g., least cost path, random walk, etc.), fitting maximum likelihood population effects 
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(MLPE) on pairwise genetic distance using the pairwise effective distance as predictor, 

and performing model selection to determine the best-parametrized resistance to gene 

flow (Peterman et al., 2019). The habitat suitability map was resampled from 30 m to 250 

m and converted to a resistance surface using inverse monomolecular method, which 

assumes a negative relationship between gene flow and landscape resistance (Peterman, 

2018). The land cover layer was also resampled to 250 m and reduced to 15 feature 

classes each of which was automatically assigned a resistance value. We are aware of the 

potential effect of spatial resolutions on landscape connectivity modeling results, but this 

resampling is inevitable due to the computation limitations in running ResistanceGA 

(Cushman and Landguth, 2010; O’Connell et al., 2019). A composite resistance surface 

layer which combined both the optimized land cover layer and inverse habitat suitability 

map was also used.  

Functional connectivity in the landscape was calculated using commuteDistance 

function which is similar to the resistance estimates calculated using CIRCUITSCAPE 

(McRae et al., 2008). For optimal computing efficiency with parallel processing, 

ResistanceGA was interfaced with CIRCUITSCAPE v.5.7.1 (Anantharaman et al., 2020). 

Random-walk commute-distance estimates are preferred over least cost path which 

assume that gene flow is maximized in the lowest cost path because individuals have 

knowledge of all possible paths (Adriaensen et al., 2013). We used default 

parameterizations and 10 iterations in ResistanceGA for the independent optimization of 

the two resistance surfaces (that is, habitat suitability map and land cover layer).  

The maximum likelihood population effects (MLPE) model used the linearized 

pairwise FST as the response variable, the 16 population codes as the random effect term, 
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while the fixed effect terms included pairwise geographical distance among the 

populations, landcover resistance and the transformed habitat suitability map. The MLPE 

model fitted a null model (I. webberi population ID), an IBD model (using pairwise 

geographical distance and population ID), and IBR model (comprising population ID, 

pairwise geographical distance and the resistance surfaces used individually and in 

combination). Following the 10 MLPE model replicates, we conducted bootstrapping to 

assess the sensitivity of the MLPE models to the spatial distribution of I. webberi 

populations. Here, we randomly subset 75% of the data without replacement, fitted the 

MLPE models again using 10,000 iterations, and selected the best models using the 

average AICc values. The percentage contribution of each surface within the multi-

surface optimization was calculated by dividing each transformed resistance surface by 

the sum of the composite resistance surface (Peterman, 2018). 

The effect of ecological dissimilarity (IBE) among the population sites on 

pairwise genetic distances was estimated by generating a distance matrix of the 

ecological conditions across the 16 sampled I. webberi sites from GIS raster layers of 

cumulative actual evapotranspiration, summer precipitation, native perennial herbaceous 

cover, mean minimum temperature, cosine aspect and Topographic Position Index 

(Appendix II). These environmental predictors (Appendix III) were the most important 

uncorrelated (r>0.6) variables from a suite of 72 assembled predictors, following three 

consecutive feature reduction analyses (Appendix IV). A Mantel test was used to assess 

the relationship between the pairwise FST genetic distance and the matrices of each of the 

six ecological variables. Accounting for the effect of geographical distance, multiple 

regression on distance matrices (MRM; Lichstein, 2007) was conducted between the 
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pairwise FST values and the ecological variables. Mantel tests were conducted in 

ECODIST R package (Goslee and Urban, 2007), while MRM analysis was conducted in 

PHYTOOLS R package (Revell, 2012). Both the Mantel and MRM analyses were 

conducted with 10,000 permutations. 

Central-marginal hypothesis 

The range center of the I. webberi species distribution was estimated using the 

range center index (RCI; Enquist et al., 1995) method based on the latitudinal decimal 

degrees of the population sites. In the RCI, sites closer to the species’ range center have 

values closer to zero, the northernmost site was assigned the value of 1, while the 

southernmost site was assigned a value of -1. Pearson correlation between I. webberi RCI 

and allelic richness or mean observed heterozygosity (Ho) was used to test the 

predictions of the central-marginal hypothesis. Additionally, the Mantel test was used to 

investigate the relationship between a matrix of the latitudinal degrees and the pairwise 

genetic distance (FST) among the sampled populations. 

Relationship between plant community diversity and Ivesia webberi genetic diversity 

We also tested the species-genetic diversity hypothesis that there is a relationship 

between I. webberi genetic diversity and the floristic dissimilarity across the 16 sites 

(Whitlock, 2014; Kahilainen et al., 2014). In a separate study (Borokini et al., 2021), 

species richness, abundance, and diversity of both the aboveground plant communities 

and the soil seed bank of 10 of the 16 sites were quantified (Appendix V), and from 

which the floristic dissimilarity matrix (β-diversity) across sites was generated using the 

Bray-Curtis method. Here, we assessed a relationship between linearized pairwise FST, 
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our genetic distance metric, and the floristic dissimilarity matrix in both the aboveground 

vegetation and the soil seed bank for the 10 sampled sites, using a Mantel test with 

10,000 permutations. In addition, we also conducted Pearson correlation between genetic 

diversity (e.g., allelic richness and mean observed heterozygosity) and species richness 

and diversity of both the aboveground vegetation and the soil seed bank in each of the 10 

sites. Species diversity was the exponential conversion of the Shannon-Weiner H’ index 

for each site (that is, effective number of species; Jost, 2006). 

 

RESULTS 

Population level genetic diversity metrics  

We genotyped 314 Ivesia webberi individuals at six nuclear microsatellite loci 

(Table 1). Allelic diversity per locus (Na) ranged from 3–13 alleles, while allelic richness 

per locus (RS) ranged from 2.002–4.073 (Appendix VI). No locus showed evidence of 

null alleles or allelic dropout. Average levels of heterozygosity ranged from Ho=0.192–

0.605 and He=0.200–0.441 (Appendix VI). Two loci were out of HWE in single or 

multiple populations. Locus PMS1694 had a significant positive FIS in CST the 

northernmost population sampled (FIS=0.898, p=0.00052), indicating a heterozygote 

deficit, and locus PMS1438 had significant negative FIS values in multiple populations 

indicating heterozygous excess, which is consistent with a signature of recent genetic 

bottlenecks (FIS range=-0.8 to -1.0; p=0.00052) (Appendix VI). Many of the populations 

with significant negative FIS values are also peripheral populations (SVE, EHJ, DVA, 

HGV, PPL and DMR; Figure 1). Genetic bottlenecks were observed for both the TPM 

and SMM mutation models in five of the populations, four of which had significant 
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negative FIS values (bolded) (EHJ – TPM p=0.017, SMM p=0.017; MER – TPM 

p=0.042, SMM p=0.047; BSP – TPM p=0.037, SMM p=0.039; DMR – TPM p=0.02, 

SMM p=0.02; STL – TPM, p=0.016, SMM, p=0.023).  

The number of alleles per locus and allelic richness per population were the 

highest (Na=3.33, RT=15.63) in the WLO population, which is centrally located in the 

cluster of populations at the center of I. webberi range (Figure 1), while the lowest values 

were found in the isolated southernmost population sampled (DMR, Na=1.83, RT=9.34; 

Table 1). Similarly, the northernmost and isolated population sampled (CST) also had 

low allelic diversity (Na=2.17, RT=10.31; Table 1). In addition, DMR and CST had the 

highest levels of within-population relatedness (r=0.38 and r=0.245 respectively; Figure 

2), while most of the centrally located and spatially proximate populations had low levels 

of r (Figures 1&2). We could not calculate the 95% CIs for most of the population Ne 

estimates (69%) and so do not report those values here. For the populations that we could 

calculate an Ne and 95% CI the values ranged from 0.9–11.6 (Table 3). We also 

calculated Ne for the genotype clusters identified below (Table 3).   

Population genetic structure 

Pairwise FST values among the sampled I. webberi populations (Table 4) tended 

to be high and statistically significant (corrected p=0.0004). The non-significant values 

were found primarily among the spatially proximate populations at the center of the 

range. The most isolated population sampled (DMR) was significantly differentiated 

from all remaining populations. Analysis of molecular variation (AMOVA) showed that 
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71% of the molecular variance was within individuals, while 11% and 18% of the 

molecular variance were among individuals and populations respectively. 

Five genotype clusters (k) were identified as the best fit of the data [Average 

LnP(D)=-2801.42, SD±=2.936, Δk=37.098] (Figure 3b&d). To visualize the spatial 

extent of the identified genotype clusters on the landscape, we culled the dataset to 

include only individuals with Q≥80% proportional membership per cluster (N = 207; 

Table 5). Populations were assigned to the cluster in which they had the highest number 

of individuals with Q≥80%. In several cases, however, individuals from a single 

population are assigned to multiple genotype clusters (see Table 5). We overlaid the 

spatial extent of the genotype clusters onto the study site map by grouping populations by 

cluster membership (Figure 3c). 

The two genotype clusters with the greatest proportional membership included 

individuals from the spatially proximate populations at the center of the I. webberi range 

and these clusters showed little spatial overlap in this analysis (yellow, N = 46; green, N 

= 47; Figure 3c; Table 5). However, when considering the complete dataset, populations 

that assign primarily to the green cluster have admixed individuals from the yellow 

cluster suggesting directional gene flow from west to east (Figure 3a). All individuals in 

DMR, the southernmost population, assigned to a single genotype cluster (orange) that 

interestingly also included individuals from the northernmost population sampled CST 

(Figure 3a; Table 5). The populations with the highest assignment to the blue cluster 

formed a narrow northwest to southeast band, which included individuals from CST, the 

northernmost population and DLF, the southernmost of the central populations (Table 5). 

The gray genotype cluster membership was diffuse with individuals from 13 separate 
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populations assigning to this cluster. However, the five populations with the highest 

number of individuals that are assigned to this cluster form a narrow band trending west 

to east (Figure 3c; Table 5). When examining the complete dataset, there are admixed 

individuals found throughout the range as well as individuals that assign to different 

genotype clusters with high proportional membership within single populations (Figure 

3a; Table 5). 

PCoA was conducted on the genotype clusters as described above (individuals 

with Q≥ 80%). The first 3 axes explain 50% of the variance (Figure 4). There was little 

separation among clusters on axis 1 (21.86% variance), but genotype cluster 1 (orange) 

was clearly separated from cluster 3 (yellow) on axis 2 (14.91% variance) and cluster 4 

(blue) was largely separated from all other clusters by axis 3 (13.28% variance; Figure 4). 

Effective population size was the largest in genotype cluster 3 (yellow; Ne=40.5) and 

lowest in genotype cluster 1 (orange; Ne=2.6; Table 3).  

Spatial correlates of genetic diversity 

Pairwise linearized FST shows a significant geographical pattern among the 16 

sampled I. webberi populations indicating isolation by distance (Table 6). Latitudinal 

degrees and pairwise genetic distance among the 16 populations also showed a significant 

positive relationship (Table 6). However, we did not observe a significant relationship 

between range center index (RCI) and allelic richness (r=0.393, p=0.132) or observed 

heterozygosity (r=0.257, p=0.337) despite positive trends. These results indicate a 

significant spatial genetic structure in the sampled I. webberi populations and provide 

partial support for the predictions of the central marginal hypothesis. 
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Relationship between floristic diversity and genetic diversity in Ivesia webberi 

Pearson correlation tests show a positive, but nonsignificant relationship between 

aboveground community species richness and I. webberi allelic richness (r=0.383, 

p=0.274) and observed heterozygosity (r=0.207, p=0.567). There was also no relationship 

between genetic diversity and species richness in the soil seed bank or aboveground 

species dissimilarity matrix, but there was a significant positive relationship between 

pairwise genetic distance (FST) and soil seed bank species dissimilarity (Table 6). 

Models of isolation by resistance and environment 

The result of the bootstrap analysis on the maximum likelihood population effects 

(MLPE) models show that isolation by distance explained most of the variance in the 

patterns of gene flow in I. webberi, followed by the inverse projected habitat suitability 

map (Table 7). Furthermore, pairwise genetic distance among the populations has a 

positive relationship with pairwise difference in cumulative actual evapotranspiration and 

mean annual precipitation, but not with cosine aspect, minimum annual temperature, 

perennial herbaceous cover, and Topographic Position Index (Table 6). 

 

DISCUSSION 

Results of this study reveal contrasting patterns of significant population genetic 

structure and isolation in addition to dispersal and gene flow among the sampled I. 

webberi populations. We found evidence of isolation by distance, by environment and by 

resistance as well as environmental correlates of standing genetic variation. These 

patterns appear to be largely driven by geographic distance, latitude and to a smaller 
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degree inverse of habitat suitability, but also climatically influenced evapotranspiration 

and precipitation. Population levels of mean observed heterozygosity tended to be low 

(𝑋 = 0.390)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ranging from 0.192 to 0.605, with the exception of two neighboring 

populations at the center of the range (MER and IVF), which had higher observed 

heterozygosities (0.559 and 0.605 respectively). Not surprisingly, the highest levels of 

heterozygosity and allelic richness as well as non-significant pairwise FST estimates were 

found among spatially proximate populations at the center of the range.  

However, the Bayesian genotype clustering analysis reveals a more complex 

movement pattern. We observed directional gene flow and admixture primarily from west 

to east between the two largest genotype clusters. Most admixed individuals (i.e. green 

and yellow genotype cluster ancestry; Figure 3) were found in populations that were 

assigned primarily to the easternmost genotype cluster (green). There was very little 

admixture observed among the other genotype clusters, but cluster dispersion spanned 

multiple populations creating distinct spatial patterns (see Figure 3c). The dispersion of 

the genotype clusters in PCoA space also suggests a landscape level influence on the 

source populations. Despite the fact that the blue and gray genotype clusters were found 

in multiple populations, the spatial distribution of these clusters was narrow. Although 

the populations with highest core membership in these genotyped clusters are the likely 

source of dispersers, we cannot definitively ascertain dispersal direction in these cases, 

but latitudinal degrees was one of the significant predictors of gene flow suggesting 

movement from higher to lower latitudes. These patterns also suggest that two dispersal 

modes – both pollen and seed dispersal may be in play here with landscape features 

influencing which dispersal mode is prevalent among populations.  
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Gene flow via pollen transfer may occur by native Dipterans, Lepidopterans and 

Hymenopterans, observed to be visiting the flowers frequently during field surveys (Dick 

et al., 2008; Auffret et al., 2017). The isolation by distance patterns may therefore be 

partially explained by the flight ranges and foraging behavior exhibited by potential 

pollen vectors (Matter et al., 2013; Mokany et al., 2014). However, it is unknown at this 

point, if the floral visitors on I. webberi are effective pollinators. Gamete dispersal 

(pollen) would result in pollination and hence admixture, whereas seed dispersal would 

not. Only through future sexual reproduction would dispersed seeds colonizing a new 

population lead to admixture. Once seeds are established and if the adult plant reproduces 

vegetatively no admixture would be observed and distinct genotype cluster assignments 

within populations would persist. I. webberi is known to reproduce vegetatively, which 

could explain the high proportional membership of individuals in the same population to 

distinct genotype clusters. In fact, negative FIS values in some of the loci, indicating a 

heterozygous excess, together with high within individual genetic variance is consistent 

with vegetative regeneration and clonality in I. webberi (Balloux et al., 2005). The levels 

of genetic diversity observed in this study are also similar to those observed in mixed-

mating plants and outcrossing species (e.g. Culley and Wolfe, 2001; Meeus et al., 2012), 

which suggests there is both successful sexual reproduction as well as vegetative 

reproduction in I. webberi (Genton et al., 2005; Dlugosch and Parker, 2008; Muller et al., 

2011). 

Localized seed movement due to gravity-assisted surface runoff is observed 

during field surveys, but vector(s) for potential long distance seed dispersal in this species 

remain unknown. Similar water-assisted seed dispersal patterns via spring snowmelt and 
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summer precipitation is reported for other Ivesia species that do not reproduce 

vegetatively (e.g., I. tweedyi, Moseley, 1993; I. lycopodioides, Pollak, 1997), but neither 

vectors nor seed dispersal distances have been quantified for any Ivesia species. The 

genetic data here suggest that seed movement may occur over 10s of kilometers, but such 

dispersal distances may be the result of incremental movement of seeds across the 

landscape over multiple generations followed by vegetative reproduction. Patterns of 

heterozygote excess and negative FIS values such as observed for the PMS1438 locus are 

also suggestive of genetic bottlenecks or small founder events. Three of five populations 

with signatures of significant genetic bottlenecks had very small populations, while four 

of the populations had individuals that assign to multiple genotype clusters with high 

proportional assignment (Q≥80%) and little evidence of admixture.  

A significant linear relationship between the pairwise geographical distance and 

genetic differentiation among the populations indicate a spatial genetic structure and 

support the predictions of the isolation by distance theory (Dias et al., 2016; Minasiewicz 

et al., 2018).  However, nonsignificant positive correlation between genetic diversity 

estimates and the range center index and latitudinal position, but a strong linear 

relationship between the pairwise latitudinal degrees distance and genetic distance 

provide partial support for the predictions of the central-marginal hypothesis (e.g. Langin 

et al., 2017). The results indicate an increase in pairwise population genetic 

differentiation towards the edge of the species’ range. This is not surprising given that 

many of the sampled populations are clustered near the species range center which may 

experience higher levels of gene flow. Indeed, the DMR population at the southern edge 

of the species range is geographically isolated from the rest of the populations and as a 
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result has the greatest pairwise genetic differentiation, lowest allelic richness and 

expected heterozygosity and highest within population genetic relatedness. 

Among the six environmental predictor variables used, genetic differentiation has 

a significant relationship with pairwise differences in actual evapotranspiration and 

precipitation. This highlights significant ecological dissimilarity among the sites which 

correlates with genetic distance, and may indicate isolation by environment. Both the 

actual evapotranspiration and precipitation represent water availability and climatic stress 

to which the native flora in the Great Basin Desert must adapt. The differences in water 

availability among these sites may be attributed to their varying elevation and 

topographic positions which determines the duration of their exposure to sunlight. Field 

observations suggest that I. webberi have adapted to these varying microclimatic 

conditions across the sites through varying phenology. For example, populations at lower 

elevations were observed to regenerate earlier, hence, flower earlier than those in the 

higher elevations and this could result in a temporal mismatch in flowering which can 

impede successful gene flow via pollen transfer among the populations. Previous studies 

also show a significant positive relationship between water availability and genetic 

distance (Allen et al., 2002; Oliveira et al., 2018; Tso and Allen, 2019). Moreover, 

climatic resistance to gene flow has been reported for plant species (Alvarado-Serrano et 

al., 2019), but may also indicate climatic impacts on the physiology of probable pollen 

vectors of I. webberi. Previous studies focusing on connectivity among the populations of 

animal species report on strong movement costs of climatic resistance surfaces which 

were attributed to the physiological tolerance limits (Sexton et al., 2014; Castillo et al., 

2014; Hohnen et al., 2016; Flores-Manzanero et al., 2019). 
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Floristic richness and diversity in the aboveground vegetation and the soil seed 

bank in the sampled 10 population sites both have a significant linear relationship with 

effective population sizes in I. webberi. Though the species regenerates vegetatively, 

effective population sizes may be associated with seedling recruitment into the vegetative 

community. Most of the sites harboring I. webberi have been invaded by nonnative 

species. Field observations suggest that the abundance of the invasive plant species does 

not prevent the annual vegetative regeneration of established matured I. webberi 

individuals, however, invasive alien species can hinder new recruitment of native plants 

in the vegetative community by outcompeting the young and delicate native seedlings 

(Chambers et al., 2007; Borokini et al., 2021). Moreover, the dense tufts of invasive 

weeds may trigger Allee effects which prevent pollinators from detecting I. webberi and 

reduce chance pollen grain transfer to other individuals by wind. Therefore, a strong 

relationship between floristic richness and diversity in both the aboveground vegetation 

and the soil seed bank and the effective population size in I. webberi may be attributed to 

ecological interactions that facilitate or impede localized gene flow and I. webberi 

seedling recruitment. Furthermore, the significant relationship of the soil seed bank with 

effective population sizes in I. webberi underscores the role of the soil seed bank in 

maintaining the genetic diversity of native species (Mandák et al., 2012; Schulz et al., 

2018). This finding is congruent with previous studies that show a significant and 

positive relationship between species-genetic diversity (Hughes et al., 2008; Kahilainen 

et al., 2014; Vellend et al., 2014). In a meta-analysis, Whitlock (2014) found a positive 

relationship between adaptive genetic diversity and species richness and with biomass 

productivity, representing community structure and function, respectively, but not with 
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species diversity and evenness. Also, a significant positive relationship was observed 

between neutral genetic diversity and community structure (Vellend and Geber, 2005; 

Whitlock, 2014). Interspecific competition in niche space within an ecological 

community could impact both neutral and adaptive genetic diversity in populations over 

time and trigger varying selection across different populations within the species 

(Vellend, 2005; Bailey et al., 2009; Whitlock, 2014). Intraspecific genetic diversity can 

influence community responses to environmental changes and determine the velocity of 

shifts in community structure and functions (Broadhurst et al., 2008; Whitlock, 2014).  

The results of this study reveal a complex interaction among Euclidean distance 

and environment parameters on the population genetic structure of I. webberi. A meta-

analysis of 70 studies showed that gene flow among plants was more patterned along a 

combination of isolation by distance and by environment (Sexton et al., 2014). A 

narrowly distributed endemic found primarily in small spatially discrete populations, I. 

webberi is currently threatened by urbanization, changing fire regimes and invasive plant 

species. Any insect-assisted pollen transfer among I. webberi populations may be 

hindered as insects avoid human-altered landscapes such as the ones in which I. webberi 

occurs (Làzaro et al., 2020; Delnevo et al., 2020). Anthropogenic landscape features 

result in potential habitat loss and fragmentation, which could increase extirpation risks 

and resistance to gene flow among the populations. The extreme isolation of the DMR 

population, which also contains unique alleles, is of concern; given its small spatial 

extent, efforts to expand the population may be warranted. Although individuals which 

assign to same genotype cluster as the DMR population were found in other populations 

suggesting past dispersal and the possibility of unidentified populations in the habitat 
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separating DMR from the core of the species range. Furthermore, the Great Basin Desert 

is projected to experience milder winters and hot summers as a result of climate change 

(Chambers, 2008). Therefore, conservation efforts on I. webberi should include genetic 

characterization of newly discovered sites, further characterization of dispersal dynamics, 

protection and monitoring of all population sites and potential connectivity corridors, and 

control of invasive alien species.  
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TABLES 

Table 1. Ivesia webberi populations sampled for this study, abbreviated (abr) site names, 

patch size (acres), sample size (N), mean number of alleles per locus (Na), allelic richness 

over all loci per population (RT) and mean observed (Ho) and expected (He) 

heterozygosity per population.  

Population 

  Patch     Averages       

Abr size N Na RT Ho He 

Sierra Valley SVE 44.8 21 2.67 13.45 0.400 0.344 

Constantia CST 1.91 20 2.17 10.31 0.192 0.204 

Evans Canyon, East of 

Hallelujah junction 

wildlife area (HJWA) 

EHJ 0.14 24 

2.17 11.60 0.419 0.305 

HJWA HJA 0.05 18 2.67 14.56 0.410 0.363 

Dog Valley meadow DVA 71.58 22 2.67 12.83 0.359 0.317 

White Lake overlook WLO 13.56 22 3.33 15.63 0.487 0.405 

Mules Ear Flat MER 0.14 20 3.00 15.28 0.559 0.441 

Ivesia flat IVF 0.73 20 2.83 14.29 0.605 0.435 

Stateline road 1 STL 7.03 9 2.50 14.29 0.495 0.379 

Stateline road 2 STN 4.03 13 2.33 12.85 0.316 0.346 

Hungry valley HGV 0.16 24 2.50 12.28 0.492 0.369 

Black springs BSP 6.31 18 2.33 11.85 0.315 0.271 

Raleigh heights RAH 9.55 23 3.17 13.88 0.423 0.355 

Dutch Louie flat DLF 1.35 19 2.83 12.51 0.237 0.242 

The Pines power line PPL 0.14 18 2.17 10.79 0.265 0.216 

Dante Mine Road DMR 0.56 23 1.83 9.34 0.274 0.200 
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Table 2. Locus, primer sequences, repeat motif and PCR melting temperatures for the six 

microsatellite loci used in this study 

Locus Primer 5’-3’ Repeat  

Motif 

Melting 

temperature 

(°C) 

PMS 1080 F: AAATAGGCCATCCCAATTCC 

R: TGCCCATCTTTCTTCTGGTT 

(TAG)14 66.7 

57.9 

PMS 1180 F: CGATCGTAACCGTTCTCCAT 

R: ACCGCTCTTCTTCTCCGATT 

(TC)4, 

(GGC)7 

65.3 

58.5 

PMS 1438 F: GGACTTGGGACTTTGTTGGA 

R: TCCCAAATGCAATCGTGTAA 

(AC)10 68.5 

56.6 

PMS 1665 F: CCAAGTGAAGGAAGCCAAAC 

R: GCCGACGAAGAAGGAAGAC 

(AG)6 68.2 

59.7 

PMS 1694 F: CCTCGAGGAACAACCTGTTT 

R: CATGGACTGAGGAAGAACACAA 

(AT)13 67.3 

58.8 

PMS 2190 F: ATAAAGGCAACGCAAGATCA 

R: CGTATAATCTTACCAATCAATTAAACA 

(CA)5/(TA)16 65.5 

54.8 

*The loci were developed from Potentilla pusilla and cross amplified with I. webberi 

(Dobeš and Scheffknecht 2012). See Table S1 for the number of genotyped individuals, 

alleles observed, allelic richness, expected and observed heterozygosity, and inbreeding 

coefficient per locus across the 16 I. webberi populations  
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Table 3. Effective population size for populations where we could calculate a 95% CI 

and genotype clusters (including only individuals with Q≥0.8 per cluster) 

Populations Ne 95% CI  
HJA  0.9 0.6 1.3 

DVA 5.2 3.3 8.5 

STN 3.3 1.6 7.7 

DLF 8.3 4.4 20 

RAH 11.7 6.8 24.1 

Clusters    
1 (orange) 2.6 1.7 4 

2 (gray) 27.9 12.6 148.1 

3 (yellow) 40.5 19.5 162.1 

4 (blue) 18.3 10.5 35.9 

5 (green) 20.4 12.3 37.6 
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Table 4. Pairwise genetic differentiation (FST) values among the 16 Ivesia webberi populations. Bold Pairwise FST values 

indicate statistical different (corrected p=0.0004) 

Population SVE CST EHJ HJA DVA WLO MER IVF STL STN HGV BSP RAH DLF PPL 

SVE                

CST 0.657               

EHJ 0.135 0.770              

HJA 0.114 0.612 0.045             

DVA 0.156 0.354 0.121 0.104            

WLO 0.041 0.541 0.109 0.084 0.106           

MER 0.227 0.337 0.285 0.248 0.090 0.156          

IVF 0.130 0.317 0.220 0.160 0.102 0.090 0.048         

STL 0.195 0.440 0.109 0.105 0.020 0.087 0.107 0.137        

STN 0.143 0.287 0.159 0.126 0.049 0.108 0.120 0.092 0.021       

HGV 0.252 0.335 0.257 0.188 0.146 0.188 0.131 0.028 0.186 0.124      

BSP 0.167 0.352 0.164 0.121 0.008 0.110 0.099 0.070 0.072 0.040 0.102     

RAH 0.184 0.224 0.228 0.170 0.059 0.141 0.073 0.015 0.116 0.053 0.025 0.027    

DLF 0.352 0.201 0.407 0.282 0.068 0.262 0.107 0.132 0.154 0.102 0.167 0.053 0.066   

PPL 0.421 0.216 0.465 0.352 0.101 0.316 0.104 0.148 0.220 0.153 0.185 0.080 0.077 -0.002  

DMR 0.770 0.667 0.992 0.861 0.631 0.709 0.606 0.531 0.609 0.319 0.561 0.687 0.477 0.612 0.738 
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Table 5. Genotype cluster assignment for individuals with Q≥80%. Highlighted numbers 

represent the populations per cluster with the highest number of individuals assigned (see 

text) and are included in Figure 6c 

 Population cluster1 cluster2 cluster3 cluster4 cluster5 Total 

CST 4 1 

 

7 3 15 

MER 

 

2 

 

8 4 14 

STN 2 2 1 4 1 10 

DLF 2 1 

 

4 3 10 

WLO 

 

2 4 8 1 15 

HJA 

  

11 4 

 

15 

DVA 

 

1 4 2 3 10 

EHJ 

 

6 16 

  

22 

SVE 

 

5 5 

 

1 11 

STL 1 2 

 

1 

 

4 

IVF 

 

4 

 

3 6 13 

RAH 

 

3 

  

10 13 

HGV 

 

1 1 1 9 12 

BSP 

  

3 

 

5 8 

PPL 1 1 1 5 7 15 

DMR 20 

    

20 

  30 31 46 47 53 207 
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Table 6. Results of the Mantel tests and multiple regression on distance matrices (MRM) 

analysis between pairwise genetic distance (FST) and predictors of gene flow among the 

16 sampled Ivesia webberi populations. MRM analysis accounts for the effect of 

geographical distance between pairwise genetic distance (FST) and predictors of gene 

flow. All Mantel test were run in ECODIST R package, while MRM analysis was 

conducted in PHYTOOLS R package, both implemented with 10,000 permutations 

Predictors Mantel’s r p MRM F P 

Geographical distance 0.8535 0.0001 n/a n/a 

Latitudinal degrees 0.8608 0.0001 n/a n/a 

Aboveground species 

dissimilarity* 

-0.0173 0.5001   1663.260 0.0001 

Soil seed bank species 

dissimilarity* 

0.9862 0.0001   6135.768 0.0001 

Actual evapotranspiration 0.6188 0.0061 11119.242 0.0001 

Cosine aspect 0.1955 0.1211 15294.608 0.0001 

Summer precipitation 0.7066 0.0030 15708.377 0.0001 

Minimum annual temperature -0.0448 0.5717 15561.648 0.0001 

Native herb cover -0.0077 0.4154 12012.579 0.0001 

Topographic position index -0.2259 0.9516     214.772 0.0001 

*Species dissimilarity in both the aboveground vegetation and the soil seed bank was 

computed from 10 of the 16 I. webberi populations (Borokini et al. 2021). Therefore, 

pairwise genetic distance (FST) corresponding to the sampled 10 populations was used.  
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Table 7. Summary table from the bootstrap analysis on the MLPE models with 10,000 

iterations in RESISTANCE GA R package. k is the number of parameters fitted in the 

bootstrap analysis, AIC and AICc represent average values of the two parameters in the 

bootstrap analysis, LL is the average log likelihood of the bootstrap analysis. Weight 

represents the average contribution of each predictor to the model relative to all 

predictors included. R2m is the average marginal R2 value of the bootstrap analysis on the 

MLPE model 

Parameters Land cover:niche Land cover Niche Distance Null 

k 19 16 4 2 1 

AIC -64.1803 -70.3673 -91.0559 -96.2079 n/a 

AICc 695.8197 473.6327 -85.3417 -94.8746 n/a 

LL 51.0902 51.1836 49.5279 50.1039 n/a 

R2m 0.55184 0.5616 0.4934 0.4855 n/a 

Weight 0.0000 0.0000 0.0488 0.9512 n/a 
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FIGURE LEGENDS 

Figure 1. Map of the global distribution of Ivesia webberi. Symbols represent the 

geographic center of extant, mapped occurrences. Locations represented by circles show 

the sampled populations used for this study; circles depicted in the same color represent 

occurrences that were grouped together by the USFWS as populations. New locations 

discovered after sample collection and thus not included in this study are represented by 

diamonds. 

Figure 2. Ritland and Lynch (1999) mean relatedness (r) ± SD for each the 16 sampled 

Ivesia webberi populations. 

Figure 3. (A) STRUCTURE output showing proportional membership per genotype 

cluster (k=5) per individual. (B) The natural log of the probability of the data [LnP(D)] 

values per k for k=1–10. (C) Spatial extent of genotype clusters for individuals with 

Q≥80%. (D) Mean LnP(K)±SD, Ln’(k), [Ln”(k)] and Δk for k=1–10.  

Figure 4. PCoA plot genotype clusters (k=5) for axes (A)1vs2, (B) 2vs3, and (C) 1vs3.  
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APPENDICES 

Appendix I. Fitting of the ecological niche modeling for Ivesia webberi 

Niche model was fitted for I. webberi using 31 occurrence points and 102 

spatially thinned true absence points, using six algorithms, including Generalized linear 

models (GLM), Generalized additive models (GAM), Boosted Regression Trees (BRT), 

Random Forests (RF), Maximum Entropy (MAXENT), and Artificial Neural Networks 

(ANN). The spatial dataset was a product of iterative niche modeling and successive field 

validation to the projected suitable sites from 2015 to 2020. The models were fitted in 

BIOMOD2 R package (Thuiller et al., 2009), using the default settings. GLM were 

generated using quadratic terms in stepwise approach, and using the Akaike information 

Criterion (AIC) for model selection. BRT models were generated by fitting 2500 trees 

and three cross-validations, while GAM was analyzed with a spline smoothing function. 

We used five cross-validations to select the optimal hidden layers in ANN models, we 

fitted 500 random forest models, and ran MAXENT models with 10,000 background 

points, using linear, quadratic and product features but with logistic model output. Due to 

the small size of occurrence points, spatial data was not partitioned to independent 

training and test data, rather all niche models were fitted with 10 replicates each for the 

six algorithms using 80% of the data for cross-validation (Araújo et al., 2005; Thuiller et 

al., 2009).  

Model performance was measured using True statistic skill (TSS; Allouche et al. 

2006), area under the curve (AUC) of the receiver operated characteristics (ROC) plot 

(Hanley & McNeil, 1982), specificity, and Continuous Boyce index (CBI; Boyce, 
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Vernier, Nielsen, & Schmiegelow, 2002) to produce model predictions with maximal 

accuracy and minimal omission errors. Model replicates with (TSS≥0.7) were used for 

ensemble modeling from which projection of habitat suitability maps were produced. 
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Appendix II. Ecological conditions in the 16 Ivesia webberi populations based on the six ecological variables 

Unit* Population AET (mm) Cosine 

aspect 

Summer 

precipitation (mm) 

Temperature 

(°C) 

Herbaceous 

cover 

Topographic 

position index 

1 SVE 243.57 -0.52 25.15 -7.40 32.16 -45.26 

2 CST 248.11 0.64 22.42 -6.13 24.71 -111.29 

3 EHJ 184.19 0.95 27.27 -7.16 27.74 -131.05 

4 HJA 189.89 0.99 29.32 -7.42 35.11 -102.13 

5 DVA 274.64 0.12 28.03 -7.36 17.13 -179.72 

6 WLO 218.31 0.35 28.29 -6.76 15.70 -65.21 

7 MER 240.00 0.89 25.99 -6.69 18.06 -114.72 

8 IVF 244.10 0.51 26.05 -6.78 30.40 0.08 

9 STL 235.90 0.74 26.61 -6.63 24.01 -99.67 

10 STN 248.80 -0.52 27.35 -7.11 22.77 -80.85 

11 HGV 215.68 0.86 22.65 -5.04 23.71 44.45 

12 BSP 229.91 0.72 25.65 -6.31 32.09 25.93 

13 RAH 223.13 0.96 24.39 -5.90 23.46 25.12 

14 DLF 284.36 -0.81 27.51 -6.34 41.44 -184.36 

15 PPL 241.22 0.93 26.01 -5.88 50.19 -42.74 

16 DMR 321.21 -0.64 34.72 -6.75 16.96 -103.10 

AET stands for cumulative actual evapotranspiration, summer precipitation represents mean summer precipitation, temperature 

stands for mean minimum temperature, while herbaceous cover describes perennial herbaceous cover layer.  
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Appendix III. A description of the six selected predictor variables used to test the 

isolation of environment pattern in the gene flow among the 16 sampled Ivesia webberi 

populations 

Predictor name Description and source 

Cumulative actual 

evapotranspiration 

Water balance variable calculated from 800 m 1971-2000 

PRISM climate normals (Daly et al., 2008), available water 

capacity (Chaney et al., 2016), and the 1-arcsecond digital 

elevation model (DEM; USGS, 2017) combined in the 

Climatic Water Deficit Toolbox for ArcGIS (Dilts 2014, Dilts 

et al. 2015). AET represents the simultaneous availability of 

water and energy to support plant productivity. 

Minimum monthly 

temperature 

The bioclimatic variables were downscaled from the PRISM 

climatic data (1970-2001) normals (Daly, Halbleib, Smith, 

Gibson, Doggett, Taylor, … Pasteris, 2008) from 4 km to 30 

m spatial resolution, using BIOCLIM methods (Booth, Nix, 

Busby, & Hutchinson, 2014) and the climatic water deficit 

toolbox (Dilts, 2014; Dilts, Weisberg, Dencker, & Chambers, 

2015) 

Summer precipitation 

Cosine aspect Cosine aspect was calculated in ArcMap version 10.6.1 using 

USGS (2017) DEM and the slope layers, the formula: = θ × 

cos(α), where = θ is slope (in percentage), and α is aspect (in 

radians) 
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Topographic position 

index 

Calculated from USGS (2017) DEM in ArcMap version 

10.6.1, using formula introduced by Weiss (2001), and a 333 

m neighborhood. At 333 m scale, the landscape is classified 

into either a valley or a mountain range 

Perennial herbaceous 

cover 

It is a vegetation type raster layer sourced from the Multi-

Resolution Land Characteristics (MRLC) development of the 

U.S. National Land Cover Database (NLCD) 2016 Shrub 

component products (Xian, Homer, Meyer, & Granneman, 

2013) 
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Appendix IV. Feature reduction process for the ecological predictor variables 

A total of 72 predictor variables describing edaphic, topographic, land cover, 

vegetative cover, climatic and biotic factors were assembled for fitting niche models for 

Ivesia webberi. However, in order to avoid multicollinearity, the predictor variables were 

reduced to six uncorrelated predictors using a combination of Kendall r correlation 

coefficient, and feature selection runs in Boruta R package (Kursa & Rudnicki, 2010) and 

recursive feature elimination algorithm in caret R package (Kuhn, 2008). The six selected 

predictor variables are described in the Tables S1 and S2 below. 
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Appendix V. Floristic richness and diversity in the aboveground and the soil seed bank 

of the 10 Ivesia webberi sampled populations (adapted from Borokini et al., 2021) 

Unit* Site name Code Aboveground 

community 

Soil seed bank 

Species 

richness 

Species 

diversity 

Species 

richness 

Species 

diversity 

2 Constantia CST 18 3.4109 18 1.3749 

3 Evans Canyon, East 

of Hallelujah junction 

wildlife area (HJWA) 

 

 

EHJ 20 3.5312 14 1.7979 

5 Dog Valley meadow DVA 34 12.3489 14 8.7159 

6 White Lake overlook WLO 26 10.3199 16 1.7157 

7 Mules Ear Flat MER 26 4.0713 16 2.3309 

8 Ivesia flat IVF 22 6.2757 16 3.0484 

11 Hungry valley HGV 24 1.8893 21 3.0377 

12 Black springs BSP 25 3.6016 20 1.3293 

13 Raleigh heights RAH 20 6.2627 18 1.7913 

16 Dante Mine Road DMR 21 8.8097 16 2.6453 

*Unit follows the unit number assigned by US Fish and Wildlife Service (USFWS); 

Species diversity of the exponent conversion of Shannon-Weiner H’ index into natural 

numbers (effective number of species; Jost 2006) 
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Appendix VI. Number of individuals genotyped (N), number of alleles observed (A), allelic richness (RS), expected (He) and 

observed (Ho) heterozygosities, and the inbreeding coefficient (FIS) for each locus across the 16 Ivesia webberi populations. 

FIS values with asterisk are statistically significant (adjusted P = 0.00052, based on 1920 randomizations). NA means no 

analysis. 

Locus 

                        SVE 

                        

CST EHJ HJA DVA WLO MER IVF STL STN HGV BSP RAH DLF PPL DMR 

PMS 

1080 
N 20 12 24 13 20 13 11 16 8 9 22 18 23 14 13 20 

 A 2 1 2 2 2 3 3 2 2 2 2 2 2 1 1 2 

 RS 1.35 1.00 2.00 1.92 1.97 2.34 2.64 1.44 2.00 2.00 1.54 1.63 1.52 1.00 1.00 1.74 

 HE 0.05 0 0.454 0.212 0.296 0.218 0.481 0.063 0.5 0.294 0.089 0.108 0.085 0 0 0.142 

 HO 0.05 0 0.667 0.231 0.15 0.231 0.636 0.063 0.75 0.333 0.091 0.111 0.087 0 0 0.15 

 FIS 0 NA -0.48 -0.09 0.5 -0.06 -0.35 0 -0.56 -0.14 -0.02 -0.03 -0.02 NA NA -0.06 

PMS 

1180 
N 21 19 24 18 22 22 19 20 9 12 24 18 23 17 17 22 

 A 4 3 3 4 4 4 4 5 4 4 5 4 4 6 3 2 

 RS 2.60 1.98 2.47 3.56 3.28 3.23 3.14 3.90 4.00 3.52 3.45 3.27 2.82 3.71 2.31 2.00 

 HE 0.331 0.2 0.377 0.6 0.659 0.593 0.44 0.64 0.791 0.659 0.592 0.602 0.503 0.414 0.266 0.46 

 HO 0.286 0.2 0.375 0.5 0.591 0.545 0.211 0.8 0.889 0.333 0.542 0.5 0.522 0.471 0.235 0.409 

 FIS 0.14 -0 0.005 0.171 0.105 0.082 0.528 -0.26 -0.13 0.506 0.087 0.173 -0.04 -0.14 0.117 0.113 

PMS 

1438 
N 21 18 24 15 22 22 20 20 9 13 24 18 23 19 17 23 
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 A 2 3 2 3 2 2 2 2 3 2 2 2 2 2 2 2 

 RS 2 2.4 2 2.724 2 2 2 2 2.778 2 2 2 2 2 2 2 

 HE 0.512 0.5 0.507 0.559 0.511 0.512 0.513 0.513 0.582 0.517 0.511 0.513 0.507 0.491 0.515 0.511 

 HO 1 0.9 0.917 0.867 0.955 1 1 1 1 0.923 1 0.944 0.913 0.789 1 1 

 FIS

  
-1 -0.7 -0.84 -0.58 -0.91 -1.0 -1.0 -1.0 -0.8 -0.85 -1 -0.89 -0.83 -0.64 -1.0 -1.0 

PMS 

1665 
N 20 20 24 18 22 21 19 19 9 13 24 18 21 19 16 23 

 A 3 1 1 1 3 4 3 3 1 1 1 1 4 2 2 1 

 RS 2.94 1.00 1.00 1.00 1.64 3.19 2.61 2.60 1.00 1.00 1.00 1.00 2.23 1.37 1.44 1.00 

 HE 0.586 0 0 0 0.09 0.517 0.494 0.448 0 0 0 0 0.182 0.053 0.063 0 

 HO 0.5 0 0 0 0.091 0.476 0.632 0.368 0 0 0 0 0.143 0.053 0.063 0 

 FIS 0.15 NA NA NA -0.01 0.08 -0.29 0.182 NA NA NA NA 0.221 0 0 NA 

PMS 

1694 
N 21 20 24 18 22 19 19 20 9 13 24 18 23 18 18 23 

 A 3 3 2 3 3 4 3 3 4 4 3 3 4 4 3 2 

 RS 2.84 2.58 1.95 2.71 2.23 2.69 2.46 2.35 3.52 3.34 2.29 2.32 2.83 2.74 2.35 1.30 

 HE 0.459 0.5 0.284 0.379 0.212 0.36 0.284 0.512 0.399 0.606 0.529 0.294 0.544 0.376 0.332 0.043 

 HO 0.429 0.1 0.333 0.333 0.227 0.421 0.316 0.8 0.333 0.308 0.5 0.222 0.522 0.111 0.167 0.043 

 FIS 0.067 0.89 -0.18 0.124 -0.07 -0.18 -0.11 -0.59 0.172 0.503 0.056 0.249 0.042 0.711 0.505 0 
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PMS 

2190 
N 15 19 18 17 21 20 16 15 7 10 22 18 20 16 16 23 

 A 2 2 3 3 2 3 3 2 1 1 2 2 3 2 2 2 

 RS 1.72 1.37 2.17 2.65 1.72 2.19 2.43 2.00 1.00 1.00 2.00 1.63 2.48 1.69 1.69 1.30 

 HE 0.129 0.1 0.208 0.426 0.136 0.229 0.433 0.434 0 0 0.495 0.108 0.309 0.121 0.121 0.043 

 HO 0.133 0.1 0.222 0.529 0.143 0.25 0.563 0.6 0 0 0.818 0.111 0.35 0 0.125 0.043 

  FIS -0.04 0 -0.07 -0.25 -0.05 -0.09 -0.31 -0.4 NA NA -0.68 -0.03 -0.14 1 -0.03 0 
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ABSTRACT 

Background and Aims: Variation in genome-size across taxa have been explained using 

neutral and non-adaptive theories, however genome size variation among taxonomic 

groups can also be shaped by natural selection and have adaptive value if it correlates 

with other plant functional traits. Currently, little work has been published on the genome 

size of Ivesia and its evolutionary history in the desert ecosystems in western North 

America. Here, we estimated the genome sizes of 33 taxa, including 31 Ivesia taxa and 

additional two taxa from Potentilla and one from Horkelia, and determined if the genome 

sizes have an adaptive value. 

Methods: We collected leaf samples from 31 of Ivesia’s 38 taxa, in addition to two taxa 

from the closely related Potentilla and one from Horkelia genera. Using flow cytometry, 

we obtained genome size estimates from every accession. We investigated intraspecific 

variation of genome size within 11 I. webberi populations. We also tested the predictions 

of the nucleotype theory, which states that genome size has adaptive significance. 

Key Results: All Ivesia taxa were diploid (2n=2x=28 chromosomes), despite an 8.1-fold 

variance in genome size, ranging from 0.73 pg/2C in I. baileyi var. beneolens to 5.91 

pg/2C in I. lycopodioides ssp. megalopetala. Only six taxa, with a genome size >1.5 

pg/2C, significantly differed from the remaining taxa. We also observed a longitudinal 

gradient in genome size in Ivesia; genome size was significantly correlated with seed size 

and actual evapotranspiration both within I. webberi and among Ivesia taxa. I. webberi 

populations near the species range centre have the largest genomes, which reduces 

towards the marginal populations. 
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Conclusions: Seed size and actual evapotranspiration correlate with smaller genomes 

found among desert-dwelling Ivesia, which supports the predictions of the nucleotype 

theory and suggests an adaptive significance of genome size in the genus. Furthermore, 

intraspecific genome size variation in I. webberi could be attributed to gene flow and 

other evolutionary processes. However, low phylogenetic resolution limits inferences on 

evolutionary events in the genus. 

 

Keywords: nucleotype theory, genome size, flow cytometry, adaptive radiation, ploidy, 

genome size constancy hypothesis, genome size evolution, central-marginal hypothesis, 

functional traits, actual evapotranspiration, Ivesia, Rosaceae, North America.  
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INTRODUCTION 

Genome size (GS) is the total amount of DNA in an organism’s unreplicated 

haploid nucleus (Greilhuber et al., 2005). Up to 2,400-fold variation in genome size has 

been reported among angiosperms (Pellicer et al., 2018), while variation among 

intraspecific accessions is generally much lower (Huang et al., 2013; Pascual-Díaz et al., 

2020). GS data have been used in genotyping studies (Garner, 2002), and can also be 

integrated into a phylogenetic tree to investigate the relationship between GS and 

speciation (e.g., Leitch et al., 2010; Burleigh et al., 2012). Previous studies have 

demonstrated a significant and positive relationship between the rates of genome size 

evolution and species diversification at the family and subfamily levels in angiosperms 

(e.g., Jiao et al., 2011; Puttick et al., 2015; Soltis and Soltis, 2021; but see Bromham et 

al., 2015). Furthermore, closely related taxa have been shown to have relatively small 

differences in genome sizes (Loureiro et al., 2010; Lanfear et al., 2014), while ancestral 

taxa were reported to have smaller genomes in some plant families (Leitch et al., 2005; 

Du et al., 2017). Conversely, genome size reduction following speciation has been 

observed in other plant groups indicating that both ancestral and young taxa can have 

smaller genomes (Baniaga et al., 2016). Overall, studies suggest a multi-directional role 

of GS on species diversification among plant clades, which is driven by the rates and 

mechanisms of GS evolution, not changes in the absolute GS (Kraaijveld, 2010; Puttick 

et al., 2015; Pellicer et al. 2018). 

The mechanisms of GS evolution have been explained using different hypotheses 

that describe GS evolution as either neutral, maladaptive, or adaptive (Whitney et al., 

2010). The mutational equilibrium hypothesis (MEH), a neutral model of GS evolution, 
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posits that GS variations are a result of the balance between insertions and deletions into 

the genome (Petrov, 2002), while the mutational hazard hypothesis (MHH), a 

maladaptive and nearly neutral model, states that excess DNA is slightly deleterious and 

will be removed by selection in populations and species with a larger effective population 

size (Ne) but are fixed by genetic drift in taxonomic units with smaller Ne, thus resulting 

in a larger GS (Lynch and Conery, 2003). Adaptive models such as the nucleotype theory 

(Bennett, 1976) and nucleoskeletal hypothesis (Cavalier-Smith, 2005) posits that GS 

evolution can influence functional phenotypic traits that support species life history 

strategy, physiology, and geographical distribution. The nucleoskeletal hypothesis 

suggests that plants with larger GS are selected against in environments with low 

nitrogen and phosphorus (Bales and Hersch-Green, 2019) because these elements are 

important building blocks of nucleotides. Empirical evidence of a correlation between GS 

and plant functional traits such as nucleus weight, RNA and protein content, cell size, 

flower and fruit size, and minimum generation time (Bennett, 1987), seed size (Beaulieu 

et al., 2007), guard cell and epidermal cell sizes (Beaulieu et al., 2008; Hoang et al., 

2019), stomata size (Jordan et al., 2015), photosynthetic rates (Roddy et al., 2020), and 

mitotic cell cycle duration (Hodgson et al., 2010) support the predictions of the 

nucleotype theory. Conversely, selection against larger genomes has been reported in 

plants in harsh environments, higher altitudes, and latitudes (Knight et al., 2005; 

Guignard et al., 2016). Empirical studies testing the predictions of these hypotheses are 

equivocal (Oliver et al., 2007; Whitney et al., 2010; Schrider et al., 2013; Leushkin et al., 

2013; Bilinski et al., 2018). These GS evolution models are best tested in species with 
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intraspecific GS variation (Stelzer et al., 2019; Blommaert, 2020), and congenerics with 

shared evolutionary history such as those that originated from adaptive radiations. 

Ivesia Torrey and A. Gray (Rosoideae, Rosaceae) is a genus distributed in the 

western United States and northern Mexico and contains 30 described perennial forb 

species, which are further divided into eight subspecific taxonomic groupings (Ertter, 

1989). The ancestral species of this genus is thought to have originated from the eastern 

Great Basin and the western slopes of the Rocky Mountains. From there, it spread 

westward across the prehistorically wet Basin and Range region of western United States. 

The collapse of the Nevadaplano caused valleys to drop in the Great Basin Desert. The 

reduced elevation of the valleys relative to the Sierra Nevada Mountains created a rain 

shadow effect, leading to arid conditions across the Great Basin Desert (Cassel et al., 

2009). Climatic changes and topographic, geologic and edaphic heterogeneity (resulting 

from these geological transformations) may have led to the extinction of some ancestral 

Ivesia taxa. Many of the remaining taxa are now restricted to mountain, hydrologic, and 

edaphic habitat islands (Ertter, 1989), which may have facilitated in situ speciation and 

adaptive radiations of new Ivesia taxa (Töpel et al., 2012). Therefore, this genus is 

composed of both surviving ancient taxa and relatively young radiations, many of which 

exhibit substrate specialization (Kraft et al., 2010; Ertter and Reveal, 2014). 

The evolutionary history of the taxa in Ivesia and their geographical distribution 

in arid environments make them an excellent choice for testing the adaptive or 

maladaptive effects of GS evolution. This study investigates variation in genome size 

within and among Ivesia taxa. Here, we considered minimum-rank taxa (MRT), which 
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are the smallest taxonomic units (including subspecies and varieties), as individual taxa. 

Using the genome sizes obtained from all sampled Ivesia taxa (in addition to two 

Potentilla spp., and one Horkelia sp., which were included to serve as reference taxa 

from closely related genera [Table 1]), we asked the following questions: (1) is there a 

relationship between genome size and environmental variables and seed size according to 

the predictions of the nucleotype theory? (2) Did genome size increase in Ivesia as 

species radiated out in a westward direction from the hypothesized origin of the ancestral 

Ivesia taxa? (3) Does intra-specific genome size variation follow the genome size 

constancy hypothesis (Greilhuber et al., 2005)? We also built a phylogenetic tree with 

chloroplast and nuclear DNA sequences available from GenBank 

(https://www.ncbi.nlm.nih.gov/genbank/) to assess our ability to detect evolutionary 

signals in the GS variations among Ivesia. Furthermore, we made an inference on the 

ploidy of the sampled Ivesia taxa using flow cytometry and karyotypic data. Based on 

previous studies that showed that ancestral taxa have relatively small genome sizes (e.g., 

Du et al., 2017), we predict that ancestral Ivesia taxa would have smaller genomes and 

thus expect a westward increase in genome sizes of the sampled Ivesia taxa. 

 

MATERIALS AND METHODS 

Study species and field sampling 

Thirty-one out of 38 taxa (Table 1), representing 82% of all Ivesia taxa across the 

western United States (Table 1, Figure 1, see also Supplemental Table S1), were sampled 

for flow cytometric analysis. These taxa grow primarily on the soil, but 12 of them are 
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chasmophytes, growing on rocky outcrops (Table 1). The substrates on which these taxa 

grow have either volcanic or limestone origin, while two grow on alkali flats (Table 1). 

Based on previous studies documented in the Flora of North America, 15 Ivesia taxa 

were reported to have 2n=28 chromosomes (Ertter and Reveal, 2014). Many of the 

species are found in disjunct populations growing on specific substrates, restricted to the 

mountainous sky islands, and are suspected to be relics of the ancestral Ivesia. 

Fresh leaf samples were collected from six individuals from one population for 

each of the sampled Ivesia taxa. In a few taxa such as I. webberi (Figure 2), I. 

lycopodioides var. megalopetala and Horkelia fusca var. parviflora, samples were 

collected from multiple populations. Leaves from each plant were stored between moist 

tissue paper in a labelled plastic bag and shipped to the Benaroya Research Institute 

(Seattle, Washington State, United States) for analysis. In all cases, the samples arrived at 

the laboratory within 48 hours and were prepared for flow cytometry. Flow cytometric 

analysis was conducted for only fresh, intact samples; degraded samples were excluded 

(See Table 1). Field collections were made between June 2018 and November 2019. 

Flow cytometry 

Flow cytometry is a high throughput and non-destructive method for determining 

the nuclear genome size with applications in systematics, ploidy level estimation, and the 

base composition (proportion of AT-GC base pairs) of the genome (Kron et al., 2007). 

Flow cytometric analysis was conducted using the following protocol (Arumuganathan 

and Earle, 1991). Each 50 mg of leaf tissue samples were separately ground in MgSO4 

buffer, mixed with DNA of an internal reference standard, and stained with propidium 
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iodide (PI) in a solution containing DNase-free-RNase to remove any RNA from the 

sample. Nuclei from chicken red blood cells (2.5 pg./2C; Biosure Inc., Grass Valley CA; 

CEN singlets catalogue #1013) were used as internal reference standards. The amount of 

nuclear DNA was estimated by comparing fluorescence intensities of the stained nuclei 

of Ivesia leaf samples with those of the reference standard using a FACScalibur flow 

cytometer (Becton-Dickinson, San Jose, CA). For each taxon, 10,000 counts of PI-stained 

nuclei from three samples were recorded and analysed using the CellQuest software 

(Becton-Dickinson, San Jose, CA). The mean position of the G0/G1 nuclei peak of the 

sample and the internal standard was also determined using CellQuest software. Only 

histograms with coefficients of variation (CVs) of the G0/G1 peak of the analysed sample 

below 5% were considered (Dušková et al., 2010). Samples that did not produce 

histograms with double peaks for both internal standard and the Ivesia taxa were 

excluded (Greilhuber et al., 2005). 

Karyotyping 

Chromosome analysis was conducted using a 4’,6-diamidino-2-phenylindole 

(DAPI) stain, as described in Findley et al. (2010). Root tips were obtained from freshly 

germinated I. webberi seeds and digested in nitrous oxide to stop cell division at 

metaphase. Meristematic tissues from seven root tips were fixed in 100% acetic acid, 

mounted on a slide, and viewed under the microscope. Images were taken at 100× with 

an Olympus BX61 using FISHView EXPO 4.5 software (Applied Spectral Imaging) and 

a Cool-1300QS CCD camera. 
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Phylogenetic analysis 

We acquired all available DNA sequences from chloroplast, mitochondria and 

nuclear loci of Ivesia and Horkelia fusca ssp. parviflora from GenBank. We used both 

nuclear (ETS and ITS) and chloroplast (matK and trnL) sequences for the phylogenetic 

analysis (Supplemental Table S2). To limit noise within our phylogenetic estimate, only 

one individual per taxon that had at least two sequences from the same individual were 

analysed. Potentilla chinensis was chosen as an outgroup because it has been shown to 

have a close phylogenetic relationship with the ivesoid clade (Eriksson et al., 2003; 

Potter et al., 2007; Sun et al., 2016). We aligned and edited fragments using E-INS-i 

algorithm in MAFFT (Katoh et al., 2009) in Geneious Pro v. 9.1.8 

(https://www.geneious.com). We concatenated and partitioned our alignment by the 

genetic sequence for phylogenetic analysis. We took a maximum likelihood approach to 

generate our phylogenetic estimate using RAxML v 8.2.12 (Stamatakis, 2006). We set 

our evolutionary model to GTR-I- and executed 2×104 fast-bootstrapping runs. A 

bootstrap threshold of ≥50 was interpreted as relationships having significant support 

(Hillis and Bull, 1993). 

Data analysis 

We fitted a fixed-effects model to determine statistical differences in the nuclear 

genome size of all sampled Ivesia taxa and the representative samples from Potentilla 

and Horkelia genera. Geographical patterns in genome size variation in Ivesia were 

investigated using the Kendall r correlation of the longitudinal degrees and the genome 

size, and with spatial autocorrelation in the genome size of the 31 sampled Ivesia taxa 

https://www.geneious.com/
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using Mantel r Kendall correlation. The range of each taxon was estimated in ArcGIS 

version 10.7.1 using the convex hull function. Furthermore, to assess a relationship 

between genome size in Ivesia and the selected environmental factors, which included 

elevation, actual and potential evapotranspiration (AET and PET respectively), climatic 

water deficit (CWD), substrate type (soil or rock), and substrate geology, we fitted a 

generalized linear mixed model, accounting for species as a fixed effect. We also 

investigated the relationship between genome and mean seed sizes of taxa for which 

seeds were available, using linear regression. 

Similar analyses were conducted on samples collected from 11 Ivesia webberi 

populations. A fixed-effects model was used to investigate the predictions of genome size 

constancy within a species. Genome sizes of sampled I. webberi individuals were 

modelled as a function of the representative populations. We also checked for spatial 

autocorrelation (Mantel’s r) and fitted generalized linear mixed-effects models to test for 

the effect of elevation, AET, PET, CWD, and seed size on nuclear DNA content of I. 

webberi samples, using populations as a fixed effect. To test if genome size in I. webberi 

populations is structured along the central-marginal hypothesis (CMH), we tested for 

correlation between population genome size and distance from the range centre of I. 

webberi. Distance from the species’ range centre was computed as the latitudinal range 

central index (Enquist et al., 1995; Fenberg and Rivadeneira, 2011). 

 

RESULTS 

Genome size variation among Ivesia taxa 
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Genome size varied widely among the sampled Ivesia taxa, ranging between 0.73 

pg/2C in I. baileyi var. beneolens to 5.91 pg/2C in I. lycopodioides var. megalopetala 

(Table 1). Genome size varied across the sampled taxa (F=510.2, P<0.01), but Tukey 

post-hoc pairwise comparisons showed that genome sizes of six Ivesia taxa including I. 

lycopodioides ssp. megalopetala, I. lycopodioides var. scandularis, I. shockleyi var. 

shockleyi, I. aperta var. aperta, I. aperta var. canina, and I. sericoleuca, with ≥1.8 pg/2C 

were significantly different (adjusted P<0.01) from the remaining taxa. Additionally, we 

observed overlap in genome size (0.8 pg/2C-1.3 pg/2C) for multiple Ivesia taxa (Table 1). 

When compared to the reference samples from Potentilla and Horkelia genera, 

the second logistic regression model (F=506.6, P<0.01) and post-hoc test showed that P. 

gracilis var. fastigiata was different from all sampled Ivesia taxa (adjusted P<0.01), but 

Potentilla sp. and H. fusca ssp. parviflora were different from only 13 and 12 Ivesia taxa 

(adjusted P<0.01), respectively. 

Geographical gradients in Ivesia genome size variations 

We observed an inverse but nonsignificant relationship between genome size in 

Ivesia and longitude (Kendall r=-0.08, P=0.53), which indicates a westward increase in 

genome size. The six taxa with the largest genome sizes were restricted to the western 

edge of the range of the genera in or near the Sierra Nevada Range but a few taxa, such as 

I. callida endemic to the Sierra Nevada also had smaller genomes (Table 1). There was 

no spatial autocorrelation (Mantel’s r=-0.15, P>0.99) in genome size variation among 

Ivesia taxa. 

Genome size and the environment 
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Ivesia taxa growing on the soil have larger genome sizes in general than 

chasmophytic Ivesia (Fig. 3a) however, this difference was not significant (P>0.05). 

Similarly, the geology of the substrates on which the sampled Ivesia taxa grow has no 

significant effect on their genome size (Fig. 3b). Ivesia with larger genomes produced 

relatively large seeds (Fig. 3c) and are found in higher elevation habitats (Fig. 3d). 

Furthermore, Ivesia taxa with larger nuclear genomes were located in areas with lower 

AET (Fig. 3e). Also, potential evapotranspiration (Fig. 3f) and climatic water deficit (Fig. 

3g) have no significant relationship with genome size in Ivesia. However, regression 

models show a significant relationship between genome size in Ivesia taxa and seed size 

(GLM; t=2.66, P<0.05), elevation (GLMM; z=4.74, P<0.001) and actual 

evapotranspiration (GLMM; z=-2.06, P<0.05). 

Intraspecific genome size variation and chromosome count of Ivesia webberi 

To measure intraspecific genome size variation, we analysed 11 I. webberi 

populations (See Figure 2). Genome size variation was significantly and positively 

correlated with the distance from the species’ range centre (Pearson’s r=0.65, P=0.03). 

Thus, genome size was the lowest in population unit 16, an isolated population, and 

highest in unit 8, a centrally located population (Figure 4). However, there was positive 

but weak and nonsignificant spatial autocorrelation (Mantel’s r=0.2, P=0.07) in genome 

size variations across sampled I. webberi populations. A post-hoc pairwise test on the 

fixed-effect model showed that the genome size of samples from I. webberi populations 

in unit 16 was different from six other populations (units 2, 3, 5, 6, 7 and 8; adjusted 
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P<0.01). Unit 8 was also different from three populations (units 11, 12 and 15; adjusted 

P<0.01), while unit 15 was different from units 6 and 7 (adjusted P<0.01).  

Sampled I. webberi populations with larger genome sizes were located in higher 

elevation sites (Fig. 5a), lower AET (Fig. 5b), lower PET (Fig. 5c), but slightly higher 

climatic water deficit (Fig. 5d), and they produced larger seeds (Fig. 5e). However, 

genome size variation across these 11 I. webberi populations had a significant negative 

relationship with AET (GLMM; z=-2.181, P<0.05), and a significant linear relationship 

with seed size (GLM; t=2.43, P<0.05).  

Karyotyping showed that I. webberi had 28 chromosomes, which is similar to 

karyotyping results of other Ivesia taxa as reported in the Flora of North America. 

Furthermore, since the ploidy level of some of the taxa is already known (Table 1), it 

could be inferred from the genome size that all of the 31 sampled taxa are diploid with 

2n=2x=28 chromosomes. 

Phylogenetic analysis 

Nuclear and chloroplast sequences were used to estimate a phylogeny for 

comparison with the genome size variation. The edited and concatenated alignment 

length was 4,670 bp, of which only 55 were parsimony-informative. Phylogenetic 

relationships among Ivesia were not well supported (bootstrap values ≤50), and the 

topology of the phylogenetic estimate recovered many polytomies (Supplemental Figure 

S1). Due to this lack of resolution and confidence in our estimate, we could not use the 

tree for further analysis with the genome size results. 
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DISCUSSION 

This study is the first to report on the genome size variation in Ivesia. An 8.1-fold 

variation in genome size was observed among the sampled Ivesia taxa, ranging from 0.73 

pg/2C to 5.91 pg/2C; however, based on Leitch et al. (1998) GS classifications (small: 

1C < 1.40 pg, large: 1C > 14 pg, and very large: 1C > 35 pg genomes), all of the sampled 

Ivesia taxa have relatively small genomes. Despite the GS variation, all sampled Ivesia 

taxa are believed to be diploid with 28 chromosomes. Relatively small genome sizes 

ranging from 0.2 pg/2C to 3.09 pg/2C have been reported for other taxa in Rosaceae, but 

a genome size of 5.91 pg/2C for I. lycopodioides var. megalopetala is the largest for any 

taxa in the Potentilleae Tribe, and among the largest reported genome size for diploid 

taxa in Rosaceae (Zonneveld et al., 2005). Smaller genomes prevalent among the desert-

dwelling Ivesia taxa support adaptive models of GS evolution that predicts selection 

against larger genomes in marginal ecosystems. Previous but few studies also 

demonstrated smaller genomes among C3 xerophytes and associated this with faster 

metabolic rates (Sliwinska et al., 2009; Roddy et al., 2020). Further support for this was 

found in the significant relationship of GS with actual evapotranspiration (AET) for both 

the sampled I. webberi populations and the 31 Ivesia taxa. Ivesia lycopodioides varieties, 

which have the largest genomes, were found in areas with the lowest AET. I. 

lycopodioides ssp. megalopetala is particularly found in wet alpine meadows, which have 

higher water availability and lower temperatures, and consequently, lower AET. In 

comparison, I. pickeringii and I. longibracteata for example, were sampled in locations 
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with the highest AET, both of which also have relatively small genome sizes. The 

significant association of larger genome sizes in sampled Ivesia taxa located in habitats 

with lower AET suggests that genome size variation in Ivesia may have adaptive 

significance, thus supporting the predictions of the nucleotype theory (Bennett, 1987). 

Moreover, previous studies have reported a positive relationship between GS and traits 

associated with transpiration (Jordan et al., 2015) and other ecological gradients (Kang et 

al. 2014; Du et al., 2017). 

Generally, speciation events are associated with genome size evolution resulting 

from whole genome duplications, changes in non-coding repetitive DNA, transposable 

elements, introns, and gene duplications (Du et al., 2017; Vitales et al., 2019). Even 

though we observed a westward but nonsignificant increase in genome size in Ivesia, 

phylogenetic analysis would be needed to identify geographic gradients in speciation 

events and to test the hypothesis that ancestral Ivesia taxa originated from the eastern 

edge of the range of the genera in the western slopes of the Rocky Mountains and eastern 

Great Basin Desert (Ertter and Reveal, 2014). All of the sampled Ivesia with significantly 

larger GS were distributed near or in the Sierra Nevada Range, which is the western edge 

of the genus geographic range. In plant lineages where speciation events correlate with 

genome size increases, ancestral taxa were observed to have smaller genomes (Soltis et 

al., 2003; Garnatje et al., 2007; Šmarda et al., 2008; Du et al., 2017). Our attempt to 

further corroborate this hypothesis with phylogenetic analysis was not successful. The 

molecular markers used in this study lack the phylogenetic signal to resolve relationships 

among Ivesia (Eriksson et al., 1998, 2003; Töpel et al., 2011, 2012). Consequently, our 

estimates and previous phylogenetic estimates reported for Ivesia, Potentilleae Tribe and 
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Rosaceae (Eriksson et al., 2003; Potter et al., 2002, 2007; Dobeš and Paule, 2010; Töpel 

et al., 2011, 2012; Feng et al., 2017) resulted in uninformative polytomies and low 

bootstrap node support. However, GS variations have been successfully used with a 

phylogenetic analysis of several taxonomic groups, including monocotyledonous plants 

(Leitch et al., 2010), Lilium (Du et al., 2017), Asteraceae (Vitales et al., 2019), and 

bryophytes (Bainard et al., 2020). The limitations on genus-level phylogeny for Ivesia 

may be due to added noise in taxon sampling and fewer variable regions in the currently 

available sequences (Sanmartín and Meseguer, 2016; Hallas et al., 2017). Therefore, 

next-generation sequencing methodologies that access more of the genome are needed to 

resolve phylogenetic relationships within this genus. 

Nine of the 11 I. webberi populations showed nonsignificant genome size 

variations, which may support the genome size constancy hypothesis (Greilhuber et al., 

2005). The genome size constancy hypothesis predicts that GS is conserved within a 

species but varies significantly among congenerics (Greilhuber et al., 2005). Populations 

close to the latitudinal range centre of the species (units 6, 7, and 8) have relatively large 

GS, while the most geographically isolated population (unit 16) has the smallest genome. 

Intraspecific I. webberi GS variation is congruent with previous studies, which show that 

small and isolated populations should have smaller GS because they have no way of 

receiving novel transposable elements proliferating within the genome (Wright and 

Schoen, 1999; Morgan, 2001). Additionally, geographical patterns of intraspecific GS 

variations in I. webberi support the central marginal hypothesis, which predicts that 

genetic diversity may be the highest in the populations of a species near the geographical 

centre of its global distribution and decreases towards the marginal population (Eckert et 
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al., 2008). Geographical patterns in intraspecific genome size variation have been 

reported earlier in other plant species (Bottini et al., 2000; Mráz et al., 2009). Regardless, 

the relationship between marginality and intraspecific variation of genome size in plants 

has not been well studied. A reduction in transposable elements in isolated populations of 

Aegilops speltoides (Hosid et al., 2012) and Veronica (Albach and Greilhuber, 2004) 

have been reported, while populations with high gene flow levels were reported to show 

small genome size variations (Díez et al., 2013). This suggests that gene flow may play 

an important role in intraspecific GS variations. However, studies also show that GS 

variations within a species could be attributed to the nucleotype effect due to variations in 

prevailing environmental conditions across the populations of a species (Šmarda and 

Bureš, 2010) and varying selective pressures (Bilinski et al., 2018). 

This study showed that seed size increases with increasing genome size, 

supporting the predictions of the nucleotype theory. This is congruent with previous 

studies that show a positive correlation between GS and seed size (Krahulcová et al., 

2017). The molecular divergence of seed size was found to be positively correlated with 

genome size diversification (Beaulieu et al., 2007), both of which play a positive and 

significant role in speciation (Puttick et al., 2015; Igea et al., 2017). Moreover, GS 

influences physiological developments that determine seed size in many plant species 

(Beaulieu et al., 2007). Seed size is correlated with the mode of dispersal, seed 

persistence in soil bank, seedling survival, plant growth form and specific leaf area, 

among others (Westoby et al., 1996), and could be used as an indicator of habitat quality 

and environmental stress (Loureiro et al., 2010). Seed size was also shown to affect plant 

fitness, population dynamics, and interactions with seed predators (Gómez, 2004; DeSoto 
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et al., 2016). The possible adaptive values of GS in Ivesia and its association with 

functional traits such as the seed size can elucidate eco-evolutionary dynamics in the 

genus (Vitales et al., 2019). 

We demonstrated in this study that genome size variation in Ivesia and within I. 

webberi is potentially adaptive, given their relatively small GS, and correlation with 

energy availability and seed size. Furthermore, GS variation in Ivesia taxa is structured 

along an elevational gradient which may also be correlated with bioclimatic variables. 

Similar GS trends within Ivesia webberi further strengthens a potential adaptive 

significance of genome size evolution. Moreover, larger GS of the sampled I. webberi 

populations close to the species known range suggest that evolutionary processes such as 

gene flow or natural selection may be influential on genome size variation within the 

species. It is believed that the ancestral Ivesia taxa originated in the Rocky Mountains 

and eastern Great Basin Desert; therefore, smaller GS for the sampled Ivesia taxa near 

these regions may suggest that GS evolution may be potentially associated with 

speciation events in the genus. However, a phylogenetic analysis may help identify 

ancestral taxa and verify a potential relationship between speciation events and GS 

evolution in Ivesia.    
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Table 1. Nuclear genome size, reference ploidy, environmental attributes and the estimated geographical ranges of the 

31 sampled Ivesia taxa across western United States 

Taxa Sectiona Substrate 

typea 

Substrate 

geologya 

Ploidya Species 

range 

(km2)b 

Sample 

size 

2C Genome 

size 

(mean±SD) 

2C Genome 

size range 

Mean seed 

weight (g)c 

Ivesia aperta var. 

aperta 

Unguiculatae Soil Volcanic 2n = 28 2189.508 2 2.47±0.02 2.42-2.51 0.0008/50 

Ivesia aperta var. 

canina 

Unguiculatae Soil Volcanic 2n = 28 62.281 2 2.11±0.03 2.09-2.13 0.0024/50 

Ivesia arizonica 

var. arizonica 

Setosae Outcrop Limestone unknown 92270.580 3 0.97±0.02 0.95-0.99 n/a 

Ivesia arizonica 

var. saxosa 

Setosae Outcrop Volcanic unknown 1812.572 2 1.33±0.02 1.29-1.36 n/a 

Ivesia baileyi var. 

baileyi 

Setosae Outcrop Volcanic 2n = 28 183703.313 2 1.2±0.03 1.17-1.22 0.00038/12 

Ivesia baileyi var. 

beneolens 

Setosae Outcrop Volcanic 2n = 28 150232.450 3 0.78±0.07 0.73-0.86 n/a 

Ivesia callida Setosae Outcrop Volcanic unknown 0.114 3 0.94±0.01 0.93-0.95 n/a 

Ivesia gordonii 

var. alpicola 

Ivesia Outcrop Volcanic 2n = 28 209315.498 2 1.1±0.02 1.09-1.1 0.00071/10 

Ivesia gordonii 

var. ursinorum 

Ivesia Soil Volcanic 2n = 28 236297.467 3 0.94±0.00 0.94 0.00107/30 

Ivesia gordonii 

var. wasatchensis 

Ivesia Soil Limestone 2n = 28 15078.437 3 1.0±0.00 1.0 n/a 

Ivesia jaegeri Setosae Outcrop Limestone unknown 2050.163 3 1.04±0.01 1.04-1.05 n/a 

Ivesia kingii var. 

eremica 

Unguiculatae Soil Alkali unknown 0.001 2 1.33±0.03 1.32-1.34 n/a 

Ivesia kingii var. 

kingii 

Unguiculatae Soil Alkali unknown 236134.174 2 1.4±0.03 1.35-1.45 0.00095/50 

Ivesia 

longibracteata 

Setosae Outcrop Volcanic unknown 0.417 3 0.86±0.03 0.83-0.88 n/a 

Ivesia 

lycopodioides var. 

megalopetala unit 

1 

Ivesia Soil Limestone 2n = 28 3419.988 3 5.31±0.2 5.02-5.73 0.0003/90 

Ivesia 

lycopodioides var. 

Ivesia Soil Limestone 2n = 28  3 5.82±0.3 5.70-5.91 0.0005/50 
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megalopetala unit 

2 

Ivesia 

lycopodioides var. 

scandularis 

Ivesia Soil Volcanic 2n = 28 9312.761 3 3.3±0.05 3.25-3.35 n/a 

 

Ivesia 

multifoliolata 

Comarella Soil Volcanic 2n = 28 5249.121 2 1.15±0.01 1.15 n/a 

Ivesia paniculata Setosae Soil Volcanic unknown 67.169 2 1.04±0.02 1.00-1.08 0.00039/50 

Ivesia pickeringii Unguiculatae Soil Volcanic unknown 553.319 3 1.23±0.04 1.09-1.37 n/a 

Ivesia pityocharis Unguiculatae Soil Volcanic unknown 3.768 3 1.02±0.03 0.99-1.04 0.00046/50 

Ivesia rhypara var. 

rhypara 

Setosae Soil Volcanic 2n = 28 32194.802 3 0.85±0.02 0.86-0.91 0.00078/40 

Ivesia rhypara var. 

shellyi 

Setosae Outcrop Volcanic 2n = 28 38.510 3 0.9±0.01 0.89-0.9 0.00032/20 

Ivesia sabulosa Comarella Soil Limestone unknown 115784.095 4 0.84±0.04 0.83-0.85 n/a 

Ivesia 

santolinoides 

Stellariopsis Soil Volcanic 2n = 28 68465.661 3 0.98±0.01 0.98-0.99 n/a 

Ivesia saxosa Setosae Outcrop Volcanic unknown 154796.221 6 0.9±0.02 0.80-0.92 0.00034/50 

Ivesia sericoleuca Unguiculatae Soil Volcanic 2n = 28 1298.464 2 2.32±0.02 2.31-2.32 0.00123/7 

Ivesia setosa Setosae Outcrop Limestone unknown 106880.547 6 0.99±0.02 0.96-1.01 n/a 

Ivesia shockleyi 

var. shockleyi 

Setosae Outcrop Volcanic unknown 8161139.392 3 1.88±0.07 1.8-1.93 n/a 

Ivesia tweedyi Ivesia Soil Volcanic unknown 25250.732 3 1.0±0.05 0.96-1.05 0.00102/50 

Ivesia utahensis Ivesia Soil Limestone unknown 1022.194 3 1.03±0.05 0.97-1.07 n/a 

Ivesia webberi 

unit 2 

Ivesia Soil Volcanic unknown 3214.223 3 0.85 0.85-0.86 0.00151/50 

Ivesia webberi 

unit 3 

Ivesia Soil Volcanic unknown  3 0.84 0.83-0.85 0.00127/50 

Ivesia webberi 

unit 5 

Ivesia Soil Volcanic unknown  3 0.85 0.85 0.00328/50 

Ivesia webberi 

unit 6 

Ivesia Soil Volcanic unknown  3 0.87 0.85-0.89 0.0023/50 

Ivesia webberi 

unit 7 

Ivesia Soil Volcanic unknown  3 0.88 0.87-0.9 n/a 

Ivesia webberi 

unit 8 

Ivesia Soil Volcanic unknown  3 0.9 0.89-0.9 0.00222/50 

Ivesia webberi 

unit 11  

Ivesia Soil Volcanic unknown  3 0.82 0.78-0.85 0.00145/10 
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Ivesia webberi 

unit 12 

Ivesia Soil Volcanic unknown  3 0.83 0.81-0.84 0.00218/50 

Ivesia webberi 

unit 13 

Ivesia Soil Volcanic unknown  3 0.84 0.82-0.85 0.00177/50 

Ivesia webberi 

unit 15 

Ivesia Soil Volcanic unknown  3 0.79 0.77-0.81 n/a 

Ivesia webberi 

unit 16 

Ivesia Soil Volcanic unknown  3 0.77 0.76-0.78 0.00133/30 

Potentilla gracilis 

var. fastigiata 

- Soil Volcanic 2n = 52-

109 

 3 2.71 2.69-2.74 n/a 

Potentilla sp.d - Soil Volcanic unknown  2 1.25±0.01 1.24-1.26 n/a 

Horkelia fusca 

ssp. parviflora unit 

1 

 Soil Volcanic 2n = 28  2 1.26±0.02 1.26-1.26  

Horkelia fusca 

ssp. parviflora unit 

2 

- Soil Volcanic 2n = 28  3 1.12±0.06 1.06-1.16 n/a 

aInformation is based on the description of Ivesia in the Flora of North America (Ertter and Reveal 2014). 

bRanges of the sampled taxa was estimated from the convex hull boundary of their known occurrences 

cThe first value represents the mean seed weight, and the second value represents the total number of seeds weighed. n/a means seeds 

were not collected 

dThis taxon is suspected to be either P. morefieldii or P. pseudosericea 
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FIGURE LEGENDS 

Figure 1. Locations of representative samples of Ivesia, Potentilla, and Horkelia taxa 

collected for this study. 

Figure 2. Locations of representative samples of 11 Ivesia webberi populations collected 

for this study. 

Figure 3. Plots of the relationship between genome size of Ivesia taxa and the selected 

environmental predictors, including (A) substrate type, (B) substrate geology, (C) 

average seed size for the sampled Ivesia taxa, (D) the elevation of each collection, (E) 

mean actual evapotranspiration between 1981 and 2015, (F) mean potential 

evapotranspiration between 1981 and 2015, and (G) mean climatic water deficit between 

1981 and 2015. In Figures 3c-g, the blue regions represent confidence intervals around 

the line of best fit 

Figure 4. Genome size of plant samples collected from 11 Ivesia webberi populations. 

Figure 5. Relationship between genome size of 11 Ivesia webberi populations and the 

selected environmental predictors, including (A) elevation of each collection, (B) mean 

actual evapotranspiration between 1981 and 2015, (C) mean potential evapotranspiration 

between 1981 and 2015, (D) mean climatic water deficit between 1981 and 2015, and (E) 

mean seed size from each population.
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SUPPLEMENTARY INFORMATION 

Supplemental Table 1. Description of collection sites for the 31 Ivesia taxa across western United States 

Taxa Code Location Elevation (m) County State Herbarium repository 

Ivesia aperta var. 

aperta 

IVAPA 

Near Feather River, Sierra valley 

1491.9 Sierra California University of Nevada 

Herbarium (RENO:V): 

103929 

Ivesia aperta var. 

canina 

IVAPC 

Dog valley meadows 

1758.1 Sierra California University of Nevada 

Herbarium (RENO:V): 

103994 

Ivesia arizonica var. 

arizonica 

IVARA Rainbow canyon, tertiary canyon, 

just north of Chokecherry canyon, 

growing on protected west facing 

rock wall 

1329 Lincoln Nevada University of Nevada 

Herbarium (RENO:V): 

100365 

Ivesia arizonica var. 

saxosa 

IVARS 

Pahute Mesa, South Silent Canyon, 

near Pahute Mesa Road 

1958 Nye Nevada University of Nevada 

Herbarium (RENO:V): 

59321 

Ivesia baileyi var. 

baileyi 

IVBABA Needle Rock, Virginia Range, 

along Pyramid Way, near Pauite 

tribe reservation 

1463 Washoe Nevada University of Nevada 

Herbarium (RENO:V): 

35739 

Ivesia baileyi var. 

beneolens 

IVBABE Santa Rosa Range, base of vertical 

cliffs just east of Hinkey Summit, 

20 km (12 mi) air distance north 

(358°) of Paradise Valley (town) 

1719.3 Humboldt Nevada University of Nevada 

Herbarium (RENO:V): 

37473 

Ivesia callida IVCA 

Taquitz Peak, San Jacinto 

Mountains 

2439 Riverside California Rancho Santa Ana Botanic 

Garden Herbarium 

(RSABG || POM): 005612 

Ivesia gordonii var. 

alpicola 

IVGOA 

Rock clefts, near Winnemucca 

Lake and Round Top Mountain 

2787.8 Alpine California University of Nevada 

Herbarium (RENO:V): 

103931 

Ivesia gordonii var. 

ursinorum 

IVGOU 

The Mahoganies, hills east-

southeast of Entight Hills 

2019.9 Elko Nevada University of Nevada 

Herbarium (RENO:V): 

38394 

Ivesia gordonii var. 

wasatchensis 

IVGOW 

Big Cottonwood Canyon, Mt. 

Baldy, near Lupine Trail 

2848.5 Salt Lake Utah University of Nevada 

Herbarium (RENO:V): 

103900 
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Ivesia jaegeri IVJA Limestone cliffs behind Spring 

Mountain visitor gateway, Mount 

Charleston 

2045 Clark Nevada University of Nevada 

Herbarium (RENO:V): 

15908 

Ivesia kingii var. 

eremica 

IVKIE 

Ash Meadows National wildlife 

refuge 

685 Nye Nevada University of Nevada 

Herbarium (RENO:V): 

43885 

Ivesia kingii var. 

kingii 

IVKIK Alkaline salt flat near Fish Lake 

Valley hot well, Silver Peak range, 

near Dyer NV 

1442 Esmeralda Nevada University of Nevada, Las 

Vegas; Wesley E. Niles 

Herbarium (UNLV): 33393 

Ivesia 

longibracteata 

IVLO 

On the rock clefts of Castle crags, 

Shasta-Trinity National Forest 

1214.6 Shasta California University of Nevada 

Herbarium (RENO:V): 

41907 

Ivesia lycopodioides 

var. megalopetala 

IVLYM 

Tuolumne Meadows, Yosemite 

National Park 

2592.1 Tuolumne California University of Nevada 

Herbarium (RENO:V): 

103946 

Ivesia lycopodioides 

var. megalopetala 

IVLYM In the meadows along trail to 

Gardisky Lake, Inyo National 

Forest, off Saddlebag Lake Road, 

off CA 120 highway towards 

Yosemite National Park 

3179.6 Mono California University of California, 

Riverside Plant 

Herbarium(UCR): UCR-

255565 (registered as var. 

lycopodioides) 

Ivesia lycopodioides 

var. scandularis 

IVLYS Along the road to University of 

California Barcroft field station, 

White Mountains, Inyo National 

Forest 

3696.8 Mono California University of Nevada 

Herbarium (RENO:V): 

59318 

Ivesia multifoliolata IVMU 

Walnut Canyon, Sandy's canyon, 

Coconino 

2018 Coconino Arizona Deaver Herbarium 

(Northern Arizona 

University) (ASC): 

ASC00118859 

Ivesia paniculata IVPA 

Ash creek valley, Modoc Plateau 

1547.2 Modoc California University of Nevada 

Herbarium (RENO:V): 

103933 

Ivesia pickeringii IVPI Meadow 0.3 miles after Eagle 

creek site, near Trinity river, 

Shasta Mountain area 

849.2 Trinity California University of Nevada 

Herbarium (RENO:V): 

40953 

Ivesia pityocharis IVPIT Pine Nut Mts., 1.2 air miles SE of 

Slaters Mine on the NE side of Mt. 

Siegel 

2282 Douglas Nevada University of Nevada 

Herbarium (RENO:V): 

9588 
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Ivesia rhypara var. 

rhypara 

IVRHR Sheldon National Wildlife Refuge: 

East side of Fish creek table, 0.3 

road miles NW of Fish Creek 

campground 

1820.6 Washoe Nevada University of Nevada 

Herbarium (RENO:V): 

11230 

Ivesia rhypara var. 

shellyi 

IVRHS First canyon south of Venator 

Canyon, ca. 7.3 air miles NNE of 

the town of Alkali Lake 

1516.9 Lake Oregon University of Nevada 

Herbarium (RENO:V): 

103901 

Ivesia sabulosa IVSAB Egan range, ~0.6 miles by air south 

of Highway 50 intersection, just 

east of Ruth road 

2073 White Pine Nevada New York Botanical 

Garden Steere Herbarium 

(NY): 834037 

Ivesia santolinoides IVSAN 

Near Hope Valley, CA 88 roadside 

2171.2 Alpine California University of Nevada 

Herbarium (RENO:V): 

103997 

Ivesia saxosa IVSAX Along switchbacks of Horseshoe 

Meadow road, 11.2 miles south-

southwest of Jct. with Whitney 

Portal road, Inyo National Forest, 

off Lone Pine 

2261.4 Inyo California University of Nevada 

Herbarium (RENO:V): 

57877 

Ivesia sericoleuca IVSER California road A23, opposite 

Calpine junction; California A49 

roadside between Sierraville and 

Sattley 

1502.9 Sierra California University of Nevada 

Herbarium (RENO:V): 

103930 

Ivesia setosa IVSET Egan range, ~0.5 miles by air south 

of Highway 50 intersection, just 

east of Ruth road 

2067 White Pine Nevada New York Botanical 

Garden Steere Herbarium 

(NY): 834072 

Ivesia shockleyi var. 

shockleyi 

IVSHS Jackson Mountains, 2.1 road miles 

northeast of the Jackson and Trout 

Creek road junction on the road to 

Iron King Mine 

2055 Humboldt Nevada University of Nevada 

Herbarium (RENO:V): 

44622 

Ivesia tweedyi IVTW About 0.5 air miles south of Moon 

Peak, along the divide between 

Horseshoe creek and Moon creek, 

side of the divide 

1653.9 Shoshone Idaho University of Nevada 

Herbarium (RENO:V): 

103903 

Ivesia utahensis IVUT 

Saddle below and west of 

Sugarloaf Mountain, Alta ski resort 

3201.2 Salt Lake Utah Brigham Young 

University, S. L. Welsh 

Herbarium (BRY:V): 

BRYV0114721 
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Ivesia webberi IVWE 

population 2: near Doyle 

1436 Lassen California Collection of voucher 

specimen not permitted 

Ivesia webberi IVWE population 3: East of Hallelujah 

Junction 

1561.7 Lassen California Collection of voucher 

specimen not permitted 

Ivesia webberi IVWE 

population 5: Dog Valley meadows 

1834.7 Sierra California Collection of voucher 

specimen not permitted 

Ivesia webberi IVWE population 6: White Lake 

Overlook 

1715.2 Sierra California Collection of voucher 

specimen not permitted 

Ivesia webberi IVWE 

population 7: Mules Ear flat 

1680 Sierra California Collection of voucher 

specimen not permitted 

Ivesia webberi IVWE 

population 8: Ivesia flat 

1775.6 Washoe Nevada Collection of voucher 

specimen not permitted 

Ivesia webberi IVWE 

population 11: Hungry valley 

1599 Washoe Nevada Collection of voucher 

specimen not permitted 

Ivesia webberi IVWE 

population 12: Black Springs 

1730.2 Washoe Nevada Collection of voucher 

specimen not permitted 

Ivesia webberi IVWE 

population 13: Raleigh Heights 

1602.6 Washoe Nevada Collection of voucher 

specimen not permitted 

Ivesia webberi IVWE 

population 15: Pines Powerlines 

1847.6 Washoe Nevada Collection of voucher 

specimen not permitted 

Ivesia webberi IVWE 

population 16: Dante Mine Road 

1894.8 Douglas Nevada Collection of voucher 

specimen not permitted 

Potentilla gracilis 

var. fastigiata 

POGRF 

Dog valley meadows 

1758.1 Sierra California University of Nevada 

Herbarium (RENO:V): 

103995 

Potentilla sp. [either 

P. morefieldii or P. 

pseudosericea] 

POSP White Mountains, White Mountain 

road, 6.8 km (4.2 mi) north of 

Patriarch Grove turnoff, east side 

of road, 26.5 km (16.5 mi) air 

distance northeast (35°) of 

downtown Bishop. 

3587 Mono California University of Nevada 

Herbarium (RENO:V): 

61149 

Horkelia fusca ssp. 

parviflora 

HOFUP Sawmill walk-in campground, off 

Tioga pass road to Yosemite 

National Park, near Lee Vining CA 

2930.5 Mono California University of Nevada 

Herbarium (RENO:V): 

103902 

Horkelia fusca ssp. 

parviflora 

HOFUP 

Spooner Lake: SW corner, dry 

meadow edges 

2127.7 Douglas Nevada University of Nevada 

Herbarium (RENO:V): 

103904 
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Supplemental Table 2. List of sequences for Ivesia, Horkelia and Potentilla taxa used for the phylogenetic tree reconstruction 

Taxa Taxa unique 

ID 

ETS sequence 

NCBI accession 

ITS sequence 

NCBI accession 

trnL sequence 

NCBI accession 

matK sequence 

NCBI accession 

Reference 

Horkelia fusca ssp. 

parviflora 

CM322771 KT985777.1 KT985648.1 KT991758.1  Koski & Ashman 

2016 

Ivesia aperta var. aperta UC1559690 KT985781.1 KT985652.1   Koski & Ashman 

2016 

Ivesia argyrocoma GB260   FR873003.1  Töpel et al. 2012 

Ivesia arizonica var. 

arizonica 

RSA508466 KT985782.1 KT985653.1 KT991759.1  Koski & Ashman 

2016 

Ivesia arizonica var. 

saxosa 

UC1559755 KT985783.1 KT985654.1 KT991760.1  Koski & Ashman 

2016 

Ivesia baileyi var. baileyi GB293   FR872947.1  Töpel et al. 2012 

Ivesia baileyi var. 

beneolens 

RSA508468 KT985784.1 KT985655.1 KT991761.1  Koski & Ashman 

2016 

Ivesia cryptocaulis JEPS104   FR872968.1  Töpel et al. 2012 

Ivesia gordonii CM473284 KT985785.1 KT985656.1   Koski & Ashman 

2016 

Ivesia jaegeri GB269   FR872983.1  Töpel et al. 2012 

Ivesia kingii var. kingii GB4782 FN421377.1 FN430787.1 FN561735.1  Töpel et al. 2011 

Ivesia longibracteata JEPS101   FR872937.1  Töpel et al. 2012 

Ivesia lycopodioides var. 

megalopetala 

RSA131949 KT985786.1 KT985657.1   Koski & Ashman 

2016 

Ivesia lycopodioides var. 

scandularis 

RSA663921 KT985787.1 KT985658.1 KT991762.1  Koski & Ashman 

2016 

Ivesia paniculata UC-Ptl6031   GQ384741.1  Dobes & Paule 

2010 

Ivesia pygmaea GB341   FR872963.1 FR851335.1 Töpel et al. 2012 

Ivesia pityocharis UC1728514 KT985788.1 KT985659.1 KT991763.1  Koski & Ashman 

2016 

Ivesia rhypara var. 

rhypara 

GB372   FR872953.1 FR851332.1 Töpel et al. 2012 

Ivesia sabulosa GB366   FR872956.1 FR851334.1 Töpel et al. 2012 

Ivesia santolinoides CM265071 KT985789.1 KT985660.1   Koski & Ashman 

2016 

Ivesia saxosa UC1559752 KT985790.1 KT985661.1  FR851336.1 Koski & Ashman 

2016 
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Ivesia sericoleuca GB291   FR872989.1  Töpel et al. 2012 

Ivesia setosa CM480028 KT985791.1 KT985662.1 KT991764.1  Koski & Ashman 

2016 

Ivesia shockleyi var. 

shockleyi 

GB228   FR872998.1  Töpel et al. 2012 

Ivesia tweedyi JEPS19303   FR872944.1  Töpel et al. 2012 

Ivesia utahensis CM361607 KT985792.1 KT985663.1   Koski & Ashman 

2016 

Ivesia unguiculata JEPS19215   FR872952.1 FR851331.1 Töpel et al. 2012 

Ivesia webberi GB290   FR872988.1  Töpel et al. 2012 

Potentilla chinensis Feng110 KP875266.1 KP875298.1 KP875319.1  Feng et al. 2017 
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Supplemental Figure 1. Supplemental Figure 1. Ivesia and Horkelia fusca ssp. 

parviflora maximum likelihood phylogenetic estimate from available nuclear (ETS and 

ITS) and chloroplast (matK and trnL) molecular markers. Non-parametric bootstraps 

greater than 50 were represented on the corresponding branches  
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ABSTRACT 

An estimated one-third of the globally threatened plant species have recalcitrant 

storage behavior, for which seed banking is relatively ineffective. Therefore, to 

understand seed storage behavior in Ivesia webberi, a threatened Great Basin Desert forb 

in the United States, we examined the effect of seed size and storage time on seed 

viability, evaluated inter-annual and inter-population variation in seed viability, and 

investigated the predictive accuracy of non-destructive seed viability testing methods 

(seed x-ray and multispectral imaging). The results showed a significant reduction in seed 

viability from three months to two years, suggesting that I. webberi seeds have 

recalcitrant storage behavior. Seed viability exhibited significant inter-annual, but not 

inter-population, variation across 11 I. webberi populations; seed size has no significant 

effect on seed viability. The x-ray and multispectral imaging methods had high 

classification accuracy (>80%) and could replace the widely used tetrazolium test, which 

destroys the seed germplasm, resulting in the cumulative reduction of stored seeds from 

periodic monitoring. This study demonstrates the utility of non-destructive methods for 

long-term seed viability monitoring, and shows that seed viability is not affected by 

population density which varies widely among the sampled I. webberi populations. 

 

Keywords: Ivesia webberi, seed banking, seed viability, multispectral imaging, seed x-

ray imagery  
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INTRODUCTION 

Target 8 of the United Nations’ Convention on Biological Diversity (CBD) 

Global strategy for plant conservation (GSPC) recommends ex situ conservation of at 

least 75% of plant species categorized as threatened nationally or globally, by 2020 (CBD 

2019), as an insurance against extirpation and extinction of plant species in their natural 

habitats due to anthropogenic environmental changes (Meyer et al. 2014). Collecting and 

banking seeds is the oldest and most common ex situ conservation strategy for species 

management and global food security (Díez et al. 2018; Potter et al. 2017; Liu et al. 

2018). There are thousands of local, national and international seed banks (Food and 

Agriculture Organization [FAO] 2010; Hay and Probert 2013). 

However, the success of seed banking conservation programs depends upon the 

stored seeds staying viable over the long term (Gairola et al. 2019). The majority of crop 

species can tolerate seed desiccation without losing their viability (Roberts 1973), and as 

a result, these seeds can be stored for longer periods (Tweddle et al. 2003; Hay and 

Probert 2013), in contrast to seeds with recalcitrant behavior that lose their viability with 

time and desiccation. However, most of the threatened plants, the focus of the GSPC 

target 8, are wild plant species for which knowledge of their seed storage behavior is 

limited (Probert et al. 2009; Hay and Probert 2013; Wyse and Dickie 2017). An estimated 

36% of threatened species on the IUCN Red List may have recalcitrant seed behavior, in 

which case seed banking will not be effective for their conservation (Wyse et al. 2018; 

Wyse and Dickie 2018). Therefore, an understanding of the seed storage behavior of 

threatened species is crucial for effective seed banking (Meyer et al. 2014). 
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Long-term study and monitoring of seed storage behavior requires repeated use of 

seed viability tests, but these are most commonly destructive methods, especially 

seedling emergence and tetrazolium tests. Using such methods that reduce the number of 

stored seeds over time is clearly prohibitive for rare species of conservation concern. As a 

result, there is an increased interest in and use of non-destructive methods for assessing 

seed viability in both seed research and industry (Baek et al. 2019). Non-destructive seed 

testing methods, such as the seed x-ray and multispectral imaging, reveal seed properties 

that are used as proxies for seed viability. For example, seed x-rays can be used to 

visualize seed development, morphology, anatomy and potential pest and pathogenic 

damage from which inferences are drawn about seed viability and behavior (Gagliardi 

and Marcos-Filho 2011; Costa et al. 2014). More recently, multispectral imaging has 

been used to assess seed health, moisture level (Baek et al. 2019), seed purity (Vrešak et 

al. 2016), fruit maturity, and detect pest damage (Boelt et al. 2018). The spectral regions 

covered in the multispectral imaging included the visible (380-780 nm) and near-infrared 

(780-2500 nm) regions (Huang et al. 2015; Boelt et al. 2018), producing a huge volume 

of data for several variables describing the testa chemical and spectral properties. 

However, large portions of the electromagnetic spectrum are likely to be redundant with 

respect to seed viability indicators, resulting in needlessly large computer storage 

demands and processing times (Baek et al. 2019). It would therefore be useful to employ 

variable selection methods to identify those spectral variables that contain the most 

important information for improving performance of seed viability detection models 

(Chen et al. 2014). 
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Ivesia webberi A. Gray is a federally threatened perennial forb, with a narrow 

distribution along the eastern foothills of the northern Sierra Nevada and northwestern 

margin of the Great Basin Desert (Figure 1). The species regenerates annually from a 

dormant root caudex in late winter or early spring but seed recruitment has also been 

observed (Witham 2000; Bergstrom 2009). 

This study investigates whether (a) viability of I. webberi seeds remains stable or 

decreases with storage time, (b) there is significant inter-annual and inter-population 

variability in seed viability across multiple populations of varying abundance, (c) seed 

size is correlated with seed viability, and (d) multispectral imaging and x-ray imagery, 

both non-destructive methods, accurately predict viability of I. webberi seeds. 

Knowledge of seed behavior in I. webberi is unknown and therefore results of this study 

can be used to support management and conservation of this rare species.  

 

MATERIALS AND METHODS 

Experiment 1: The effect of storage time on the viability of I. webberi seeds 

Seed collection and processing 

Seeds were collected from the United States Fish and Wildlife service (USFWS) 

designated unit 5 I. webberi population (Figure 1), in August of 2017, 2018 and 2019 

when matured seeds were ready for abscission. The collections were processed to remove 

empty seeds, and the remaining healthy seeds were stored under cool, dry conditions, in 

coin envelopes. 
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Seed viability test 

A tetrazolium test (hereafter, TZ test) was used to evaluate seed viability 

following protocols described in Nurse and DiTommaso (2005), Gosling et al. (2009) and 

França-Neto and Krzyzanowski (2019), and was conducted at the Idaho State seed 

laboratory, Boise Idaho.  

Data collection and analysis  

We fitted a logistic regression model to test the effect of storage duration on 

viability of I. webberi seeds. Viability of individual seeds collected between 2017 and 

2019 (0 = non-viable, and 1 = viable) was modeled as a function of storage time, treated 

as a categorical variable with three levels: 0, 1 and 2 years in storage. A Tukey’s HSD 

test was used to perform post-hoc pairwise comparisons (Abdi and Williams 2010). Data 

analysis for this and all subsequent analyses were conducted using R (R Core Team 

2019). 

Experiment 2: Population-level difference in the viability of I. webberi seeds 

Seed collection, processing, and viability test 

Seeds were collected from 11 I. webberi populations of varying population sizes 

and geographical distances to each other (Figure 1, Table 1), in August of 2017 and 2018. 

Depending on the population size, between 50 and 100 seeds were collected from each 

population, cleaned and sorted as described in experiment 1. The remaining healthy seeds 

were stored under cool, dry conditions, for eight months in coin envelopes, followed by 

seed viability testing to investigate inter-annual variability in seed viability across the 11 
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populations. Seed viability was assessed using a TZ test following the protocol described 

in experiment 1. 

Data collection and analysis  

Seed sample size for the 2017 collection ranged from 25 to 33, and from the 2018 

collection, ranged from 26 to 45 seeds, due to the limitation on the numbers of seeds that 

could be collected from a threatened plant species, and large number of empty seeds 

(Table 1). We fitted separate logistic regression models and Tukey’s HSD post-hoc 

multiple comparisons for seeds collected in 2017 and 2018 to determine if seed viability 

was different among the 11 sampled populations. We also fitted a generalized linear 

mixed model for both years combined to investigate inter-annual variability in seed 

viability, using years and populations as fixed and random effects respectively. 

Experiment 3: Is there a relationship between seed size and seed viability? 

Seed collection and processing  

A total of 441 healthy seeds collected in 2018, and used in part for experiment 2, 

were also used for this experiment (see Table 1). 

Seed size estimation 

Seed size was estimated as the product of seed length and width. Seed length and 

width were estimated from vertical and horizontal dimensions respectively for images of 

each seed. The dimensions of each seed were measured using the videometerLab 3 

instrument (Videometer A/S, Hørsholm, Denmark) at Skyway Analytics LLC, 
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Longmont, Colorado [https://getskywayanalytics.com/], as part of the multispectral 

imaging. 

Data collection and analysis 

To investigate a statistical relationship between seed size and viability, we 

conducted a logistic regression with 70% of the data and used the remaining 30% for 

model evaluation. 

Experiment 4: Can the non-destructive x-ray and multispectral imaging data 

accurately discriminate between viable and non-viable seeds? 

Seed collection and processing 

Seed lots used for experiment 3 were also used for this experiment. In total, we 

used 441 seeds for this experiment (Table 1).  

Non-destructive seed imaging 

The x-ray imaging was conducted at the United States Forestry Service (USFS) 

seed extractory, Bend, Oregon, following methods described in Gomes et al. (2016). The 

x-ray images were captured using a digital Kubtec medical imaging Xpert 40 specimen 

radiography system, for each individual seed, exposed to a radiation intensity of 26 kV 

for 1.2 seconds. 

Multispectral imaging was conducted at Skyway Analytics LLC, Longmont, 

Colorado [https://getskywayanalytics.com/]. Digital images were captured with a 

VideometerLab 3 instrument (Videometer A/S, Hørsholm, Denmark) for each seed in a 

petri dish (90 mm) with dish cover removed to avoid reflection during image capturing 
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(Halkjaer Olesen et al. 2011; Su and Sun 2018). The multispectral images of 1280 x 960 

pixels were captured at 26 different spectral bands from ultraviolet to near-infrared 

wavelengths ranging from 375 nm for multicolorMean0 to 970 nm for 

multicolorMean18. In addition, standard features related to seed size, shape, orientation 

and color were also collected. In total, 42 variables were obtained from the multispectral 

imaging describing the seed dimensions and testa reflectance properties. 

Seed viability test 

We used the TZ test results for seed viability to represent true seed viability in our 

statistical analyses. TZ test is recognized by the Association of Official Seed Analysts 

and the International Seed Testing Association as a high precision and accuracy test of 

seed vigor (França-Neto and Krzyzanowski 2019). 

Data collection and analysis 

The seed x-ray images were scored based on whether the seeds were “filled” or 

not. Filled seeds were assumed to have matured embryos, hence viable and scored 1, 

while unfilled seeds were considered non-viable, and scored 0. The 42 variables from the 

multispectral imaging and x-ray imagery scores were used as predictors, while seed 

viability from the TZ test was used as the binary response variable. The 43 variables were 

reduced to 21 following a feature selection run that uses a wrapper algorithm designed for 

Random Forest, implemented in the Boruta R package (Kursa and Rudnicki 2010). The 

21 predictor variables were further reduced to three variables using the backward 

stepwise recursive feature elimination algorithm in the caret R package (Kuhn 2019). 

These three uncorrelated selected variables – seed x-ray imagery, seed width and seed 
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spectral reflectance at 690 nm (multicolor mean 13) - were used to build a final predictive 

model of seed viability. 

We fitted a random forest classification model (ntree = 500, mtry = 2) to the three 

selected variables using the party package (Hothorn et al. 2006) with supporting utility 

functions written by KTS. Variable importance was assessed as the loss of predictive 

accuracy (Gini statistic) when random permutations of each predictor variable were 

performed for randomly drawn samples (Cutler et al. 2007). Partial dependence plots 

were used to illustrate the relationship between each of the three predictors and seed 

viability (Friedman 2001). We used a 10-fold cross validation to assess overall predictive 

performance (Cutler et al. 2007), using the area under the receiver operating 

characteristic curve (AUC; ROCR package in R; Sing et al. 2005) as the primary 

performance metric (Fielding and Bell 1997). 

 

RESULTS 

The effect of storage time on the viability of I. webberi seeds 

The viability of I. webberi seeds decreased with storage time. Seeds collected and 

stored for three months had 86% viability, while seeds stored for one and two years had 

53% and 34% viability, respectively. A post-hoc pairwise test showed significant 

pairwise differences in seed viability between samples stored for three months and those 

stored for one and two years (z = -3.33, p < 0.01, z = -4.91, p < 0.01). 
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Inter-annual and population-level differences in the viability of I. webberi seeds 

The results demonstrate significant inter-annual variability (p < 0.01) in the 

viability of I. webberi seeds between the two years. Viability was lower in seeds collected 

in 2017 than those collected in 2018. For example, only three populations had ≥50% seed 

viability in 2017 collections, in contrast to nine populations in 2018 (Table 1). In most of 

the populations, seed viability was inconsistent from 2017 to 2018 (Table 1). 

Seed viability varied across the 11 sampled populations for both 2017 and 2018 

collections, but this variation was significantly different for only a few of the populations. 

For the 2017 collections, the Tukey HSD post-hoc tests resulted in only three significant 

pairwise differences between units 3 and 11, 3 and 14, and 5 and 14 (adjusted p < 0.005). 

For the 2018 collections, post-hoc tests support a significant pairwise difference only 

between units 7 and 8 (adjusted p < 0.005). 

Is there a relationship between seed size and seed viability? 

 A large number of the viable I. webberi seeds were relatively small (Figure 2, 

Supplemental Table 1), but the logistic regression model showed that seed size had no 

significant effect on the viability of the seeds (z = -1.57, p > 0.12). 

Could the seed testa spectral properties and x-ray imagery reliably predict viability 

of I. webberi seeds? 

Of the 441 individual seeds used for the TZ test, 260 were categorized as viable, 

while the remaining 181 were non-viable. The combination of x-ray imagery, seed width, 

and spectral properties reliably predicted seed viability (AUC > 0.8). Simple t-tests for 
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viable and nonviable seeds conducted between mean values for seed x-ray, seed area and 

MCM 13 were significantly different at p < 0.01 (Supplemental Table 1). The Random 

Forest model produced high predictive performance (accuracy: 0.8163, specificity: 

0.9308, sensitivity: 0.6519, kappa: 0.6056); seed x-ray imagery had the highest variable 

importance, followed by seed width and MCM 13, with 16% and 13% of the predictive 

power of the x-ray imagery respectively. Univariate partial dependence plots showed that 

the probability of I. webberi seed viability increases with decreasing seed testa spectral 

reflectance at 690 nm (Figure 3a), filled seeds in the x-ray imagery (Figure 3b) and 

smaller seed width (Figure 3c). The AUC values for the training and cross-validated data 

were 0.91 and 0.81 respectively. 

 

DISCUSSION 

Our data showed that viability of I. webberi seeds is reduced as storage time 

increases. This suggests that I. webberi seeds are non-dormant at abscission, and that this 

species has a potentially recalcitrant storage behavior, which is common in many 

perennial plant species (Baldos et al. 2014; Duncan et al. 2019), including Great Basin 

Desert perennial species (Allen and Nowak 2008). Furthermore, seeds that have 

recalcitrant storage behavior are likely to form a transient seed bank in situ (Guo et al. 

1998; Tweddle et al. 2003; Tonetti et al. 2015), an ecological feature that has been 

observed for I. webberi. In this study, viability loss could be attributed to seed aging from 

light exposure (Ellis et al. 2008; Schwember and Bradford 2011), which mimics what 

could be expected in natural habitats. However, further studies are needed to investigate 
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the tolerance of I. webberi seeds to desiccation which are required for long-term storage. 

Furthermore, long-term seed viability monitoring under low temperature storage is 

needed to reliably assess I. webberi seed storage behavior. 

This study showed significant temporal variability in the viability of I. webberi 

seeds, which suggest the impacts of climatic and environmental conditions and genetic 

factors not accounted for in this study on seed viability. This agrees with previous studies 

that have reported significant interannual variability in seed viability for many species 

across different ecosystems, which was attributed to differing reproduction strategy, 

pollinator abundance, climatic factors (Morgan 2001; Giménez-Benavides et al. 2005; 

Stuble et al. 2017; Daskalakou et al. 2017; Barga et al. 2017). 

Despite the wide-ranging differences in population size, seed viability was not 

significantly different across the sampled I. webberi populations. Therefore, seed 

viability does not appear to be negatively affected by small population size in I. webberi. 

The EHJ population with the lowest density consistently had higher seed viability in the 

two years of sampling. This is contrary to previous studies that have reported 

significantly higher seed viability for larger population sizes (e.g., Morgan 2001), but 

studies also show that environmental conditions can impact seed viability regardless of 

population size (Morgan 2001). Moreover, some studies have shown that small 

populations of species that exhibit a mixed breeding strategy could still produce a high 

number of viable seeds (Mayer et al. 1996; Baldwin and Schoen 2019) by delaying 

selfing till end of the flowering season when chances of cross-pollination have become 

reduced (Kalisz and Vogler 2003; Hildesheim et al. 2019). Therefore, such species could 
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produce seeds from different breeding strategies possibly with varying recruitment 

potentials. Therefore, it may be necessary to investigate the viability of seeds produced 

from possible xenogamous, geitonogamous and autogamous pollination. 

This study also showed that non-destructive seed viability tests can replace the 

more widely used tests that result in the loss of seed viability, an important finding 

especially for rare and endangered plant species. The seed x-ray imaging, which 

distinguishes between filled and empty seeds, contributed the most to the random forest 

model, despite previously reported limitations of its use for seeds with small size or 

round shape (Bruggink and van Duijn 2017). This suggests that filled, well-developed 

and undamaged I. webberi seeds could be used as a proxy for viability and consequently, 

higher germination potential (Costa et al. 2014). Many studies have also reported the 

accuracy of seed x-ray images for predicting seed viability (e.g., Costa et al. 2014; 

Alencar et al. 2016; Gomes et al. 2016; Kim et al. 2017). Riebkes et al. (2015) found no 

significant accuracy difference in estimating seed viability from seedling emergence, TZ 

test, and seed x-ray images for three studied species. Moreover, exposure to radiation 

from the seed x-ray test was reported to have minimal effect on seed health and 

germination (Bino et al. 1993; Young et al. 2007). 

Of the 42 variables obtained from the multispectral imaging, MCM 13 was the 

only selected spectral variable from the variable selection runs. Viable seeds had 

significantly lower MCM 13 spectral values than the non-viable seeds (Supplemental 

Table 1, Figure 3a), suggesting the usefulness of this spectral feature for classification 

and separation of viable from non-viable seeds. At the 690 nm wavelength for MCM 13, 
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non-viable seeds have stronger fluorescent intensity which is associated with higher 

chlorophyll a content (Cerovic et al. 1999; Li et al. 2019) and oxidation, both of which 

have been linked to seed germination biochemical processes (El-Maarouf-Bouteau et al. 

2013), reduced tolerance to abiotic stress, and reduced germination potential (Dell’Aquila 

2009; Smolikova et al. 2011; Boelt et al. 2018; Li et al. 2019). 

Non-destructive seed x-ray imaging and multispectral imaging at 690 nm 

wavelength compare well with the destructive seedling emergence and TZ tests, and 

therefore justify their use for seed vigor testing, which can reduce the cumulative long-

term seed loss for threatened plant species that produce limited numbers of healthy seeds. 

Though not documented, we observed that the majority of I. webberi seed collections in 

the two years across the sampled populations were empty seeds, which underscores the 

need for long-term preservation of the few, viable seeds. Furthermore, the recalcitrant 

seed storage behavior highlights the challenges of seed banking for I. webberi, and 

recommends more focus on in situ management for this species. However, given the 

increase in disturbance and invasion by alien weeds across the Great Basin, seed banking 

has become an inevitable conservation strategy. This study showed little inter-population 

variability in seed viability. Therefore, collections for seed banking could be made from 

few selected populations with consistently higher viability, as guided by the population 

genetic structure of this species, to capture genetic diversity in the stored viable seeds. 

However, further studies are recommended to estimate the viability of seeds produced 

from different breeding strategies, and to evaluate storage behavior under long-term seed 

banking.  
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Table 1. Location, properties and tetrazolium mean seed viability of the seed collections from 11 Ivesia webberi 

population sites in the western Great Basin Desert, United States 

Unita Site location County 

and State 

Site 

area 

(m2)b 

Elevation 

(m)c 

Abundance 

estimated 

Sample 

size 

(2017) 

Mean ± SE 

viability 

(2017) 

Sample 

size 

(2018) 

Mean ± SE 

viability 

(2018) 

2 Near Constantia Lassen CA 7,700 1435.97 100-999 31 0.20 ± 0.07 40 0.00 ± 0.00 

3 East of Hallelujah 

Junction 

Lassen CA 1,400 1561.68 115-130 31 0.68 ± 0.09 39 0.62 ± 0.08 

5 Dog Valley 

Meadows 

Sierra CA 289,700 1834.70 100,000 25 0.64 ± 0.10 45 0.53 ± 0.08 

6 White Lake 

Overlook 

Sierra CA 54,900 1715.15 10,000 30 0.47 ± 0.09 45 0.64 ± 0.07 

7 Mules Ear flat Sierra CA 1,400 1680.01 <100 27 0.33 ± 0.09 35 0.83 ± 0.06 
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8 Ivesia flat Washoe 

NV 

3,000 1775.63 100,000 27 0.44 ± 0.10 26 0.46 ± 0.10 

11 Hungry Valley Washoe 

NV 

600 1599.01 2,120 33 0.15 ± 0.06 38 0.63 ± 0.08 

12 Black Springs Washoe 

NV 

25,500 1730.17 >500-1000 31 0.52 ± 0.09 45 0.69 ± 0.07 

13 Raleigh Heights Washoe 

NV 

38,600 1602.60 <100,000-

4,000,000 

30 0.23 ± 0.08 44 0.66 ± 0.07 

14 Dutch Louie flat Washoe 

NV 

5,500 1922.55 600,000-

693,795 

30 0.07 ± 0.05 41 0.68 ± 0.07 

16 Dante Mine Road Douglas 

NV 

2,300 1894.81 3,179-

36,500 

30 0.23 ± 0.08 43 0.70 ± 0.07 

aUSFWS unit assignment for the I. webberi populations (see USFWS 2014); bSite size was calculated from USFWS (2014); 

cElevation was extracted from 30 m digital elevation model of (USGS 2016) in ArcMap; dAbundance estimate for each 

population was sourced from USFWS (2014). 
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FIGURE CAPTIONS 

Figure 1. Global distribution of Ivesia webberi populations. Unit numbers follow 

the USFWS designations, circles represent the geographic center of extant, 

mapped occurrences, and circles with same color indicate USFWS-designated 

subpopulations of the same population. Asterisk on unit 17 indicates it is a new 

proposed unit, as it was recently discovered. 

Figure 2. Box plot showing the relationship between seed area and viability for 

Ivesia webberi. Viability was determined using the tetrazolium test. 

Figure 3 (a-c). Univariate plots depicting seed viability for each of the three 

predictor variables computed from a random forest model for non-destructive 

Ivesia webberi seed viability classification



295 
 

 
 

 

Figure 1.  



296 
 

 
 

 

Figure 2.  



297 
 

 
 

 

Figure 3 (a-c). 
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SUPPLEMENTAL INFORMATION 

Supplemental Table 1. Seed x-ray imagery and multispectral reflectance variables used to construct random forest 

tree model on Ivesia webberi seed viability 

Predictors Viable seeds Nonviable seeds T-test Predictor description 

Mean±SD  Range Mean±SD Range 

Seed area 3.62±0.65 1.05 – 6.25 3.79±0.74 1.73 – 6.09 p < 0.001 Computed in mm2 from both vertical and 

horizontal dimensions of seed image 

Seed x-ray 0.97±0.18 0.00 – 1.00 0.53±0.50 0.00 – 1.00 p < 0.001 Binary score of 0 and 1 for unfilled and filled 

seeds respectively, based on likelihood of 

presence of seed embryo 

Multicolor 

mean 13 

16.50±4.30 8.84 – 29.09 18.09±3.95 9.65 – 27.75 p < 0.001 Seed testa spectral reflectance value obtained 

using 690 nm wavelength 
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This five-chapter dissertation has increased scientific knowledge on Ivesia 

webberi, a federally threatened perennial forb in the Great Basin Desert. These integrated 

studies have revealed (1) an ecological niche driven by climatic and topographic 

variables, (2) that the soil seed bank is dominated by invasive plant species, which 

reduced the floristic similarity with the aboveground vegetative communities in sites 

harboring I. webberi, (3) low genetic diversity, reduced gene flow, increased genetic 

differentiation among the sampled populations, as well as significant spatial genetic 

structure, (4) that I. webberi, like other Ivesia taxa, are diploid with 28 chromosomes and 

the genome size has potentially adaptive significance, and (5) that the viability of I. 

webberi seeds can exhibit significant temporal variation, and can be reliably monitored 

using nondestructive methods. Furthermore, this dissertation also resulted in the 

discovery of several new locations of the species and expanded the distribution range by 

65 km. These studies also confirmed that I. webberi undergoes both vegetative and sexual 

reproduction, which underscores the importance of regeneration from its transient soil 

seed bank on maintaining genetic diversity.  

Biodiversity is inherently multifaceted, covering taxonomic, functional, 

phylogenetic, genetic, landscape, and many other elements of variability of life on the 

Earth; therefore, it is best understood through integrated, multi-empirical, and 

interdisciplinary studies (Stevens and Gavilanez, 2015; Naeem et al., 2016). This multi-

empirical dissertation covered the hierarchical and integrated nature of biodiversity to 

inform the conservation of a federally threatened perennial forb species and its habitat in 

the Great Basin Desert. For example, the geographical prediction map from the niche 

modeling of I. webberi was integrated into the landscape genetics study to test the effect 



302 
 

 
 

of isolation by landscape resistance on gene flow and genetic structure. The ecological 

predictor variables used for the niche modeling were also used to test the isolation by 

environment hypothesis on gene flow. Ground truthing of the geographical prediction 

maps and iterative niche modeling resulted in the discovery of several novel locations 

that may contain important genetic information that can improve the landscape genetics 

study. The floristic community diversity data obtained from Borokini et al. (2021) was 

used to test genetic-species diversity relationship. The use of microsatellite loci for the 

landscape genetic study was informed by the genome size study that confirmed that I. 

webberi is a diploid species. Findings from the intraspecific genome size variation and 

landscape genetics studies are complementary and show a latitudinal gradient in genome 

size and genetic diversity among I. webberi populations, since both molecular functional 

traits are influenced by the same evolutionary processes. Literature has shown that the 

extinction vortex for threatened species involves synergistic effects of ecological, 

demographic, and genetic processes (Blomqvist et al., 2010; Fagan and Holmes, 2012). 

Therefore, integrated studies can support a reliable assessment of the extinction risks for 

I. webberi and other imperiled species. 

Conservation implications for Ivesia webberi 

Lack of mobility in plants limits their response to environmental changes to either 

adaptation or extinction (Corlett, 2016; Panetta et al., 2018). The ability of plant species 

to adapt to environmental changes is strongly tied to their genetic diversity (Frankel and 

Soule, 1981; Barrett and Schluter, 2008; Hughes et al., 2008). I have shown in this 

dissertation that I. webberi has a relatively low genetic diversity and among-population 
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gene flow, which was attributed to isolation by distance and ecological dissimilarity 

among the patches. Low genetic diversity and gene flow among the populations may 

increase the frequency of mating with closely related individuals and result in fitness 

costs (Keller and Waller, 2002). Higher genetic differentiation among the populations 

may indicate local adaptations of these populations to the prevailing ecological 

conditions in their sites, but this can increase their extirpation risks when these ecological 

conditions change in the future. Furthermore, a significant genetic diversity relationship 

with ecological dissimilarity among the sites was also observed, which is indicative of an 

isolation by environment (Sexton et al., 2014). Field observations reveal varying levels 

and timing of regeneration and flowering in I. webberi populations. For example, 

populations in the lower elevations tend to regenerate and flower earlier than those in 

higher elevations. This can result in phenological mismatch that reduce the chances of 

pollen-based gene flow between populations in the higher and lower elevations 

(Wadgymar and Weis, 2017; Slatyer et al. 2020). 

Maintaining the overall genetic diversity in a plant species requires cross 

pollination, fertilization, seed production, and new recruitments from seed germination, 

as well as genetic admixture among populations (Hamrick et al., 1992; Kolbe et al., 2007; 

Rius and Darling, 2014). However, there are many stochastic risks associated with these 

fecundity stages, particularly seedling mortality due to physiological constraints and 

competition from invasive weeds that are prevalent in the sites harboring I. webberi 

(Chambers et al., 2007; Lander et al., 2019). In a pilot study, I. webberi seedlings did not 

survive beyond the two seed-leaf stage under greenhouse conditions (Daniel Harmon 

pers. comm.). The dominance of Bromus tectorum and other invasive plant species in the 
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soil seed bank of sites harboring I. webberi, as observed in this dissertation, suggest 

increased risk of seedling mortality due to competition (Porté et al., 2011; Dickson et al., 

2012). Moreover, invasive plant species are linked with altered fire regimes in the Great 

Basin Desert. Frequent wildfires destroy the soil seed bank of native species and further 

reduce their potential to add new individuals into their populations (Pyšek et al., 2012; 

Morris and Rowe, 2014). Fewer recruitments into the populations can reduce I. webberi 

genetic diversity and hence their evolutionary potentials to adapt to current and future 

environmental changes. However, successful recruitments have been observed in many 

populations where I. webberi successfully colonized bare soil microsites and 

decommissioned trails and minor roads. 

Findings from this dissertation suggest that I. webberi habitat protection and 

management, not seed banking, is a more effective conservation strategy. I. webberi 

seeds lose their viability with storage time, which suggests that they have a recalcitrant 

storage behavior. This finding also complements the results in Chapter 3 that indicate that 

I. webberi seeds have a transient seed bank. Moreover, I. webberi and many perennial 

native plant species in the Great Basin Desert invest more in vegetative regeneration and 

often produce empty seeds (Allen and Nowak, 2008). However, cryopreservation 

technology may be considered as an effective ex situ conservation strategy (Pence et al., 

2020). An understanding of the seed biology of the Great Basin native plants is critical to 

seed banking and may inform conservation strategies used for the U.S. Bureau of Land 

Management (BLM) Seeds of Success (SOS) program (Haidet and Olwell, 2015). Where 

seed banking was used, this dissertation shows that non-destructive testing methods, like 

x-ray imagery and multispectral imaging, can be used to monitor seed viability, provide a 
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more reliable estimate of temporal trends in seed viability loss, and also prevent the 

cumulative reduction of the stored germplasm used for periodic testing. The viability of I. 

webberi seeds did not vary significantly across the sampled populations, indicating that 

seed collections for banking can be done in any of the populations which is necessary to 

capture local adaptations across the species range for optimal restoration projects 

(Baughman et al., 2019). 

This dissertation has also revealed a significant positive relationship between 

genome size and seed size in I. webberi and 31 sampled Ivesia taxa. Furthermore, we also 

observed an inverse significant relationship between genome size and actual 

evapotranspiration. For the desert-dwelling Ivesia, these findings indicate that relatively 

small genome size may have adaptive significance. Furthermore, we determined that I. 

webberi is a diploid species with 28 chromosomes, a cytological condition that has been 

observed for many of the taxa in Ivesia. Diploids, unlike polyploids, have limited 

evolutionary mechanisms to reduce the fitness cost of inbreeding (Lowry and Lester 

2006, Guggisberg et al. 2006), therefore the suspected disjunctions and lack of gene flow 

among the populations of the taxa in Ivesia due to their restriction to the edaphic and 

mountain sky islands in the desert ecosystems of the western North America may have 

significant implications for their persistence and survival. 

The iterative niche modeling identified the role of topographic and climatic 

predictor variables in the ecological niche of I. webberi. Annual mean precipitation, 

representing water availability which is the most limiting factor for desert-dwelling 

species, and actual evapotranspiration (AET), describing water-energy balance, are 
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important climatic variables that influence the ecological niche of I. webberi. The model-

based field sampling resulted in the discovery of new locations and extended the northern 

distribution range of the species by 65 km. The ecological properties in the new locations 

expanded the species’ climatic niche breadth and increased scientific understanding of I. 

webberi species-environment relationships. The geographical projection of I. webberi 

niche also identified predicted suitable sites for further field surveys that could potentially 

result in the discovery of additional novel locations. Predicted suitable sites where I. 

webberi was not discovered could be reserved for potential future translocations and 

assisted migrations. 

Recommendations for the conservation of Ivesia webberi 

Habitat loss and fragmentation remain the greatest threats to global biodiversity 

(Figueiredo et al., 2019; Lughadha et al., 2020), therefore, the protection of Ivesia 

webberi habitats is critical to its persistence. For example, I. webberi maintains a 

transient seed bank which is replenished annually from seed abscission from the matured 

stands. Therefore, habitat protection is necessary to sustain the matured stands and 

protect their seed banks. This species is located in different sites with a wide range of 

land ownership and management. The sites located within the National Forests are 

relatively well protected with minimal human activities. However, I. webberi sites on 

private properties and public lands under the Bureau of Land Management and the State 

of California jurisdictions allow livestock grazing which may have facilitated the 

colonization of cheat grass in these sites (Knapp, 1996). We recommend monitoring the 

impacts of livestock grazing especially in the Hallelujah Junction Wildlife Area where 
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five I. webberi patches are located. Similar measures of monitoring the impacts of 

grazing should be carried out on the BLM land where the most recent northernmost 

location was recently discovered. The occurrence of seven I. webberi locations on private 

properties demonstrates the need for a stronger private-public partnership in the 

management of imperiled species. Additionally, predicted suitable sites where I. webberi 

is currently not detected should also be protected. Those predicted suitable habitats could 

act as connectivity corridors for gene flow among populations, potential sites for future 

translocation and human assisted translocations. 

Habitat protection is not enough to ensure the persistence of an imperiled species. 

The ecological quality of these habitats is also important to support viable populations. 

For I. webberi, research and management efforts to reduce the abundance and impacts of 

invasive plant species should be intensified. Most of the known sites are heavily impacted 

by B. tectorum and Taeniatherum caput-medusae monocultures (USFWS, 2014). Field 

observations suggest that the invasive species may not outcompete established I. webberi 

stands. However, taller growth and dense stands of B. tectorum and other invasive alien 

weeds can shield pollinators away from I. webberi individuals (Goodell and Parker, 

2017), reduce conspecific pollen transfer and deposition (Bjerknes et al., 2007), check 

localized seed dispersal (Vanier and Walker, 1999), and outcompete nascent seedlings 

(Humphrey and Schupp, 2004; DiVittorio et al., 2007). This dissertation showed that the 

soil seed bank of most of the I. webberi sites are dominated by invasive plant species. 

Furthermore, these invasive plants have facilitated an increase in wildfire frequency in 

the Great Basin Desert, which destroys the soil seed bank of many native plants 

(Humphrey and Schupp, 2001; Esque et al. 2010). However, historical records show that 
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the majority of the I. webberi sites have experienced wildfires in the last 40 years but the 

species persisted in those locations. Since cheatgrass fueled fires are mostly surface fires, 

vegetative structures buried deep in the argillic horizon may withstand surface fires and 

contribute significantly to post-fire vegetative recovery (Humphrey and Schupp, 2001; 

Klimes˘ová and Klimeš, 2007). 

Ivesia webberi does not exist in isolation, but in complex ecological interactions 

with other species and abiotic environmental factors in the Great Basin Desert ecosystem. 

This includes native plant species such as Balsamorhiza hookeri, Artemisia arbuscula, 

and Antennaria dimorpha that have been observed in almost all known populations 

(USFWS, 2014), as well as floral visitors, which are potential pollinators. However, it 

remains unclear how these native plant species interact with I. webberi. Field 

observations show that B. hookeri may share similar a niche with I. webberi. Though B. 

hookeri is a taller herbaceous species belonging to the Asteraceae, it regenerates, flowers, 

and senesces at the same time as I. webberi. Also, both I. webberi and B. hookeri produce 

yellow flowers and an achene fruit type, however B. hookeri flowers are larger and 

produce scents that potentially attract pollinators. Therefore, B. hookeri could potentially 

be a “magnet species” by providing pollinators for I. webberi, which have smaller 

flowers (Molina-Montenegro et al., 2008). Investigations on a possible I. webberi-B. 

hookeri association provide an excellent opportunity to advance scientific knowledge on 

ecological interactions in the desert ecosystem, which can also inform the conservation of 

the vegetative communities.  
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Future studies 

This dissertation has advanced scientific knowledge of Ivesia webberi and 

vegetative communities in which it is located, through studies on the landscape genetic 

studies, ecological niche modeling, soil seed bank characterization, and genome size 

variation in Ivesia. I. webberi offers a great opportunity to contribute to scientific 

understanding on species-environment relationships, adaptive genome evolution, species 

adaptation and persistence in arid environments, and the application of this information to 

design effective conservation programs. These studies can also elucidate the impact of 

the geological history of western United States on the evolution of its extant taxa. 

Specifically, these studies can be extrapolated to identify important functional traits that 

contribute to ecosystem functioning and vegetative community resilience to 

environmental change. 

An ongoing independent study that focuses on species abundance estimation and 

modeling will provide a reliable estimate of I. webberi density in the known locations. 

Species reports show wide ranging patch sizes and abundance estimates ranging from less 

than a hundred to millions of I. webberi stands in the 16 originally known locations 

(USFWS, 2014). The varying abundance of I. webberi in these sites could be indicative 

of differing habitat quality in these sites, which may not be captured using binary 

response variables typical of ecological niche models, therefore a comparison of the 

niche models with abundance models should increase the understanding of species-

environment relationships and habitat qualities for I. webberi. This study used 

hierarchical distance sampling to estimate the abundance and density of I. webberi in the 
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16 originally known locations. The resulting abundance estimates would be integrated 

into species abundance models using the same ecological predictor variables in the niche 

models; thus, the predictions of the ecological niche models can be compared with 

abundance models (Dallas and Hastings, 2017; Yu et al., 2020). Furthermore, the 

sampling strategies used in this study is replicable and can be used for long-term 

monitoring of the I. webberi populations and population viability analysis. Population 

viability analysis and models would be a great way to quantify new recruitment from 

seedlings, determine interannual variability in seedling and vegetative regeneration, and 

the associated environmental predictors. Reliable abundance estimates can also permit 

empirical investigation on the relationship among census size, genetic diversity, and 

effective population size in I. webberi (Knaepkens et al., 2004; Leimu et al., 2006; 

Frankham et al., 2010). 

Microsatellite markers may be sufficient to answer questions related to population 

genetic diversity and structure, admixture, gene flow, kinship, parentage, mating system, 

taxonomic fingerprinting, genome mapping, and population history (Parker et al., 1998; 

Luikart et al., 2003). However, these neutral markers do not have adequate genetic 

signatures to identify loci that are associated with local adaptation or under selection 

hence understand the adaptive genetic potential of each population to persist under 

environmental pressures (Barbosa et al., 2018; Silva et al., 2020). As a result, genome-

wide association studies (GWAS) are gradually replacing the use of microsatellite 

markers to assess genetic diversity (Benestan et al., 2016; Carreras et al., 2020). Also, 

studies show that findings from microsatellite-based population genetic studies do not 

correlate with genome-based analysis (Holderegger et al., 2006; Väli et al., 2008). As a 



311 
 

 
 

desert-dwelling species, neutral markers may not be enough to understand adaptive 

potentials of I. webberi to environmental selective pressures. Moreover, I. webberi 

samples from the recently-discovered locations from the model-guided field surveys were 

inevitably excluded from the population genetic studies. Therefore, genome-based 

analysis may provide additional information on the evolutionary dynamics in I. webberi 

and allows for the inclusion of samples from the new locations. 

Current genetic analysis suggests that both seed dispersal and pollen-based gene 

flow are common among the sampled I. webberi populations and underscore the 

importance of pollinators and dispersal vectors. This is complementary to field 

observations that identified five I. webberi flower visitors, including Common blue 

butterfly (Plebejus sp.), Halictid bees (Lasioglossum sp.), Cuckoo wasp, Common ground 

ant (Camponotus sp.), and Horsefly (Tabanus laticeps). However, empirical studies may 

be required to determine if these flower visitors are effective pollinators for I. webberi, 

their foraging and movement patterns, landscape effects on their movement patterns, as 

well as an ecological network of their mutualism with I. webberi. Previous studies have 

stressed the importance of pollen-based gene flow in plants (Sork et al., 1999; Auffret et 

al., 2017). Therefore, effective conservation should not be limited to the management of 

I. webberi, but also include protection of known pollinators.  

Ivesia webberi and the systems in which it is located offer excellent opportunities 

to investigate phenological shifts in response to climate change. Studies have shown a 

significant association between changes in spring temperature and phenology shifts 

among native plant species in the Northern hemisphere (Thompson and Gilbert, 2014). 
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An association between spring temperature and plant regeneration is stronger in the Great 

Basin Desert where the timing of snowmelt, influenced by spring temperatures, 

determines soil moisture content and regeneration of dormant vegetative structures of I. 

webberi and other native perennials (USFWS, 2014). Therefore, climatic fluctuations in 

winter precipitation and spring temperatures which are very frequent in the Great Basin 

Desert have been associated with phenological shifts in the regeneration of native plant 

species (Tang et al., 2015; Snyder et al., 2016). When winter precipitation is less severe, 

I. webberi regenerates earlier in mid-winter, while regeneration is delayed till early spring 

in heavy winter years. Furthermore, variation in regeneration up to four weeks has been 

observed among I. webberi populations; populations in the lower elevation regenerate 

earlier. Elevational gradients in phenological variation represent the effect of climatic 

difference among I. webberi sites. Additionally, delay in regeneration and flowering was 

observed for I. webberi stands under tree shades within a population, underscoring the 

effect of shade (McKinney and Goodell, 2011; Heberling et al., 2019; Baker et al., 2019). 

These field observations suggest that microhabitat conditions and ecological dissimilarity 

may influence phenological velocity among I. webberi populations which could be 

further exacerbated by climate change (Augspurger et al., 2005; Cornelius et al., 2013; 

Rafferty et al., 2020). Phenological mismatches could result in assortative mating and 

restrict gene flow to populations with similar habitat conditions, thus deepening the 

genetic divergence among I. webberi populations (Aitken et al., 2008; Frank and Weis, 

2009; Wadgymar and Weis, 2017, but see Cortés et al., 2014). Phenological plasticity 

could also be related to the intraspecific genome size variation, which can further 

advance scientific knowledge on genome size evolution (Ren et al., 2020). Long-term 
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phenological monitoring may be beneficial in predicting I. webberi response to climate 

change, among population gene flow patterns, and evolutionary dynamics. In the context 

of ecological interactions, phenological synchrony between I. webberi and Balsamorhiza 

hookeri is worth investigating due to similarity in functional traits, regeneration, and 

flowering.  
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