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Abstract: The Light Detection and Ranging (LiDAR) sensors are being considered as new traffic
infrastructure sensors to detect road users’ trajectories for connected/autonomous vehicles and other
traffic engineering applications. A LiDAR-enhanced traffic infrastructure system requires multiple
LiDAR sensors around intersections, along with road segments, which can provide a seamless
detection range at intersections or along arterials. Each LiDAR sensor generates cloud points of
surrounding objects in a local coordinate system with the sensor at the origin, so it is necessary to
integrate multiple roadside LiDAR sensors’ data into the same coordinate system. None of existing
methods can integrate the data from roadside LiDAR sensors, because the extensive detection range
of roadside sensors generates low-density cloud points and the alignment of roadside sensors is
different from mapping scans or autonomous sensing systems. This paper presents a method to
register datasets from multiple roadside LiDAR sensors. This approach innovatively integrates
LiDAR datasets with 3D cloud points of road surface and 2D reference point features, so the method
is abbreviated as RGP (Registration with Ground and Points). The RGP method applies optimization
algorithms to identify the optimized linear coordinate transformation. This research considered
the genetic algorithm (global optimization) and the hill climbing algorithm (local optimization).
The performance of the RGP method and the different optimization algorithms was evaluated with
field LiDAR sensors data. When the developed process can integrate data from roadside sensors, it
can also register LIDAR sensors” data on an autonomous vehicle or a robot.

Keywords: data registration; Smart Traffic Infrastructure; ground points; optimization

1. Introduction

The new generation of transportation systems employ advanced communication technologies,
such as 5G network [1]; dedicated short-range communication (DSRC) [2]; and sensing technologies,
such as Light Detection and Ranging (LiDAR) and video sensors, to exchange each other’s real-time
status and to understand the surrounding traffic environment. When autonomous vehicle platforms can
achieve real-time detection and control, connected-vehicle technologies allow drivers/vehicles to “see”
across buildings, over surrounding vehicles and other obstacles [3,4]. The advantages of connected
vehicles rely on vehicle2x wireless communication, including but not limited to vehicle-to-vehicle,
vehicle-to-infrastructure, and vehicle-to-other-road users. However, it is estimated that the full
deployment of connected-vehicle equipment will take decades [5]. During this period, the traffic
flow will include both the connected/autonomous vehicles and the unconnected road users who are
“black spots” of the intelligent traffic systems. Without all users being sensed accurately, the benefits of
connected vehicles and other advanced traffic systems will be limited.
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Research has been started to enhance traffic infrastructures by deploying light detection and
ranging (LiDAR) sensors on roadsides [6—10]. The roadside LiDAR sensors allow traffic infrastructures
to sense the real-time high-accuracy trajectories of every vehicle/pedestrian/bicycle, so the system
is not impacted by whether all road users share their real-time status. With the real-time data from
roadside LiDARs, connected/autonomous vehicles know all the other road users without “black spots.”
Traffic infrastructures can actively trigger traffic signals/warnings whenever they detect crash risks
or changed traffic patterns. When the recent research efforts have developed and implemented the
LiDAR data processing algorithms to extract high-resolution high-accuracy trajectories from roadside
LiDAR data [7,8], a solution to integrate LIDAR data from different roadside sensors is needed.
Each LiDAR sensor generates the 3D cloud points in a local coordinate system with the sensor at the
origin. When LiDAR sensors are installed at an intersection or along an arterial, the data needs to
be integrated by converting all LIDAR data into the same coordinate system. Incorporating LiDAR
data from different scans or sensors, also called LiDAR data registration, has been studied for many
years for mapping and autonomous vehicle/robots sensing [11-13]. 3D mapping scans an object
from different viewpoints by rotating the object or moving scanners and then merging them into a
complete model [14]. A point cloud from each LiDAR scan is in a local coordinate system so that
the transformation of each view into the same coordinate system is needed. This process is called
point cloud registration, and it is one of the critical problems in 3D reconstruction [15]. The general
non-automated registration methods include manual registration, attaching markers onto the scanned
object, and calibrating the movement between two scans in advance [15]. The automatic registration
methods of 3D LiDAR scan can be classified into three types: point-based transformation model,
line-based transformation model, and plane-based transformation model [16].

The spatial transformation of point clouds using point features can be established by a
point-to-point correspondence and solved by least-squares adjustment. Besl and Mckay [17] conducted
the foundation work of point-based automatic registration with the classical iterative closest point
(ICP) algorithm. ICP starts with two point clouds and an initial guess for the transformation, and
iteratively refines the transformation by repeatedly generating pairs of corresponding points in the
point clouds and minimizing an error metric. However, the premise of using ICP for data integration
was that the point clouds should be adequately close to each other [17]. Furthermore, the ICP lacks the
ability to register the points with outliers and variable density [18]. Researchers also improved the ICP
method to improve the computation efficiency and accuracy [18-23]. Wu et al. developed a revised
partial iterative closest point algorithm (P-ICP) for LIDAR point clouds integration [19]. By selecting
at least three representative points (usually corner points) from the two-point sets, the revised P-ICP
can integrate the points within 0.2 s of time delay. The accuracy of the point registration has been
greatly improved compared to that of the traditional ICP. The line-based automatic transformation
comprises a 3D line feature transformed into another coordinate system that needs to be collinear
with its counterpart. Stamos and Allen developed a method for range-to-range registration with
manually selected 3D line features [24]. Stamos and Leordeanu developed an automated registration
algorithm with corresponding line features [25]. A number of parameters were required to be calibrated
in advance to customize the algorithm. The line-based registration was also used for registering
LIDAR datasets and photogrammetric datasets [26]. The plane-based transformation is based on plane
features [27-29]. The plane-based transformation methods formulated the problem of aligning two
point clouds as a minimization of the squared distance between the corresponding surfaces. However,
the above-mentioned three typical types of point registration methods require either large overlapping
areas or clear features between two point clouds. Considering the massive deployment of the roadside
LiDAR in the connect-vehicles in the future, only cost-effective LIDARs (8 beams or 16 beams) can be
adopted. The extensive detection range of roadside LiDARs further decreased the overlapping areas
and the point density. Therefore, the above-mentioned three methods could not be used for point
registration of the roadside LiDARs.
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The sensing system of autonomous vehicles requires the integration of multiple sensors such as
LiDAR, video, radio detection and ranging (RADAR), short-wavelength infrared (SWIR), and global
positioning system (GPS). The sensor fusion also requires the registration of LIDAR sensors’ data,
or the registration of LIDAR data and other sensor data. The LiDAR-video integration normally
builds separate visions, and the LiDAR feature extraction methods identify common anchor points in
both [30,31]. For integrating multiple LIDAR sensors on a mobile platform, Cho et al. [32] treated six
LIDARSs in four planes as one homogeneous sensor, and analyzed sensor measurements using built-in
segmentation and extracted features, like line segments or junctions of lines (“L”) shape [33].

All the reviewed registration methods in mapping and autonomous sensing only serve the
scenarios with relative high-density cloud points, as shown in Figure 1a. Even the methods registering
LiDAR data to images require many details of cloud points and pixels to achieve coordinate conversion.
Some researchers on autonomous vehicle sensing systems use a board with a standard round hole or
mark for registering multiple sensors. Researchers sometimes assume that LIDAR sensors on a vehicle
platform are in a uniform coordinate system because the sensors are close to each other. These existing
methodologies and assumptions do not apply to registering roadside LiDAR sensors for relative
low-density cloud points caused by the wide detecting range and offset between laser beams of two
sensors [34]. An example of the roadside LiDAR data is shown in Figure 1b. It differs noticably from
Figure 1a.

(b)

Figure 1. Cloud points from roadside cost-efficient LIDAR sensor. (a) Relative high-density LIDAR
cloud points (64 beams). (b) Relative low-density LiDAR cloud points (16 beams).

This paper introduces a method particularly developed for registering roadside LiDAR sensors
data into the same coordinate system. This approach innovatively integrates LIDAR datasets based
on the 3D cloud points of the road surface and the selected 2D reference points, so the method is
abbreviated as Registration with Ground and Points (RGP). The RGP method was developed for
roadside sensors, and it can also be used to register the LIDAR sensors on a mobile platform such as
an autonomous vehicle or a robot. The last step of the RGP method is to identify the parameters of
linear coordinate transformation, offset-in-x, offset-in-y, offset-in-z, rotation-in-x, rotation-in-y, and
rotation-in-z, with optimization algorithms. An objective function related to the 3D points of the
ground surface and an objective function corresponding to the selected 2D reference points is defined.
The two objective functions are further combined into a single objective function. The objective function
has various local minimum/maximum values, so this research considered the genetic algorithm (GA)
for global optimization and the hill climbing (HC) algorithm for local optimization for their advantages
and disadvantages. The HC algorithm used an initial input that was estimated with a tool visualizing
and customizing coordinate transformation. The performance of the RGP method and the optimization
methods were evaluated with LiDAR data collected with two LiDAR sensors on different sides of
a road.
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This article is organized as the following: Section 2 presents the conception of coordinate
transformation and the algorithm details of the RGP method. The performance evaluation results are
demonstrated in Section 3. Section 4 provides the discussion of the influence of the proposed method
on new transportation sensing systems and the extended research in the future. By the end, Section 5
summarizes the findings of this research.

2. Methodology

2.1. Coordinate Transformation

Linear transformations, as a type of coordinate transformation [35], convert points, lines, and
planes in one coordinate to those in a second coordinate by a system of linear algebraic equations.
A vector X in a 3-D coordinate system that has components Xj (xj, Yj, zj), and in the primed-coordinate
system the corresponding vector X" has components X; (x;, y;, z;) given by

Equations (1) and (2) give the general linear transformation of 3-D coordinate systems. This general
linear form is divided into two constituents: the matrix A and the vector B. The vector B can be
interpreted as a shift in the origin of the coordinate system. The elements A;; in the matrix A are the
cosines of the angles between the axis of X; and X;. This is called the direction cosine. It needs to
be noted that this linear conversion only includes the offsets in the X, y, and z axis and the rotations
along x, y, and z axis, without changing the scales of x, y, and z. Therefore, a total of six parameters
determine the required linear transformation (matrix A and vector B) for registering a LIDAR sensor
dataset to another. To determine the six parameters: offset-in-x, offset-in-y, offset-in-z, rotation-in-x,
rotation-in-y, and rotation-in-z, coordinates of two reference points in two coordinate systems are
theoretically enough. The known coordinates of two reference points can be used to generate six
equations, which are enough for solving the six transformation parameters. In the actual datasets, it is
difficult to find accurate coordinates of a reference point in two coordinates. Therefore, optimization
methods are commonly applied to identify the best linear transformation with two or more reference
points, lines, or planes.

The reference features (points, lines, and planes) used in existing methods still need relatively
accurate X, y, and z values of the same feature in two coordinates (overlap points). The high-resolution
LiDAR cloud points, such as the ones used for mapping, can provide the required overlaps. For example,
the LiDAR points of a building corner from the different stations can provide decent x, y, and z values of
the same feature point in different station coordinates for high-resolution LiDAR cloud points. However,
it is much more difficult or impossible to find the overlap x, y, and z values of the corresponding
reference feature in different coordinates with the roadside sensors. Figure 2 presents the offsets of
laser beams of two roadside LiDAR sensors in the z-axis. The two different colors mean the points are
from the two different sensors. The points in the rounded rectangular box are of the same building,
but the points of the different sensors are at different heights. In other words, the registered two
LiDAR datasets may not have overlaps because of the z-axis offsets and the distance between the
laser beams. This is the primary reason that the existing algorithms developed for mapping and
autonomous sensing systems cannot register the roadside LiDAR data.
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)

Figure 2. Example of z-axis offset between two roadside LiDAR datasets.

When it was not possible to find the coordinates of a reference feature in the two sensor coordinates,
the authors innovatively used the ground surface LiDAR points of two roadside sensors. Though there
is no guarantee of a building or object points from two sensors have overlap, there must be overlap
points of the ground reflections in the two sensors’ data. The LiDAR points of ground surface are circles
with the LiDAR sensor as the center. So, if two LiDAR datasets are correctly registered, the ground
surface LiDAR points of the two sensors must have crossing points (overlaps), as shown in Figure 3.
The problem of optimizing the linear transformation is that it needs to include an optimization function
to minimize z difference of the overlap ground points (best match of the ground surface). With the
ground surface points from the two LiDAR datasets, in each iteration, the converted coordinate is zoned
into subareas with squares on the x-y surface. All ground surface LiDAR points are projected into the
continuous x-y squares based on their x and y values. In each x-y square, the difference between the
average z values of projected surface points of sensor 1 and the average z value of projected surface
points of Sensor 2 (after the linear transformation) is calculated. If a square has only projected points
from one sensor or has no projected points, this square is excluded from consideration. With the z
difference calculated for all squares, the average z difference is calculated as an objective function.

Ground Surface Points
. for Sensor 1

7

-------- . - : - “Ground Surface Points
for Sensor 2

Figure 3. Example of ground points overlaps of two LiDAR datasets.
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The objective function to minimize the z difference of ground points of two sensors is described
by Equations (3) and (4).

Fi = z_diff; ®3)
Xi_min < xk_sl_i < Xi_max
2 diff; = - Fa] | L 2 Yo = Y @

Xi min < Xk 52 i < Xi_max
Yi_min < Yk s2.i < Yi_max

F1—Objective function of minimum z difference of ground points of two sensors;
z_diffi—z Difference of the x-y square i;

zx_s1_i—z value of LiDAR point k of sensor 1 in square i;

z)_sy_i—z value of LIDAR point [ of sensor 2 (after linear transformation) in square i;
x;_min—Minimum x boundary value of square i;

x;_max—Maximum x boundary value of square i;

yi_min—Minimum y boundary value of square i;

x;_max—Maximum y boundary value of square i;

xk_s1_i—x value of LiDAR point k of sensor 1 in square i;

Yk_s1_i—y value of LiDAR point k of sensor 1 in square i;

x1_sp_i—x value of LIDAR point I of sensor 2 (after linear transformation) in square ;
y1_sp_i—y value of LiDAR point ! of sensor 2 (after linear transformation) in square i.

The test of optimization to minimize z difference of ground points found that the optimization
result provided a good match of the ground surface of the two LiDAR datasets. However, this objective
function is not sensitive enough to minimize offsets in x-axis and y-axis. For an accurate match in the
x-direction and y-direction, two or more reference points are needed in the x-y 2D space.

It is impossible to find accurate coordinates related to the same reference feature in the two
sensor datasets because of the z offsets, but X, y values corresponding to the same reference features
(overlap points) can be found in the x—y space of the two sensor datasets. It is challenging to find
the line or surface features from the two roadside datasets, because the sensors are distant from each
other. In addition, when one sensor can detect a line or a surface of a building, the other sensor
may not be able to catch the same surface or edge, as trees or obstacles around the two sensors are
different. At least coordinates of two reference points in the two LiIDAR datasets need to be identified
to optimize the linear transformation for accurate registration in the x-axis and y-axis. More reference
points can be used, if they are available, to improve the accuracy and reliability of the optimization.
A semi-automatic method for the reference points detection can be found in reference [18].

The second objective function is to minimize the offsets of LIDAR points at the same point features
in the x-y space. The objective function can be described by Equations (5) and (6).

F, = dm_sl_sZ (5)

Ay s1 520 = \/(xmsl - xm752)2 + (ymsl - ym752)2 6)

F»>—The objective function of the minimum difference between the x,y coordinates of Sensor 1 and x,y
coordinates of Sensor 2 after transformation at the selected reference point m;

dy_s1_sp—Distance between the x,y coordinates of Sensor 1 and X,y coordinates of Sensor 2 after
transformation at the selected reference point m;

Xm_s1—x value of LiDAR the coordinate of LiDAR Sensor 1 at the reference point m;

Xm_sp—x value of LiDAR the coordinate of LiDAR Sensor 2 at the reference point m (after the
linear transformation);

Ym_s1—Yy value of LiDAR the coordinate of LIDAR Sensor 1 at the reference point m;
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Ym_s;—y value of LiDAR the coordinate of LiDAR Sensor 2 at the reference point m (after the
linear transformation).

In this multiple-objective optimization problem, the difference of z value of ground points and the
difference of x-y coordinates at the reference points are considered to have the same importance, so
they have the same weight values.

Therefore, the multi-objective functions for optimizing the linear transformation can be expressed
as a single-objective optimization, as shown in Equation (7):

F=F +F @)

2.2. Procedure to Optimize Linear Transformation

The procedure of determining the linear transformation parameters for registering multiple
roadside LiDAR sensor datasets can be described as the following:

Step 1: Extract the cloud points of the ground surface from the LiDAR datasets by defining X,
y, and z boundaries (minor non-surface points in the extracted surface clouds do not influence the
registration results);

Step 2: Select the reference points and the related coordinates in x—y 2D space from the Sensor 1
dataset and the Sensor 2 dataset (the corner points of buildings or crossing roads are suggested);

Step 3: Optimize the transformation parameter array [offset-in-x, offset-in-y, offset-in-z,
rotation-in-X, rotation-in-y, and rotation-in-z] to minimize the objective function F. The optimization
starts with an initial transformation parameter array (which is different for the different optimization
algorithms);

Step 4: Convert the Sensor 2 dataset into the Sensor 1 coordinate system with the optimized
coordinate transformation parameters.

Each optimization iteration includes the following processes:

(1) Calculate the linear transformation matrix A and vector B with the transformation
parameter array;

(2) Convert cloud points of Sensor 2 to the coordinate system of Sensor 1 with the transformation
matrix A and vector B calculated in (1);

(3) Divide the coordinate space into subareas along the x-y surface, using the x-y square with a
side length of 5 cm;

(4) Project the cloud points of Sensor 1 and Sensor 2 into the x-y squares;

(5) Calculate the objective function F with Equations (3)-(7);

(6) Adjust the transformation parameters based on the objective function F. This step is different
from the various optimization algorithms.

Since the objective functions have already been defined in Section 2.1, an optimization algorithm is
needed to get the solution. It is known that the objective function F has multiple local minimum values,
so the global optimization algorithms are ideal to solve this problem. However, global optimization
takes a much longer time than the local optimization algorithms and may not be able to deeply search
in a local area to identify the actual minimum objective function. Therefore, this study compared
the performance of the GA that is a global optimization method and the HC algorithm that is a local
optimization method. The initial input to HC was selected manually, and the process is introduced in
the later section.

2.2.1. GA Global Optimization

GAs are a subclass of evolutionary algorithms where the elements of the search space are the six
parameters offset-in-x, offset-in-y, offset-in-z, rotation-in-x, rotation-in-y, and rotation-in-z with the
double type [36,37]. GA optimization can be described by Figure 4 [38].
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Generate initial population

l

Evaluate individual fitness
Rank individual fitness

Time to stop

Generate new population
Selection
Crossover
Mutation

Figure 4. Genetic algorithm (GA) optimization.

The objective function here is referred to as the fitness function. The following GA options in
Table 1 are used in this research [39].

Table 1. Parameters in GA.

Parameters Setting Note
Population size 150 Number of individuals in each generation
Creation function Uniform function Random initial population

[=50, —50, —50, —180, —180, —180; 50, 50, 50, The offsets along axis are =50 m to 50 m and

Initial range 180, 180, 180] the rotation angles around axis are —180
degrees to 180 degrees
Scaline function Rank scalin The raw scores were scaled based on the
J J rank of the individuals
Selection function Stochastic uniform Parents selection for the next generation
Elite count 0.05 * population size Number of mdlmduals that are guéranteed
to survive to the next generation
Crossover fraction 0.8 (default value) Fraction of the next generation
Crossover function Scattered crossover The function that performs the crossover
Mutation function Adaptive feasible Provides genetic diversity and enables the

genetic algorithm to search a broader space

The distance from the converted second
Nonlinear constraint sensor coordinate to the coordinate of the Search boundary
first sensor is less than 100 m

Max generations = 150
Stopping criteria Max stall generations = 100 Termination thresholds
Function tolerance= 1 x 10710

2.2.2. Hill Climbing

Hill Climbing (HC) [38] is a simple search and optimization algorithm for single objective functions
E. Hill Climbing algorithms use the current best solution to produce one offspring. If this new individual
is better than its parent, it replaces it. The general HC algorithm can be described as Figure 5 [36].
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Input: f: the objective function subject to minization
Data: ppey: the new element created

Data: p*: the (currently) best individual

Output: 2*: the best element found

1 begin
p*.g —— create()
// Implicitly: p*.x +—— gpm(p*.q)

3 while terminationCriterion() do
4 Pnew .g —— mutate(p*.g)
// Implicitly: prew.x <— gpm(pnew.g)
5 if f(pnew.2) < f(p*.xz) then p* ~— Drew
return p*.r
7 end

Figure 5. General procedure of hill climbing (HC) algorithm.

The objective function—Equation (7)—is used to evaluate each individual’s performance.
It is known that the Hill Climbing method is a local optimization algorithm, so the initial
input is critical. The authors have developed a tool (available at https://nevada.box.com/s/
sz45lorntec4rbxyzk06j8s3zstd3m3g) that can quickly adjust the six linear transformation parameters to
estimate the parameters. The estimated six parameters were used as the initial input. The number
of iterations of hill climbing algorithm was 100, and the stopping criterion was function tolerance
1x107%.

2.3. Method of Performance Evaluation

The collected data were stored in the Cartesian coordinate system. To compare the LiDAR
data to their real location, the LiDAR data should be transformed into the world geodetic system
(WGS). The transformation required at least four reference points that have coordinate values in both
coordinate systems. Normally, the coordinate values in the geodetic coordinate system are represented
by BLH (latitude, longitude, and height), and the coordinate values in the Cartesian coordinate system
are represented by XYZ. The proposed method includes three major steps: the first step is to convert
the BLH values of the reference points into XYZ values, then two different group of coordinate values
for the same reference point in the Cartesian coordinate system with two different origins are obtained.
The second step is to make the same point in the two coordinate systems coincide via scaling, skewing,
rotation, projection, and translation. Thus, a transformation matrix can be available to transform all
the points collected by the LiDAR in the Cartesian coordinate system into the WGS (usually WGS-84
system). The LiDAR points can then be shown in GoogleEarth. There were two sensors (A and B); the
points in sensor A were mapped onto the Google Earth. Then, points in sensor B were integrated into
sensor A. The points in sensor B after integration could be compared with the “ground truth” data in
Google Earth.

3. Results

The developed procedure for integrating multiple roadside LiDAR sensor data was evaluated
with the LiDAR data collected with two Velodyne VLP-16 LiDAR sensors at the intersection- S
Boulder Hwy@ E Texas Ave, as shown in Figure 6. The data were collected to study the behaviors of
vehicles/pedestrians/bicycles/skateboarders at the site. The two LiDAR datasets needed to be integrated
before extracting the trajectories of the road users.
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Legend

= S_Boulder_Hwy

o= E_Texas_Ave

Figure 6. Field site selected for evaluation.

The VLP-16 LiDAR sensor is a cost-effective 3D LiDAR unit. The LiDAR sensor creates a 360° 3D
point cloud with 16 laser beams. The unit inside rapidly spins to scan the surrounding environment
with a detection range of 100 m (328 ft). The LiDAR has the rotation frequency in the range of 5-20 Hz.
It can generate 600,000 3D points per second. The sensor’s low power consumption (~8w), lightweight
(830g), compact footprint, dual return capability, and reasonable price make it ideal for roadside
deployment for serving connected vehicles and other traffic engineering applications. Each VLP-16
reports the cloud points” locations (X, y, and z) in a local coordinate system with the sensor at the origin.
The rotation frequency was set as 10 Hz in the data collection. One frame from each LiDAR sensor
dataset was extracted for the LiDAR data integration/registration.

For Sensor 1, the boundaries for the ground points extraction were defined as x: —35~35m, y:
—20~10 m, and z: —2~1 m. For Sensor 2, the boundaries for the ground points extraction were defined
as x: —20~10 m, y: —=35~35 m, and z: —3~2 m. The boundaries need to be selected with consideration
of the sensor location, surrounding environment, and terrain. Two reference points at building corners
were selected in this test.

3.1. Performance of GA Optimization

The computer was configured with Intel 17-3740QM CPU @ 2.70 GHz and 16 GB memory (RAM).
Because of the distance of the LIDAR sensors and different surrounding environments of trees and
obstacles, it is difficult to evaluate the results quantitatively, so this paper assessed the accuracy based
on the visualization of the registered LiDAR data and checks points of the building surface and a
parked vehicle. Figure 7 visualizes the integrated data of two LiDAR sensors with GA optimization.
Figure 7a shows minor offsets in x-axis and y-axis of the building edges in the box. Figure 7b shows a
mismatch in the z-axis of the LIDAR points of the building edges, as surrounded by the box.
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'

(b)

Figure 7. LiDAR data registration with the GA. (a) XY Plane. (b) Z-axis.
3.2. Performance of HC Optimization

With the visualization tool, the initial parameters that were the input of HC were estimated.
The transformation parameters were optimized by the HC method with the objective function.
The computation time was 34 s. Figure 8 presents the registration results of HC.

The LiDAR data registration converted the Sensor 2 data into the Sensor 1 coordinate with a
relatively accurate match. The boxes in Figure 8a highlight the exact matches of the building edges in
2D and the box in Figure 8b highlights the match of the building edges in 3D. It should be noted that
there should be some offsets in z-axis, since the heights of the LiDARs were different.

Based on the testing with the GA method and the HC method, HC can provide more accurate
registration of the two datasets. Although the GA method is a global optimization method, it can only
give an estimation of the optimization solution. The GA method does not guarantee the minimum
objective function to be found, and each run offered different parameters [40]. On the other hand, the
HC algorithm is a local optimization algorithm, but it can give actual optimization results with the
initial input estimated by the visualization tool. The integrated point clouds can generate the vehicle
trajectories with higher accuracy. An example of the integrated vehicle trajectories can be found at
https://youtu.be/sSMT1UrabeQ.
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(b)

Figure 8. LiDAR data registration with the HC. (a) XY Plane. (b) Z-axis.

3.3. Comparison to ICP

The RGP method was also compared to the existing method—a revised ICP algorithm [35].
To evaluate the results of the two methods quantitatively, the LIDAR points were firstly mapped from
the local coordinate system to the World Geodetic System-WGS-84. Figure 9 shows an example of
integrated sensor data at one intersection in Reno. Here, the locations of the infrastructures (such as
the corner of the buildings) in Google Earth were considered as the “ground truth” data.

The distance (D) between the LiDAR data and the corresponding infrastructure (such as the
corner of the building) was manually checked by the authors. The data were collected at four sites:
N McCarran @ Evans Ave, S Boulder Hwy @ E Texas Ave, I-80 @ Keystone Avenue, and I-80 @ N
McCarran. For each site, an average D was calculated by randomly selecting 10 points. The results of
the RGP and the revised ICP are summarized in Table 2. It is clearly shown that the RGP can generate
a smaller error than the revised ICP at each site.
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Table 2. Performance evaluation.

. D (meters)
Site
RGP Revised ICP
N McCarran @ Evans Ave 0.25 1.1
S Boulder Hwy @ E Texas Ave 0.31 1.5
1-80 @ Keystone Avenue 0.24 0.9
1-80 @ N McCarran 0.13 0.7

Focation: N Mccarran@ Evans Rd in Reno, NV :

Figure 9. LiDAR data mapped into Google Earth.

4. Discussion

The advantages of LIDAR sensors and the recently reduced unit prices triggered the innovative
application of LiDAR sensors at traffic infrastructures, which can uniquely offer high-resolution
high-accuracy trajectory data of all traffic users [41-44]. The deployment of LiDAR sensors provides
the data required by connected-vehicle systems and will reform different areas of traffic engineering
and research. Integration of multiple roadside LiDAR sensors is significant to the roadside LIDAR
application. The integrated point clouds can reduce the influence of occlusion issue (one object is
blocked by another object) and improve the shape of road users in the LiDAR data. Figure 10 shows
the vehicle shape before-and-after data integration using the proposed RGP method.

It is shown that the proposed RGP method can greatly improve the shape of road users. This paper
only evaluates the integration results using two LiDAR sensors. In theory, the method can be used to
integrate multiple LiDAR sensors. However, the authors did not validate it since the authors’ team
only has two LiDAR sensors now. Another advantage of the proposed method is that the proposed
RGP method can integrate the LIDAR data without knowing the GPS positions of the point clouds.
Based on the statistical analysis, the proposed RGP method can integrate LIDAR points with a higher
accuracy compared to the ICP. Future studies should compare the performance of the RGP method with
other methods, such as the generalized-ICP (G-ICP). The future research will be to test the performance
of the proposed method at more sites with more sensors. For LiDAR sensors with a long distance
between them may not have enough overlaps of the ground surface points, portable LIDAR sensors
will be considered as a bridging tool.
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Figure 10. Before-and-after data integration. (a) Vehicle in Sensor A. (b) Vehicle in Sensor B. (c)
Integrated vehicle.

5. Conclusions

This article introduces a foundation work to register multiple LIDAR sensors deployed along
roadsides into a uniform coordinate. As there are rare overlap points corresponding to reference
features (points, lines, and planes) in the roadside LiDAR datasets, the existing methodologies cannot
be used for the roadside LiDAR registration. An innovative procedure—RGP—was developed to
use the ground surface LiDAR points in 3D space, and reference points in 2D space to generate the
coordinate transformation that converts different LIDAR datasets into the same coordinate. The RGP
can overcome the challenges caused by the offsets of laser beams between sensors and the low density
of LiDAR sensors caused by the extended detection range.

Two optimization methods—the GA method (global optimization) and the HC algorithm (local
optimization)—were considered for identifying the optimized transformation parameters for the RGP
in this research. It was found that the GA method could not guarantee the minimized objective
function. The HC algorithm accurately optimized the parameters with the initial input estimated by a
visualization tool. Therefore, the HC algorithm was recommended for the parameters optimization for
the RGP.
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