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ABSTRACT Deer crossing roads are a major concern of highway safety in rural and suburban areas in the
United States. This paper provided an innovative approach to detecting deer crossing at highways using 3D
light detection and ranging (LiDAR) technology. The developed LiDAR data processing procedure includes
background filtering, object clustering, and object classification. An automatic background filtering method
based on the point distribution was applied to exclude background but keep the deer (and road users if
they exist) in the space. A modified density-based spatial clustering of applications with noise (DBSCAN)
algorithm was used for object clustering. Adaptive searching parameters were applied in the vertical and
horizontal directions to cluster the points. The cluster groups were further classified into three groups—
deer, pedestrians, and vehicles, using three different algorithms: naive Bayes, random forest, and k-nearest
neighbor. The testing results showed that the random forest (RF) can provide the highest accuracy for
classification among the three algorithms. The results of the field test showed that the developed method
can detect the deer with an average distance of 30 m far away from the LiDAR. The time delay is about 0.2 s
in this test. The deer crossing information canwarn drivers about the risks of deer-vehicle crashes in real time.

INDEX TERMS Deer crossing, object classification, roadside LiDAR, vehicle trajectories.

I. INTRODUCTION
More than 1.5 million traffic crashes involving deer, resulting
in about $1.1 billion in vehicle damage and 150 fatalities, are
estimated to occur annually from 1998 to 2002 in the United
States [1]. The actual number is higher than the reported
crashes, as only part of such crashes are reported to author-
ities [2]. Many solutions have been developed to minimize
deer-vehicle collisions, primarily fencing and crossing struc-
tures that allow deer to safely cross under or over a road
while preventing animals from accessing the road [3], [4].
However, the cost of building crossing structures is usually
very expensive. Deer crossing signs are often installed near
the road to warn drivers in the areas with high frequency
of deer crossing the road. A previous study [5] showed that
these signs were not effective to reduce deer-vehicle crash
(DVC). On average, motorists responded to the signs by
reducing vehicle speeds, but the reduction in speed was too
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small to be of practical importance [5]. On the other hand,
once a sign has been installed, it is rarely removed, even
if the wildlife crossing problem no longer exists [6], which
provides the incorrect warning to drivers. Compared to those
static deer crossing signs, the signs triggered by the real-time
deer crossing detection can warn drivers more effectively and
accurately [7]. The basic idea of the real-time deer crossing
system is that once the sensors detect any deer near the road
(before crossing activities), the lights on the sign will be trig-
gered to flash to provide the real-time warning to the nearby
drivers. After deer cross the road, the lights will be turned
off automatically. The major challenge in the development of
the real-time deer crossing system is how to detect the deer
crossing in advance with high accuracy.

Several technologies (e.g., cameras or radar) have been
used for wildlife crossing detection. There have been stud-
ies [8], [9] using high-frequency radio-tracking (VHF) and
GPS-based-tracking technologies to track the location of
deer. ForVHF orGPS based technologies, detection is limited
to animals equipped with devices as they do not track the

65944
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-6096-4571


J. Chen et al.: Deer Crossing Road Detection With Roadside LiDAR Sensor

non-controlled animals. On the other hand, it is not practical
to deploy the detecting devices on all animals. Previous
studies [3]–[10] have applied cameras for wildlife crossing
detection. The limitation of traditional cameras is that they
could not work well during night time or with burning sun
(influenced by the lights) [11]. Thermal cameras (infrared
cameras) were developed to overcome this limitation [12].
The thermal cameras use infrared radiation to form an image.
Thermal cameras can work even in total no-light conditions.
With the advanced thermal imaging and digital imaging pro-
cessing technologies, the speed and position of animals can
be calculated from the images captured by thermal
cameras [13]. Christiansen et al. [14] claimed that their
thermal camera-basedmethod can identify wildlife from non-
wildlife objects with an accuracy of 93.5% in the range
of 3-5m and 77.7% in the range of 10-20m. Out of 20m
(65.6ft), the wildlife could not be successfully detected.
However, those abovementioned studies indicated that ther-
mal cameras can only detect animals in a limited field of
view due to the limited lateral detection range [15]. Radar
sensors can also be used for real-time deer crossing detection.
Viani et al. [16] developed a wildlife road-crossing early-alert
system based on multiple Doppler radar sensors. The results
of the experiment showed that the system can detect moving
objects within 16 meters from the radar with the low time
delay (about 1 second). Similar to thermal cameras, radar also
has a limited field of view. Which means it could not detect
all objects in a 360◦ lateral view [17]. However, it is difficult
to estimate the direction that the deer come from. Therefore,
it is not guaranteed that the deer will show up within the field
of view. To overcome this issue, several radar sensors need
to work together to extend the lateral detection range, which
will increase the total cost at the same time [18].

The 360-degree Light Detection and Ranging (LiDAR)
technology has the capability to scan the 360◦ three-
dimensional surrounding objects with high accuracy, which
can provide an opportunity for real-time deer detection [19].
The LiDAR sensors can work day and night continuously
without influence from different light conditions [20]. Fur-
thermore, the LiDAR sensors can work with GPS together
to match all scanned points to the right location. LiDAR
sensors have been employed for advanced autonomous vehi-
cles for several years to detect road boundary, obstructions
and other road users automatically [20]. A series of algo-
rithms [21]–[23] have been developed for object detection
using on-board LiDAR. The high price of LiDAR sensor
limited the application of LiDAR sensors for many years,
but the price of LiDAR sensors has dropped to the several
thousand dollars level, making it possible for new LiDAR
applications. Recently, roadside LiDAR-enhanced infrastruc-
ture developed by the authors has been a new application of
LiDAR serving connected-vehicles. Inspired by the previous
work and the advantage of the LiDAR [24]–[27], the authors
started to use roadside LiDAR for deer crossing detection.
This paper provides an innovative approach to detecting deer
crossing in real-time with a LiDAR sensor. The detailed

FIGURE 1. Wildlife overpass-data collection site.

data processing algorithms were provided. The field study
showed that the developed procedure can detect the deer in
advance with high accuracy. The limitations of this research
and discussions about further studies were also summarized
in this paper.

II. ROADSIDE LiDAR AND DATA COLLECTION SITE
The cost-effective VLP-16 sensor was selected in this
research with consideration of its performance and price. The
current cost is $3,900 per unit based on the quote provided by
Velodyne-the manufacture of VLP-16. The VLP-16 LiDAR
is applied for wildlife data collection in this research. The
VLP-16 LiDAR can create 360 3D point cloud by using
16 laser/detector pairs mounted in a compact housing. The
housing rapidly spins to scan the surrounding environment
with a range of 100 m (328 ft). The LiDAR has the rota-
tional speed of 5-20 rotations per second, which can generate
600,000 3D points per second. It can cover 360◦ horizontal
field of view and a 30◦ vertical field of view with ± 15◦

up and down. The sensor’s low power consumption (∼8w),
lightweight (830g), compact footprint (∼ 8103mm∗72mm),
and reasonable price make it ideal for roadside deployment
to serve the deer crossing detection.

The pilot site is selected at a wildlife overpass (latitude:
40.907406◦ N, longitude: −114.305021◦ E) crossing along
Interstate 80 in Elko County, Nevada, United States. The
historical monitoring data provided by the Nevada Depart-
ment of Transportation (NDOT) shows that the frequency of
wildlife using this structure to cross the road is high during
migratory periods. This overpass structure was made of con-
crete arches and retaining walls, it is 200’ long and 200’ wide,
and crosses over four lanes and the median. Native fill was
used to backfill atop the overpass to provide a more natural
pathway for movement. The exclusionary fences were built
on both sides of I-80 to funnel wildlife into the entrance of
the overpass. The exclusionary fence is 8’ tall and consists
of a woven wire mesh and support brackets. Figure 1 showed
the pictures of this wildlife overpass.

This wildlife overpass is the first one over an interstate
in Nevada. There is a fence deployed in the middle of the
south end of the overpass, which is used to block livestock
movements but will allow deer to pass. The LiDAR sensor
was installed at the south end (near the middle of the fence) of
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the overpass. The LiDAR sensor was mounted on a tripod for
temporary data collection and powered by one deep cycle bat-
tery of the recreational vehicle (RV). The height of the LiDAR
sensor should not be too high or too low since the vertical field
of view only has ± 15-degree up and down range. Addition-
ally, the location of the installation should allow the LiDAR to
detect the deer on the road as far as possible. The approximate
height of the LiDAR location is 5.5ft above the ground. The
rotation speed of the LiDAR sensor was set as 10Hz, which
allowed the sensor to obtain one data frame every 0.1 seconds.
The data collection time was from 5:00 pm 3/2/2017 to
9:00 am 3/4/2017 as historical data showed that the frequency
of deer using this structure was high in early March every
year. A laptop was connected to the LiDAR sensor and
used to process the data collected by the sensor. To evaluate
the results of LiDAR data processing, a 360◦ camera was
also set up near the sensor to help collect the movement of
wildlife.

III. DEER DETECTION ALGORITHM
A new method has been developed to detect deer crossing
from the LiDAR sensor. This algorithm contains three main
parts: background filtering, object clustering, and object
classification.

A. BACKGROUND FILTERING
The background filtering serves as the first step and basis
to enhance the accuracy and computation efficiency of the
subsequent data processing steps. The background filtering
step needs to exclude background points (e.g., trees, ground
points) but keep deer and vehicle points as much as possible.
The challenge for background filtering is that the location
and number of background points are not the exact same
in different frames because of LiDAR vibration or dynamic
moving points such as tree branches. Therefore, it is not accu-
rate to calculate the location of background points by simply
using one framewithout any deer and vehicles. A background
filtering method named 3D density statistic filtering (3D-
DSF) was developed to exclude the background [28]. The
3D-DSF method can be elaborated into four major parts:
frame aggregation, points statistics, threshold (TD) learning,
and real-time filtering. Figure 2 illustrates the flowchart of
background filtering.

In the frame aggregation part, the algorithm firstly overlaps
multi frames collected by the LiDAR sensor into one 3D
space based on their coordinates. The recommended number
of frames for aggregation is between 1500 and 3000 by
considering the accuracy and time cost [25]. In the points
statistics step, the 3D space generated by the aggregated
frames can be chopped into small cubes. The recommended
side length of the cube is 0.05 cm. The practice showed that
the effective detection range of VLP-16 is about 50-60 m,
which is much shorter than 100 m claimed by the manu-
facturer. Therefore, only areas within a 60 m distance from
LiDAR is considered as the region of interest (ROI). Then
a 3D array is created to represent each cube in 3D space.

FIGURE 2. Flow chart of 3D-DSF.

The number of points in each cube can be calculated. With
a pre-defined TD, each cube can be classified as back-
ground or non-background. The calculation of TD is based
on the distribution of point density of the cubes in the space.
There are two major factors that influence the distribution
of points in the space. The first one is the distance from the
object to LiDAR. In general, the number of points decreases
with the increasing distance between the object and LiDAR.
The whole space in the ROI is divided into several small
parts based on their distance to LiDAR: 0-5 m, 5–10 m,
10–20 m, 20–30 m, 30–40 m, and longer than 40 m. So differ-
ent TDs will be provided for different small parts. The second
influencing factor is the existing of moving objects (deer or
vehicles) in the ROI. Figure 3 shows the frequency of point
density in each cube within 5 m away from LiDAR under two
different scenarios after frame aggregation. It is shown that
the existence of moving objects can increase the number of
cubes with low point density. In other words, the deer or vehi-
cles generate low-density cubes. If there are moving objects,
the slope of the curve is smooth (Figure 3a). If no moving
objects shown in the scene, the slope of the curve is uneven
(Figure 3b).

Therefore, TD can be identified by Equation 1.

Slope =
Fi − Fi−1
Ni − Ni−1

(1)

Ni is the ith number of points per cubic (from lowest to high-
est). Fi is the frequency of the ith number of points per cube.
When the slope firstly becomes 0 or positive, the frequency
of the number of points per cube in Equation 1 (N) is used
as TD.

The background matrix can be created to represent the
location of the background using the TD learned in the last
step. For real-time background filtering, each frame collected
by the LiDAR sensor will be transferred into a 3D matrix
and compared with the matrix representing the background
points. Any points found in the background matrix is then
excluded from each frame.
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FIGURE 3. Frequency distribution of cubes with different number of
points. (a) With moving objective. (b) Without moving objective.

B. OBJECT CLUSTERING
After background filtering and lane identification, there are
only deer/vehicle points left on the road. To detect the deer’s
location, points belonging to one deer need to be clustered
into one group. Then the group can represent the deer and
be continuously tracked. The previous study also showed
that the point density decreases with the increasing distance
to LiDAR. To give drivers enough time to react, the algo-
rithm must detect the deer in advance, which means the deer
should be identified in an extended range. There are many
different algorithms available for object clustering, including
k-means clustering, fuzzy clustering, and density-based clus-
tering [29]–[31]. Density-based clustering is very suitable
for vehicle clustering in LiDAR data as the point density of
vehicles is much higher compared with other areas in the
space. The density-based spatial clustering of applications
with noise, also known as DBSCAN, is very effective to
cluster density related points in the space. Another advantage
of DBSCAN is this algorithm does not need to know how
many vehicles are on road in one frame. DBSCAN can learn
the number of clusters automatically [29]. The DBSCAN
algorithm requires 2 parameters – epsilon (ε), which specifies
how close points should be to each other to be considered a
part of a cluster; and theminimum number of points (MinPts),

FIGURE 4. Frequency distribution of cubes with different number of
points. (a) 15.548m: 23 points, (b) 21.982m: 9 points.

which specifies how many neighbors a point should have
to be included into a cluster. This paper applied DBSCAN
for wildlife clustering after background filtering. Due to the
angles of LiDAR laser beams and shape/size of deer and
vehicles, the numbers of 3D points of deer and vehicles are
different even at the same distance from the sensor. Compared
to vehicles, deer are more difficult to detect with fewer points
at a far distance. If an object is located near the LiDAR, inten-
sive data points are collected and give a fine description of the
object; if an object is far away from the LiDAR, only sparse
data points are collected, especially for deer. Figure 4 shows
the total number of 3D points of one deer located at different
distances from the 16-line LiDAR.

There were only 9 points of one deer with the distance
of 21.9 meters away from the LiDAR (Figure 4b), while the
same deer collected 23 data points at 15.5 meters (Figure 4a),
respectively.

Because of these features of roadside LiDAR data, it is
difficult to obtain accurate clustering results by using a
fixed MinPts value and searching radius in the traditional
DBSCAN algorithm. The MinPts value and searching radius
should be adjusted at different distances from the LiDAR
sensor [32]. A DBSCAN-based clustering algorithm with
adaptive MinPts values and ε was then developed. The selec-
tion of ε should consider the vertical angles between the laser
beams of the LiDAR. This means that the searching radius
should be higher than or equal to the max vertical distance
between the beams to make sure the same object will not be
divided into sub-objects in the vertical direction. Then the
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vertical height between two adjacent points can be calculated
using Equation 2.

H = 2d∗tan(θ/2) (2)

where H is the vertical height between two adjacent points;
d is the horizontal distance of the points to LiDAR; θ is the
vertical angle of the LiDAR. The vertical angle of VLP-16
is 2◦.

At a 25m distance, the vertical height between two adjacent
points is H = 2d ∗ tan (θ /2) = 2 ∗ 25 ∗ tan (2◦ /2) =
0.8725m ≈ 0.8m, so in theory, the deer (an adult deer taller
than 0.8 meter) within 25m from the LiDAR can be detected
successfully. However, this may be an issue when there
are two deer close to each other (distance less than 0.8m).
The fixed ε will cluster two deer close to each other into
one large group. Therefore, the horizontal distance between
two adjacent points scanned by the same laser beam is
also considered. The horizontal angular resolution (α) of the
VLP-16 is 0.2◦ with 10Hz. The horizontal distance between
two adjacent points collected by the same laser can be
obtained by Equation 3. This distance is the minimal search-
ing radius in the horizontal direction for clustering point A
and point B into the same cluster.

L = 2d∗sin(α/2) (3)

where L is the horizontal distance between two adjacent
points collected by the same laser (meters); d is the distance
between point and LiDAR sensor (meters); α is the horizontal
angular resolution of LiDAR sensor.

The adjusted method uses different radii in the vertical
direction and the horizontal direction and generates an ellip-
soid searching space, which can separate points of two deer
close to each other. The lengths of the semi-major axis and
semi-minor axis were chosen based on the vertical height
H and horizontal distance L. The MinPts values were esti-
mated based on the maximal number of points collected from
the searching ellipsoid. For an ellipsoid with a semi-major
axis (R1) and a semi-minor axis (R2), the maximal number of
points (TP) that can be collected is approximately calculated
by the Eqs. (4) - (6). When the laser beams shoot the ellipsoid
perpendicularly, the number of points reaches maximum and
the ellipsoid can be treated as an oval.

If an oval model is retained, the model has difficult to clus-
ter the points between two ovals since the space could not be
fully covered by the ovals. The oval was first approximately
considered as a rectangle (size: 2R1∗2R2). The total number
of lasers beams shoot on the rectangle is

NL = floor(
2R1
H

)+ 1 (4)

The total number of points from each laser within the
rectangle area is

NP = floor(
2R2
L

)+ 1 (5)

Therefore,

TP = [floor(
R1

dtan
(
◦

2

) )+ 1] [floor(
R2

dsin
(
180◦∗f∗n

N0

) )+ 1]

∗
πR1R2

2R1∗2R2

=
π

4
[floor(

R1

dtan
(
◦

2

) )+ 1] [floor(
R2

dsin
(
180◦∗f∗n

N0

) )+ 1]

(6)

where TP is the maximal number of points. N0 is the total
number of points per second. f is the rotation frequency of
LiDAR sensor (Hz). n is the number of laser pairs. d is the
distance between point and LiDAR sensor (meters). R1 is
the semi-major axis of the ellipsoid (meters). R2 is the semi-
minor axis of the ellipsoid (meters). θ is the vertical angular
resolution of LiDAR sensor. Considering the angles between
LiDAR laser beams and objects in real situations, the total
number of points of an object is equal to or less than the
calculated TP values. 40% of the TP value was selected as
the MinPts value based on field data analysis.

C. OBJECT CLASSIFICATION
After object clustering, it is necessary to distinguish different
types of objects. In this paper, the target of classification
is to classify the object into three different groups: deer,
pedestrian, and vehicle. This step can make sure vehicles and
pedestrians will not be identified as deer. Appropriate fea-
tures are very pivotal for object classification algorithms. For
LiDAR data, the available data is point distribution (object
shape). Though intensity is also reported in the point cloud,
the practice shows that it is unstable and changes between
different objects subject to different reflecting strength and
the angles between objects to LiDAR. Therefore, this paper
used features representing the shape for object classification.
Inspired by the previous work [33], [34], this paper consid-
ered the following features:

• Object height in LiDAR data

It is assumed that objects move parallel along the x-y plane.
The value in z-axis is the height of the object. The object
height in LiDAR data may be shorter than the height of the
object in the real world (consider the vertical angle of the laser
beams).

• Object length in LiDAR data

All points were projected to the 2D space (x-y plane). Then
the object length can be roughly calculated using Equation 7.

L = max(
√
(x2i + y

2
i ) (7)

where L is the length of the object; i=1: n, n is the number
of total points in the object; x is x-value of the point, y is the
y-value of the point; The location of the LiDAR in the local
coordinate is (0, 0).
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FIGURE 5. Point distribution characteristics of one deer.

FIGURE 6. Point distribution characteristics of one pedestrian.

• Nearest distance from object points to LiDAR
The nearest distance can be calculated using Equation 8.

D = min(
√
(x2i + y

2
i+z

2
i ) (8)

where D is the nearest distance from the points group to
LiDAR; i= 1: n, n is the number of total points in the object;
x is x-value of the point, y is the y-value of the point, z is the
z-value of the point; The location of the LiDAR in the local
coordinate is (0, 0, 0).
• Number of points
• Primary direction of points distribution

We compare the length and height of the objects. It can be
found that for deer and vehicles, the length is larger than
the height, while for pedestrian, the height is larger than
the length (for adult only). Therefore, we use Equation 9 to
represent the direction of points distance. This feature can be
very helpful to distinguish deer and pedestrians.

Diff = L− D (9)

where Diff is the difference between length and height; L is
the length of the object; D is the height of the object. If Diff
> 0, it means the primary direction is along the x-y plane and
if Diff < 0, it means the primary direction is along z-axis.

Figure 5∼Figure 7 showed that the point distribution
characteristics of deer, vehicle and pedestrian are different
from each other. Figure 5 showed an example of the fea-
ture selection of one deer. The height of the deer in the

FIGURE 7. Point distribution characteristics of one vehicle.

LiDAR is 1.08m. The length of the deer is 1.23m. The num-
ber of points in this cluster is 22. Diff of the deer is 0.15
(1.23− 1.08 = 0.15). The primary direction is along the x-y
plane.

Figure 6 showed an example of the feature selection of
one pedestrian. The height of the pedestrian in the LiDAR
is 1.5m. The length of the pedestrian is 0.67m. The number
of points in this cluster is 145. Diff of the pedestrian is−0.83
(0.67− 1.5 = −0.83). The primary direction is along z-axis.
Figure 7 showed an example of the feature selection of one

vehicle. The height of the vehicle in the LiDAR is 1.4m. The
length of the vehicle is 4.5m. The number of points in this
cluster is 164. Diff of the vehicle is 3.1 (4.5 − 1.4 = 3.1).
The primary direction is along the x-y plane.

It should be noted that the deer and vehicle/pedestrian data
were collected separately as it was not easy to capture the
event that deer were crossing the road while vehicles were on
the road. The vehicle data were collected by the LiDAR sen-
sor deployed near the wildlife overpass on the I-80 freeway
and the pedestrian data were collected by the LiDAR sensor
deployed at several urban intersections in Reno, Nevada.
A total of 157 pedestrian records, 419 vehicle records (includ-
ing 202 passenger cars, 103 bus, and 114 different types of
trucks) were generated and manually marked. For the deer
records, only 8 deer were collected. To expand the sample
size of the deer, we extracted the information of the deer
at various locations (for the same deer, the detected length,
height, number of points et al. changed at different frames).
Therefore, a total of 1,359 deer records were generated (from
the trajectories of eight deer).

A lot of algorithms have been developed for object clus-
tering, including naive Bayes classifier (NB) [35], random
forest classifiers (RF) [36], K-nearest neighbor classification
(KNN) [37], Support VectorMachine (SVM) [38], and neural
network [39]. Each method has its own strengths and weak-
nesses regarding accuracy, performance, and ease of use.
In this paper, we compared the performance of RF, NB, and
KNN considering the ease of use. The brief description of the
three methods was introduced as follows:
• RF is an ensemble of multiple trees. The RFworks better

than single decision tree because a single decision tree
may be prone to a noise, but the aggregate of many
decision trees can reduce the effect of noise and give
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TABLE 1. Confusion matrix.

more accurate results. The training algorithm for ran-
dom forests applies the general technique of bootstrap
aggregating, or bagging, to tree learners. After training,
predictions for unseen samples x’ can be made by aver-
aging the predictions from all the individual regression
trees on x’ [40], [41].

• NB is based on the assumption that each feature
is statistically independent, the probability density
function (pdf) that characterizes the object class
is modeled as the product of each feature-based
pdf [42], [43].

• KNN is an instance-based classification method. An
object is classified by a majority vote of its neighbors,
with the object being assigned to the class most common
among its k nearest neighbors [44].

The confusion matrix of the three methods is documented
in Table 1.

The results show most objects are classified to their
corresponding group correctly, except for few mis-classified
ones. The confusion matrix showed that the most com-
mon mis-classified type was pedestrian ↔ vehicle (wrong
classification between vehicle and pedestrian). By manually
checking the data, it was found that the features of a few
pedestrians were significantly different from the others when
the pedestrian was carrying big items or the pedestrians was
running. Under those situations, the primary direction of

TABLE 2. Performance comparison of RF, NB, and KNN.

point distribution and/or the object length were different from
those of the normal walking pedestrians.

Table 2 summarizes the performance of different algo-
rithms. It is shown that all the three algorithms can pro-
vide high accuracy (more than 98%) of object classification.
RF has a slightly higher accuracy (99.8%) compared to the
other twomethods. Therefore, RF is recommended to be used
for object clustering in this paper.
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FIGURE 8. Before-after background filtering. (a) Before background
filtering. (b) After background filtering.

IV. RESULTS OF DEER CROSSING DETECTION
The results of data processing showed that eight deer crossed
the road using the overpass in the morning of 3/3/2017,
from 6:45:36 am to 6:47:46 am. These deer moved in a
group and were all detected by the LiDAR. Since the deer
crossing occurred in the early morning, the 360◦ camera did
not provide a clear record for this movement limited to the
insufficient light condition.

After obtaining the location of the background points,
the 3D-DSF only needs about 100 ms to exclude the back-
ground, which can serve the real-time data processing task.
Figure 8 demonstrates one frame before and after background
filtering collected at the wildlife overpass.

In this frame, there were 13,561 points in the raw data
(Figure 8a). After background filtering (Figure 8b), only
30 points were left in the space, which meant that 99% of
background points were successfully excluded. At the same
time, more than 94% of deer points were kept after back-
ground filtering. Table 3 shows the details of the before-and-
after statistical results. The statistical results showed that the
3D-DSF can exclude the background points effectively.

After object clustering and classification, the deer can be
detected. Figure 9 showed the example of deer detection. It is
difficult to tell how many deer in the raw data (Figure 9a),
with the developed algorithm, eight deer were identified by
the LiDAR sensor (Figure 9b).

In this example, all objects were detected as deer by RF
correctly. As mentioned before, in some frames, only six or
seven deer were detected as some deer appear to have been

TABLE 3. Performance of 3D-DSF.

FIGURE 9. Captured deer crossing activity. (a) Raw LiDAR data.
(b) Clustered results.

FIGURE 10. Trajectories of deer.

blocked by the other deer or the middle fence, which may not
be successfully captured by LiDAR sensor. After collecting
all the points of deer, the trajectories of the deer group can be
generated, as illustrated in Figure 10.
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TABLE 4. Detection range.

It is shown that deer moved from the west to the east
direction in a group. The video uploaded to YouTube
(https://www.youtube.com/watch?v= qnvdSN6iusI&feature
=youtu.be) showed that_deer changed their moving direction
a little bit when approaching the middle fence. While deer
were gathered near the fence preparing to jump, some deer
were blocked by the others or the middle fence. As a result,
the beam of the LiDAR sensor could not detect all deer in
some frames. Therefore, there are some data gaps near the
fence. Table 4 shows the distance of the deer to LiDAR when
it is first detected.

The detection range varies in relation to different distances
and angles from the LiDAR. The average detection range
was 30.72 m from the LiDAR sensor. The max effective
detection range obtained by the algorithmwas 37.74m.While
deer can be seen in the LiDAR video outside of the 37.74m
max detection range, the algorithm was unable to identify
those points as deer. The detection range can be extended
by deploying and integrating multiple LiDAR sensors in the
detection area. In theory, once one deer is detected, the light
on the sign can be trigged to flash to warn the drivers. This
can give drivers enough time to slow down.

The algorithm has been implemented in Matlab and was
deployed on a Dell desktop equipped with an Intel Core
i7-4790 CPU (3.60GHz) and 16 GB of RAM. After obtaining
the location of the background-3D matrix, the time used to
identify deer from one frame is about 200ms, which can meet
the requirement of real-time data processing.

V. DISCUSSION
There is still a lot of room for improvement for deer detection.
This paper did not provide a reliable algorithm for deer
tracking. For safety application, it may not be necessary to
track the same deer. If one deer is detected by the LiDAR,
the warning system can be activated. When all deer were out
of the detection range of the LiDAR, the warning system
can be turned off. But for wildlife biology research, it is
interesting to see the detailed movement (speed and location)
of the deer. The blocked deer and deer close to each other
increased the challenge to track the individual deer in a
spare point cloud. The authors applied the Global Nearest
Neighbor (GNN) [45] to track the same vehicles in different
frames in a previous study [25]. The practice using GNN
for tracking deer showed that if the speed of the deer was
high and there was another deer close to it, then the label

might be assigned to another deer incorrectly. If the deer
was completely blocked in one frame, then the label of the
deer was discarded. Considering the challenge in tracking
the blocked deer and deer group, the speed calculation of the
deer is not accurate. The GNN algorithm could not provide
reliable speed and location for these deer blocked by the
others. Therefore, this paper did not analyze the trajectory
of the individual deer. Multi-LiDAR installed in different
directions can be an option to improve the accuracy. If multi-
LiDARs are installed in different directions, even the deer is
not visible in one LiDAR, it may be visible in other LiDARs.
Since the multi-LiDARs can increase the number of points
for the objects, the shape of the deer in LiDAR data can be
clearer [46].

In this pilot field test, the sensor was powered by the battery
which needs to be charged every day. In the future, it is recom-
mended to charge the battery using solar energy which will
dramatically reduce maintenance costs. The wildlife detec-
tion algorithm in this paper provided the method to distin-
guish between wildlife and vehicles. Additionally, the speed
can be used to distinguish deer and vehicles as the speed
limit on roads is higher compared to the speed of typical
deer movements. A more detailed study with a longer data
collection period is expected to be conducted to capture
wildlife crossing the road, which can be used to evaluate the
effectiveness of the wildlife and vehicle division method.

To further improve the accuracy of object classification,
the lane identification may be used to distinguish deer group
and a vehicle. The lane identification can generate the bound-
aries of the road. With the assumption that vehicles moving
on the road and deer moving off the road, the deer group
may be distinguished from a vehicle. Subject to the limited
data, this paper did not implement this into the procedure. For
small animals like a hare or squirrel, the LiDARmay not scan
enough points for clustering. Therefore, the LiDAR roadside
is only effective to detect larger animals such as deer or horse
detection. The main purpose of this research is to serve traffic
safety. So small animals should not be a problem for traffic
safety. Considering the limitation of the current algorithms
and the challenge in deer tracking using roadside LiDAR,
it is suggested to use LiDAR as auxiliary equipment, working
together with cameras for wildlife detection.

VI. CONCLUSIONS
This paper provides a new and cost-effective approach to
detecting deer crossing road with 360◦ LiDAR sensors. The
procedure developed in this paper includes background filter-
ing, object clustering, and object classification. The field test
shows that the algorithm can detect deer with a max radius
of 37.74m (124ft) around the LiDAR sensor. This real-time
information can be used to trigger flashing warning signs
to provide warning information to drivers. This innovative
data collection approach can also be used to analyze wildlife
behavior. Considering the different crossing structures built
along I-80, this method can also be deployed along different
crossing structures to evaluate the effects of the different
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structures with the understanding of wildlife-crossing pat-
terns [46]. It should be mentioned that the object occlusion
issue can greatly influence the accuracy of deer detection and
tracking. An easy and effective solution is to install another
LiDAR in different directions. However, different LiDARs
generate the point cloud in their own local coordinate system.
How to integrate point cloud from different LiDAR sensors
is another topic for future studies [47]. The wildlife infor-
mation and vehicle trajectories could even be integrated and
broadcasted through the connected vehicle communication
system to support future autonomous and connected vehicles.
It is best suited for targeted areas rather than being deployed
at regular intervals along a large stretch of road considering
the current high cost of LiDAR sensors. For instance, this
technology would be useful at the ends of fencing. This
research can be considered as a first step to develop the real-
time deer crossing warning system.

More field test is expected to be conducted to further evalu-
ate the proposed algorithm. The LiDAR sensor does not work
well in some environments such as rain, snow, fog, and dust.
This research did not test the performance of the algorithm
under bad weather situations limited to the unavailable data.
This paper did not test the minimum size of the deer that can
be detected by our algorithm also due to the unavailable data.
This research combined the basic models for the real-time
deer crossing detection. The tradeoff here is that the advanced
models usual have high computational load to achieve the
high accuracy. Our proposed method has low computational
load and can achieve a relatively high accuracy (though could
not reach the global best). Testing the performance of other
advanced detection models will be investigated in the next
step.
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