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ABSTRACT

Entry inhibitors represent a potent class of antiretroviral drugs that target a host cell protein, CCR5, an HIV-1 entry coreceptor, and
not viral protein. Lack of sensitivity can occur due to preexisting virus that uses the CXCR4 coreceptor, while true resistance occurs
through viral adaptation to use a drug-bound CCR5 coreceptor. To understand this R5 resistance pathway, we analyzed >500 envelope
protein sequences and phenotypes from viruses of 20 patients from the clinical trials MOTIVATE 1 and 2, in which treatment-experi-
enced patients received maraviroc plus optimized background therapy. The resistant viral population was phylogenetically distinct and
associated with a genetic bottleneck in each patient, consistent with de novo emergence of resistance. Recombination analysis showed
that the C2-V3-C3 region tends to genotypically correspond to the recombinant’s phenotype, indicating its primary importance in con-
ferring resistance. Between patients, there was a notable lack of commonality in the specific sites conferring resistance, confirming the
unusual nature of R5-tropic resistance. We used coevolutionary and positive-selection analyses to characterize the genotypic determi-
nants of resistance and found that (i) there are complicated covariation networks, indicating frequent coevolutionary/compensatory
changes in the context of protein structure; (ii) covarying sites under positive selection are enriched in resistant viruses; (iii) CD4 bind-
ing sites form part of a unique covariation network independent of the V3 loop; and (iv) the covariation network formed between the
V3 loop and other regions of gp120 and gp41 intersects sites involved in glycosylation and protein secretion. These results demonstrate
that while envelope sequence mutations are the key to conferring maraviroc resistance, the specific changes involved are context de-
pendent and thus inherently unpredictable.

IMPORTANCE

The entry inhibitor drug maraviroc makes the cell coreceptor CCR5 unavailable for use by HIV-1 and is now used in combination an-
tiretroviral therapy. Treatment failure with drug-resistant virus is particularly interesting because it tends to be rare, with lack of sensi-
tivity usually associated with the presence of CXCR4-using virus (CXCR4 is the main alternative coreceptor HIV-1 uses, in addition to
CD4). We analyzed envelope sequences from HIV-1, obtained from 20 patients who enrolled in maraviroc clinical trials and experi-
enced treatment failure, without detection of CXCR4-using virus. Evolutionary analysis was employed to identify molecular changes
that confer maraviroc resistance. We found that in these individuals, resistant viruses form a distinct population that evolved once and
was successful as a result of drug pressure. Further evolutionary analysis placed the complex network of interdependent mutational
changes into functional groups that help explain the impediments to the emergence of maraviroc-associated R5 drug resistance.

Human immunodeficiency virus type 1 (HIV-1), the caus-
ative agent of human AIDS, uses two main immune cell

surface proteins, CD4 and a chemokine coreceptor, to enter
cells. Pairs of viral envelope proteins (the heavily asparagine
[N]-glycosylated gp120-gp41 heterodimers) form trimeric
complexes anchored on the virus surface through gp41, and
these facilitate entry into cells (1). CD4 receptor binding initi-
ates virus-cell membrane interaction, and the coreceptors
CCR5 (C-C chemokine receptor type 5) and CXCR4 (C-X-C
chemokine receptor type 4) further facilitate viral entry into
cells. HIV-1 that exclusively uses CCR5 is termed R5 tropic,
whereas HIV-1 that exclusively uses CXCR4 is termed X4
tropic; viruses that use both coreceptors are termed dual or
mixed tropic (R5X4) (2). Members of the CCR5 antagonist
drug class, also known as HIV-1 entry inhibitors, such as mara-
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viroc, are negative allosteric modulators and prevent HIV-1
from entering the host cell (3).

For most drugs, a defined set of point mutations in viral genes
are associated with resistance to a specific drug (4). Lack of sensi-
tivity to maraviroc can arise in two ways. In the first mode, sup-
pression of maraviroc-sensitive R5 viruses revealed preexisting
CXCR4-using variants (5, 6). As maraviroc has no direct impact
on strains using the CXCR4 coreceptor, patients are routinely
screened for the presence of CXCR4-using viruses prior to treat-
ment (tropism testing). The aim is to distinguish a viral popula-
tion that is R5 from a viral population harboring either X4 or
R5X4 variants. In the second mode, true resistance arises, where
R5-tropic viruses adapt to use the maraviroc-bound CCR5 core-
ceptor (7, 8). Previous studies have documented that R5-tropic
resistance to maraviroc is associated with point mutations in vari-
able region 3 (the V3 loop) of gp120 (9, 10). However, no shared
(and therefore predictable) set of sites of amino acid changes that
conferred resistance in different patients have been reported. In
addition, recent evidence indicated that R5 populations, as a con-
sequence of mutations outside the V3 loop either in gp120 or in
gp41, can also develop resistance (11, 12). Given the structural
heterogeneity and the highly N-glycosylated nature of HIV-1’s
envelope, such that specific compensatory/coevolutionary
changes are required to maintain protein stability and full func-
tionality under drug selective pressure (13–18), it is not surprising
that maraviroc-associated resistance is more diverse than that to
other drug classes.

In this study, we investigated the emergence of resistance to
maraviroc associated with use of the drug-bound CCR5 receptor
by R5-tropic viruses. We analyzed full envelope sequences cloned
from viruses obtained from 20 patients (17 maraviroc treated and
3 treated with placebo) enrolled in the MOTIVATE 1 and 2 clin-
ical trials (19), a sample of those who failed without evidence of a
CXCR4-using virus population out of a total of 1,049 patients.
Experimental phenotypic characterization using the Monogram
PhenoSense Entry assay was performed on these sequences to es-
tablish whether they were associated with a sensitive or resistant
phenotype. This determined whether they were or were not able to
enter the cell when maraviroc was bound to the CCR5 receptor,
i.e., were susceptible or resistant, respectively. Analyzing these
data, we confirmed the unusual nature of R5-tropic maraviroc
resistance, and by performing evolutionary and structural analy-
ses, we found complicated coevolutionary dynamics in maravi-
roc-sensitive and -resistant viruses. Specifically, we observed
that there were strong coevolutionary changes between sites
involved in CD4 binding, V3, sites in the potential N-linked
glycosylation motifs (PNGMs) (N-X-S/T-X, where X repre-
sents any amino acid except proline [20]), and the signal pep-
tide. These changes were associated with the important physi-
cochemical properties of the covarying amino acids:
hydrophobicity, molecular weight, and structure and/or func-
tion of the envelope protein. Collectively, our results explain
the unpredictable nature of the evolutionary changes associ-
ated with the emergence of resistance to maraviroc in HIV-1’s
envelope protein.

MATERIALS AND METHODS
Data. In the clinical studies MOTIVATE 1 and 2, 1,049 patients were
enrolled and screened for R5-tropic virus. They were treatment-experi-
enced patients with an HIV-1 RNA level of at least 5,000 copies/ml at

screening who had received three classes of drugs and/or were infected
with virus resistant to two drug classes. A number of these patients sub-
sequently experienced therapy failure with an R5-tropic viral population.
Virus from these patients was assessed using the PhenoSense Entry Assay.
The HIV-1 envelope coding sequence was amplified from virus samples
by PCR and ligated into a pCXAS expression vector to create an envelope
expression vector library. Virus particles were produced by transfecting
HEK293 cells with the purified envelope expression vector library and an
HIV-1 genomic vector lacking the envelope-encoding region and con-
taining a firefly luciferase gene. The ability of the pseudoviruses to infect
U87 CD4� cells overexpressing CCR5 in the presence or absence of vari-
ous concentrations of inhibitor was assessed by measuring luciferase-gen-
erated relative light units (RLU). If increasing concentrations of maravi-
roc failed to give 100% inhibition and a plateau was observed, then the
maximal percentages of inhibition (MPI) were estimated visually from the
inhibition curve (7). MPI values of less than 95% were considered resis-
tant (7). Resistant samples were further analyzed by clonal analysis. One
hundred to 200 individual env clones from each sample were prescreened
for viability and tropism in single-well cultures of CCR5- or CXCR4-
expressing cells. A number of viable clones from 20 patients were selected
for further phenotypic and genotypic analysis.

Full-length clonal envelope sequences were obtained before treatment
and at one or more on-treatment time points from patients with viral
loads of �500 copies/ml. An average of 15 sensitive and 12 resistant clonal
sequences were obtained per patient. In addition to optimized back-
ground treatment, 17 patients (1 to 17) were given maraviroc, and 3 pa-
tients (18 to 20) were from the placebo-treated arm. All samples were
confirmed R5 tropic using the original Monogram Trofile assay. RLU
values for CCR5 entry efficiency were retrieved from the assay for each
clone.

An initial examination of the relationship between gp160 sequence
identity and RLU scores, regardless of drug susceptibility, revealed that
identical sequences varied in their CCR5 RLU values by up to 500,000
RLU. In addition, V3 loops that were identical between clones were asso-
ciated with RLU values that differed by up to 3 million RLU. This suggests
that the individual amino acid sequence of the V3 loop or the full gp160
does not have a direct correlation with the efficiency value for CCR5 usage
(represented by the RLU). Despite this discrepancy, all the sequences in
this study represent clones from CCR5-using viruses (see Fig. S1 in the
supplemental material).

The MPI score was not directly related to the individual amino acid
sequence of either the full gp160 or the V3 loop, with identical sequences
exhibiting different MPI scores (data not shown). To account for poten-
tial conflicts in sequence analysis resulting from these ambiguities, we
used the pooled MPI scores (calculated by averaging the MPI scores for all
the clones sampled from a patient) to group sensitive and resistant se-
quences, as they clustered together in all cases in the phylogenetic analysis.
Due to a lack of scores of pooled resistant MPI, patient 17 was excluded
from the coevolutionary analysis, because an imbalance of sequence num-
bers might hamper this type of analysis when comparing the results be-
tween sensitive and resistant viruses (21). For the between-patient analy-
sis, this resulted in 182 and 181 sequences for sensitive and resistant
viruses, respectively, in the group of patients receiving maraviroc, while in
the placebo arm, it resulted in 34 sequences for the two time points (before
and after treatment).

Sequence alignment. Amino acid sequences were aligned using
MUSCLE (22), and this alignment was used as a template for aligning
nucleotide sequences with respect to the reading frame. Alignments were
checked manually using Jalview (23), and Jalview was used to calculate the
consensus sequences for between-patient and within-patient alignments
(23). Due to alignment ambiguity, portions of the gp160 sequence align-
ments were removed. These positions corresponded to (HXB2 amino acid
numbering) 132 to 149, 151 to 153, 186 to 190, 352 to 355, 396 to 413, and
460 to 465. Sequence alignments are available upon request.
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Recombination analysis. Recombination plays an important role in
HIV evolution, which can also lead to obscure results in phylogenetic and
downstream analyses (24). To account for this, we performed recombi-
nation analysis using Recco software, which employs an implementation
of a dynamic programming algorithm for detecting likely parental se-
quences and breakpoints from within an alignment by finding a path that
minimizes costs based on mutations and putative recombination (25).
For each patient, sequences were pooled, and 1,000-replicate permuta-
tions were performed to assess the reliability of recombination between
individual strains within a patient. This provides P value support for re-
combination for an alignment, as well as for individual breakpoints. The
nucleotide sequence alignment for each patient was analyzed individually,
and sequences that were identified as being likely recombinants (P �
0.05), were further investigated. Of particular interest were recombinant
sequences that had resistant and sensitive parental sequences (see Re-
sults).

These recombinant sequences involving sensitive and resistant viruses
were removed from the phylogenetic and positive-selection analyses. A
resistant virus from patient 10 (sequence number 18) that clustered with
sensitive viruses in the initial phylogenetic analysis (not shown) was ana-
lyzed with RDP (26) and found to exhibit evidence of recombination and
so was also removed.

Molecular phylogenetic analysis. BEAST v1.8.1 was used to construct
dated trees and to infer the variance of the effective population size over
time using Bayesian skyline plots (27, 28). Separate trees were constructed
for each patient from nucleotide sequence alignments (excluding the re-
combinant sequences detected as described above), using an HKY model
of nucleotide substitution with gamma-distributed rate heterogeneity, a
proportion of invariant sites, an uncorrelated lognormal relaxed molecu-
lar clock, and a Bayesian skyline coalescent tree prior with tip heights set to
the number of days since the trial began. BEAST XML files were created
using BEAUTi v1.8.1, and chains were run for 108 states and inspected
using Tracer v1.6. Stepwise maximum clade credibility phylogenetic trees
were created from the BEAST MCMC tree log file with a burn-in of 10%
using TreeAnnotator v1.8.1, and stepwise Bayesian skyline plots were gen-
erated using Tracer v1.6. The BEAST XML files are available upon request.

Coevolutionary analysis. To understand the nonindependent evolu-
tion of amino acid sites in the envelope protein with and without drug
selection, we used the coevolutionary method, CAPS, to detect sites un-
dergoing coevolutionary changes using protein sequences (29–31). This
method uses a strategy to identify structurally and/or functionally impor-
tant covarying sites (inferred to be coevolving) that can be explained by
compensatory physicochemical changes (with negative or positive corre-
lations) (29–31). First, the method normalizes sequences by Poisson dis-
tance in the alignment to minimize the effects of phylogenetic coevolu-
tion. Second, it identifies statistically significant pairs of covarying sites by
comparing a calculated BLOSUM62 score correlation coefficient to a ran-
domly generated distribution (30, 31), where we use a high correlation
coefficient cutoff (� � 0.9) for initial filtering, a small alpha value (0.001),
and 1 million random samples for the statistical test to minimize false
positives. Third, it continues to look for covarying pairs by two important
physicochemical properties in the results: hydrophobicity and molecular
weight. The degree of connectivity in the resulting networks was measured
by calculating the connection coefficient as 2e/(n � [n � 1]), where e and
n correspond to the number of edges and nodes in the network, respec-
tively. Finally, we visualized and analyzed the covariation networks with
all the information associated with nodes and edges in Cytoscape (version
2.8.3) (32, 33). The reference HIV-1 variant HXB2 was used for domain
mapping (http://www.uniprot.org/uniprot/P04578). DOG (version 2.0)
was used to illustrate HXB2 domain structures for covarying sites in the
figures (34).

Prediction of potential N-linked glycosylation sites. The NetNGlyc
1.0 server was used to predict potential N-linked glycosylation sites and
motifs (http://www.cbs.dtu.dk/services/NetNGlyc/). The default cutoff
value 0.5 was used for considering potential N-linked glycosylation sites/

motifs (N-X-S/T-X). In the between-patient coevolutionary analysis,
consensus sequences of sensitive and resistant viruses were used for the
prediction. In the within-patient analysis, consensus sequences from in-
dividual patients were used for the prediction. To understand the signif-
icance of observed glycosylation sites in covariation networks, we used �2

tests with the following equations:

fe �
n

N
(1)

Ei � feNi (2)

X2 �
(Oi � Ei)

Ei
(3)

In equation 1, fe represents the expected frequency of the number of
N-linked glycosylation sites/motifs, n denotes the predicted number of
N-linked glycosylation sites/motifs in the envelope proteins, and N de-
notes the total number of sites in the alignment/consensus sequence. In
equation 2, Ei represents the expected number of N-linked glycosylation
sites/motifs in a given number of covarying sites (Ni), and Oi denotes the
observed number of N-linked glycosylation sites/motifs predicted in a
given covariation network. For a given network i, the �2 test was per-
formed with equation 3 and 1 degree of freedom (at a 95% significance
level). Due to the small number of observed glycosylation sites present in
some cases, we also used Fisher exact tests.

Positive-selection analysis. We used HyPhy to detect positively se-
lected sites (with posterior probability P � 0.95) in sensitive and resistant
viruses by comparing four models: M1 (neutral), M2 (selection), M7
(beta), and M8 (beta and 	) (35, 36). HyPhy used the aligned codon
sequences and the corresponding maximum-likelihood (ML) phyloge-
netic tree. RAxML MPI was used to construct the ML tree with 100 boot-
straps (37). We used ProtTest (with PhyML as its key component) to select
the best-fit amino acid substitution model for the alignment (38, 39).

Nucleotide sequence accession numbers. Sequences were deposited
in GenBank under accession numbers KT452084 to KT452622.

RESULTS
Inference of evolutionary history and recombination analysis.
We inferred evolutionary relationships from the clonal sequence
data sampled before and after treatment (depicted for patient 4 in
Fig. 1; see Fig. S2A and B in the supplemental material for all
patients’ viral phylogenies). In all 17 maraviroc-treated patients,
the overwhelming majority of resistant viruses (second and sub-
sequent time points) form a monophyletic cluster emerging from
the sensitive population (the first time point). Acquisition of R5-
tropic maraviroc resistance is thus clearly associated with the
emergence of resistant variants from the existing susceptible pop-
ulation as opposed to the presence of preexisting (divergent) vari-
ants, as is the case with the emergence of CXCR4-using viruses (5,
6). This de novo emergence of resistant virus was confirmed by
Bayesian skyline analysis, which detected a distinct drop, by up to
a factor of 10, in the genetic diversity, indicating a bottleneck in
the size of the viral population between the time points, confirmed
by reduced HIV-1 RNA concentrations (Fig. 1 shows an example;
see Fig. S2A and B in the supplemental material for all maraviroc-
treated patients’ analyses). Interestingly, a rebound in the genetic
diversity to preresistance levels (again confirmed by viral loads)
was observed in patients 1, 3, 4, 5, 6, 8, 9, 10, 11, and 13 after
resistance developed (see Fig. S2A and B in the supplemental
material). In the three patients from the placebo arm of the
MOTIVATE trials, we found no significant shift of viral genetic
diversity between time points, except for patient 20, who had a
very low CD4 cell count at the starting time point (see Fig. S2C in
the supplemental material). As no maraviroc was present, this
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22.97

21.38

23.96

15.73
109.33

136.5

132.69

139.22
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29.9

110.58

20.44
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A
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Resistant
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FIG 1 Evolutionary analysis. Patient 4 is presented as a representative example. Phylogenetic trees and Bayesian skyline plots for patients 1 to 16 and placebo arm
patients 18 to 20 are presented in Fig. S2A, B, and C in the supplemental material. (A) Bayesian skyline plot showing a sharp drop (blue line) in genetic diversity
as therapy starts, with a rebound occurring as drug resistance develops, which is consistent with the viral-load plot of the patient (red line). The light-blue lines
represent the 95% highest posterior density (HPD) confidence intervals. (B) Phylogenetic tree for patient 4 created with BEAST using a Bayesian skyline
coalescent. The tree tips are calibrated by days into therapy, with the R5-sensitive strains sampled at day 1 in green and the R5-resistant strains sampled at day 57
in red. Patient and sequence numbers are shown at the tip nodes, as well as sampling day and pooled MPI, with the sequence MPI shown in parentheses. The
internal nodes show the ancestral time points in days.
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drop in genetic diversity in patient 20 was presumably associated
with the efficacy of the background treatment. Collectively, this
indicates that the resistance to CCR5 antagonist maraviroc in the
R5 viral population evolves de novo, and unlike CXCR4-using
virus, the associated resistance is not due to an already present
minority population of resistant virus that becomes dominant
under drug selective pressure. Note that, while we cannot discount
a resistant variant being present by chance prior to treatment, our
results are consistent, unlike CXCR4-associated resistance, with
no preexisting resistant population of any significance.

Recco identified 31 and 13 recombinant viruses that were as-
sociated with phenotypically sensitive or resistant viruses, respec-
tively (Fig. 2A). Comparing these, we delimited the regions of the
envelope that confer the respective phenotype by identifying the
regions that showed the highest conservation in either the sensi-
tive or resistant recombinants: V1 to C3 in sensitive and C2 to C3
in resistant sequences (Fig. 2B). This indicates that the Env C2 to
C3 regions, including in particular the V3 loop region, have an
influence on resistance, i.e., the relevant amino acids must be pres-
ent in these regions of the recombinant to confer the respective
phenotype. This recombination analysis result, coupled with the
high number of mutations observed in V2 and V3 and in the C3 N
terminus, indicates that structural shifts in these areas are most
likely involved in HIV-1’s use of drug-bound CCR5.

Mutations in both V2 and V3 have been previously implicated
in coreceptor binding (40–45). As the C3 region is structurally
proximal to the V3 loop, interactions between these domains may
be important for coreceptor recognition or binding. However,
unlike other cases of HIV-1 drug resistance, the sequence posi-
tions in Env associated with R5-tropic resistance differed consid-
erably between patients. Indeed, no identifiable shared sites (or
specific residue changes) were found to be consistently involved in
resistance emergence across all patients. Though sites within V3
were found to be divergent based upon drug susceptibility in most
patients, few of these sites overlapped across multiple patients.
This suggests that the resistance mutations that enable the virus to
use maraviroc-bound CCR5 are not independent and are con-
strained by the need to maintain the structure/function of the
envelope protein.

Coevolution networks within and between patients. To in-
vestigate potential coevolutionary/compensatory changes in Env,
we identified structurally and/or functionally important covary-
ing sites in both gp120 and gp41, which form complicated cova-
riation networks in both sensitive and resistant R5 viruses. In the
coevolution analysis, we focused on covarying sites that could be
associated with hydrophobicity and/or molecular weight covaria-
tion, as these two factors are among the most important for ex-
plaining amino acid contributions to protein structural stability
(46).

We first analyzed data from individual patients and looked for
common patterns that might be shared between patient data sets.
To do this, we identified covarying sites within each of the patient
data sets, combining sequences from the two time points: before
treatment (sensitive) and after treatment (resistant). Eighteen pa-
tients had detectable covariation networks (see Fig. S3 in the sup-
plemental material); the exceptions were patients 4 and 8. In the
18 covariation networks, there were covarying sites in both gp120
and gp41, except for three patients (5, 9, and 10). We observed
seven patients (1, 2, 5, 9, 15, 16, and 17) with V3 loop involvement
in their covariation networks (see Fig. S3 in the supplemental

material). In one patient (patient 1), the signal peptide was in-
volved in within-patient coevolution (see Fig. S3 in the supple-
mental material). Analysis of the sensitive and resistant viruses of
individual patients indicated that there was no statistically signif-
icant difference between the sensitive and resistant viruses in
terms of numbers of N-linked glycosylation sites (paired t test,
df 
 15, Pr(|T| � |t|) 
 0.81). However, the location and number
of glycosylation sites between sensitive and resistant viruses
changed within some patients (patients 2, 5, 9, 11, 13, and 16). All
the patients had their own unique covariation networks, indicat-
ing a patient-dependent coevolutionary profile of the viral popu-
lation. In the placebo arm (patients 18, 19, and 20), there were no
covarying sites involved in the V3 loop (see Fig. S3 in the supple-
mental material).

To further understand the evolution of maraviroc resistance in
individual patients, we analyzed the sensitive and resistant se-
quences separately. Although we detected covarying sites in only
two patients (patients 10 and 13), the results revealed two striking
observations: the identified covarying sites were all in the vicinity
of PNGMs, and the changes in hydrophobicity of these covarying
pairs were negatively correlated in the sensitive viruses, while in
the resistant viruses, they were positively correlated. Note that
molecular weight changes were negatively correlated in both
groups (see Table S7 in the supplemental material).

To identify between-patient patterns of coevolution, we next
combined sensitive and resistant sequences from all 16 patients
identified by their population dynamics (Fig. 2; see Fig. S2A and B
in the supplemental material). The general pattern observed in
individual patients was consistent with the global pattern seen
between patients. Interestingly, considering covarying sites asso-
ciated with hydrophobicity and molecular weight covariation, we
found that both (sensitive and resistant) covariation networks
were enriched with the same number of sites associated with po-
tential PNGMs (15 sites in the sensitive network [�2 
 51.80, P �
0.001; Fisher exact test, P � 0.001] and 15 sites in the resistant
network [�2 
 55.81, P � 0.001; Fisher exact test, P � 0.001]).

In the sensitive R5 viruses, we identified a covariation network
consisting of 130 amino acid sites forming 1,413 covarying pairs
by BLOSUM score covariation (Table 1). This covariation net-
work can be further refined by hydrophobicity and molecular
weight covariation. One hundred three sites forming 295 covary-
ing pairs (with a connection coefficient of 0.056) can be associated
with hydrophobicity covariation, whereas 108 sites forming 319
covarying pairs (connection coefficient, 0.055) can be associated
with molecular weight covariation (Table 1 and Fig. 3A). There
were 81 sites forming 131 covarying pairs (connection coefficient,
0.040) that can be associated with both hydrophobicity and mo-
lecular weight covariation (Table 1 and Fig. 3A). Furthermore,
there were 120 sites forming 483 covarying pairs (connection co-
efficient, 0.067) associated with hydrophobicity and/or molecular
weight (Table 1 and Fig. 3A).

In the resistant R5 viruses, we identified a covariation network
with 125 amino acid sites forming 1,400 covarying pairs in terms
of BLOSUM score covariation (Table 1). After considering hydro-
phobicity and molecular weight, we found 99 sites forming 305
covarying pairs (connection coefficient, 0.063) with hydrophobic-
ity covariation, and for molecular weight covariation, we found
106 sites forming 326 covarying pairs (connection coefficient,
0.058) (Table 1 and Fig. 3B). Combining both hydrophobicity and
molecular weight, we identified 77 sites forming 147 covarying
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Patient 1, Sequence 1 (Day 0, Sensitive)

Patient 1, Sequence 26 (Day 252, Resistant)

Patient 2, Sequence 2 (Day 1, Sensitive)
Patient 2, Sequence 6 (Day 1, Sensitive)
Patient 3, Sequence 11 (Day 1, Sensitive)
Patient 3, Sequence 12 (Day 1, Sensitive)

Patient 3, Sequence 21 (Day 172, Resistant)

Patient 4, Sequence 3 (Day 1, Sensitive)
Patient 4, Sequence 4 (Day 1, Sensitive)

Patient 5, Sequence 4 (Day 1, Resistant)
Patient 5, Sequence 9 (Day 1, Resistant)

Patient 10, Sequence 3 (Day 1, Sensitive)
Patient 11, Sequence 8 (Day 1, Sensitive)

Patient 12, Sequence 22 (Day 86, Resistant)
Patient 12, Sequence 23 (Day 86, Resistant)
Patient 12, Sequence 26 (Day 114, Resistant)

Patient 12, Sequence 27 (Day 114, Sensitive*)

Patient 12, Sequence 30 (Day 114, Resistant)

Patient 12, Sequence 34 (Day 114, Sensitive*)

Patient 12, Sequence 36 (Day 114, Resistant)

Patient 13, Sequence 2 (Day 1, Sensitive)
Patient 13, Sequence 3 (Day 1, Sensitive)
Patient 13, Sequence 5 (Day 1, Sensitive)
Patient 13, Sequence 8 (Day 1, Sensitive)
Patient 13, Sequence 9 (Day 1, Sensitive)

Patient 13, Sequence 20 (Day 113, Resistant)
Patient 13, Sequence 21 (Day 113, Resistant)

Patient 14, Sequence 1 (Day 1, Sensitive)
Patient 14, Sequence 11 (Day 1, Sensitive)
Patient 15, Sequence 4 (Day 1, Sensitive)
Patient 15, Sequence 7 (Day 1, Sensitive)
Patient 16, Sequence 1 (Day 1, Sensitive)
Patient 16, Sequence 14 (Day 87, Sensitive)
Patient 16, Sequence 18 (Day 87, Sensitive)
Patient 16, Sequence 19 (Day 87, Sensitive)
Patient 16, Sequence 24 (Day 87, Sensitive)

Patient 16, Sequence 33 (Day 353, Resistant)
Patient 16, Sequence 34 (Day 353, Resistant)

Patient 17, Sequence 7 (Day 1, Sensitive)
Patient 17, Sequence 8 (Day 1, Sensitive)
Patient 17, Sequence 9 (Day 1, Sensitive)
Patient 17, Sequence 12 (Day 1, Sensitive)
Patient 17, Sequence 24 (Day 41, Sensitive)
Patient 17, Sequence 26 (Day 117, Sensitive)
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FIG 2 Mapping of recombination breakpoints for sensitive-resistant recombinants. (A) Intrapatient recombination between sensitive and resistant sequences
was detected using Recco. The sequenced regions are mapped out relative to the HXB2 reference sequence, with a domain map showing the relative regions. For
each sequence listed, the patient name and sequence number are indicated, as well as the day in therapy and R5 resistance, shown in parentheses. The colors
indicate the parental sequence, with red indicating R5-resistant sequences and green indicating R5-sensitive sequences, separated by probable breakpoint regions,
shown in black. *, sensitive according to unpooled MPI score. (B) Plot indicating the conservation of sensitive (green) and resistant (red) regions in recombinant
sequences.
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pairs (connection coefficient, 0.050) (Table 1 and Fig. 3B). There
were 114 sites forming 484 covarying pairs associated with hydro-
phobicity and/or molecular weight covariation (connection coef-
ficient, 0.075). Moreover, we found that there was positive corre-
lation of hydrophobicity covariation (Spearman’s � 
 0.71, P �

0.0001) in the shared covariation network between sensitive and
resistant sequences from all 20 patients (between-patient analy-
sis). The molecular weight covariation was also positively corre-
lated (Spearman’s � 
 0.86, P � 0.0001). Moreover, in the placebo
arm (patients 18, 19, and 20), both hydrophobicity and molecular
weight covariation were positively correlated between the two
time points (Spearman’s � 
 0.82, P � 0.0001, and Spearman’s
� 
 0.88, P � 0.0001, respectively).

This finding of similar numbers of sites covarying in the sensi-
tive and resistant viral data sets indicates that compensatory, i.e.,
structurally linked, changes that maintain various functionalities
are a normal part of envelope evolution. Envelope-mediated drug
resistance is thus a specific evolutionary path among possible evo-
lutionary trajectories. To confirm the importance of the identified
covarying sites, we performed positive-selection analysis (after re-
moving the detected recombinants mentioned above). In the sen-
sitive R5 viruses, we identified 45 sites under positive selection,
and 33 of these sites exhibited detectable coevolution (�2 

102.08, P � 0.00001), i.e., 17 sites in gp120 and 16 sites in gp41
(see Tables S1 and S2 in the supplemental material). Conversely,
in the resistant R5 viruses, we identified 69 sites under positive

TABLE 1 Summary of the sensitive and resistant covariation networksa

Type

Covarying sites
(nodes)

Covarying pairs
(edges)

Sensitive Resistant Sensitive Resistant

BLOSUM62 130 125 1,413 1,400
Hydrophobicity 103 99 295 305
Molecular wt 108 106 319 326
Hydrophobicity and molecular

wt
81 77 131 147

Hydrophobicity/molecular
wt/hydrophobicity and
molecular wt

120 114 483 484

a The numbers of covarying sites and pairs for sensitive and resistant networks are
summarized. Four types of networks were compared: covariation by BLOSUM62 score
covariation, covariation by hydrophobicity and/or molecular weight covariation.
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FIG 3 Covariation networks of gp120 and gp41 in sensitive and resistant R5 viruses. (A and B) Covariation networks of HIV-1 envelope protein associated with
hydrophobicity and/or molecular weight covariation for maraviroc-sensitive (A) and -resistant (B) CCR5 viruses. (C) Covarying amino acid sites are organized
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S3 in the supplemental material for covarying sites in sensitive and resistant viruses, respectively.
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selection, and 51 of these sites exhibited detectable coevolution
(�2 
 264.57, P � 0.00001), with 27 sites in gp120 and 24 sites in
gp41 (see Tables S3 and S4 in the supplemental material). Inter-
estingly, we observed that positively selected sites were enriched
for PNGM motifs in both sensitive (6 sites; �2 
 22.75, P � 0.001;
Fisher exact test, P � 0.001) and resistant (8 sites; �2 
 24.69, P �
0.001; Fisher exact test, P � 0.001) viruses.

To further validate our observations, we analyzed viruses from
the three placebo-treated patients (18, 19, and 20) by combining
their sequences from the first and second time points. We ob-
served similar numbers of covarying sites before and after treat-
ment— 45 and 52 sites, respectively—which formed 256 and 795
covarying pairs and had connection coefficients of 0.259 and
0.599, respectively. This increase of covarying pairs was in contrast
to the group of patients receiving maraviroc because, interest-
ingly, the trend of change for the number of covarying pairs was
higher in the placebo arm (Table 1), indicating stronger structural
and/or functional constraints acting on the maraviroc-resistant
populations and consistent with a genetic bottleneck in the emer-
gence of R5-tropic resistance. After considering hydrophobicity
and/or molecular weight, in addition to covarying sites identified
by BLOSUM62 score covariation, we still observed similar num-
bers of covarying sites (45 and 50 sites), which formed 238 (see Fig.
S4 and Table S5 in the supplemental material) and 702 (see Fig. S5
and Table S6 in the supplemental material) covarying pairs having
connection coefficients of 0.240 and 0.573, respectively. Intrigu-
ingly, we observed only a few PNGMs (three and six PNGMs
before and after treatment [placebo arm], �2 
 3.13, P � 0.05;
Fisher exact test, P � 0.05 and �2 
 16.99, P � 0.001; Fisher exact
test, P 
 0.002, respectively) involved in the two covariation net-
works (see Tables S5 and S6 in the supplemental material), which
suggests a potential role of N-linked glycosylation in the evolution
of R5 maraviroc resistance.

Next, to understand the mutational pathways that may lead to
the evolution of maraviroc resistance, we focused on the key steps
that HIV-1 requires to enter host cells. First, we compared three
covariation networks between sensitive and resistant R5 viruses in
the group of patients who received maraviroc, which centered on
CD4 binding, CCR5 binding (V3 loop), and the secretory pathway
(signal peptide dependent, which plays an important role in con-
trolling the expression level of envelope protein on the virion).
Second, we analyzed the results from the placebo arm to further
validate our results.

Coevolution between CD4 binding sites and other regions of
gp120 and gp41 reveals novel mutational pathways leading to
maraviroc resistance. CD4 binding allows HIV-1 gp120 to bind
to CCR5/CXCR4 and enter the host cell, which is a critical step in
initiating the whole HIV infectious life cycle. In the sensitive R5
viruses, we found that 3 sites (364S, 365S, and 373T) in the CD4
binding region coevolved with 9 (5 in gp120 and 4 in gp41) sites
forming a network with a connection coefficient of 0.288, while in
the resistant viruses, we found that 2 sites (365S and 373T, with
both under positive selection) from the CD4 binding region co-
evolved with 19 (4 in gp120 and 15 in gp41) sites forming a net-
work with a connection coefficient of 0.409 (Fig. 4). In the sensi-
tive R5 viruses, the five sites from gp120 were located in C2 (238P),
C3 (363Q, under positive selection), C4 (442Q, under positive
selection), C5 (502K), and V2 (173Y) (Fig. 4A). The other four
sites from gp41 were located in the coiled-coil region (662E and
658Q), the fusion peptide (520L), and the gp41_b region (620E,

under positive selection) (Fig. 4A). In the resistant R5 viruses, the
four sites from gp120 were located in C1 (99D), C4 (444R, under
positive selection), V4 (415T), and V5 (471G) (Fig. 4B). The other
15 sites from gp41 were located in the coiled-coil region (636N;
644S, under positive selection; 658Q; 662E; and 659E), the fusion
peptide (514G), gp41_b (620E, under positive selection, and
621Q, under positive selection), and gp41_d (734E; 746I; 750N;
754A; 792A, under positive selection; 804S, under positive selec-
tion; and 817A) (Fig. 4). Interestingly, we found that in the sensi-
tive R5 viruses, two (364S and 365S) of the three CD4 binding sites
and one site (363Q) from C3 were located in the same potential
N-linked glycosylation motif (N-X-S/T-X) (Table 2) (�2 
 2.51,
P � 0.05; Fisher exact test, P � 0.05). Moreover, there were two
sites (365S in the CD4 binding region and 817A in the gp41_d
region) from the resistant R5 viruses located in different PNGMs
(Table 3) (�2 
 1.79, P � 0.05; Fisher exact test, P � 0.05). Only
the two CD4 binding sites (365S and 373T) from the resistant
viruses were under positive selection, and the covariation network
from the resistant viruses was more highly connected than the
network from the sensitive viruses (Fig. 4A), which indicates an
important role of CD4 binding in the evolution of maraviroc re-
sistance. In summary, we have identified three (�2 
 8, P 

0.00468) (Table 2) and 10 (�2 
 37.06, P � 0.00001) (Table 3)
sites under positive selection in sensitive and resistant covariation
networks, respectively.

Coevolution between the V3 loop and other regions of gp120
and gp41 is enriched with sites in the N-linked glycosylation
motifs. Among the sensitive R5 viruses, we identified 7 covarying
sites in the V3 loop that coevolved with 19 sites in gp120 and 16
sites in gp41; this network had a connection coefficient of 0.051
(Fig. 5A and Table 4). Among the 19 covarying sites in gp120, sites
were identified in C1 to C5 and V2, with sites in C3, C4, and V2
detected to be under positive selection (P � 0.05) (Fig. 5A and
Table 4). Among the 16 covarying sites in gp41, there were 6 sites
from the coiled-coil region (1 positively selected site) and 10 sites
from the rest of gp41, with 3 positively selected sites identified
(Fig. 5A and Table 4).

In the resistant R5 viruses, we observed 9 covarying sites from
the V3 loop, which coevolved with 20 sites from gp120 and 16 sites
from gp41; this network had a connection coefficient of 0.048 (Fig.
5B and Table 5). Among the 20 covarying sites from gp120, we
identified 14 in the conserved regions of gp120 (specifically C2,
C3, and C4) and sites in V2, V4, and V5. Among the 16 covarying
sites in gp41, there were 5 sites in the coiled-coil region (Fig. 5B
and Table 5). Of the 44 total covarying sites among the resistant R5
viruses, we identified 20 sites under positive selection (P � 0.05)
(Fig. 5B and Table 5). Interestingly, there were two positively se-
lected sites in the V3 loop, which were located on opposite sides in
the tip of the V3 loop (Fig. 5C and Table 5).

To further understand the evolution of drug resistance, we
compared the numbers of covarying pairs established by the
same sites in the V3 loop between sensitive and resistant viruses
and found that two sites (315R and 319T) had dramatic changes in
the number of linked changes between sensitive and resistant
viruses. The interactions changed from 13 to 3 for 315R (Fig.
5A and Table 2) and 2 to 13 for 319T (Fig. 5B and Table 5) in
sensitive and resistant networks, respectively. This suggests
319T may be important for R5 resistance. However, among the
13 interactions 319T established, 11 were under positive selec-
tion (Fig. 5B and Table 5), which indicates that linked/com-
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pensatory changes between the V3 loop and other protein re-
gions are also important for developing maraviroc R5 drug
resistance.

In the resistant R5 viruses, we observed that covarying sites
located in the PNGM from the V3 loop covariation network were
enriched (Table 5 and Fig. 5B) (10 sites; �2 
 74.64, P � 0.001).
However, the covarying sites from the sensitive virus were also
enriched (Table 4 and Fig. 5A) (6 sites; �2 
 25.09, P � 0.001;
Fisher exact test, P � 0.001). Further inspection of these covarying
sites in the resistant viruses located in the PNGM indicated that 7
of the 10 sites were located in gp120 (Table 5). Moreover, four sites
were located in a conserved region of gp120 (C3), and three of
these were detected to be under positive selection. There were
three sites located in variable regions (1 in V3 and two in V4).
Covarying sites located in the PNGM were also enriched in the
conserved region (Table 5) (�2 
 40.45, P � 0.001; Fisher exact
test, P � 0.001). Besides the four sites located in the PNGM, we
found there were seven covarying sites located in the vicinity of the
PNGM (within five sites upstream or downstream of the N-X-S/
T-X motif), with the exception of site 440S in C4 and 490K in C5

(Fig. 5B and Table 5). This indicates that all except two covarying
sites in the conserved region of gp120 were associated with
PNGMs (site 290T was predicted to be in a PNGM with a score,
0.49, below the threshold of 0.5) that coevolved with sites in the V3
loop. Similarly, in the V3 loop, we observed four sites (300N,
305K, 308R, and 309I) located in the vicinity of the PNGM. We
found that covarying sites (357K and 335R) located in the PNGM
also coevolved with site 12R in the signal peptide (Fig. 6B). In
summary, we have identified 14 (�2 
 57.41, P � 0.00001) (Table
4) and 20 (�2 
 66.97, P � 0.00001) (Table 5) positively selected
sites in sensitive and resistant covariation networks, respectively.

Coevolution between the signal peptide and other regions of
the envelope protein is enriched with sites in the N-linked gly-
cosylation motifs in the resistant viruses. Site 12R in the resistant
viruses, but not in the sensitive viruses, was also under positive
selection, suggesting the signal peptide plays a role in maraviroc
resistance. Recently, mutational effects at position 12 in the signal
peptide have been experimentally studied and shown to modulate
the expression level of the envelope protein on the virion and viral
infectivity (47). Some early studies also found that the signal pep-
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tide can control glycosylation and HIV-1’s use of the secretory
pathway (48, 49).

To understand the association between the signal peptide and
maraviroc resistance, we analyzed the subnetwork formed be-
tween the signal peptide and other regions of the envelope protein.
There were 3 and 12 covarying sites in the sensitive and resistant
viruses, respectively; these networks had connection coefficients
of 0.667 and 0.136 for sensitive and resistant networks, respec-
tively (Fig. 6 and Tables 6 and 7). We found that the covariation
network of the signal peptide in resistant viruses was enriched
with sites in a PNGM (Table 7) (�2 
 10.32, P � 0.01; Fisher exact
test, P 
 0.036). Interestingly, site 12R was involved only in the
covariation network of resistant viruses (Tables 6 and 7), which
was also positively selected (P � 0.01). Strikingly, as reported
above, in the resistant viruses, 12R coevolved with sites 357K and
335R, which were located in the PNGM (Fig. 6B and Table 7).
Moreover, all other sites that were not in the signal peptide also
coevolved with sites from the V3 loop (Fig. 5B and 6B). Among
these sites, 85V, 275V, 360I, and 444R in conserved regions of
gp120 and site 644S from the coiled-coil region of gp41 were lo-
cated in the vicinity of the PNGM (Table 7). We found that sites
85V, 335R, 360I, 444R, 644S, and 792A were also under positive
selection (Table 7) (P � 0.05). These results from combining the
resistance data indicate that the signal peptide indeed plays a role
in HIV-1 N-linked glycosylation and the structure and/or func-
tion of the V3 loop, which can in turn have a role in the evolution
of maraviroc resistance.

To validate the patterns observed from the V3 loop and the
signal peptide covariation networks, we compared the results with
those from the placebo arm. We found that these patterns were
not observed in the placebo arm. Nevertheless, we observed two
PNGMs in both the V3 loop (�2 
 4.55, P � 0.05; Fisher exact test,

P � 0.05) and the signal peptide (�2 
 1.56, P � 0.05; Fisher exact
test, P � 0.05) covariation networks before placebo treatment.
After placebo treatment, we observed five and four PNGMs in the
V3 loop (�2 
 20.26, P � 0.001; Fisher exact test, P 
 0.002) and
the signal peptide (�2 
 9.39, P � 0.01; Fisher exact test, P 

0.019) networks (see Tables S5 and S6 in the supplemental mate-
rial). This evidence supports the view that N-linked glycosylation
is important for V3 loop function (50) and that the signal peptide
is crucial for both normal evolution of HIV-1 and entry inhibitor
resistance (47, 51). In summary, we found no sites under positive
selection in the sensitive covariation network (Table 6), whereas
there were seven positively selected sites in the resistant covaria-
tion network (Table 7).

Finally, to understand how positively selected sites unique to
maraviroc-resistant virus can contribute to resistance evolution,
we constructed a covarying network of positively selected sites
unique to resistant virus (see Fig. S6 and Table S8 in the supple-
mental material). Interestingly, key sites unique to resistant virus,
as reported above (including CD4 binding, V3 loop, and signal
peptide regions; N-linked glycans; the gp41 fusion peptide; and
other gp41 regions) were found in this network (see Table S8 in
the supplemental material). To understand the functional impli-
cations of these unique sites, we mapped them into a hypothetical
structural complex, CD4-GP120-CCR5, with two PNGMs (279D

TABLE 2 Covarying sites in the CD4 binding network for sensitive R5
viruses

HXB2a Degreeb Selectionc Sited Domain Protein
N-Gly
motife

173Y 13 Null 151 V2 gp120
238P 15 Null 211 C2 gp120 �3
363Q 17 0.998267 331 C3 gp120 N-X-S/T-Xf

364S 4 Null 332 CD4 binding gp120 N-X-S/T-Xf

365S 4 Null 333 CD4 binding gp120 N-X-S/T-Xf

373T 1 Null 341 CD4 binding gp120
442Q 21 0.999411 392 C4 gp120 �2
502K 7 Null 446 C5 gp120
520L 4 Null 464 Fusion peptide gp41
620E 24 1 564 gp41_b gp41
658Q 5 Null 602 Coiled coil gp41
662E 22 Null 606 Coiled coil gp41
a HXB2 numbering is used as a reference.
b Degree, number of covarying pairs with the site in the BLOSUM62 covariation
network.
c Selection indicates the results of positive-selection analysis (at 95% posterior
probability); null indicates no positive selection.
d Site indicates the position of the covarying site in the alignment.
e N-Gly motif, the position of the covarying site in the N-linked glycosylation motif
N-X-S/T-X. The position is highlighted in boldface and underlined, and
positive/negative numbers indicate the position of the covarying site relative to its
closest N-X-S/T-X motif in the sequence. Negative (�) means the covarying site is
located on the left side of the motif, while positive (�) means the site is located on the
right side of the motif.
f The sites are in the same N-X-S/T-X motif.

TABLE 3 Covarying sites in the CD4 binding network for resistant R5
viruses

HXB2a Degreeb Selectionc Sited Domain Protein
N-Gly
motife

99D 16 Null 98 C1 gp120
365S 9 0.968434 333 CD4 binding gp120 N-X-S/T-X
373T 10 0.986405 341 CD4 binding gp120
415T 17 Null 365 V4 gp120
444R 15 0.999052 394 C4 gp120
471G 14 0.972233 415 V5 gp120
514G 13 Null 458 Fusion peptide gp41
620E 16 0.999999 564 gp41_b gp41 �1
621Q 23 0.999999 565 gp41_b gp41 �2
636N 22 0.971159 580 Coiled coil gp41 �1
644S 10 0.999716 588 Coiled coil gp41 �4
658Q 10 Null 602 Coiled coil gp41
659E 19 Null 603 Coiled coil gp41
662E 12 Null 606 Coiled coil gp41
734E 26 Null 678 gp41_d gp41
746I 24 Null 690 gp41_d gp41
750N 18 0.978824 694 gp41_d gp41
754A 27 Null 698 gp41_d gp41
792A 18 0.999976 736 gp41_d gp41
804S 17 Null 748 gp41_d gp41
817A 20 Null 761 gp41_d gp41 N-X-S/T-X
a HXB2 numbering is used as a reference.
b Degree, number of covarying pairs with the site in the BLOSUM62 covariation
network.
c Selection indicates the results of positive-selection analysis (at 95% posterior
probability); null indicates no positive selection.
d Site indicates the position of the covarying site in the alignment.
e N-Gly motif, the position of the covarying site in the N-linked glycosylation motif
N-X-S/T-X. The position is highlighted in boldface and underlined, and
positive/negative numbers indicate the position of the covarying site relative to its
closest N-X-S/T-X motif in the sequence. Negative (�) means the covarying site is
located on the left side of the motif, while positive (�) means the site is located on the
right side of the motif.
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and 365S, also positively selected covarying sites) visualized in Fig.
S7 in the supplemental material. Intriguingly, when we mapped
the sites to the complex, all the sites (excluding one, 92N), con-
tributed to functionality: CD4 binding (350R, 279N, 467I, 471G,
365S, and 373T), N-linked glycosylation (279N and 365S), and
CCR5 binding (316A) (see Fig. S7 in the supplemental material).

DISCUSSION

In this study, we detected significant patterns of genetic change in
the HIV-1 envelope that confer R5-tropic maraviroc resistance.
We found that resistant sequences formed a new and distinct clus-
ter, which was associated with a bottleneck occurring after therapy
started, consistent with the resistant population most likely
emerging de novo, i.e., as a result of the selective pressure provided
by the drug, which leads to significantly more amino acid sites
under positive selection and higher connection coefficients of the
resistant virus covariation networks. Note that while we cannot
discount a preexisting variant being resistant by chance and
emerging under drug pressure, as reported in another CCR5 an-
tagonist, aplaviroc (APL) (52), our results support the absence of
any preexisting virus population of any significance.

We found that gp41 was involved in all the covariation net-

works and in individual patients, in particular, the covariation
networks of CD4 binding, the V3 loop, and the signal peptide (not
observed in the sensitive viruses), indicating its importance in R5
resistance evolution (53). Interestingly, we identified three sites
(514, 515, and 520) located in the gp41 fusion peptide that may
contribute to resistance, which are very close to three sites (516,
518, and 519) identified previously in another CCR5 antagonist,
vicriviroc (54). Intriguingly, site 514 covaries with sites in the CD4
binding region in the resistant virus, but none of the three sites we
identified covaries with any site in the V3 loop and signal peptide.
This suggests the fusion peptide can contribute to developing
CCR5 antagonist resistance in general, which is V3 independent.
Moreover, there was a unique CD4 binding covariation network
independent of the V3 loop but dependent on the gp41 fusion
peptide contributing to the evolution of R5 maraviroc resistance,
which is consistent with a previous report that there might be
unique CD4 binding-dependent mutational pathways leading to
the emergence of maraviroc resistance without the requirement
for V3 loop mutations (12), possibly by binding more strongly to
the CD4 coreceptor through coevolutionary changes in non-V3
regions and the fusion peptide. This suggests a potential treatment
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FIG 5 Covariation networks of the V3 loop. (A and B) Covariation networks of the HIV-1 envelope protein V3 loop associated with hydrophobicity and/or
molecular weight for sensitive (A) and resistant (B) R5 viruses. (C) Covarying sites in the V3 loop mapped to the gp120 protein crystal structure. Sites under
positive selection are shown as hexagons. Covarying sites are linked by colored lines indicating the nature of their covariation. The sizes of the circles indicate the
relative numbers of interactions in the covariation networks (Fig. 3). Information regarding positive selection, protein domain, and glycosylation can be found
in Tables 2 and 3 for covarying sites in sensitive and resistant viruses, respectively.
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strategy that uses both entry and fusion inhibitors (such as enfu-
virtide [55]) to minimize the chance for emergence of V3-inde-
pendent CCR5 antagonist resistance.

N-linked glycosylation and signal peptide involvement further
constrained the emergence of envelope-associated drug resis-

tance. Collectively, these results demonstrate that while envelope
sequence mutations do confer R5-tropic maraviroc resistance, the
specific changes involved are largely context dependent, i.e., they
are dependent on the genetic variation present in the patient’s

TABLE 4 Covarying sites in the V3 loop network for sensitive R5
viruses

HXB2
sitea Degreeb Selectionc Domaind Protein Site

N-Gly
motife

34L 12 Null C1 gp120 33
80N 5 Null C1 gp120 79
238P 15 Null C2 gp120 211 �3
333I 2 Null C3 gp120 305 N-X-S/T-X
336A 4 0.999804 C3 gp120 308 �1
340N 1 0.988433 C3 gp120 312 N-X-S/T-X
343K 5 0.981324 C3 gp120 315 �1
346A 4 Null C3 gp120 318 �4
347S 2 1 C3 gp120 319 �5
350R 1 Null C3 gp120 322 �2
360I 5 0.999305 C3 gp120 328 �1
362K 17 0.997297 C3 gp120 330 N-X-S/T-X
440S 13 0.997212 C4 gp120 390
444R 15 0.999696 C4 gp120 394 �4
490K 14 Null C5 gp120 434
165I 4 Null V2 gp120 143 �2
170Q 14 0.962951 V2 gp120 148
195S 9 Null V2 gp120 168 �2
297T 3 Null V3 gp120 270 N-X-S/T-X
300N 2 Null V3 gp120 273 �2
309I 15 Null V3 gp120 282 �4
315R 13 Null V3 gp120 286
316A 9 Null V3 gp120 287
319T 2 Null V3 gp120 290
322K 1 Null V3 gp120 293
467I 3 Null V5 gp120 411
636N 24 Null Coiled coil gp41 580 �1
640S 12 Null Coiled coil gp41 584 N-X-S/T-X
644S 18 0.997303 Coiled coil gp41 588 �4
648E 26 Null Coiled coil gp41 592
651N 19 Null Coiled coil gp41 595
659E 19 Null Coiled coil gp41 603
619L 6 0.999707 gp41_b gp41 563 N-X-S/T-X
620E 24 1 gp41_b gp41 564 �1
668S 9 Null gp41_c gp41 612
734E 19 Null gp41_d gp41 678
746I 30 Null gp41_d gp41 690
750N 9 Null gp41_d gp41 694
754A 20 Null gp41_d gp41 698
779T 19 Null gp41_d gp41 723
804S 18 0.999353 gp41_d gp41 748
836A 13 1 gp41_d gp41 780
a HXB2 numbering is used as a reference.
b Degree, number of covarying pairs with the site in the BLOSUM62 covariation
network.
c Selection indicates the results of positive-selection analysis (at 95% posterior
probability); null indicates no positive selection.
d Site indicates the position of the covarying site in the alignment.
e N-Gly motif, the position of the covarying site in the N-linked glycosylation motif
N-X-S/T-X. The position is highlighted in boldface and underlined, and
positive/negative numbers indicate the position of the covarying site relative to its
closest N-X-S/T-X motif in the sequence. Negative (�) means the covarying site is
located on the left side of the motif, while positive (�) means the site is located on the
right side of the motif.

TABLE 5 Covarying sites in the V3 loop network for resistant R5 viruses

HXB2
sitea Degreeb Selectionc Domaind Protein Site

N-Gly
motife

275V 10 Null C2 gp120 248 �1
290T 15 Null C2 gp120 263
335R 5 0.98715 C3 gp120 307 N-X-S/T-X
336A 13 0.999229 C3 gp120 308 �1
337K 1 0.99455 C3 gp120 309 �2
340N 2 0.99799 C3 gp120 312 N-X-S/T-X
347S 3 1 C3 gp120 319 �5
350R 3 0.974134 C3 gp120 322 �2
351E 16 Null C3 gp120 323 �1
357K 25 Null C3 gp120 325 N-X-S/T-X
360I 6 0.999998 C3 gp120 328 �1
362K 4 0.988469 C3 gp120 330 N-X-S/T-X
440S 9 0.974215 C4 gp120 390
490K 6 Null C5 gp120 434
173Y 7 Null V2 gp120 151
183P 10 0.963713 V2 gp120 161
195S 6 Null V2 gp120 168
297T 2 Null V3 gp120 270 N-X-S/T-X
300N 1 Null V3 gp120 273 �2
305K 2 Null V3 gp120 278 �1
308R 7 0.999995 V3 gp120 281 �4
309I 17 Null V3 gp120 282 �5
315R 3 Null V3 gp120 286
316A 3 0.954869 V3 gp120 287
319T 13 Null V3 gp120 290
321G 1 Null V3 gp120 292
389Q 16 Null V4 gp120 357 N-X-S/T-X
394T 5 Null V4 gp120 362 N-X-S/T-X
471G 14 0.972233 V5 gp120 415
636N 22 0.971159 Coiled coil gp41 580 �1
640S 15 0.999965 Coiled coil gp41 584 N-X-S/T-X
641L 3 0.994541 Coiled coil gp41 585 �1
651N 10 0.964727 Coiled coil gp41 595
658Q 10 Null Coiled coil gp41 602
554N 12 Null gp41_a gp41 498
612A 19 1 gp41_b gp41 556
618S 19 Null gp41_b gp41 562 N-X-S/T-X
620E 16 0.999999 gp41_b gp41 564 �1
621Q 23 0.999999 gp41_b gp41 565 �2
700A 18 Null gp41_c gp41 644
706N 15 Null gp41_c gp41 650
734E 26 Null gp41_d gp41 678
746I 24 Null gp41_d gp41 690
754A 27 Null gp41_d gp41 698
818T 18 Null gp41_d gp41 762 N-X-S/T-X
a HXB2 numbering is used as a reference.
b Degree, number of covarying pairs with the site in the BLOSUM62 covariation network.
c Selection indicates the results of positive-selection analysis (at 95% posterior
probability); null indicates no positive selection.
d Site indicates the position of the covarying site in the alignment.
e N-Gly motif, the position of the covarying site in the N-linked glycosylation motif
N-X-S/T-X. The position is highlighted in boldface and underlined, and
positive/negative numbers indicate the position of the covarying site relative to its
closest N-X-S/T-X motif in the sequence. Negative (�) means the covarying site is
located on the left side of the motif, while positive (�) means the site is located on the
right side of the motif.
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individual infection and thus are difficult to predict. This is a
consequence of the malleable nature of HIV-1’s envelope, which
results in distinct constraints, so that different mutations are re-
quired to confer resistance in different infections. Therefore, ap-
propriate coevolutionary/compensatory changes of important
amino acid residues are vital for the maintenance of functional
viral proteins. HIV-1’s envelope, as a consequence, presents itself
as a good drug target (in terms of a low propensity to evolve
resistance) accounting for the uncommon observation of maravi-
roc resistance in R5-tropic virus on failure in clinical trials.

What is crucial to appreciate is that HIV-1 envelope glycosyla-
tion and protein folding are not independent, and this subjects
Env to additional structural constraints that impact potential drug
resistance pathways. The heavy glycosylation of gp120 (about 55%
of its molecular mass is contributed by N-linked glycans [56])
facilitates folding of the Env polypeptide chain into its correct

three-dimensional conformation, which stabilizes the protein and
is vital for cell entry by the virus (17, 50, 57–60). It also acts as a
“glycan shield” to protect the virion from neutralizing antibodies
(56, 61). Moreover, our novel results suggest that coevolutionary
changes between the signal peptide, N-linked glycosylation, and
other functional domains of gp120/gp41 (especially the V3 loop)
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FIG 6 Covariation networks of the signal peptide. (A and B) Shown are covariation networks of the HIV-1 envelope protein signal peptide associated with
hydrophobicity and/or molecular weight for sensitive (A) and resistant (B) R5 viruses. Sites under positive selection are shown as hexagons. Covarying sites are
linked by colored lines indicating the nature of their covariation. The sizes of the circles indicate the relative numbers of interactions in the covariation networks
(Fig. 3). Information regarding positive selection, protein domain, and glycosylation can be found in Tables 4 and 5 for covarying sites in sensitive and resistant
viruses, respectively.

TABLE 6 Covarying sites in the signal peptide network for sensitive R5
viruses

HXB2
sitea Degreeb Selectionc Domaind Protein Site

N-Gly
motife

16R 2 Null Signal peptide gp120 15
194T 7 Null V2 gp120 167 �3
161I 2 Null V2 gp120 139
a HXB2 numbering is used as a reference.
b Degree, number of covarying pairs with the site in the BLOSUM62 covariation
network.
c Selection indicates the results of positive-selection analysis (at 95% posterior
probability); null indicates no positive selection.
d Site indicates the position of the covarying site in the alignment.
e N-Gly motif, the position of the covarying site in the N-linked glycosylation motif
N-X-S/T-X. The negative number indicates the position of the covarying site relative to
its closest N-X-S/T-X motif in the sequence. Negative (�) means the covarying site is
located on the left side of the motif.

TABLE 7 Covarying sites in the signal peptide network for resistant R5
viruses

HXB2
sitea Degreeb Selectionc Domaind Protein Site

N-Gly
motife

85V 1 0.997736 C1 gp120 84 �3
275V 10 Null C2 gp120 248 �1
335R 5 0.98715 C3 gp120 307 N-X-S/T-X
357K 25 Null C3 gp120 325 N-X-S/T-X
360I 6 0.999998 C3 gp120 328 �1
444R 15 0.999052 C4 gp120 394 �4
12R 2 0.995959 Signal peptide gp120 12
24 M 6 Null Signal peptide gp120 23
29S 1 Null Signal peptide gp120 28
31T 1 Null Signal peptide gp120 30
644S 10 0.999716 Coiled coil gp41 588 �4
792A 18 0.999976 gp41_d gp41 736
a HXB2 numbering is used as a reference.
b Degree, number of covarying pairs with the site in the BLOSUM62 covariation
network.
c Selection indicates the results of positive-selection analysis (at 95% posterior
probability); null indicates no positive selection.
d Site indicates the position of the covarying site in the alignment.
e N-Gly motif, the position of the covarying site in the N-linked glycosylation motif
N-X-S/T-X. The position is highlighted in boldface and underlined, and
positive/negative numbers indicate the position of the covarying site relative to its
closest N-X-S/T-X motif in the sequence. Negative (�) means the covarying site is
located on the left side of the motif, while positive (�) means the site is located on the
right side of the motif.
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modulate envelope protein expression efficiency and glycosyla-
tion patterns. Note that expression differences associated with
variants can also change without signal peptide involvement.
These changes help the virus adapt to the host environment under
“normal” immune pressure and during the emergence of drug
resistance, such as we have investigated here. Although it is not
clear how the signal peptide affects N-linked glycosylation, previ-
ous research has shown that oligosaccharides (glycans) are added
to the translocating peptide cotranslationally, suggesting the sig-
nal peptide may control the glycosylation process by interacting
with amino acids flanking the N-linked glycosylation sites/motifs
in the envelope protein (57, 62).

The signal peptide of the HIV-1 envelope protein has been
shown to determine the expression level of the glycosylated Env
on the virion (47) and potentially determines vaccine efficacy
(63). As the expression levels of the host coreceptors CCR5 and/or
CXCR4 also fluctuate between cell lines (64), dynamic Env expres-
sion on the virion surface regulated by the signal peptide may
confer great selective advantage on HIV populations (53). This
can also be true for using the maraviroc-bound CCR5 for cell
entry of R5-tropic viruses (65). The signal peptide plays a vital role
in protein subcellular localization and function. The mutational
effects of key amino acid substitutions in both the general secre-
tion (Sec) pathway and the signal peptide have been extensively
studied in bacteria. These studies found that mutations in both the
secretion system and the signal peptide can affect protein secre-
tion (62). More specifically, changes of charged residues in the
signal peptide of the N-terminal end can increase or decrease the
secretion rates of the underlying proteins (49). HIV envelope pro-
tein is secreted through the host Sec pathway and N-glycosylated
cotranslationally (57). Moreover, the viral envelope signal peptide
has to satisfy several constraints of the Sec pathway and the viral
life cycle, which is only possible through extensive coevolutionary
changes or compensatory mutations. First, in order to be secreted
through the host Sec pathway, the viral signal peptide has to pres-
ent a configuration similar to that of a typical host secreted protein
(66). Therefore, the viral signal peptide does not deviate from the
basic configuration of a eukaryotic signal peptide (67). What is
unique to HIV-1 is a higher negative charge in the N-terminal
region of the signal peptide, which is suggested to play a role in
gp120 secretion efficiency (48). Second, virus-specific changes in
the signal peptide are required throughout its life cycle (47).
Third, the HIV signal peptide also determines gp120 glycosyla-
tion, which is critical for envelope structure and/or function.

In conclusion, R5 maraviroc resistance, mediated via CD4
binding/V3 loop mutations in the context of complex conforma-
tional changes, requires additional linked changes in gp120 and
gp41 in order to maintain essential functionalities, while changes
in glycosylation patterns are tied to conformational changes and
are intrinsically linked to protein stability. In addition, mainte-
nance of optimal gp120 expression and efficiency is important, as
exemplified here by the finding of signal peptide involvement in
the facilitation of maraviroc resistance. HIV-1’s envelope protein
thus presents itself as a drug target with an inherent impediment
to resistance evolution accounting for the low rate of occurrence
of R5-tropic maraviroc-resistant virus observed.
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