
University of Nevada, Reno

Genetic Algorithm as Function Optimizer in Reinforcement Learning and
Sensor Odometry.

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in

Computer Science and Engineering

by

Adarsh Sehgal

Dr. Hung M. La - Thesis Advisor
May 2019



 

 

 

 
We recommend that the thesis 

prepared under our supervision by 

 

ADARSH SEHGAL 

 

Entitled 

 

Genetic Algorithm As Function Optimizer In Reinforcement Learning And Sensor 

Odometry 

 

 

be accepted in partial fulfillment of the  

requirements for the degree of 

 

MASTER OF SCIENCE 

 

Hung M. La, Ph.D., Advisor 

 

 

Sushil Louis, Ph.D., Committee Member 

 

 

Wanliang Shan, Ph.D., Graduate School Representative 

 

 

David W. Zeh, Ph.D., Dean, Graduate School 

 

May, 2019 

 

THE GRADUATE SCHOOL 



i

Abstract

Reinforcement learning (RL) enables agents to make a decision based on a reward

function. However, in the process of learning, the choice of values for learning algo-

rithm parameters can significantly impact the overall learning process. In this thesis,

we use a genetic algorithm (GA) to find the values of parameters used in the Deep

Deterministic Policy Gradient (DDPG) combined with Hindsight Experience Replay

(HER) algorithm, to help speed up the learning agent. We used this method on

fetch-reach, slide, push, pick and place, and door opening in robotic manipulation

tasks. Our experimental evaluation shows that our method leads to significantly

better performance, faster than the original algorithm. This thesis also deals with

Lidar-Monocular Visual Odometry (LIMO), an odometry estimation algorithm, which

combines camera and LIght Detection And Ranging sensor (LIDAR) for visual local-

ization by tracking camera features as well as features from LIDAR measurements,

and it estimates the motion of sensors using Bundle Adjustment based on robust key

frames. For rejecting outliers, LIMO uses semantic labelling and weights of vegeta-

tion landmarks. A drawback of LIMO as well as many other odometry estimation

algorithms is that they have many parameters that need to be manually adjusted

according to dynamic changes in the environment in order to decrease translational

errors. In this thesis, we also present and argue the use of Genetic Algorithms to op-

timize parameters with reference to LIMO and to maximize LIMO’s localization and

motion estimation performance. We evaluate our approach on the well known KITTI

odometry dataset and show that the genetic algorithm helps LIMO to significantly

reduce translation error in different datasets.
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Chapter 1

Introduction

1.1 Motivation

Accuracy and efficiency play an influential part in developing as well as existing

technologies. One of the many areas of robotics where efficiency matters, deals with

intelligent robots [6]. Robots have long been able to function teleoperated. The

world is already moving towards adding artificial intelligence (AI) to robots. Many

technologies help robots make decisions. The measure of how well the robot learns is

a matter of efficiency. Let’s say a robot takes a few months just to learn how to open

a door, which is definitely not efficient because of the amount of time this learning

process would take. Hence, there’s a need for efficiency in self-learning robots. The

robots should be able to learn faster, which in turn save resources and time. We

specifically deal with Reinforcement Learning (RL) [7] in this thesis to increase the

efficiency of learning robots (agents).

Turning to the subject of accuracy, in the case of self-driving cars [8], it matters

because there are human lives involved. Tesla's Model X, while running on adaptive
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cruise control, slammed into a barrier in California because of some flaw in Tesla's

semi-autonomous driving system. High accuracy GPS is unaffordable and problematic

in places with no GPS signal, so it is important for the self-driving car to use other

sensors and still be able to track its exact location on the road. Different kinds of

sensors have been used to estimate the motion and odometry of the self-driving cars.

While some researches have used generalized cameras [9], others have shown how

different sensors are used [10]. Furthermore, it has been tested if these kinds of cars

can be trusted, because there are many possible kinds of attacks that can reduce the

reliability of such sensors. Recent work on sensor odometry has shown that LIDAR

in combination with a monocular camera, can be used for odometry estimation. One

such algorithm is Lidar-Monocular Visual Odometry (LIMO) [4]. This algorithm has

error in relation to the ground truth, hence, the algorithm has a notable scope of

improvement.

Hence, in order to increase the efficiency and accuracy of above-said systems,

optimization algorithms such as Genetic Algorithms (GA) can assume a greater role.

1.2 Background on Genetic Algorithm (GA)

Genetic Algorithms (GAs) [11–13] were designed to search poorly-understood spaces

[14], where exhaustive search may not be feasible, and where other search approaches

perform poorly. When used as function optimizers, GAs try to maximize a fitness

tied to the optimization objective. Evolutionary computing algorithms in general

and GAs specifically have had much empirical success on a variety of difficult design

and optimization problems. They start with a randomly initialized population of

candidate solutions typically encoded in a string (chromosome). A selection operator

focuses search on promising areas of the search space while crossover and mutation
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operators generate new candidate solutions.

We used ranking selection [15] to select parents for crossover and mutation. Rank

selection probabilistically selects higher ranked (higher fitness) individuals. Unlike

fitness proportional selection, ranking selection pays attention to the existence of a

fitness difference rather than to the magnitude of fitness difference. Children are

generated using uniform crossover [16], which are then mutated using flip mutation

[13]. Chromosomes are binary encoded with concatenated parameters.

1.3 Background on Deep Reinforcement Learning (DRL)

Q-learning [17] methods have been applied to a variety of tasks by autonomous robots

[18], and much research has been done in this field starting many years ago [17], with

some work specific to continuous action spaces [19–22] and others to discrete action

spaces [23]. Reinforcement Learning (RL) [7] has been applied to locomotion [24] [25]

and also to manipulation [26,27].

A lot of work specific to robotic manipulators also exists [28, 29]. Some of this

work used fuzzy wavelet networks [30], while others used neural networks to accom-

plish their tasks [31] [32]. Off-policy algorithms [33] such as the Deep Deterministic

Policy Gradient algorithm (DDPG) [34] and Normalized Advantage Function algo-

rithm (NAF) [35] are helpful for real robot systems. A complete review of recent deep

reinforcement learning (DRL) methods for robot manipulation is given in [36]. We are

specifically using DDPG combined with Hindsight Experience Replay (HER) [37] for

our experiments. Recent work on using experience ranking to improve the learning

speed of DDPG + HER was reported in [38].

RL has been widely used in training/teaching both a single robot [39, 40] and a

multi-robot system [41–45]. Previous work has also been done on both model-based
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and model-free learning algorithms. Applying model-based learning algorithms to real

world scenarios relies significantly on a model-based teacher to train deep network

policies.

Similarly, there is also much work in GA’s [11] [46] and the GA operators of

crossover and mutation [47], applied to a variety of problems. GA has been specifically

applied to variety of RL problems [47–50].

1.4 Background on Lidar-Monocular Visual Odom-

etry (LIMO)

Motion estimation has long been a popular subject of research in which many tech-

niques have been developed over the years [51]. Varied types of work have been done

related to Visual Simultaneous Localization and Mapping (VSLAM), also referred to

as Visual Odometry [52], which simultaneously estimates the motion of the camera

and the 3D structure of the observed environment. A recent review of SLAM tech-

niques for autonomous car driving can be found in [53]. Bundle Adjustment is the

most widely used method for VSLAM. Bundle Adjustment is a procedure that mini-

mizes the re-projection error between the observed point (landmarks in reference to

LIMO) and the predicted points. Recent developments make use of offline VSLAM

for mapping and localization [54–56].

Figure 1.1 illustrates the structure of the VSLAM pipeline [4]. Algorithms such as

Robust Outlier Criterion for Camera-based odometry (ROCC) [57] and Stereo visual

Odometry based on Feature selection and Tracking (SOFT) [58] rely on pre-processing

and feature extraction, which is in contrast to most of the methods that obtain scale

information from a camera placed at a different viewpoint [1, 56, 59, 60]. SOFT and
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ROCC extract robust and precise features and select them using special techniques,

and have managed to attain high performance on the KITTI Benchmark [61], even

without Bundle Adjustment.

The major disadvantage of a stereo camera is it’s reliance on extrinsic camera

calibration. It was later observed that performance can be enhanced by learning a

compensation for the calibration bias through a deformation field [62]. LIght De-

tection And Ranging sensor LIDAR-camera calibration is also an expanding topic of

research [63, 64]. Previous work has been done with VSLAM and LIDAR [65–68].

LIMO [4], uses the feature tracking capability of the camera and combines it with

depth measurements from a LIDAR sensor but suffers from translation and rota-

tion errors. Later on, we describe our approach for increasing LIMO’s robustness to

translation errors.

Figure 1.1: VSLAM pipeline. The input is a temporal sequence of images, and the
system outputs a sparse reconstruction of the observed environment and the camera
poses [1–4]. In this work, LIMO does not perform loop closure [5].

LIMO takes advantage of depth information from LIDAR, which is used for fea-

ture detection in the image. Outliers are rejected if they do not meet the local plane
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assumptions, and points on the ground plane are treated for robustness. As illustrated

in figure 1.1, in the VSLAM pipeline, depth information is fused with monocular fea-

ture detection techniques. Another approach is taken for prior estimation, landmark

selection and key frame selection to fulfill real time constraints. Unlike the approach

in [66], LIMO does not use any LIDAR-SLAM algorithms such as Iterative Closest

Point (ICP). The major drawback of LIMO is that it has many parameters, which

needs to be manually tuned. LIMO suffers from translation and rotation errors even

more than existing algorithms such as Lidar Odometry and Mapping (LOAM) [68]

and Vision-Lidar Odometry and Mapping (V-LOAM) [69]. Typically, researchers

tune parameters (in LIMO as well) in order to minimize these errors but there al-

ways exists the possibility of finding better parameter sets that may be optimized

for specific camera and LIDAR hardware or for specific scenarios. Hence, there is a

need to use optimization algorithms to increase LIMO’s performance. In this thesis,

we propose using a genetic algorithm (GA) to efficiently search the space of possi-

ble LIMO parameter values to find precise parameters that maximizes performance.

Our experiments with this new GA-LIMO algorithm show that GA-LIMO performs

statistically significantly better than stock LIMO.

Much empirical evidence shows that evolutionary computing techniques such as

Genetic Algorithms (GAs) work well as function optimizers in poorly-understood,

non-linear, discontinuous spaces [13, 70–73]. GAs [11, 74] and the GA operators of

crossover and mutation [47] have been tested on numerous problems. Closer to our

research, GAs have been applied to early SLAM optimization problems [75], mobile

localization using ultrasonic sensors [76] [77], and in deep reinforcement learning [78].

This provides good evidence for GA efficacy on localization problems, and our main

contribution in this thesis is a demonstration of significantly smaller translation error

when using a GA to tune LIMO parameter values compared to the stock LIMO
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algorithm [4]. Our experiments show that translation error is non-linearly related to

LIMO parameters, that is, translation error can vary non-linearly based on the values

of the LIMO’s parameters. The following sections describe the LIMO, the GA and

GA-LIMO algorithms. We then show results from running LIMO with GA tuned

parameters on the KITTI odometry data sequences [79].

1.5 GA on DRL and LIMO

GA as a function optimizer can be used with various optimization problems. This

thesis focuses on the DRL and LIMO, background on which was presented earlier in

this chapter. GAs can be used to optimize the parameters used in the system based on

their fitness values. GA tries to maximize the fitness function. An objective function

can be converted to a fitness function using various mathematical formulations.

Existing DRL algorithms use a fixed set of parameters. GA when applied to DRL,

finds better set of parameters, which helps the learning agent to learn faster. The

inverse of the number of epochs serves as the fitness value to this problem. GA offers

a promising way to increase the efficiency of the system.

On the other hand, LIMO also uses a constant value of parameters for estimating

the sensor odometry. Our experiments show that there is a scope of increasing the

accuracy of the system in this scenario. GA in combination with LIMO finds an better

set of parameters, which increases the accuracy of odometry estimation. The inverse

of translation error is considered as the fitness value in this GA implementation. The

GA-LIMO system works with higher accuracy.
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1.6 Content

The following chapters of this thesis are as follows: Chapter 2 introduces DRL algo-

rithms, discusses the open problem, proposes an algorithm to solve the problem and

the experimental results. In Chapter 3, LIMO is discussed in detail along with the

GA-LIMO algorithm, which helps to reduce the translation error in sensor tracking

compared to ground truth. Corresponding experimental results follow in this chapter.

Lastly, the conclusion and future work are provided in the last chapter of this thesis.
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Chapter 2

Genetic Algorithm optimization for

Deep Reinforcement Learning

2.1 Reinforcement Learning

Consider a standard RL setup consisting of a learning agent, which interacts with

an environment. An environment can be described by a set of variables where S

is the set of states, A is the set of actions, p(s0) is a distribution of initial states,

r : S × A −→ R is a reward function, p(st+1|st, at) are transition probabilities and

γ ∈ [0, 1] is a discount factor.

A deterministic policy maps from states to actions: π : S −→ A. The beginning

of every episode is marked by sampling an initial state s0. For each timestep t, the

agent performs an action at based on the current state st: at = π(st). The performed

action gets a reward rt = r(st, at), and the distribution p(.|st, at) helps to sample the

environment's new state. The discounted sum of future rewards is: Rt =
∑∞

i=T γ
i−tri.

The agent's goal is to try to maximize its expected return E[Rt|st, at] and an optimal
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policy denoted by π∗ can be defined as any policy π∗, such that Qπ∗(s, a) ≥ Qπ(s, a)

for every s ∈ S, a ∈ A and any policy π. The optimal policy, which has the same

Q-function, is called an optimal Q-function, Q∗, which satisfies the Bellman equation:

Q∗(s, a) = Es′ p(.|s,a))[r(s, a) + γmax
a′∈A

Q∗(s′, a′))]. (2.1)

2.2 Deep Q-Networks (DQN)

A Deep Q-Network (DQN) [80] is defined as a model free reinforcement learner [81],

designed for discrete action spaces. In a DQN, a neural network Q is maintained,

which approximates Q∗. πQ(s) = argmaxa∈AQ(s, a) denotes a greedy policy w.r.t.

Q. A - greedy policy takes a random action with probability ε and action πQ(s) with

probability 1− ε.

Episodes are generated during training using a ε-greedy policy. A Replay buffer

stores transition tuples (st, at, rt, st+1) experienced during training. The neural net-

work training is interlaced by a generation of new episodes. A Loss L defined by

L = E(Q(st, at)− yt)2 where yt = rt + γmaxa′∈AQ(st+1, a
′) and tuples (st, at, rt, st+1)

are being sampled from the replay buffer.

The target network changes at a slower pace than the main network, which is used

to measure targets yt. The weights of the target networks can be set to the current

weights of the main network [80]. Polyak-averaged parameters [82] can also be used.

2.3 Deep Deterministic Policy Gradients (DDPG)

In Deep Deterministic Policy Gradients (DDPG), there are two neural networks: an

Actor and a Critic. The actor neural network is a target policy π : S −→ A, and critic
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neural network is an action-value function approximator Q : S × A −→ R. The critic

network Q(s, a|θQ) and actor network µ(s|θµ) are randomly initialized with weights

θQ and θµ.

A behavioral policy is used to generate episodes, which is a noisy variant of the

target policy, πb(s) = π(s) + N (0, 1). The training of a critic neural network is

done like the Q-function in a DQN but where the target yt is computed as yt =

rt+γQ(st+1, π(st+1)), where γ is the discounting factor. The loss La = −EaQ(s, π(s))

is used to train the actor network.

2.4 Hindsight Experience Replay (HER)

Hindsight Experience Reply (HER) tries to mimic human behavior to learn from

failures. The agent learns from all episodes, even when it does not reach the original

goal. Whatever state the agent reaches, HER considers that as the modified goal.

Standard experience replay only stores the transition (st||g, at, rt, st+1||g) with original

goal g. HER tends to store the transition (st||g′, at, r′t, st+1||g′) to modified goal g′ as

well. HER does great with extremely sparse rewards and is also significantly better

for sparse rewards than shaped ones.

2.5 Open Problem Discussion

DDPG + HER suffer from an efficiency problem. The performance of most of the

robotic tasks can be improved by using a better set of parameters used in the algo-

rithm. The performance can be measured based on the number of epochs it takes for

the learning agent to learn a given robotic task. Further sections of this chapter show

how the change in values of various parameters significantly impacts the learning rate
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of the agent. The solution to this problem is also presented later in this chapter and

the supporting experimental results showing that the proposed solution outperforms

the existing technique for reinforcement learning.

2.6 DDPG + HER and GA

In this section, we present the primary contribution of our thesis: the genetic al-

gorithm searches through the space of parameter values used in DDPG + HER for

values that maximize task performance and minimize the number of training epochs.

We target the following parameters: discounting factor γ; polyak-averaging coefficient

τ [82]; learning rate for critic network αcritic; learning rate for actor network αactor;

percent of times a random action is taken ε; and standard deviation of Gaussian noise

added to not completely random actions as a percentage of maximum absolute value

of actions on different coordinates η. The range of all the parameters is 0-1, which

can be justified using the equations following in this section.

Our experiments show that adjusting the values of parameters did not increase

or decrease the agent’s learning in a linear or easily discernible pattern. So, a simple

hill climber will probably not do well in finding optimized parameters. Since GAs

were designed for such poorly understood problems, we use our GA to optimize these

parameter values.

Specifically, we use τ , the polyak-averaging coefficient to show the performance

non-linearity for values of τ . τ is used in the algorithm as show in Equation (2.2):

θQ
′ ←− τθQ + (1− τ)θQ

′
,

θµ
′ ←− τθµ + (1− τ)θµ

′
. (2.2)
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Figure 2.1: Success rate vs. epochs for various τ for FetchPick&Place-v1 task.
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(a) GA-DRL over 10 runs, vs. Original

(b) GA-DRL averaged over 10 runs, vs. Original

Figure 2.2: Success rate vs. epochs for FetchPush-v1 task when τ and γ are found
using the GA.

Equation (2.3) shows how γ is used in the DDPG + HER algorithm, while Equa-

tion (2.4) describes the Q-Learning update. α denotes the learning rate. Networks

are trained based on this update equation.

yi = ri + γQ′(si+1, µ
′(st+1|θµ

′
)|θQ′), (2.3)
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Algorithm 1: DDPG + HER and GA
1 Choose population of n chromosomes
2 Set the values of parameters into the chromosome
3 Run the DDPG + HER to get number of epochs for which the algorithm first

reaches success rate ≥ 0.85
4 for all chromosome values do
5 Initialize DDPG
6 Initialize replay buffer R← φ
7 for episode=1, M do
8 Sample a goal g and initial state s0

9 for t=0, T-1 do
10 Sample an action at using DDPG behavioral policy
11 Execute the action at and observe a new state st+1

12 end
13 for t=0, T-1 do
14 rt := r(st, at, g)
15 Store the transition (st||g, at, rt, st+1||g) in R
16 Sample a set of additional goals for replay G := S(current

episode)
17 for g′ ∈ G do
18 r′ := r(st, at, g

′)
19 Store the transition (st||g′, at, r′, st+1||g′) in R
20 end
21 end
22 for t=1,N do
23 Sample a minibatch B from the replay buffer R
24 Perform one step of optimization using A and minibatch B
25 end
26 end
27 return 1/epochs

28 end
29 Perform Uniform Crossover
30 Perform Flip Mutation at rate 0.1
31 Repeat for required number of generations to find optimal solution
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(a) GA-DRL over 2 runs, vs. Original

(b) GA-DRL averaged over 2 runs, vs. Original

Figure 2.3: Success rate vs. epochs for FetchSlide-v1 task when τ and γ are found
using the GA.

Q(st, at)←− Q(st, at) + α[rt+1 + γQ(st+1, at+1)

−Q(st, at)]. (2.4)

Since we have two kinds of networks, we will need two learning rates, one for the

actor network (αactor), another for the critic network (αcritic). Equation (2.5) explains

the use of percent of times that a random action is taken, ε.
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at =


a∗t with probability 1− ε,

random action with probability ε.

(2.5)

Figure 2.1 shows that when the value of τ is modified, there is a change in the

agent's learning, further emphasizing the need to use a GA. The original (untuned)

value of τ in DDPG was set to 0.95, and we are using 4 CPUs. All the values of τ are

considered up to two decimal places, in order to see the change in success rate with

change in value of the parameter. From the plots, we can clearly tell that there is a

great scope of improvement from the original success rate.

Algorithm 1 explains the integration of DDPG + HER with a GA, which uses

a population size of 30 over 30 generations. We are using ranking selection [15] to

select parents. The parents are probabilistically based on rank, which is in turn

decided based on the relative fitness (performance). Children are then generated us-

ing uniform crossover [16]. We are also using flip mutation [13] with probability of

mutation to be 0.1. We use a binary chromosome to encode each parameter and con-

catenate the bits to form a chromosome for the GA. The six parameters are arranged

in the order: polyak-averaging coefficient; discounting factor; learning rate for critic

network; learning rate for actor network; percent of times a random action is taken

and standard deviation of Gaussian noise added to not completely random actions as

a percentage of maximum absolute value of actions on different coordinates. Since

each parameter requires 11 bits to be represented to three decimal places, we need

66 bits for 6 parameters. These string chromosomes then enable domain independent

crossover and mutation string operators to generate new parameter values. We con-

sider parameter values up to three decimal places, because small changes in values

of parameters causes considerable change in success rate. For example, a step size of
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0.001 is considered as the best fit for our problem.

The fitness for each chromosome (set of parameter values) is defined by the inverse

of the number of epochs it takes for the learning agent to reach close to maximum

success rate (≥ 0.85) for the very first time. Fitness is inverse of the number of

epochs because GA always maximizes the objective function and this converts our

minimization of number of epochs to a maximization problem. Since each fitness

evaluation takes significant time an exhaustive search of the 266 size search space is

not possible and thus we use a GA search.

2.7 Experimental Results

Figure 2.4, shows the environments used to test robot learning on five different tasks:

FetchPick&Place-v1, FetchPush-v1, FetchReach-v1, FetchSlide-v1, and DoorOpening.

We ran the GA separately on these environments to check the effectiveness of our

algorithm and compared performance with the original values of the parameters.

Figure 2.2 (a) shows the result of our experiment with FetchPush-v1, while Figure

2.3 (a) shows the results with FetchSlide-v1. We let the system run with the GA to

find best values of parameters τ and γ. Since the GA is probabilistic, we show results

from 10 runs of the GA and the results show that the optimized parameters found by

the GA can lead to better performance. The learning agent can run faster, and can

reach the maximum success rate, faster. In Figure 2.2 (b), we show one learning run

for the original parameter set and the average learning over these 10 different runs of

the GA.

Figure 2.3 (b) compares one run for original with averaged 2 runs for optimizing

parameters τ and γ. For this task, we have run it for only 2 runs because these tasks

can take a few hours for one run. The results shown in Figures 2.2 and 2.3 show
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Parameters DRL GA-DRL

γ 0.98 0.88
τ 0.95 0.184

αactor 0.001 0.001
αcritic 0.001 0.001
ε 0.3 0.055
η 0.2 0.774

Table 2.1: DRL vs GA-DRL values of parameters

changes when only two parameters are being optimized as we tested and debugged

the genetic algorithm, we can see the possibility for performance improvement. Our

results from optimizing all five parameters justify this optimism and are described

next.

The GA was then run to optimize all parameters and these results were plotted

in Figure 2.4 for all the tasks. Table 2.1 compares the GA found parameters with

the original parameters used in the RL algorithm. Though the learning rates αactor

and αcritic are same as their original values, the other four parameters have different

values than original. The plots in the figure 2.4 shows that the GA found parameters

outperformed the original parameters, indicating that the learning agent was able to

learn faster. All the plots in the above mentioned figure are averaged over 10 runs.

2.8 Summary

This chapter discusses about RL, DQN, DDPG and HER. The main contribution,

as described in [78], is also presented in this chapter. Experimental results were

compared between DRL [83] and GA-DRL [78] scenarios. It was found that GA

found parameters outperformed the original parameters.
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(a) FetchPick&Place environment

(b) FetchPush environment

(c) FetchReach environment

(d) FetchSlide environment

(e) Door Opening environment

(f) FetchPick&Place plot

(g) FetchPush plot

(h) FetchReach plot

(i) FetchSlide plot

(j) DoorOpening plot

Figure 2.4: Environments and the corresponding DRL vs GA-DRL plots, when all
the 6 parameters are found by GA. All plots are averaged over 10 runs.
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Chapter 3

Genetic Algorithm optimization for

Lidar-Monocular Visual Odometry

3.1 LIMO

In this section, we present prior work related to our GA-LIMO algorithm. We first

describe the VSLAM pipeline and then the LIMO algorithm.

3.1.1 Feature extraction and pre-processing

Figure 1.1 shows feature extraction’s procedure in the pipeline. Feature extraction

consists of tracking the features and associating the features using the Viso2 library

[59]. It is further used to implement feature tracking, which comprises non-maximum

suppression, sub-pixel refinement and outlier rejection by flow. Deep learning is used

to reject landmarks that are moving objects. The neighborhood of the feature point in

a semantic image [84] is scanned, and if the majority of neighboring pixels categorize
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to a dynamic class, like vehicle or pedestrian, the landmark is excluded.

3.1.2 Scale Estimation

For scale estimation, the detected feature points from the camera are mapped to

the depth extracted from LIDAR. LIMO uses a one shot depth estimation approach.

Initially LIDAR point cloud is transformed into the camera frame and then it is

projected onto the image plane. In detail, the following steps are executed for every

feature point f :

1. A region of interest is selected around f , which is a set F consisting of projected

LIDAR points.

2. A new set called foreground set Fseg is created by segmenting the elements of

F .

3. The elements of Fseg are fitted with a plane p. A special fitting algorithm is

used in case f belongs to the ground plane.

4. To estimate the depth, p is intersected with the line of sight corresponding to

f .

5. For the previous estimated depth a test is performed. Depth estimates that are

more than 30m are rejected since they can be uncertain. In addition, the angle

between the line of sight of the feature point and the normal of the plane must

be smaller than a threshold.

From the point clouds, neighborhoods for ordered point clouds can be selected

directly. However, projections of the LIDAR points on the image are used, and the

points within a rectangle in the image plane around f are selected in case the point
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clouds are unordered. Before the plane estimation is performed, the foreground Fseg

is segmented. In the next step, a histogram of depth having a fixed bin width of

h = 0.3m is created and interpolated with elements in F . LIDAR points of the

nearest bin is used to perform segmentation using all detected feature points. For

estimating the local surface around f precisely, fitting the plane to Fseg can help.

Three points are chosen from the points in Fseg, which traverse the triangle F∆ with

maximum area. Depth estimation is avoided if the area of F∆ is too small, to evade

incorrectly estimated depth.

However, the above technique cannot be used to estimate the depth of points on

the ground plane because LIDAR has a lower resolution in a perpendicular direction

than in a level direction. A different approach is followed to enable depth estimation

for a relevant ground plane. For solving this, RANSAC with refinement is used

on the LIDAR point cloud to extract the ground plane [55]. In order to estimate

feature points on the road, points that correspond to the ground plane are segmented.

Outliers are extracted by allowing only local planes that lie close to the ground plane.

3.1.3 Frame to Frame Odometry

Perspective-n-Point-Problem [55] serves as the starting point of the frame to frame

motion estimation.

argmin
x,y,z,α,β,γ

∑
i

‖ϕi,3d→2d‖2
2 (3.1)

ϕ3d→2d = p̄i − π(pi, P (x, y, z, α, β, γ)), (3.2)
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where p̄i is the observed feature point in the current frame, pi is the 3D-point corre-

sponding to p̄i, the transform from the previous to the current frame is denoted by

freedom P (x, y, z, α, β, γ), which has three translation and three rotation degrees of

freedom. π(...) is the projection function from the 3D to 2D domain. The extracted

features with valid estimated depth may be very small in the environments that has

low structure and large optical flow. LIMO introduces epipolar error as ϕ2d→2d [54].

ϕ2d→2d = p̄iF (
x

z
,
y

z
, α, β, γ)p̄i, (3.3)

where fundamental matrix F can be calculated from the intrinsic calibration of the

camera and from the frame to frame motion of the camera. LIMO suggests the loss

function to be Cauchy function [54]: ρs(x) = a(s)2.log(1 + x
a(s)2

), where a(s) is the fix

outlier threshold. For frame to frame motion estimation, the optimization problem

can be denoted as:

argmin
x,y,z,α,β,γ

∑
i

ρ3d→2d(‖ϕi,3d→2d‖2
2) + ρ2d→2d(‖ϕi,2d→2d‖2

2). (3.4)

3.1.4 Backend

LIMO proposes a Bundle Adjustment framework based on keyframes , with key com-

ponents as selection of keyframes, landmark selection, cost functions and robustifica-

tion measures. The advantage with this approach is that it retains the set that carries

information, which is required for accurate pose estimation as well as excludes the

unnecessary measurements. Keyframes are classified as required, rejected and spar-

sified keyframes. Required frames are crucial measurements. Frame rejection is done

when the vehicle does not move. The remaining frames are collected, and the tech-

nique selects frames every 0.3s. Finally in keyframe selection, length of optimization
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window is chosen.

An optimal set of landmarks should be well observable, small, free of outliers

and evenly distributed. Landmark selection divides all landmarks into three bins,

near, middle and far, each of which has fixed number of landmarks selected for the

Bundle Adjustment. Weights of the landmarks are then determined based on the

semantic information. The estimated landmark depth is taken into consideration by

an additional cost function,

ξi,j(ii, Pj) =


0, if li has no depth estimate

d̂i,j −
[
0 0 1

]
τ(li, Pj), else,

(3.5)

where li denotes the landmark, τ mapping from world frame to camera frame and d̂

denotes the depth estimate. The combination of indices i, j denote the landmark-pose.

A cost function ν punishes deviations from the length of translation vector,

ν(P1, P0) = ŝ(P1, P0)− s, (3.6)

where P0, P1 are the last two poses in the optimization window and ŝ(P0, P1) =

‖translation(P−1P1)‖2
2, where s is a constant with value of ŝ(P1, P0) before optimiza-

tion.

While outliers need to be removed because they do not let Least-Square methods

to converge [85, 86], semantics and cheirality only does preliminary outlier rejection.

The LIMO optimization problem can now be formulated as:

argmin
Pj∈P,li∈L,di∈D

w0‖ν(P1, P0‖2
2)+



26

∑
i

∑
j

w1ρφ(‖φi,j(li, Pi)‖2
2) + w2ρξ(‖ξi,j(li, Pj)‖2

2), (3.7)

where φi,j(li, Pj) = l̄i,j − π(li, Pj) is the re-projection error, and weights w0, w1 and

w2 are used to scale the cost functions to the same order of magnitude.

3.2 Open Problem Discussion

LIMO suffers from accuracy problem. LIMO when running with various environments

experiences an error with respect to the ground truth. In order to address this

problem, this thesis proposes an algorithm called GA-LIMO, which aims to reduce

the translation error in sensor odometry estimation. The proposed algorithm and the

experimental results are shown further in this chapter.

3.3 GA-LIMO

In this section, one of the main contributions of this thesis is presented. The detailed

description is also conferred in [87]. The specific GA searches through the space of

parameter values used in LIMO for the values that maximizes the performance and

minimizes the translation error as a result of pose estimation. We are targeting the

following parameters: outlier rejection quantile δ; maximum number of landmarks

for near bin εnear; maximum number of landmarks for middle bin εmiddle; maximum

number of landmarks for far bin εfar and weight for the vegetation landmarks µ. As

described in the background section, rejecting outliers, δ, plays an important role in

converging to minimum, the weight of outlier rejection thus has notable impact on

the translation error. The landmarks are categorized into three bins, which also have

great significance in translation error calculation. Trees that have a rich structure
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result in feature points that are good to track, but they can move. So, finding an

optimal weight for vegetation can significantly reduce translation error. δ and µ range

from 0 to 1, while εnear, εmiddle and εfar range from 0 to 999. We have set these ranges

based on early experimental results.

Algorithm 2: GA-LIMO
1 Choose population of n chromosomes
2 Set the values of parameters into the chromosome
3 Run LIMO with the GA selected parameter values
4 for all chromosome values do
5 Run LIMO on KITTI odometry data set sequence 01
6 Compare LIMO estimated poses with ground truth
7 Translation error σ1 is found
8 Run LIMO on KITTI odometry data set sequence 04
9 Compare LIMO estimated poses with ground truth

10 Translation error σ4 is found
11 Average error σavg = σ1+σ4

2

12 return 1/σavg
13 end
14 Perform Uniform Crossover
15 Perform Flip Mutation at rate 0.1
16 Repeat for required number of generations for optimal solution

Our experiments show that adjusting the values of parameters did not decrease

or increase the translation error in a linear or easily appreciable pattern. So, a simple

hill climber will probably not do well in finding optimized parameters. We thus use

a GA to optimize these parameters.

Algorithm 2 explains the combination of LIMO with the GA, which uses a popu-

lation size of 50 runs for 50 generations. We used ranking selection [15] to select the

parents for crossover and mutation. Rank selection probabilistically selects higher

ranked (higher fitness) individuals. Unlike fitness proportional selection, ranking

selection pays attention to the existence of a fitness difference rather than to the

magnitude of fitness difference. Children are generated using uniform crossover [16],

which are then mutated using flip mutation [13]. Chromosomes are binary encoded
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with concatenated parameters. δ and µ are considered up to three decimal places,

which means a step size of 0.001, because changes in values of parameters cause con-

siderable change in translation error. All the parameters require 11 bits to represent

their range of values, so we have a chromosome length of 55 bits, with parameters

arranged in the order: δ, εnear, εmiddle, εfar, µ.

The algorithm starts with randomly generating a population of n individuals.

Each chromosome is sent to LIMO to evaluate. LIMO evaluates the parameter

set represented by each individual by using those parameters to run on the KITTI

dataset [61]. The KITTI benchmarks are well known and provide the most popular

benchmark for Visual Odometry and VSLAM. This dataset has rural, urban scenes

along with highway sequences and provides gray scale images, color images, LIDAR

point clouds and their calibration. Most LIMO configurations are as in [4]. In our

work, we focus on two sequences in particular: sequence 01 and 04. Sequence 01 is

a highway scenario, which is challenging because only a road can be used for depth

estimation. Sequence 04 is an urban scenario, which has a large number of landmarks

for depth estimation. We consider both sequences for each GA evaluation because we

want a common set of parameters that will work well with multiple scenes.

The fitness of each chromosome is defined as the inverse of translation error. This

translates the minimization of translation error into a maximization of fitness as

required for GA optimization. Since each fitness evaluation takes significant amount

of time, an exhaustive search of the 255 size search space is not possible, hence we are

using the GA. During a fitness evaluation, the GA first runs the LIMO with sequence

01. It then compares the LIMO estimated poses with ground truth (also found in [61])

and finds the translation error using the official KITTI metric [61]. The same steps

are followed for sequence 04. The fitness value of each chromosome is the average of
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Figure 3.1: Camera data while GA-LIMO is in action.

the inverse translation errors from the two sequences.

σavg =
σ1 + σ4

2
. (3.8)

Selected chromosomes (ranked selection) are then crossed over and mutated to create

new chromosomes to form the next population. This starts the next GA iteration

of evaluation, selection, crossover, and mutation. The whole system takes significant

amount of time since we are running 50 ∗ 50 = 2500 LIMO evaluations to determine

the best parameters. The next section shows our experiments with individual and

combined sequences, with and without the GA. Our results show that the GA-LIMO

performs better than the results of LIMO [4].

3.4 Experimental Results

In this section we show our experiments with individual KITTI sequences, a combina-

tion of sequences, and overall results. First, we run the GA-LIMO with sequences 01

and 04 separately. We show the translation error and the error mapped onto trajec-

tory, compared to the ground truth (reference) [79]. We then show our results when

GA-LIMO runs with evaluations on both sequences 01 and 04. Finally, we compare

the values of parameters found by GA-LIMO versus LIMO.
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Figure 3.2: GA-LIMO estimating the pose. The video for this visualization
can be found on: https : //ara.cse.unr.edu/?page_id = 11 and https :
//www.youtube.com/watch?v = _4peUcY y6− g

Algorithm 3: GA-LIMO individual
1 Choose population of n chromosomes
2 Set the values of parameters into the chromosome
3 Run LIMO with the GA selected parameter values
4 for all chromosome values do
5 Run LIMO on individual KITTI odometry dataset sequence
6 Compare LIMO estimated poses with ground truth
7 Translation error σ is found
8 return 1/σ

9 end
10 Perform Uniform Crossover
11 Perform Flip Mutation at rate 0.1
12 Repeat for required number of generations to find optimal solution

Figure 3.1 shows camera data while GA-LIMO is estimating the pose from that

data in figure 3.2. Figure 3.3 compares LIMO performance with GA-LIMO on se-

quence 04. Here the GA was run on this sequence individually to find best values of

parameters, as in algorithm 3. Absolute Pose Error (APE) and Root Mean Squared

Error (RMSE) are one of the important measures [88]. The translation error for each

sequence is the RMSE calculated with respect to ground truth. Figure 3.3a compares

the translation error over the poses, while figure 3.3b compares the error mapped

onto the trajectory with the zoomed in trajectory. Table 3.1 compares the values of

parameters for LIMO and GA-LIMO. Our results show that the GA-LIMO trajectory

is closer to ground truth compared to LIMO. We found that the translation error was

https://ara.cse.unr.edu/?page_id=11
https://www.youtube.com/watch?v=_4peUcYy6-g
https://www.youtube.com/watch?v=_4peUcYy6-g
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(a) Translation error comparison over the poses.

(b) Trajectory comparison for sequence 04, when GA-LIMO was run on this sequence indi-
vidually (algorithm 3).

Figure 3.3: Results comparison for sequence 04 (algorithm 3). LIMO has 1.01%
translation error, while GA-LIMO has about half this error with 0.56%.

0.56% with GA-LIMO, in contrast to 1.01% with LIMO.

Figure 3.4 compares the performance of LIMO with GA-LIMO when the system is

run on just sequence 01. In this case, first, the GA was run on sequence 01 (Algorithm

3) and then the GA-LIMO parameters were used to test the same sequence. Table

3.2 compares the original and GA found parameter values. Figure 3.4a compares

translation error, while figure 3.4b shows the error mapped onto the trajectory for
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(a) Translation error comparison over the poses.

(b) Trajectory comparison.

Figure 3.4: Results comparison for sequence 01 (algorithm 3). LIMO has 3.71%
translation error, while GA-LIMO has 3.8%.

Parameters LIMO GA-LIMO

δ 0.95 0.986
εnear 400 999
εmiddle 400 960
εfar 400 859
µ 0.9 0.128

Table 3.1: LIMO vs GA-LIMO values of parameters when GA was run on LIMO with
sequence 04 individually.
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LIMO and GA-LIMO. As shown in the zoomed in figure 3.4b, GA-LIMO is closer

to the ground truth. The translation error for LIMO is found to be around 3.71%

and 3.8% in case of GA-LIMO, with sequence 01. GA found parameters that did not

outperform the original parameters, when GA-LIMO was run on just sequence 01.

Parameters LIMO GA-LIMO

δ 0.95 0.958
εnear 400 999
εmiddle 400 593
εfar 400 877
µ 0.9 0.813

Table 3.2: LIMO vs GA-LIMO values of parameters when GA was run on LIMO with
sequence 01 individually.

Parameters LIMO GA-LIMO

δ 0.95 0.963
εnear 400 999
εmiddle 400 554
εfar 400 992
µ 0.9 0.971

Table 3.3: LIMO vs GA-LIMO values of parameters when GA is run on LIMO with
combined sequence 01 and 04.

We finally ran the system with both sequences 01 and 04 as described in Algorithm

2. The fitness of each evaluation is the average of translation errors of the sequences

when run using the input parameters. The parameters found in GA-LIMO as shown

in table 3.3, were then tested on sequences sequences 00, 01 and 04, as shown in figure

3.5 and 3.6. It is evident that GA-LIMO performed better than LIMO in all three

sequences. The zoomed in figures show a closer view on one part of the trajectories.

GA-LIMO trajectories are closer to the ground truth and have lesser translation

errors. GA-LIMO has a translation error of 5.13% with sequence 00, 3.59% with

sequence 01 and 0.65% with sequence 04, in contrast with 5.77% with sequence 00,
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3.71% with sequence 01 and 1.01% with sequence 04 using original parameters.

Our method helped to find a common set of GA-LIMO parameters, which works

better and hence lead to better performance in different kinds of environments.

3.5 Summary

In this chapter, the LIMO algorithm is described. The chapter also proposes the GA-

LIMO algorithm, compares the performance of LIMO [4] with that of GA-LIMO [87],

and shows that the GA-LIMO performs better than the LIMO.
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(a) Translation error comparison over the poses for sequence 00. LIMO has 5.77% translation
error while GA-LIMO has 5.13%.

(b) Translation error comparison over the poses for sequence 01. LIMO has 3.71% translation
error while GA-LIMO has 3.59%.

(c) Translation error comparison over the poses for sequence 04. LIMO has 1.01% translation
error while GA-LIMO has 0.65%.

Figure 3.5: The parameters are found using GA-LIMO, using a combination of se-
quences 01 and 04 (Algorithm 2). These parameters are then tested on three se-
quences. In all three sequences, GA-LIMO performs better than LIMO.
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(a) Sequence 00 trajectories showing GA-LIMO closer to ground truth.

(b) Sequence 01 trajectories showing GA-LIMO closer to ground truth.

(c) Sequence 04 trajectories showing GA-LIMO closer to ground truth.

Figure 3.6: Trajectory comparison when GA-LIMO was run in Algorithm 2. In all
three sequences, GA-LIMO performs better than LIMO.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

This thesis showed initial results that demonstrated that a genetic algorithm can

tune reinforcement learning algorithm parameters to achieve better performance, il-

lustrated by faster learning rates at five manipulation tasks. It was further shown that

the genetic algorithm can also be used to tune sensor odometry algorithm parameters

to achieve more accuracy in various environments. We discussed existing work in

reinforcement learning in robotics and sensor odometry, presented the GA-LIMO al-

gorithm along with an algorithm that integrates DDPG + HER with GA to optimize

the number of epochs required to achieve maximal performance, and explained why a

GA might be suitable for such optimization. Initial results bore out the assumption

that GAs are a good fit for such parameter optimization and our results on the five

manipulation tasks show that the GA can find parameter values that lead to faster

learning and better (or equal) performance at our chosen tasks. Furthermore, the

results for GA-LIMO illustrated that GA found parameters produce more accurate
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sensor odometry.

4.2 Future Work

We provided further evidence that heuristic search as performed by genetic and other

similar evolutionary computing algorithms are a viable computational tool for opti-

mizing reinforcement learning and sensor odometry performance. Adaptive Genetic

Algorithms can also be deployed to have different sets of parameters during the pro-

cess of running the system. This may point towards online parameter tuning, which

will help any system have better performance, irrespective of the domain or type of

testing environment.
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