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Abstract

We developed a water quality model for the highly urbanized Chicago River watershed based on hydrologic simulation using 

BASINS/HSPF. Appropriate consideration was given to the effective impervious area (EIA). The 5 y water quality simulation resulted 

in finding total nitrates loadings at both point and nonpoint sources. However, it is always useful to have modeling alternatives to 

validate the simulation results of a physically based model with a data-driven one. Data-driven modeling has gained a lot of at-

tention in recent decades in both hydrology and water resources research. While physically based models require the description 

of system inputs, physical laws and boundary and initial conditions, a data-driven model simply extracts knowledge from a large 

amount of data with only a limited number of assumptions about the physical behaviour of the system. For this case study, both 

data-driven and physical models were considered to simulate total nitrates. Comparing the performance of the two modeling 

approaches, the data-driven models show better performance. RMSE for regression models showed an increase in prediction 

performance of up to 10.7 %. Data-driven models require fewer inputs and can be deployed anywhere in the watershed, while 

physical models require extensive data inputs and can only be applied to the specific watershed outlets selected in the simulation. 

These arguments suggest the complementary use of both physical and data-driven models. The physical model can be a planning 

tool whenever significant physical change takes place in the watershed. The data-driven model can be an operating tool that 

can be periodically used to inspect the watershed water quality parameters, especially if TMDL and WQS are established for the 

watershed.

1 Introduction
Watershed models are fundamental to water resources as-
sessment, development and management. They are useful in 
developing models that describe complex natural processes and 
complicated systems through sets of equations that explain the 
problems and solve them. Estimates of nutrient concentrations, 
loads and yields are useful for analyzing a water body and help to 
identify source areas and to develop mitigation strategies. Nutri-
ent loads that are transported by a stream during a given period 
of time are particularly important when considering the quantity 
of nutrients that enter a lake or reservoir. Load estimates are 
essential for the establishment and monitoring of total maximum 
daily loads (TMDLs) as mandated by the Clean Water Act (CWA). 
Resource and regulatory authorities use yield estimates to help 
prioritize efforts with regard to land use management and best 
practices.

Tools, such as hydrological models, that are coupled with 
geographic information systems (GIS) and remote sensing pro-
vide powerful techniques for conducting these kinds of studies 
(Zoppou 2001; Conway and Lathrop 2005; Wang et al. 2005; Wu et 
al. 2006; Singh et al. 2011; Yu et al. 2009; Jeon et al. 2007). Other 
integrated approaches involve the use of statistical and spatial 
analyses, as well as hydrologic modeling, to examine the effects 

of land use on water quality (Tong et al. 2007; Tong and Chen 
2002). Most researchers depend on field studies that focus on 
a geographically local scale or that have a small set of land use 
patterns (Wilson and Weng 2011; Akhavan et al. 2010; Leon et al. 
2010). Continuous hydrologic models consider the whole hydro-
logic cycle and the effects of long term hydrological changes and 
processes.

BASINS 4.0 was selected to assess the water quality in the 
watershed. The software is a multi-purpose environmental anal-
ysis system that integrates a geographical information system 
(GIS), national watershed data, state-of-the-art environmental 
assessment, and modeling tools (such as HSPF, SWAT or SWMM) 
into one convenient package.

The software promotes better assessment and integration 
of point and nonpoint sources for management, planning and 
decision-making. BASINS is a watershed based water quality as-
sessment tool that has been widely accepted in many watershed 
studies (Tong et al. 2007; Tong and Chen 2002; Tong et al. 2009; 
Luzio et al. 2002; Fohrer et al. 2001).

HSPF is a watershed scale conceptual model. HSPF per-
forms continuous simulation of hydrology and water quality, 
and performs flow and water quality routing in the watershed 
reaches. HSPF is extensively used to model urbanized watersheds 
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(Fonseca et al. 2014; Im et al. 2003; Shirinian-Orlando and Uchrin 
2007; Wicklein and Schiffer 2008). It is the most comprehensive 
and flexible hydrology and water quality model available (Berg-
man et al. 2002; Mohamoud et al. 2010). However, other studies 
suggest that using the urban land use as a nonpoint source for 
nutrients can give invalid results because of the impervious cov-
er in urban areas and the way drainage is frequently routed to 
wastewater treatment plants and then discharged to local rivers 
as a point source (Ahearn et al. 2005).

Since accurate estimates of runoff volume are important 
in order to estimate pollutant loads, the effective impervious 
area (EIA), as a fraction of the total impervious area (TIA), should 
be determined for use in hydrological models (Sutherland 2000; 
Deacon et al. 2005; Brabec et al. 2002). Impervious area is a rough 
measure of the total watershed that is utilized by human activi-
ties. EIA is the portion of TIA within a watershed that is partially or 
totally connected to the drainage collection system. Street surfac-
es, parking lots, paved driveways and sidewalks, and rooftops that 
are directly connected to the storm sewer system are all included 
in EIA (Sutherland 2000). For urban runoff modeling or hydrologic 
analysis, the EIA for a given basin is usually less than the TIA; 
however, in highly urbanized basins, EIA values can approach and 
equal TIA (Deacon et al. 2005). Field measurements, empirical 
equations, and calibrated computer models are some ways to 
determine EIA (Sutherland 2000; Deacon et al. 2005).

The huge amounts of data collected daily from monitoring 
systems and the exponential growth and advances in informa-
tion systems have resulted in an increased use of data mining to 
generate models that can explain physical systems. Data-driven 
modeling is the study of mathematical algorithms that improve 
automatically through experience and training. Data-driven 
modeling has developed with contributions from areas such as 
artificial intelligence, machine learning, data mining, knowledge 
discovery and pattern recognition. The most-used models are 
artificial neural networks, fuzzy rule based systems, and statistical 
methods. Data-driven modeling has gained a lot of attention in 
the last decades in both hydrology and water resources research 
(Pries and Ostfeld 2008).

A data-driven model simply extracts knowledge from 
large amounts of data with only a limited number of assump-
tions about the physical behaviour of the system. This modeling 
approach can only be considered feasible if sufficient data is 
available.

Data-driven modeling has been used in areas such as 
rainfall–runoff and groundwater modeling (Fallah-Mehdipour 
et al. 2014; Tokar and Markus 2000; Solomatine and Dulal 2003; 
Muttil and Liong 2004; Solomatine et al. 2007); flood forecasting 
(Chen and Yu 2007; Chiang et al. 2007); streamflow prediction, 
and river management (Preis and Ostfeld 2008; Marsili-Libellia 
et al. 2013; Mouton et al. 2009; Asefa et al. 2006). Water quality 
constituents have also been predicted using data-driven models 
in many studies (Preis and Ostfeld 2008; Solomatine et al. 2007; 
Ghavidel and Montaseri 2014; Burchard-Levine et al. 2014). They 

are effective in building knowledge-driven simulations, that are 
capable of extracting different system states when the nature of 
complex relationships is unknown, or when the available models 
are inadequate (Solomatine et al. 2007). It is always useful to have 
modeling alternatives and to be able validate the simulation 
results of physically based models with data-driven ones, or vice 
versa (Preis and Ostfeld 2008; Solomatine and Dulal 2003).

In this project, both physical and data-driven models 
were developed for the Chicago River watershed to predict total 
nitrates (NO3 + NO2). The performances of the two modeling ap-
proaches were compared and assessed based on the results. 

2 Study Area
The Chicago River basin (hydrologic unit code 07120003) is the 
smallest part (6%) of the Upper Illinois River basin (UIRB). UIRB 
is part of the Mississippi River basin, which is the world’s second 
largest drainage basin and altogether includes more than 40% 
of the land area in the contiguous United States. The significance 
of the Chicago River basin lies in its navigable systems, and in 
particular, the Chicago Sanitary and Ship Canal, which provides a 
link between Lake Michigan and the Mississippi River. Population 
in the basin has grown steadily over the years leading to urban and 
industrial growth. The Chicago River watershed is approximately 
82% urban land use. As a result of the urban growth, major chang-
es in the region have taken place and have significantly affected 
the quality of surface waters. Wastewater disposal and storm runoff 
became serious issues in the watershed.

Surface water issues related to urbanization include point 
and nonpoint sources of sediment, nutrients, trace elements and 
organic compounds; streamflow alterations; and the health and 
community structure of aquatic biota. Development also alters 
runoff patterns by changing the lay of the land and thus drainage 
patterns, which can result in a dramatic increase in the rate and 
volume of stormwater runoff and a reduction in groundwater 
recharge.

The changes in land cover, the increase in construction 
activities that result in compact soils and smooth natural grades, 
reduced native vegetation, enlarged storm sewer systems, and 
lined channels all add to the conveyance of greater volumes of 
runoff downstream at much faster rates (MWRDGC 2007).

Much of the pollutant load in the runoff originates from im-
pervious surfaces, particularly roadways and parking lots. Some 
of the more common water quality impacts of stormwater runoff 
are sediment contamination, nutrient enrichment, toxicity to 
aquatic life, bacterial contamination, salt contamination, impaired 
aesthetic conditions, and elevated water temperatures.

In general, nutrient loads—nitrogen and phosphorus—
were greatest from the urban center of the Chicago metropolitan 
area, reflecting the effect of wastewater return flows to the 
Chicago River and the Chicago Sanitary and Ship Canal. The ship 
canal was also observed to carry the majority of ammonia and 
phosphorus loads during low flow conditions. It is considered the 
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main nutrient contributor to the Illinois River and thence the Gulf 
of Mexico dead zone, the largest hypoxic zone ever measured.

3 Methodology

3.1 Data Sources and Types
For this study a local data warehouse (DW), which aggregates 
different available data types from various agencies in the water-
shed, was created as part of the construction of a framework for 
modeling the Chicago River watershed. The framework includes 
the data warehouse, data analysis and watershed assessment, 
physical and data-driven modeling, and optimization. The DW 
makes it easy to access, retrieve, fill data gaps, analyze and 
manage data records in the watershed. This helps to integrate 
the data and to meet different requirements such as watershed 
assessment and physical modeling. Different water quantity, wa-
ter quality and land use data were compiled from sources which 
include the U.S. Geologic Survey (USGS), the Metropolitan Water 
Reclamation District of Greater Chicago (MWRDG), the Chicago 
Metropolitan Agency for Planning (CMAP), the U.S. Army Corps of 
Engineers—Chicago District (USACE), the BASINS data store, and 
several sources that are permitted through National Pollutant Dis-
charge Elimination System (NPDES) permits, including facilities, 
treatment plants and combined sewer overflows (CSOs). Figure 1 
shows the data sources.

Figure 1 Locations of data sources.

3.2 Physical Modeling
In this section, we describe the development of a water quality 
model to quantify the effect of detailed (level III) land use on 

nutrient loading in the Chicago River watershed using BASINS/
HSPF.

Nutrient export coefficients that relate the detailed land 
uses to water quality were obtained from the calibrated and valid-
ated model. The following subsections outline the steps carried 
out to fulfill the objectives of the simulation process. They explain 
the types and sources of data used and how hydrologic and water 
quality models were constructed and used in the BASINS/HSPF 
model environment.

Watershed Simulation
BASINS data layers that can be provided to HSPF include: digital 
elevation model (DEM) grid data; National Land Cover Data (NLCD 
or GIRAS) land use data; reach files; permit compliance system 
(PCS) data; meteorological data; and STORET and USGS data. 
In order to run HSPF, the observed meteorological data, water 
quality data and flow data must be formatted to watershed data 
management (WDM) files that contain time series data required 
by HSPF. All input data, except for time series, are contained in 
a user control input (UCI) file. This file contains all the parameter 
values and control specifications needed to run the HSPF model. 
For evaluation of the model, all the calibration and validation 
analysis was performed using the GenScenario tool in the BASINS 
package.

Delineation is part of a segmentation process that is re-
quired by HSPF. The watershed is divided into segments which 
are analyzed. Delineation is used to determine a contributing 
watershed area for a specific outlet or to divide the watershed 
into subbasins. The delineation is either automatic, using DEM 
grids, or manual, where existing streams and basins are empir-
ically selected and used to determine the watershed. For this 
study automatic delineation was used. The delineation process 
determined the three GIS layers that are required to run the HSPF 
model: streams, subbasins, and outlets.

WinHSPF divided the Upper Chicago River subbasin into 
homogeneous land areas (hydrologic response units, HRUs). The 
HRUs were used to define 6 reaches and 7 subwatersheds. The 
hydraulic characteristic of each reach were defined by parameters 
in the function tables FTABLES, that represent volume–discharge 
relationships for each reach. A fixed relationship was assumed 
between water level, surface area, volume and discharge. HRUs 
can be impervious or pervious areas, which, once determined, are 
modeled independently.

Each HRU requires input data, such as meteorological data 
and parameters related to land use, soil characteristics to simulate 
hydrology, sediments, and nutrients (Donigian et al. 1995). The 
main simulation modules are PERLND, IMPLND and RCHRES and 
they simulate pervious land segments, impervious land segments 
and free flow respectively (Donigian et al. 1995).

Since accurate estimates of runoff volume are essential 
for the accurate estimation of pollutant loads, the EIA as a per-
centage of TIA should be determined for basins that are directly 
connected to the drainage systems (Sutherland 2000). TIA is 
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determined using two common methods: land use or zoning 
maps; and aerial photography (Jones et al. 2003). Most current 
impervious surface studies rely on the methods that correlated 
percentage impervious surface with land use largely by using 
estimates of the proportion of imperviousness within each class. 
Tables 1 and 2 show the TIA and EIA percentages, respectively, 
adopted for this study based on literature (Brabec et al. 2002).

Table 1 Some of the TIA percentages adopted for this study, 
based on the literature.

Land Use Category (TIA)%

Agricultural 0

Commercial 85

Forest 0

Industrial 85

Multi-Family Residential 50

Single-Family Residential 35

Public Open Space 0

Roads 85

Schools 50

Vacant 0

Water 100

Table 2 EIA equations used for calibration and sensitivity 
analysis of the study area.

Source EIA Value

Alley et al. (0.15 × TIA1.41)

Laenen (3.6 + 0.43 × TIA)

Sutherland, Highly connected basins (0.4 × TIA1.2)

Sutherland, Totally connected basins (TIA)

Flow Simulation
Flow is the first component to be simulated. PWATER and IWATER 
are the modules used for flow simulation. PWATER calculates the 
components of the water budget and predicts the total runoff 
from pervious land segments. IWATER simulates the retention, 
routing and evaporation of water from impervious land seg-
ments. The instream hydraulic behaviour is simulated by HYDR.

For each reach, a fixed relationship is assumed among 
water level, surface area, volume, and discharge. Instream simu-
lation is based on the assumption of a completely mixed system 
with unidirectional longitudinal flow simulation. The hydraulic 
characteristics of reaches in the model are defined by parameters 
in the function tables (FTABLES) that represent volume discharge 
relations for reaches. Parameters needed for the simulation such 
as nominal upper zone storage, nominal lower zone storage, soil 
moisture infiltration rate, percent vegetation cover of each land use 
type, and groundwater recession rate were given BASINS default 
values or literature values and later adjusted during hydrologic 
calibration.

Water Quality Simulation
The simulation was done using the HSPF modules PQUAL and 
IQUAL for pervious and impervious land segmentsrespectively.

PQUAL and IQUAL simulate the pollutants using one of two 
methods: either by direct washoff by overland flow, where the 
constituent is simulated using the basic depletion and accumu-
lation rate; or by washoff associated with detached sediments, 
where the constituent is simulated as a function of sediment 
removal. The first approach was adopted for all the species since 
the study area is largely impervious and the nutrients will have 
washed off with overland flow.

HSPF simulates several physical, chemical and biological 
processes within a stream reach using the RCHRES module. The 
reaches are assumed to be completely mixed and the flow is 
unidirectional. Point sources were added in the HSPF simulation. 
The two known NPDES that could be added to the watershed are 
North Side WRP and Calumet Water WRP.

Model Calibration and Validation
Hydrologists need to evaluate model performance to provide a 
quantitative estimate of the model’s performance and predictive 
ability (Krause et al. 2005). No commonly accepted modeling 
guidance has yet been established, although the American Soci-
ety of Civil Engineers (ASCE) has emphasized the need to clearly 
define model evaluation criteria since in 1993 (Donigian 2002). 
A weight of evidence approach is commonly accepted and was 
used to examine and assess model performance. For these rea-
sons multiple model comparisons, both graphical and statistical, 
are preferred (Donigian 2002).

For this study, model performance and calibration–valida-
tion are evaluated through qualitative and quantitative measures, 
involving both graphical comparisons and statistical tests. The 
calibration–validation process is a hierarchal process that starts 
by developing parameters, followed by hydrology calibration–
validation and finally water quality calibration–validation. Of the 
standard regressions, Pearson’s coefficients of correlation (r) and 
determination (r2) were used. These coefficients describe the 
degree of co-linearity between simulated and observed data. The 
regression coefficients are given by the following equations

r 2 =
Oi −O( ) Si −S( )i=1

n
∑
Oi −O( )i=1

n
∑

2
Si −S( )2i=1

n
∑

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

(1)

where:

r = Pearson coefficient,
 Oi and Si = observed and simulated values respectively, and

O and S = the means of observed and simulated values 
respectively. 

For model performance, r ranges from −1 to 1 and for r2 
the values range from 0 to 1. Generally, a value >0.5 is considered 
acceptable (Donigian 2002).
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The fact that only the dispersion is quantified is one of the 
major drawbacks of r2 if it is considered alone. A model which 
systematically over- or under-predicts will still result in good r2 
values close to 1.0 even if all predictions were wrong. Another 
model evaluation criterion is the Nash–Sutcliffe efficiency coeffi-
cient (Krause et al. 2005). It is calculated as:

NSE =1−
Oi −Si( )2

i=1

n
∑

Oi −O( )2i=1

n
∑

(2)

The range of NSE is from1 (perfect fit) to −∞.

An efficiency <0 indicates that the mean value of the ob-
served time series would have been a better predictor than the 
model. The largest disadvantage of NSE is the fact that the differ-
ences between the observed and simulated values are calculated 
as squared values. As a result, larger values in a time series are 
strongly overestimated whereas lower values are neglected 
(Krause et al. 2005).

Root mean square error (RMSE), normalized root mean 
square error (NRMSE) and mean absolute error (MAE) are other 
statistical indices that can be used to evaluate model perfor-
mance. They are given by the following equations:

RMSE =
Oi −Si( )2

i=1

n
∑

n
(3)

NRMSE = RMSE
Omax −Omin

(4)

MAE = 1
n

Si −Oi =
1
n

eii=1

n
∑i=1

n
∑ (5)

where Omax and Omin are the maximum and minimum observed 
values and ei is the absolute error.

RMSE and MAE measure the aggregated difference be-
tween simulated values and observed values. Values close to zero 
indicate better performance.

Percent mean error (PME) is a general calibration–valida-
tion measure that has been provided to HSPF model users to 
be used in model performance evaluation (Donigian 2002). The 
tabulated values provide general guidance, in terms of the per-
cent mean errors or differences between simulated and observed 
values, so that users can determine the level of agreement or ac-
curacy (i.e. very good, good, fair) that might be expected from the 
model application (Donigian 2002). Table 3 shows percent mean 
error (PME) target values for different modeling processes.

Table 3 General PME calibration and validation target 
values for HSPF applications (Donigian 2002).

Very Good Good Fair

Hydrology/Flow <10 10–15 15–25
Sediment <20 20–30 30–45

Water Temperature <7 8–12 13–18

Water Quality/Nutrients <15 15–25 25–35
Pesticides/Toxins <20 20–30 30–40

3.3 Data-driven Modeling
This section introduces data mining (DM), from the field of arti-
ficial intelligence, to estimate total nitrates for the Chicago River 
watershed. DM models consist of a set of mathematical relation-
ships. DM tasks are divided into two major classes: predictive 
tasks and descriptive tasks. Predictive tasks are those in which 
a particular attribute is predicted based on the value of other 
attributes. The attribute to be predicted is the dependent variable 
while the attributes used for making the prediction are indepen-
dent variables. For descriptive tasks, the objective is to develop 
patterns (e.g. correlations, trends) that summarize the relation-
ships in data, and which are often exploratory in nature. These 
tasks usually require post-processing techniques to validate and 
explain the results. Predictive models are divided to classification 
models, which are used for discrete target variables, and regres-
sion models, which are used for continuous target variables (Tan 
et al. 2006).

There are many methods to construct predictive and classi-
fication models such as naive Bayesian, support vector machines, 
decision tree, neural network, and k-nearest neighbor classifica-
tions. Regression is the statistical methodology that is most often 
used for numeric predictions. Both prediction and classification 
are supervised learning problems where there is an input X and 
an output Y, and the model learns the mapping from the input to 
output. The approach in DM is that a model defined up to a set of 
parameters, is assumed:

y = g x θ( ) (6)

where:

y = prediction or regression,
g = the model, 
x = the model input, and
θ = the model parameters. 

The DM program optimizes these parameters so that the 
approximation error is minimized and the estimates are close to 
the correct values given in the training set. For the Chicago River 
watershed, we developed data-driven models (using different 
data mining techniques) to estimate nutrient concentration 
based on some watershed parameters such as stream flow, pre-
cipitation, air temperature, water temperature, dissolved oxygen, 
turbidity, areas of different land use types, month of year, and 
others.

DM is part of the knowledge discovery in database (KDD) 
process. It consists of series of mining steps. For this case study, 
the open source Waikato Environment for Knowledge Analysis 
(WEKA) software package was used. It provides a comprehensive 
collection of DM algorithms and data preprocessing tools that 
together provide a framework to compare the different algo-
rithms. WEKA has several graphical user interfaces that enable 
easy access to the underlying processes. The main graphical user 
interface is the Explorer. It has a panel based interface, where 
different panels correspond to different data mining tasks such as 
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preprocess, where data can be loaded from various sources includ-
ing files and database; and classify which gives access to WEKAs 
different classification and regression algorithms. The panel also 
provides access to graphical representations of model prediction 
errors in scatter plots, and allows evaluation via ROC curves and 
other threshold curves (Hall et al. 2009).

Pre-Processing
Examples of data pre-processing are data cleansing, data inte-
gration, and data transformation. Data pre-processing includes 
the tracking of incomplete data, data that lack certain attributes 
or values, filling missing or incomplete values, removing errors 
and outliers, and resolving inconsistencies in data. This process 
ensures quality data, which will in turn ensure quality results. De-
scriptive data summarization provides the analytical foundation 
for data pre-processing.

The basic statistical measures for data summarization 
include measurements for the central tendency of data such as 
mean, weighted mean, median and mode; and measurements for 
data dispersion such as range, quartiles, variance and standard 
deviation. Graphical representations such as histograms, box-
plots, quantile plots, and scatter plots facilitate visual inspection 
of the data and are useful for data pre-processing and data min-
ing. Data transformation routines are used to convert the data 
into forms that are suitable for mining. Histograms are highly 
effective at approximating both sparse and dense data as well as 
highly skewed and uniform data, and can capture dependencies 
between attributes. They use binning to approximate data distri-
butions. Datasets for analysis may contain hundreds of attributes, 
many of which may be irrelevant to the mining task or even 
redundant. Their inclusion may slow down the mining process 
and result in the discovery of patterns of poor quality. Various 
statistical significant tests and techniques, which assume that the 
attributes are independent of one another, can be performed to 
select best attributes data subsets.

Model Building and Evaluation
This section describes the selection and application of various 
models that are developed using comparable analytical tech-
niques, and the adjustment of model parameters until optimal 
values are reached. Input data are randomly partitioned into two 
independent sets, a training set and a test set. The training set is 
used in the construction of the model with an accuracy estimated 
using the test set. This is called the holdout method. The random 
subsampling method is a variation of the holdout method, in 
which the method is repeated k times and average accuracy is 
considered. In k-fold cross validation, the input data are randomly 
partitioned into k sets, or folds, of approximately equal size. Train-
ing and testing are then performed k times. Each sample is used 
the same number of times for training and once for testing. The 
error is then calculated as the average of the error rates of all the 
k iterations (Han and Kamber 2006). The 10-fold cross validation 
method was used for building all the models in this study.

Model Attributes
The attributes were selected based on their physical nature and 
whether they are real time frequently-measured data such as 
daily flow, air temperature and hourly precipitation; whether they 
are measurements of specific conductances such as pH, water 
temperature, dissolved oxygen, turbidity and total chlorophyll; 
whether they are time-consuming chemical or biological test 
measurements such as BOD and COD; or whether they are related 
to the land use of the source. The choice of which of these attri-
butes to select for data-driven models to predict total nitrates 
was made using the assumption that they would give relevant 
and useful information and thus good discovered patterns. Table 
4 shows the properties and gives descriptive summaries of the 
predictors. For the Chicago River watershed, a histogram analysis 
strategy was used to visualize the attributes data; for outliers, 
2% of the top and the bottom data were removed. Any missing 
values were replaced by mean values. The 10-fold cross valida-
tion method was used to partition training and testing data sets 
for all the predictive models used for this study. There were 905 
samples, and 154 attributes were investigated.

Table 4 Properties of predictors.

Attribute Description Unit Mean Min Max Stdev
MONTH NUM Number of the month NA NA 1 12 NA

DO Dissolved oxygen mg/L 7.198 0 15 2.67

NITRATE Total nitrate mg/L 2.686 0 11.98 2.903

TOT_P Total phosphorous mg/L 0.966 0 74 4.128

TKN Total Kjeldahl nitrogen mg/L 1.979 0.2 88 3.741

TURB Turbidity NTU 21.28 2.8 312 32.119

TEMP Water temperature °C 13.407 -4 33.7 7.674

CHLOROPH Chlorophyll-A yll-A 9.054 0 118.4 13.177

BOD Biochemic oxygen demand mg/L 4.155 0 46 3.386

COD Chemical oxygen demand mg/L 44.466 2 305 37.649

CBOD Carbonaceous BOD mg/L 1.653 0 6 1.782

PH Water pH NA 7.481 0 9.2 0.661

VSS Volatile suspended solids mg/L 137.697 0 916 194.801

ELEV Elevation ft 270.976 0.000 07 513.776 137.297

INORG_SS Inorganic suspended solids mg/L 29.769 0 428 42.913

MIN_AIR_TEMP Min. air temperature °F 43.035 −5.8 79 17.301

AVG_AIR_TEMP Avg. air temperature °F 52.608 −0.16 86.16 18.284

MAX_AIR_TEMP Max. air temperature °F 61.943 8.1 99 19.942

DAILY_PERC Daily precipitation in. 0.093 0 1.82 0.244

FLOW Daily flow cfs 67.708 0.02 1450 145.644

TOT_1001 Single family residential area acre 25 878.139 13 161.3 58 746.6 19 001.896

Prediction Models
This section describes the different regression or classification 
approaches used in this study. Eight different algorithms were 
investigated and built as regression or classification models, as 
applicable, and their merits were compared in the context of 
performance analysis. The prediction models are: multiple linear 
regression, artificial neural networks (ANNs), decision trees, support 
vector machines (SVMs), lazy learners, and Gaussian process.
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To use classification models to predict total nitrates, the 
values were transformed from continuous to three nominal 
classes. The classes were defined as low, medium and high based 
on the assessment of watershed data, as shown in Table 5. The 
classification models are: artificial neural networks (ANNs), model 
trees, support vector machines, naive Bayes, lazy learners, and logis-
tic regression.

Table 5 Total nitrates classes.

Class Range

Low 0 < (NO2 + NO3) ≤ 3.99

Medium 3.99 < (NO2 + NO3) ≤ 7.99

High 7.99 < (NO2 + NO3) ≤ ∞

Regression Models Evaluation
This section discusses the criteria used to evaluate the prediction 
accuracy of the regression models used in the study.

Correlation coefficient is based on the standard correlation 
coefficient and measures the extent of the linear relationship 
between predicted (P) and actual (A) values. It is a dimensionless 
index that ranges from −1 to 1 with 1 corresponding to ideal cor-
relation. The correlation coefficient C is given by:

C = Cov P,A( )
σ Pσ A

(7)

where: 

 Cov(P, A) = covariance between the predicted and the actual 
values, and

 σP and σA = their respective standard deviations.
Root mean squared error (RMSE) measures the confidence 

intervals. It ranges from 0 to ∞ with 0 corresponding to the ideal 
situation. It is computed as in Equation 3.

Mean absolute error (MAE) is similar to RMSE, except that it 
uses absolute error values instead of the squared errors. It is com-
puted as in Equation 5.

Root relative squared error (RRSE) is relative to whatever is 
represented by the simple predictor, which is the mean of the ac-
tual values. It is computed by normalizing the total squared error, 
dividing that by the total squared error of the simple predictor, 
and taking the square root. It is given by:

RRSE =
pi −ai( )

i=1

N
∑

2

a! −ai( )i=1

N
∑

2 (8)

where â is the actual mean.

Relative absolute error (RAE) is similar to RRSE. The relative 
absolute error takes the total absolute error and normalizes it, by 
dividing by the total absolute error of the simple predictor, and 
taking the square root. The value of this error ranges from 0% to 
100% with 0 being the ideal situation. It is given by:

RAE =
pi −aii=1

N
∑

a! −aii=1

N
∑

(9)

Classification Models Evaluation
This section discusses the criteria used to evaluate the prediction 
accuracy of the classification models used in the study.

Model accuracy is a criterion that measures the goodness 
of the model correlation. It refers to the percentage of correct 
predictions made by the model when compared with the actual 
classifications in the test data, displayed in a confusion matrix 
(Han and Kamber 2006). Accuracy is the proportion of total true 
results to total results. It is given by:

Accuracy = Tp +Tn( ) Tp +Tn +Fp +Fn( ) (10)

where:

Tp and Fp = number of true and false positives respectively, 
and

Tn and Fn = number of true and false negatives respectively.
Precision is the percentage of records that are correct re-

sponses and are actually positive or relevant to the positive class, 
and is given by:

Precision=
Tp

Tp +Fp

(11)

Recall is the percentage of positive records that are predict-
ed among all the records predicted by the classifier. It is given by:

Recall =
Tp

Tp +Fn
(12)

F-measure is the tradeoff of precision for recall and vice 
versa. It is the measure that discourages systems from sacrificing 
to one another excessively. It is given by:

F-measure = Recall×Precision
Recall+Precision( ) 2

(13)

Receiver operating characteristic (ROC) is a plot of true posi-
tive rate vs false positive rate that compares predicted and actual 
values. It provides an insight into the decision making ability of a 
model (sensitivity). That is, how likely the model is to accurately 
predict the negative or the positive classes. It is a useful metric 
for evaluating how a model behaves with different probability 
thresholds.

4 Results and Discussion

4.1 Physical Modeling
The calibration and validation process in HSPF is hierarchical, 
beginning with the hydrology and ending with water quality 
constituents (Donigian 2002). The nutrient constituents simulated 
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were total nitrates (NO3 + NO2) as N. Total nitrogen loads were 
calculated later using scripts provided by HSPF. Various nutrient 
modeling parameters were added for both pervious and imper-
vious land segments. These parameters include the constituent 
washoff factor, monthly constituent accumulation factor, and 
the initial storage for each constituent. These parameters were 
calibration parameters that were adjusted until reasonable model 
behaviour was reached.

For the Upper Chicago River subbasin, the results of the 
simulation were compared with measurements taken from the 
North Branch of the Chicago River at Grand Ave, Chicago. The lo-
cation was chosen to represent the outlet for the subbasin. There 
were two factors that limited the time period for the calibration 
and validation of the model. First the observed flow was limited 
to the period 2002–2010 (with some data missing in the period 
2003–2004). However, the available meteorological data ended at 
2006 so only the period 2002–2006 was used for performing the 
flow simulation, calibration and validation. The initial simulation 
trials resulted in values that consistently over-predicted, mostly 
during the wet season. Calibration parameters, which were ad-
justed, include the monthly accumulation factors and monthly 
values for limiting storage for both pervious and impervious land 
segments. Instream process parameters, nitrification and denitri-
fication parameters (KNO320), along with oxidation rate (KTAM20) 
and algal growth rate parameters were all adjusted.

Figures 2 and 3 show, graphically, the calibration and vali-
dation results simultaneously for flow simulation. Figures 4 and 5 
show the calibration and validation results for total nitrates simu-
lation. Table 6 summarizes the calibration and validation statistics 
for the nutrients simulated. The results of the calibration show 
that there is an acceptable agreement between the observed and 
simulated data. Statistical results for best fit calibration of total 
nitrates and the percent mean error between the simulated and 
observed data for nitrates show that the model performance cri-
terion PME was very good for all the constituents as it fell within 
the accepted tolerances suggested by Donigian (Table 3 above).

Figure 2 Simulation of flow for calibration period. 

Figure 3 Simulation of flow for validation period.

Figure 4 Simulation of total nitrates for calibration period.

Figure 5 Simulation of total nitrates for validation period.

Table 6 Statistical results of total nitrates calibration and 

validation.

Mean ob-
served value

Mean simulat-
ed value

ME PME MAE RMSE NSE

Calibration 5.81 5.50 0.23 3.93 1.74 2.21 0.13

Validation 5.25 5.01 0.40 7.61 1.86 2.16 −0.64



9

According to the results obtained from the validation pro-
cess period, the model performance is considered very good. The 
model can be successfully applied to the watershed with appro-
priate consideration given to the EIA values considered in Table 2.

4.2 Data-driven Modeling
Table 7 compares the prediction accuracy of the six regression 
models. It shows that ANN, decision tree and Gaussian process 
performed better than SVM and lazy learner. They each showed 
similar performance, with very close values, to RMSE and MAE, 
with correlation coefficients of 74.49%, 74.48% and 74.41% 
respectively. Table 8 shows the results of the classification models. 
The results show that ANN is the best classification model to pre-
dict total nitrates followed by decision tree. The worst is the naive 
Bayes. However, the decision tree provides a clear logical model 
that can be easily understood.

Table 7 Evaluation of regression models for total nitrates.

Model Correlation RMSE MAE RRSE RAE

Multi-linear regression 0.6759 2.1306 1.4842 73.68% 60.73%

ANN 0.7449 1.9469 1.2686 67.32% 51.91%

Decision tree 0.7448 1.9279 1.2217 49.99% 66.65%

SVM 0.6331 2.3431 1.3042 81.02% 53.36%

Lazy learner 0.6295 2.2450 1.5583 77.63% 63.76%

Gaussian process 0.7441 1.9368 1.2731 66.97% 52.09%

Table 8 Evaluation of classification models for total nitrates.

Model Accuracy Precision Recall F-measure ROC Area

Naive Bayes 80.77% 0.759 0.808 0.78 0.862

ANN 83.32% 0.819 0.833 0.82 0.918

Logistic regression 81.99% 0.808 0.820 0.81 0.904

SVM 81.55% 0.760 0.815 0.79 0.775

Decision tree 82.32% 0.817 0.823 0.82 0.823

Lazy learner 81.66% 0.761 0.817 0.79 0.854

4.3 Physical Modeling vs Data-driven Modeling
For the proposed framework for the Chicago River watershed, 
both data-driven and physical models were developed. Results 
comparing the performance of the two model approaches are 
shown in Table 9. It shows that data-driven models show better 
performance. RMSE for regression model vs physical model 
showed up to a 10.7% increase in prediction performance.

Table 9 Comparing physical and data-driven models for 
total nitrates.

Model RMSE

Physical model (HSPF) 2.1600

ANN 1.9469

Gaussian process 1.9368

Decision tree 1.9279

5 Conclusion
Although the use of a data-driven approach for modeling 
complex physical systems is receiving increasing interest, it is 
not easy to precisely link the data-driven technique to the most 
important physical variables that govern the natural processes 
of a watershed system. The continuous calibrated and validated 
physical model allows for the evaluation of the behaviour of the 
watershed under possible future conditions. This property of 
the physical model would benefit from the analysis of different 
scenarios that the watershed may face such as climate change, 
population change, or the inclusion or removal of certain physical 
variables. This would provide a planning tool for regulatory 
environmental agencies in the Chicago River watershed and its 
use would allow them to develop better management programs. 
However, the data-driven models require fewer inputs and can be 
deployed anywhere in the watershed, while the physical model 
requires extensive data inputs and can only be applied to the spe-
cific watershed outlets selected in the simulation. The data-driven 
models can be used as operational tools to maintain the water 
quality parameters especially if total maximum daily loads (TMDL) 
and water quality standards (WQS) are developed for the Chicago 
River watershed. We suggest that the use of both physical and 
data-driven models is essential for the health of the watershed. 
The physical model can be a planning tool whenever significant 
physical change takes place in the watershed while the data-driv-
en model can be an operating tool that can be used periodically 
to inspect the watershed water quality parameters, especially if 
TMDL and WQS are established for the watershed.

Although, the modeling approach and the methodol-
ogy were implemented for highly urbanized watershed, it is not 
restricted and can be used without modification for any other 
watershed, provided that data is available and proper models 
were selected.
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