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Abstract
We developed a mechanistic life-cycle model derived from the elicitation of multiple factors influencing the success of
individual life-stages of the imperiled delta smelt (Hypomesus transpacificus). We discuss the relevance of limiting factors in
population ecology and problems with additive models in detecting them. We identify limiting factors and assess their
significance using a non-linear optimization routine, combined with traditional metrics to assess the value of covariates and
model performance. After reviewing previous conceptual models and multivariate analyses, we identified a set of factors that
were consistent with conceptual models and useful in explaining the erratic fluctuations in a common abundance index: food
at certain times in certain locations, predation by introduced species primarily in the spring, and entrainment. The analytical
approach provides a transparent and intuitive framework in which to consider the contribution of covariates and
consequences for population trends, and has the potential to assist with the evaluation of proposed recovery measures.

Keywords Limiting factors ● Population ecology ● Conceptual ecological models ● Delta smelt ● Sacramento-San Joaquin
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Introduction

The concept of limiting factors is derived from the “theory
of the minimum” developed by Carl Sprengel in 1839 and
subsequently as Liebig’s Law of the Minimum. In its
earliest applications it states that the yield of a crop is
controlled not by the total amount of resources available,
but by the availability of the scarcest resource—the lim-
iting factor. The concept was derived from observations
that applying more of a nutrient that was not limiting did
not improve crop yields. The concept of limiting factors
more recently has been applied to explain ecological

phenomena (McNamara and Houston 1987; Klein 1991;
Messier 1991; Thomson et al. 1996; Cade et al. 1999;
Rettie and Messier 2000; Dunham et al. 2002; Kaiser et al.
1994). Recognition of the role of limiting factors in
determining population responses in imperiled species is
relevant for two reasons. First, it suggests that when cer-
tain limiting environmental factors control the distribution
and abundance of a species, other factors are not doing so.
A limiting-factors approach requires that only the data
points for covariates that regulate the population of con-
cern should be included in an analysis of environmental
factors that affect the population, and conversely data
points for covariates that are not limiting should be
excluded from the analysis. Second, the manifestation of a
limiting factor at some point in the future can nullify years
of targeted resource management, since a contemporary
limiting factor may serve to establish a new, lower level of
the abundance of a species, eliminating previous gains.
Identifying and managing to alleviate the effects of
environmental factors that may limit the performance of a
species in the future is important for sustaining the benefits
of conservation actions already undertaken. Identifying
and managing to reduce the deleterious effects of limiting
factors on species of concern is prerequisite to successful
conservation efforts.
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We use the term “limiting factors” to refer to a set of
factors that may potentially limit the abundance of a species
or the size of a population. When one of those factors
regulates abundance at a given time, hence is more limiting
than the others, we refer to it as the “controlling factor.” We
distinguish limiting factors (factors that may determine the
maximum abundance of a given life stage, such as prior
abundance, food availability, extent of habitat) from mod-
ifying factors (which reduce abundance from a level pre-
viously established by a controlling factor). Controlling
factors can create bottlenecks wherein a large population
may suddenly be reduced by a stressor that occurs season-
ally or infrequently (Bisson PA (1989). Importance of the
identification of limiting factors in an evaluation program.
Unpublished manuscript. Available from P. Bisson,
Weyerhaeuser Co). Controlling factors can confound the
detection of population-dynamic thresholds or change
points, such that small changes in an environmental driver
may suddenly appear to produce large responses by a spe-
cies of concern (Dodds et al. 2010). The abundance of a
species at any point in time is a consequence of a previously
manifested controlling factor and subsequent modifying
factors. The presence and manifestation of limiting factors
can be difficult to detect because they do not always control
the response variable. When they do not control the
observed response, those data points should not be given
weight in a factor analysis (Kaiser et al. 1994; Cade et al.
1999); yet conventional additive approaches do just that
(Augspurger 1996; Thomson et al. 1996, and see
Appendix A).

Here, we present an approach to identifying the factors
that limit populations only during certain seasons or stages,
and apply the approach to explain variation and trend in a
common abundance index for delta smelt (Hypomesus
transpacificus) in the Sacramento-San Joaquin Delta in
central California. Delta smelt are endemic to the upper San
Francisco Estuary; the species was listed as threatened
under the U.S. Endangered Species Act in 1993. Intensive
study over more than 20 years has not resulted in the
implementation of management measures that have
reversed the species’ decline. The results of quantitative
analyses of multiple environmental stressors on delta smelt
have been inconsistent (MacNally et al. 2010; Thomson
et al. 2010; Maunder and Deriso 2011; Miller et al. 2012;
Rose et al. 2013a, b). As a consequence, an effective
management strategy that could provide sustained benefits
to delta smelt has not emerged and abundance index values
for the species’ abundance are at historically low levels, less
than 1% of that at the time of its listing.

We use a mechanistically defensible, conceptual ecolo-
gical model that depicts the relations between environ-
mental factors and the fish’s survival or reproduction during
distinct life stages. The conceptual model provides the

template for a stage-based life-cycle model that explores
annual variation in the abundance of delta smelt and iden-
tifies the environmental factors that are associated with
changes in abundance. We build life-stage-specific quanti-
tative models by first articulating the hypothesized rela-
tionships between delta smelt and environmental factors as
equations. We computerize the models, run analyses, and
select a model by sequentially evaluating the value of
covariates in explaining population responses. We consider
the validity of the models on the basis of ecological plau-
sibility and statistical strength. Our results may inform
directed management actions that have potential to benefit
delta smelt.

Methods

The San Francisco Estuary (Fig. 1), which supports the
delta smelt, is among the most altered aquatic ecosystems in
the United States (Nichols et al. 1986; Whipple et al. 2012;
Cloern and Jassby 2012). More than 95% of the historic
tidal wetlands in the Sacramento-San Joaquin Delta,
including shallow freshwaters, riparian communities, and
floodplains, have been lost to levees, hard channels, urba-
nization, and agriculture (Thompson 1957). Delta inflows
during spring have been halved by upstream reservoirs and
diversions (CDWR 2016). More than 200 non-native plant
and animal species have become established and dominate
many of the Delta’s ecological communities (URS 2007).
Dozens of contaminants have accumulated in Delta sub-
strates and continue to be delivered to its waters (Healey
2007). The densities of the delta smelt’s copepod prey are
now at a fraction of that two decades ago (Kimmerer 2011).
And introduced predators consume delta smelt as turbidity
decreases due to sediment entrainment behind upstream
dams, changes in land use, and invasive aquatic vegetation
that attenuates currents (Jassby et al. 2002). Interactions
among these and other environmental stressors have con-
founded analyses of the causes of the decline in delta smelt
abundance (Sommer et al. 2007).

Conceptual Ecological Model

A foundation to conservation planning is the development
of a conceptual ecological model. A number of conceptual
models have been developed for delta smelt (Armor et al.
2005; Bennett 2005; Baxter et al. 2008; Miller et al. 2012;
IEP MAST 2015; Moyle et al. 2016). These models identify
a large number of environmental factors that plausibly may
directly or indirectly affect the abundance of delta smelt;
these factors vary in their responsiveness to management.
Our conceptual ecological model for delta smelt (Fig. 2)
draws from Moyle et al. (2016).
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The primary drivers of delta smelt survival are winter
and spring storms that vary in number and intensity among
years, leading to profound differences in abiotic conditions,
habitat availability and quality, and food-web dynamics.
Delta smelt are affected by multiple additional environ-
mental stressors, including predation on them and compe-
tition from non-native fishes and entrainment at pumps that
export freshwater from the Delta.

Census data are not available for delta smelt; however,
insight into the status of delta smelt can be derived through
general fish surveys conducted throughout the year. The
Fall Mid-water Trawl (FMWT) survey (http://www.dfg.ca.
gov/delta/projects.asp?ProjectID=FMWT) has been con-
ducted since 1967 and typically is implemented monthly
from September through December. More than 180 stations
(sites) have been sampled by the FMWT. Since 1991,
116 stations have been sampled in at least 20 years. Due to
the large number of stations and the long period of data
collection, we chose the abundance index developed from
FMWT survey catch data (http://www.dfg.ca.gov/delta/

projects.asp?ProjectID=FMWT) as a proxy measure of
the species’ abundance. Our quantitative, deterministic, and
mechanistic life-cycle model is designed to emulate the
conceptual ecological model.

The translation of a conceptual model into useful quan-
titative models can be challenging. Rose (2000) pointed to
six challenges of quantifying environmental effects on fish
populations: detectability, complex and non-intuitive
responses, a tendency to sacrifice realism when making
regional predictions, interactions between communities,
sub-lethal effects, and cumulative effects. We suggest that a
seventh challenge is failure to identify and incorporate
limiting factors. The abundance of a species is determined
by the ability of its ecosystem to support it or not. The
abiotic and biotic factors that define the species’ relation
with its habitats vary among seasons and years. The concept
of limiting factors, applied at a population level, suggests
that the abundance of a species at any point in time is a
consequence of a previous controlling factor. For example,
predation in spring may limit the abundance of delta smelt

Fig. 1 The San Francisco Estuary between San Francisco Bay and Sacramento, and regions used in this study
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in 1 year and the availability of zooplankton prey in summer
in another. When predation is controlling, the availability of
prey may not be. Yet most quantitative approaches include
both the relevant and irrelevant data points in their analyses,
thereby incorrectly characterizing the influence of environ-
mental factors on abundance (see Appendix A). The chal-
lenge is to identify environmental factors that limit
abundance of delta smelt from among the many potential
factors, such as food supply, predation, weather extremes,
and anthropogenic stressors.

Candidate Covariates and Model Structure

We reviewed previous multivariate studies to harvest fac-
tors that could contribute to the population dynamics of
delta smelt. Multivariate autoregressive models indicated
substantial support for a relation between abundance of
delta smelt and one of 19 covariates: summer water tem-
perature (Mac Nally et al. 2010). A Bayesian change-point
analysis found that two of 19 covariates, water clarity and
the volume of water exported from the Delta in winter, were
associated with an autumn abundance index of delta smelt
(Thomson et al. 2010). A state-space life-cycle model

suggested that the delta smelt abundance index is affected
by density dependence, temperature from April through
June and in July, prey density from April through June and
July through August, abundance of predators from April
through June and September through December, Secchi
depth in January and February, and adult entrainment
(Maunder and Deriso 2011). Five covariates met selection
criteria employed by Miller et al. (2012): stock, entrain-
ment, water temperature, prey densities, and predation from
April through June. Rose et al. (2013a) developed a bioe-
nergetics model that partitioned the Delta into 11 geo-
graphic regions. They assumed delta smelt dispersed in
response to salinity, and they did not include predation in
their model. They concluded that five factors affected
abundance of delta smelt: salinity, water temperature
(affecting the duration of the spawning window and bioe-
nergetics of all life-stages), zooplankton, hydrodynamics
(primarily via effects on entrainment), and number of eggs
per spawning age-1 adult (primarily driven by the body
weight of spawning adults).

Common among these studies (and consistent with the
conceptual ecological model) are associations between the
abundance of delta smelt and prior abundance, food in

Fig. 2 Conceptual ecological model of the life stages of delta smelt and the ecological influences on them
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multiple seasons, water temperatures in spring (at the time
of spawning) and summer (perhaps related to bio-energetic
stress), turbidity, predation, and entrainment at water project
facilities. Absent from all of the models summarized above,
but consistent with earlier studies (Stevens and Miller 1983;
Dege and Brown 2004; Nobriga et al. 2008; Kimmerer et al.
2009), was an association with freshwater flows into or
through the Delta. Our conceptual model indicates that
some functional flows influence food production, thus have
an indirect, rather than a direct, effect on the abundance of
delta smelt.

We explored whether the covariates in our conceptual
ecological model were associated with each of four life
stages. The first life-stage transition of delta smelt, from
sub-adult in autumn to pre-spawning adult in winter
(December through March), is a function of the abundance
of sub-adults in autumn and the survival rate from autumn
to pre-spawning. We hypothesized that the survival rate is
limited by either food availability (Moyle et al. 1992; Lott
1998; Kimmerer and Orsi 1996; Nobriga 2002; Moyle
2002; IEP MAST 2015), or population potential after
accounting for entrainment at water project facilities
(Kimmerer 2008; Grimaldo et al. 2009; Miller 2011). Data
on food availability in January and February are not con-
sistently available, so we omitted this covariate. (The cor-
relation of food availability in January and February with
food availability in March from 1977 through 2014 was
0.82.) We estimated entrainment of adults as a function of
salvage of adults at fish salvage facilities in the south Delta
(IEP MAST 2015). We modeled the abundance of pre-
spawning adults as

ð1Þ

where Am is the estimated abundance of mature (pre-
spawning) adults in FMWT index units, Af is the estimated
FMWT index from the prior year, Ea is the salvage of adults
at State Water Project (SWP) and Central Valley Project
(CVP) pumping facilities from December through March,
M1 is a constant (an estimated survival rate during the
transition from sub-adults to pre-spawning adults), ɠ(FND)
is a function of the average prey availability (g/m3 carbon)
in November and December in areas considered to be
suitable for delta smelt, ɠ(FM) is the average prey
availability (g/m3 carbon) in March, and β1 is an estimated
coefficient. (See Eq. 5c for the form of the function ɠ).)

The second life stage transition, Eq. (2a), is that from
maturity to spawning (April through June). The number of
eggs produced is not measured or recorded because eggs are
not observable in the wild. We hypothesized that the number
of eggs is a function of the number of mature adults and the
number of eggs per female (Rose et al. 2013a). The number
of eggs per female is a function of the bodyweight of females

and the average number of spawning events (Rose et al.
2013a). Because bodyweight of females is not recorded, we
hypothesized that bodyweight of females at spawning is a
function of food availability in autumn and winter (Rose et al.
2013b; IEP MAST 2015). The average number of spawning
events is not recorded, so we hypothesized that it is a function
of the duration of the spawning window. The duration of the
spawning window in any year can be ascertained from the
presence of larvae in the 20mm survey. Although this survey
does not accurately estimate the abundance of larvae because
the gear was designed to catch larger fishes, it samples a large
number of larvae (30% of the delta smelt surveyed are larval),
which suggests it might provide a reasonable indication of
presence, therefore the beginning and end of each spawning
period. The 20mm survey was initiated in 1995, and we
sought data from 1975 onward to increase our sample size.
We hypothesized that the duration of the spawning window is
a function of the date at which temperatures become too
warm for spawning, commonly thought to be 20 °C (Bennett
2005; Rose et al. 2013a). We identified the date that the
temperature of the Sacramento River at Rio Vista exceeded
20 °C. We used data from Rio Vista because data collection
began there in May 1983, the Sacramento River carries sig-
nificantly more water into the Delta than other rivers, and
because Rio Vista is approximately in the longitudinal center
of the Delta, we hypothesized that water temperatures there
might correlate with water temperatures in other regions of
the Delta. However, time-series data for water temperatures at
Rio Vista were too limited; therefore, we hypothesized that
Rio Vista water temperature is a function of prior ambient air
temperature (Wagner et al. 2011) and river flows at Rio Vista
(Monismith et al. 2009).

Life-stage transition Eq. (2b) is the transition from egg to
post-larva. The number of larvae is a function of the number
of eggs and the survival rate from eggs to larvae. Survival
from eggs to larvae has been hypothesized to be influenced
by food availability (Nobriga 1998; Nobriga 2002; Hobbs
et al. 2006; Slater and Baxter 2014), predation by and
competition with silversides (Menidia audens) (Bennett and
Moyle 1996; Bennett 2005; Baerwald et al. 2012; Mahardja
et al. 2016), and early life-stage entrainment (Kimmerer
2008; Grimaldo et al. 2009; Miller 2011). Entrainment
includes direct and indirect mortality associated with water
diversions. Because mortality at the export pumps is not
recorded, we hypothesized that water project-related
entrainment is proportional to salvage at fish facilities
(IEP MAST 2015). For entrainment related to generation of
power at the Pittsburg and Contra Costa power plants, we
hypothesized that entrainment was proportional to the
power (MWH) produced in April and May with once
through cooling technology. During April and May, delta
smelt move back to the rivers confluence (Fig. 1) and
adjacent areas following hatching, but are relatively poor
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swimmers and have difficulty avoiding the unscreened
intakes (Matica and Sommer 2005). Thus, we modeled
abundance of recruits (larvae) in any year as

ð2aÞ

where Ar is the estimated abundance of recruits, ƒ(Ej) is a
function of the expanded salvage of juvenile delta smelt at
SWP and CVP pumping facilities from April through June,
M2 is a constant (an estimated recruitment rate), W is the
estimated spawning window in days (see Eq. (2b)), ƒ(Ep) is
a function of survival rate associated with the energy
(MWH) produced at Pittsburg and Contra Costa power
plants in May and June, ƒ(Ps) is a function of the survival
rate as a function of the abundance of silversides, which we
estimated as the average catch per seine through the
calendar year in beach seine surveys at the rivers confluence
conducted by the US Fish and Wildlife Service, ?(FS) is a
function of the average food availability in spring (April
through June) in habitat (grams/m3 carbon), β is an
estimated coefficient, and Am is defined as above. (See
Eq. 5a for the form of the function ƒ and Eq. 5c for the form
of the function ɠ).)

We derived an estimate of the duration of the spawning
window from water temperatures at Rio Vista using a
quadratic function:

W ¼ β0 þ β1TA þ β2T
2
R ð2bÞ

where W is the spawning window in days calculated as the
difference in days between the 5th percentile and the 95th
percentile of larval delta smelt observed in the twenty
millimeter survey, TR is the Julian day at which water
temperatures at Rio Vista Exceed 20 °C and the β
coefficients are calculated using ordinary least squares.
The twenty-millimeter survey began in 1995. Therefore, the
duration of the spawning window was estimated for all
years using Eq. (2b). Data for TR was not available prior to
1983 so estimates for TR were derived from prior ambient
air temperatures and river flow at Rio Vista:

TR ¼ β0 þ β1TA þ β2QR ð2cÞ

where TA is the preceding ambient air temperature as
determined by the prior 15-day average air temperature at
Davis, QR is the average daily flow at Rio Vista (ft3/second)
and the β coefficients are calculated using ordinary least
squares.

The third transition is from post-larval to juvenile (July
and August for modeling purposes). The number of juve-
niles is a function of the number of recruits and the survival
rate of juveniles. We hypothesized that this survival rate is a
function of food availability in suitable conditions (Nobriga

2002; Hobbs et al. 2006; Slater and Baxter 2014) and
summer water temperatures (Mac Nally et al. 2010). Water
temperature directly affects delta smelt metabolic rates, and,
if sufficiently high, can induce stress and even mortality
(IEP MAST 2015). Water temperatures primarily are
influenced by air temperature, wind, tidal dispersion, and
riverine flows (Monismith et al. 2009; Wagner et al. 2011).
Thus, we modeled abundance of sub-juvenile delta smelt in
any year as

ð3Þ
where Aj is the estimated abundance of juveniles; ƒ(Tw) is a
function of the ambient summer temperature calculated
from a transformation of the maximum 15-day average,
ambient air temperature as measured at Davis, California,
during June, July and August;M3 is a constant (an estimated
survival rate), ɠ(FJA) is a function of the average food
availability in July and August in habitat (g/m3 carbon), and
Ar is defined as above. (See Eq. 5a for the form of the
function ƒ and Eq. 5c for the form of the function ɠ).)

The fourth transition is from sub-juveniles through
juveniles to sub-adults (September through November). The
number of sub-adults is a function of the number and sur-
vival rate of juveniles. We hypothesized that this survival
rate is a function of food availability (Moyle et al. 1992;
Lott 1998; Feyrer et al. 2003) and predation by striped bass
(Morone saxatilis), which we in turn hypothesized is a
function of striped bass abundance (Stevens 1963; Stevens
1966; Thomas 1967). Thus, we modeled abundance of sub-
adult delta smelt in any year as

ð4Þ
where Ae is the estimated FMWT Index, Aj is the estimated
abundance of sub-juveniles, M4 is a constant (an estimated
survival rate), ƒ(Pb) is a function of the effect of predation
by striped bass on survival (assumed to be a function of the
abundance of striped bass in the September Fall Mid-water
Trawl survey and the average Secchi depth in September
and October (as measured by the FMWT survey and
calculated at stations from Suisun Bay to the Lower
Sacramento River), ɠ(FSO) is average food availability in
September and October in habitat (g/m3 carbon). (See
Eq. 5a for the form of the function ƒ and Eq. 5c for the form
of the function ɠ).)

We estimated predation, ambient temperature and
entrainment at power plants ƒ(Ps) ƒ(Pb) ƒ(Ep) as logistic
functions:

f Xð Þ ¼ e β0þβ1Xð Þ
� �

= 1þ e β2þβ1Xð Þ
� �

þ β3 ð5aÞ

where β is an estimated coefficient. This functional form is a
curve with a survival rate of 1 at low levels of X, decreasing
to a survival rate of β3 at high levels of X.
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To reduce the number of parameters estimated, we cal-
culated, rather than estimated, an approximation for β2 as

β2 ¼ β0 þ β3 þ βe3 ð5bÞ

We did not consider density dependence as a factor
limiting the abundance of delta smelt per se (see Maunder
and Deriso 2011; Miller et al. 2012), but rather considered
factors that might lead to density dependence. We used
exponential rather than multiplicative coefficients for food
and the duration of the spawning window to avoid gen-
erating a non-unique estimate of a coefficient.

� � � � � ð5cÞ

Data Sources and Specification of Covariates

We compared the covariates included in our models (Eqs.
1–5) (Table 1) with covariates that were strongly associated
with delta smelt abundance in prior analyses. They include
covariates related to prior abundance (Miller et al. 2012);
number of eggs per spawning adult (Rose et al. 2013a);
spring water temperatures (Maunder and Deriso 2011;
Miller et al. 2012; Rose et al. 2013a), which we hypothe-
sized affect the duration of the spawning window; entrain-
ment (Miller et al. 2012; Rose et al. 2013a); spring
predation (Maunder and Deriso 2011; Miller et al. 2012);
autumn predation (Maunder and Deriso 2011); food avail-
ability at multiple life-stages (Maunder and Deriso 2011;
Miller et al. 2012; Rose et al. 2013a); summer water tem-
peratures (Maunder and Deriso 2011; Mac Nally et al.
2010; Rose et al. 2013a); water clarity (Thomson et al.
2010; Maunder and Deriso 2011), which we hypothesized
affects both habitat quality for delta smelt and predation by
striped bass; and salinity (Rose et al. 2013a), which we
hypothesized affects habitat quality for delta smelt. We did
not include winter exports (Thomson et al. 2010), although
we included adult salvage and hydrodynamics; hydro-
dynamics primarily may affect entrainment (Rose et al.
2013a). Consequently, although we developed a covariate
set by considering first principles, we believe we have given
appropriate consideration to covariates that were found
relevant in prior multivariate analyses. Also, we do not
make any a priori assumptions regarding density depen-
dence (see Maunder and Deriso 2011); rather, we expect
that the density of delta smelt is mediated by the availability
of food.

We subdivided the upper estuary into ten regions, seven
of which had sufficient historic data on the covariates of
interest (Fig. 1).

Given that analyses of the gut contents of delta smelt
have shown that food type varies throughout the year (IEP

MAST 2015), there are multiple ways of specifying prey
availability. For the sake of parsimony, we considered food
availability only in areas that we considered had suitable
abiotic conditions for delta smelt. For all seasons except
spring (April–June), we multiplied the average biomass of
adult calanoid copepods for each region and month, or
groups of months, by the proportion of stations considered
to have suitable abiotic conditions for delta smelt. For
example, if the south Delta had high densities of food, but
the water in summer was too clear for delta smelt at all
stations in the region, food availability in that region would
be zero. Rather than develop an arbitrary definition of sui-
table abiotic conditions, we assessed abundance in the
spring Kodiak, twenty millimeter, summer tow net, and fall
mid-water trawl surveys. For each survey, we calculated the
temperature, salinity, and turbidity (Secchi depth) asso-
ciated with the 5 and 95% percentile of delta smelt in survey
samples (Table 2). Stations where all three abiotic para-
meters were within those percentiles were considered to
have suitable abiotic conditions.

For food availability during the spring, we included adult
calanoid copepods, calanoid copepodids, and cyclopoid
adults as potential prey for larval delta smelt in April and
May, which might seek relatively small copepods. We
considered food availability for larvae in three regions:
Montezuma Slough, the Confluence and lower rivers, and
Suisun March. In 60% of years, more than 50% of delta
smelt were observed in Montezuma Slough. Abundance of
delta smelt in May and June is greatest in the Confluence
and lower rivers. Suisun Marsh might represent other areas
where delta smelt spawn, but there are no data from that
region.

We checked for covariates that were highly correlated for
with other covariates (R > 0.5).

Statistical Methods

Mathematical programming can be used to conduct
regression analysis (Wagner 1958; Wang et al. 2004). The
objective function is to select a set of coefficients, such that
the difference between the observed and predicted value of
the response variable is minimized, by minimizing the
residual sum of squares. We used a generalized reduced-
gradient non-linear optimization routine to minimize the
residual sum of squares between the predicted and
observed annual FMWT Indexes over 39 years
(1975–2014; a full FMWT survey was not conducted in
1979). We incorporate prior abundance (the abundance-
index value of the population at the start of each life-stage)
and food availability as factors that may be potentially
limiting.

Those limiting factors may be subsequently affected by
modifying factors. The analysis selects the minimum (the
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most limiting) of these factors during each life stage. All of
the factors not contributing to the minimum are excluded
from the analysis in that life stage and generation.

Our model calculates an abundance index potential in
each of four life stages on the basis of the abundance index

at the start of each life stage and modifying factors. Sepa-
rately, the model calculates the population size that may be
supported by the available food. The routine then selects the
minimum of the two. In this formulation, each year contains
equations for the four life-stage transitions and provides one

Table 1 Candidate covariates included in the analysis of factors influencing the abundance of delta smelt

Factor by life-stages Abbreviated name Metric Source data

Sub-adult to spawning adults

Prior FMWT index Stock FMWT index FMWTf

Food availability:
Nov–Dec, Mar

Nov–Dec Food
Mar Food

Biomass of adult calanoid copepodsa Zooplanktonh

Adult entrainment Adult Entr Salvage of adult delta smelt Dec–Mar Salvageg

Spawning adults to larvae

Estimated duration of the
spawning window

Spawn Window Estimated duration of the spawning
windowb

20 mmi

CDECj

Food availability for
larvae: Apr-Jun

Apr–Jun food Biomass of calanoid copepodids and
adults, and cyclopoid adultsc

Zooplanktonh

Abundance of silversides Silversides Average catch of silversides in the
Confluence

Beach Seinek

Entrainment at water
projects

Juv Entr Salvage of juvenile delta smelt Apr–Jun Salvageg

Juveniles

Food availability: Jul–Aug Jul–Aug food Biomass of adult calanoid copepodsa Zooplanktonh

Summer temperature Summer Temp Mean ambient temperature Jun–Augd UCDm

Power plant operations Power plants Combined power generation at Contra
Costa and Pittsburg power plants
May–Jun

US EIAl

Sub-adults

Food availability: Sep–Oct Sep–Oct food Biomass of adult calanoid copepodsa Zooplanktonh

Abundance of striped bass Striped Bass Abundance of striped bass in Septembere FMWTf

aGrams of carbon in a cubic meter of water sampled in the zooplankton survey (see (h)) at stations with water samples values between the lower
and upper ranges of abiotic attributes specified in Table 2 based on the density (and g of carbon) in the following species Acartiella sinensis (3 g),
Diaptomidae (3 g), Eurytemora affinis (2.5 g), Pseudodiaptomus forbesi (3 g), Pseudodiaptomus marinus (5 g), Sinocalanus doerrii (4 g), Tortanus
spp. (5.4 g), and other calanoid adults (3 g). Acartia spp. were excluded as they primarily occur in higher-salinity waters
bDerived from the estimated first Julian date that water temperatures at Rio Vista exceed 20 °C. The equations are W=−0.0294TR

2+ 9.27TR −
657.2 where R2= 0.763, n= 19, all P-values less than 0.001 TR= 8.878+ 0.767TA−0.524Ln(QR) where R

2= 0.951, n= 10,397, all P-values less
than 0.001
cCalculated by adding to (a) the grams of carbon contributed by copepodids of the same species listed in (a) assigning 1 g of carbon to each, and
carbon weights of adult cyclopoids assigning to each: Acanthocyclops vernalis (3 g), Limnoithona spp. (0.3 g), Limnoithona sinensis (0.3 g),
Limnoithona tetraspina (0.3), Oithona davisae (0.2 g), Oithona similis (0.5), Oithona spp. (1.0)
dMaximum of the 15 day average air temperature in June through August at University of California, Davis (see[m]).
eStriped bass catch in September in the Fall Mid-water Trawl (FMWT) survey in North and South Suisun, Confluence and Lower Rivers. See (f)
fCDFW Fall Mid-water Trawl (FMWT) Survey ftp://ftp.dfg.ca.gov/YoungFishesProject/FMWT%20Data/
gCDWR Salvage data ftp://ftp.dfg.ca.gov/salvage
hCDFW Zooplankton Survey by request from DFW at http://www.water.ca.gov/bdma/meta/zooplankton.cfm
iCDFW 20MM Survey ftp://ftp.dfg.ca.gov/Delta%20Smelt/20-mm.mdb
jCDEC http://cdec.water.ca.gov/cgi-progs Rio Vista (D24A)
kUSFWS Beach Seine Survey http://www.fws.gov/lodi/jfmp
lUS Energy Information Association https://www.eia.gov/opendata/qb.cfm?category=1154&sdid=ELEC.PLANT.GEN.228-ALL-ALL.M

https://www.eia.gov/opendata/qb.cfm?category=1189&sdid=ELEC.PLANT.GEN.271-ALL-ALL.M
mUniversity of California, Davis average air temperature
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annual estimate of autumn abundance index with one
residual.

The relevance of the available data is determined by
considering changes in the Akaike Information Criterion
adjusted for small sample sizes (AICc) (Burnham and
Anderson 2002).

The incorporation of limiting factors into an analysis can
create demands on available degrees of freedom, because
each limiting factor, when controlling, subdivides that data
set. For example, suppose:

A A M F ð6aÞ

In any given year either prior abundance [Af M] or food,
ɠ (F) will be controlling. Thus, two sets of equations are
being estimated:

Am ¼ AfM ð6bÞ

A F ð6cÞ

We sought to identify a set of models for which there
was substantial support, with AICc differences less than
two, following Burnham and Anderson (2002) and strong
explanatory power, with R2 greater than 0.7), by consider-
ing the explanatory value that a covariate provides to the
aggregated model (Eqs. (1–4), where all coefficients are
estimated simultaneously). To avoid problems of over
specification in early model runs, the initial model included
only the limiting factors (the prior abundance-index value,
and food availability) and one multiplier (M2). We then ran
the initial model without each of the limiting factors. If
AICc was reduced when a factor was excluded, the cov-
ariate was removed from the model. Next, we added all the
modifying factors, and then sequentially eliminated vari-
ables the exclusion of which provided the largest reduction
in AICc. If the model with the minimum AICc had coeffi-
cients with plausible signs and in credible ranges, we then
repeated the process of removing a covariate until the AICc
no longer could be reduced. Also, to ensure the above
procedure for selecting variables did not exclude relevant

variables or include irrelevant variables, we added each
excluded variable into the model with the lowest AICc
value and excluded each included variable, and then com-
pared AICc statistics among models, including AICc
differences.

We calculated the AICc value (following Burnham and
Anderson 2002):

AICc ¼ �2 � Lþ 2K þ 2KðK þ 1Þ= n� K � 1ð Þ ð7aÞ

where K is the number of parameters, n is the number of
observations, and L is the log-likelihood, which was
calculated as:

L ¼ n=2 � ln σ2
� �� n=2ðln 2πð Þ þ 1Þ ð7bÞ

where σ2 is the residual sum of squares divided by the
number of observations; in this case the sum of the
difference between the predicted and observed FMWT
abundance-index value squared, divided by the number of
years of available data.

We applied the information-theoretic approach to iden-
tify the covariates most strongly associated with the
response variable by considering Akaike weights (Wi)–a
measure of the relative closeness of a particular model to the
best model in the set. We calculated Wi for model i are
calculated as

wi¼ðe�Δi=2Þ=
XR
r¼1

e�Δr=2 ð8Þ

where Δi=AICci−AICcmin and R is the number of models
in the set.

For each model, we recorded the bias-adjusted Akaike’s
information criterion (AICc), the simple differences in AICc
from the model with the minimum AICc (Δi), the Akaike
weights (Wi), and R2, and examined the plots of residuals
vs. fitted values for evidence of unequal variances, and then
inspected plots of residuals vs. covariates for evidence of a
pattern that might indicate model misspecification or the
need for a transformation of the independent variable (Neter
et al. 1996).

Table 2 Abiotic delineations associated with the 5th and 95th percentile of delta smelt abundance in each survey

Months Source Period Temperature (oC) Secchi depth (cm) Salinity (μs/cm)

Lower Upper Lower Upper Lower Upper

Jan–Mar SKT 2002–2014 7.9 18.2 10 75 155 8678

Apr–Jun 20 mm 1995–2014 10.0 22.3 10 87 100 7720

Jul–Aug STN 1973–2014 10.0 23.6 10 56 143 16,482

Sep–Dec FMWT 1967–2014 7.8 20.8 10 74 161 15,698

Sources: SKT—Spring Kodiak Trawl; 20–20 mm Trawl; STN—summer tow-net; FMWT—Fall mid-water Trawl. See notes under Table 1 for
source data
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We estimated the relative support for covariates xj by
calculating w+(j), the sum of Akaike weights across all the
models in the set where the variable j occurs. The relative
strength of support for variable j is reflected in the total w

+(j). The larger the w+(j), the more strongly variable j is
supported relative to the other covariates.

Model Validation

We considered the validity of the selected model in six
ways. First, we conducted a cross-validation by leaving out
one annual observation (one delta smelt FMWT index
value), then used the remaining data set to estimate new
model coefficients and to predict the FMWT index for the
omitted year. We repeated this process 39 times to obtained
predictions for every year.

Second, we checked for adequate degrees of freedom.
Partitioning the data into two subsets reduces the degrees of
freedom and increases the risk of over-specification—that
is, having too many coefficients for the available observa-
tions. As our rule of thumb, we desired to have degrees of
freedom that were double the number of coefficients being
estimated.

Third, we considered other data to assess the plausibility
of the results.

Fourth, we considered the plausibility of the shape of the
response functions.

Fifth, we correlated our predicted delta smelt seasonal
abundances with survey returns from the Spring Kodiak
Trawl (average February CPUE), the 20 mm Survey
(average June CPUE), and the Summer Tow-net Survey

(average July CPUE). Each of these surveys was designed
to sample delta smelt or captured delta smelt as by-catch,
although the temporal periods of the surveys do not corre-
spond precisely with our life-stage transition intervals.

Sixth, we evaluated whether model results were con-
sistent with the survey data. If delta smelt abundance in one
season is a good predictor of abundance in the next season,
environmental factors likely have effect on population size.
When the variation is great it indicates that environmental
factors have comparatively greater influence in regulating
the population during that period. Comparing the timing of
the influence of factors in the model with variability in
abundance-index values between surveys provides an
additional check of the plausibility of the factors in the
model.

The results of the above model validation exercises are
provided as supplementary material (Appendix B). A
comprehensive description of the methods employed in this
study is provided as supplementary material (Appendix C).

Results

Correlations among covariates greater than 0.5 were few
(see Table 3). Food availability in July and August was
correlated with food availability later in the year reflecting
an expected autocorrelation; food availability is partly a
function of food availability in the previous period. That
observation contributes to minimizing the number of food
covariates that need to be considered to identify the most
critical period (See Table 4). Abundance of silversides was

Table 3 Correlations(R) between covariates included in the analysis of factors influencing the abundance of delta smelt

Stock Silver-
sides

Striped
Bass

Adult
Entr

Juv Entr Power
Plants

Summ
Temp

Spawn
Window

Food availability

Mar Apr–Jun Jul–Aug Sep–Oct

Silversides −0.42

Striped Bass 0.03 −0.49

Adult Entr 0.63 −0.43 0.19

Juv Entr 0.70 −0.34 −0.04 0.69

Power plants 0.45 −0.65 0.28 0.70 0.36

Summ Temp 0.05 0.08 −0.19 0.09 0.15 −0.07

Spawn
Window

0.09 −0.12 0.20 0.18 0.14 0.02 −0.07

Food availability

Mar 0.12 −0.22 0.24 0.39 0.08 0.41 −0.08 0.06

Apr–Jun 0.09 −0.08 0.28 0.00 0.02 −0.06 −0.27 −0.05 0.25

Jul–Aug −0.04 −0.56 0.50 0.12 −0.02 0.20 −0.17 0.25 0.10 0.21

Sep–Oct 0.16 −0.33 0.18 0.00 0.02 −0.04 −0.07 0.23 −0.08 0.13 0.66

Nov–Dec 0.03 −0.30 0.57 0.13 −0.04 0.25 0.04 0.12 0.18 0.22 0.57 0.18

See Table 1 for a key to abbreviations of covariate names
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negatively correlated with striped bass abundance, power-
plant operations, and food availability in July and August.
Adult salvage was correlated with power plant generation.
These covariate correlations likely reflect trends over time
and are likely not causally related. Adult and juvenile sal-
vage were correlated with prior abundance—the more delta
smelt in the estuary, the more they are likely to be entrained.
Striped bass abundance was correlated with food avail-
ability in summer, an observation that should be considered
in reference to the systematic pelagic organism decline in
the estuary (see Armor et al. 2005). All other correlations
were less than 0.5. We did not remove correlated variables
from the analyses, but note that inclusion of correlated
covariates in preferred models requires caution in their
interpretation.

Equations [2b] and [2c] were estimated respectively as:

W ¼ 657:2þ 9:27 TR � 0:0294 T2
R R2 ¼ 0:76

TR ¼ 8:878þ 0:767 TA � 5:24QR R2 ¼ 0:95

and were employed to produce the covariate W, the
estimated duration of the spawning window for the entire
period of the study.

Model Selection

Recognizing that models with multiple limiting factors can
readily over-fit data sets, we sought initially to reduce the
number of limiting factors in the analysis from six food-
availability and prior-abundance factors in Eqs. (1–4) by
utilizing the AICc statistic to eliminate those factors that
provided the least information. Models 7 and 9 (Table 4)
had similar AICc values with no other models having AICc

differences less than 10. Those models indicated that food
availability in April through June and July through August
were more strongly associated with abundance of delta
smelt than food availability at other times of the year. We
selected model 9 for further development on the basis that a
model with one fewer covariate would reduce the chance of
over-fitting when incorporating modifying factors. The
validity of the selection is reviewed below.

We then added all the modifying factors, and sequen-
tially eliminated the one factor contributing the least
information, until the AICc statistic could be reduced no
further (Model 30, Table 5). The resulting model included
four factors: prior abundance, abundance of silversides,
food availability in summer (July–August), and entrainment
at power plants, and a recruitment parameter, M2 (R2=
0.88). The inclusion of survival parameters (M1, M3, and
M4) did not improve the AICc value.

As a check of our selection procedure, we inserted each
excluded covariate into the model with the lowest AICc
value, and removed each included covariate (Table 6), but
no superior models emerged. A model with food availability
in March had the closest AICc value with a Δi of 2.9. The
Akaike weights for the covariates in the model with the
lowest AICc value were greater than 0.92 (Table 7). No
other covariates had weights exceeding 0.5. As a further
check on the selection procedure, we considered additions
of covariates to and deletions from to the next best model,
the model (which included food availability in March) with
the second lowest AICc value from Table 6. Inserting
covariates in or removing covariates from this model did
not lower the AICc. A model including juvenile entrainment
had the closest AICc value. Numerous models in Table 6
had lower AICc values.

Table 4 Results for models with descending numbers of limiting factors

Model Covariates included df AICc Δi Wi R2

1 Stock, Nov–Dec, Mar, Apr–Jun, Jul–Aug, Sep–Oct 23 593.0 42.0 0.0000 0.62

2 Stock, Mar, Apr–Jun, Jul–Aug, Sep–Oct 26 575.1 24.1 0.0000 0.62

3 Stock, Nov–Dec, Apr–Jun, Jul–Aug, Sep–Oct 26 575.1 24.1 0.0000 0.62

4 Stock, Nov–Dec, Mar, Jul–Aug, Sep-Oct 26 586.7 35.7 0.0000 0.49

5 Stock, Nov–Dec, Mar, Apr–Jun, Sep–Oct 26 582.8 31.8 0.0000 0.54

6 Stock, Nov–Dec, Mar, Apr–Jun, Jul–Aug 26 575.1 24.1 0.0000 0.62

7 Stock, Apr–Jun, Jul–Aug 32 551.0 0.0 0.5794 0.62

8 Stock, Apr–Jun 35 564.7 13.7 0.0006 0.31

9 Stock, Jul–Aug 35 551.6 0.6 0.4199 0.51

10 Stock 38 571.3 20.3 0.0000 0.01

Note: df–degrees of freedom, AICc–bias adjusted Akaike’s information criterion, Δi is–simple difference in AICc from the model with the
minimum AICc, Wi–the Akaike weight, R

2–the coefficient of determination. See Table 1 for a key to abbreviations of covariate names. Model 1
includes all limiting factors. Models 2 through 6 have one factor eliminated. Food availability in November–December, March and
September–October provided the least value and these factors were eliminated in model 7. Models 7 and 9 could not be distinguished on the basis
of our selection criteria: Δi < 2. Models without stock (prior abundance in the fall) were not ecologically plausible
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The model generally explained the major changes in the
FMWT index (Fig. 3) over four decades (R2= 0.88),
although it did not explain the timing or the magnitude of
the change in several years.

Results from the model with the lowest AIC value
indicated that different factors controlled the population in
different temporal periods across the time series (Fig. 6,
Appendix B). Food has frequently been identified as lim-
iting for delta smelt (for example IEP MAST 2015). Our
model identified food limitations in late summer in 17 of 40
years (43%). The model results suggested that food avail-
ability in the mid to late 1970s, and again in the 1990s,
regulated the population. In other years prior to 1994,
losses of delta smelt at power plants appeared to be the
primary regulator of population size. Our model suggested
that since 2003, abundance of silversides was a primary
regulator.

Discussion

Quantifying the effects of anthropogenic influences on fish
populations has been an elusive, unsatisfying, and fre-
quently a controversial endeavor (Rose 2000). Survey-data-
based approaches, for the most part, have not provided
reliable means of assessing causal relations between envir-
onmental factors and fish performance (Rose et al. 2013a).
Accordingly, previous studies of delta smelt that have
employed additive models have not resolved the causes of
its decline (see Mac Nally et al. 2010; Thomson et al. 2010;
Maunder and Deriso 2011; Miller et al. 2012).

Among the shortcomings of additive models is that they
cannot accurately detect the impacts of factors that limit
population performance periodically, intermittently, or
infrequently. The relevance of factors that control popula-
tion responses may be undetected in additive models,

Table 5 Results for models with descending numbers of modifying factors

Model Covariates Included df AICc Δi Wi R2

11 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Silversides, Juv Entr, Power Plants, Summer Temp,
Striped Bass

20 565.4 48.6 0.0000 0.90

12 Stock, Jul–Aug Food, Spawn Window, Silversides, Juv Entr, Power Plants, Summer Temp, Striped
Bass

21 557.1 40.3 0.0000 0.90

13 Stock, Jul–Aug Food, Adult Entr, Silversides, Juv Entr, Power Plants, Summer Temp, Striped Bass 21 556.7 39.9 0.0000 0.90

14 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Juv Entr, Power Plants, Summer Temp, Striped
Bass

23 561.1 44.3 0.0000 0.83

15 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Silversides, Power Plants, Summer Temp, Striped
Bass

21 556.5 39.7 0.0000 0.90

16 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Silversides, Juv Entr, Summer Temp, Striped Bass 23 589.6 72.8 0.0000 0.65

17 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Silversides, Juv Entr, Power Plants, Striped Bass 23 543.4 26.6 0.0000 0.89

18 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Silversides, Juv Entr, Power Plants, Summer Temp 23 547.6 30.8 0.0000 0.88

19 Stock, Jul–Aug Food, Spawn Window, Silversides, Juv Entr, Power Plants, Striped Bass 24 535.9 19.1 0.0001 0.90

20 Stock, Jul–Aug Food, Adult Entr, Silversides, Juv Entr, Power Plants, Striped Bass 24 536.7 19.9 0.0000 0.89

21 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Juv Entr, Power Plants, Striped Bass 26 543.7 26.9 0.0000 0.83

22 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Silversides, Power Plants, Striped Bass 24 535.0 18.2 0.0001 0.90

23 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Silversides, Juv Entr, Striped Bass 26 576.7 59.9 0.0000 0.60

24 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Silversides, Juv Entr, Power Plants 26 529.8 13.0 0.0012 0.88

25 Stock, Jul–Aug Food, Spawn Window, Silversides, Juv Entr, Power Plants 27 524.9 8.1 0.0142 0.88

26 Stock, Jul–Aug Food, Adult Entr, Silversides, Juv Entr, Power Plants 27 524.9 8.1 0.0143 0.88

27 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Juv Entr, Power Plants 29 531.0 14.2 0.0007 0.83

28 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Silversides, Power Plants 27 524.9 8.2 0.0138 0.88

29 Stock, Jul–Aug Food, Adult Entr, Spawn Window, Silversides, Juv Entr 29 577.4 60.6 0.0000 0.43

30 Stock, Jul-Aug Food, Silversides, Power Plants 29 516.8 0.0 0.8121 0.88

31 Stock, Jul–Aug Food, Power Plants 32 520.3 3.5 0.1435 0.82

32 Stock, Jul–Aug Food, Silversides 32 566.5 49.7 0.0000 0.43

33 Stock, Jul–Aug Food, Silversides, Power Plants, Apr–-Jun Food 26 529.4 12.6 0.0015 0.88

Note: df–degrees of freedom, AICc–bias adjusted Akaike’s information criterion, Δi–simple difference in AICc from the model with the minimum
AICc, Wi–Akaike weight, R2–coefficient of determination. See Table 1 for a key to abbreviations of covariate names. Model 11 includes the
limiting factors from model 9 and all modifying factors. Covariates not included in the model with the lowest AICc value in each iteration were
excluded from the next iteration. Model 30 had the lowest AICc value and Δi > 2 for all other models
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leaving the roles of key environmental factors poorly
explained. The biological mechanisms implied in additive
models are not consistent with the law of limiting factors.
Additive models assume that a change in an environmental
factor will always contribute to a population response even
when that factor does not limit the population. That implicit
assumption can lead resource managers and policy makers
to incorrectly conclude that benefits to a targeted species
from a conservation action are likely when they may in fact
not be. Incorporating limiting factors into quantitative
analyses has been difficult historically, primarily because
environmental factors that regulate a population may man-
ifest inconsistently; an individual factor may control abun-
dance in some seasons and some years and not others.

We combined a conceptual ecological model, supported
by ecological theory and a synthesis of the current science
(IEP MAST 2015) with mathematical programming that
employed a powerful non-linear optimization routine. We
applied them in a framework that analyzed the impacts of
environmental factors on four delta smelt life stages over 40
years to identify and quantify the roles of those factors in
limiting its recovery. We conclude that four of 12

Table 6 Comparison of the model with the lowest AICc value (model 30) with model variants

Covariates K AICc Δi Wi R2 Adj R2

Covariates inserted

Food availability (Sep–Oct) 14 530.5 13.7 0.0004 0.879 0.823

Summer temperature (Jun–Aug) 14 530.5 13.7 0.0005 0.879 0.824

Food availability (Apr–Jun) 14 529.4 12.6 0.0008 0.882 0.828

Abundance of striped bass 14 528.7 11.9 0.0011 0.885 0.832

Food availability (Nov–Dec) 14 523.0 6.2 0.0189 0.900 0.854

Juvenile survival (parameter) 12 521.0 4.2 0.0526 0.879 0.836

Sub-adult survival (parameter) 12 521.0 4.2 0.0518 0.879 0.836

Juvenile entrainment loss (Apr–Jun) 12 521.0 4.2 0.0522 0.879 0.836

Estimated duration of spawning window 12 520.3 3.5 0.0734 0.881 0.839

Adult survival (parameter) 12 520.3 3.5 0.0725 0.881 0.839

Adult entrainment (Dec–Mar) 12 520.3 3.5 0.0727 0.881 0.839

Food availability (Mar) 14 519.7 2.9 0.1011 0.908 0.866

Model with lowest AICc value 11 516.8 0.0 0.4266 0.879 0.842

Covariates removed

Abundance of silversides 8 520.3 3.5 0.0754 0.825 0.792

Recruitment (parameter) 10 544.7 27.9 0.0000 0.726 0.653

Power plant operations (May–Jun) 8 566.5 49.7 0.0000 0.427 0.320

Prior fall mid-water trawl index 11 575.9 59.1 0.0000 0.450 0.279

Food availability (Jul–Aug) 8 596.3 79.5 0.0000 0.072 −0.217

Note: K–number of parameters, AICc–bias adjusted Akaike’s information criterion, Δi is–simple difference in AICc from the model with the
minimum AICc, Wi–Akaike weight, R2–coefficient of determination, Adj R2–the coefficient of determination adjusted for the number of
parameters estimated. The top portion of the table depicts impacts on model performance if an individual covariate is added to the model with the
lowest AICc value. The bottom portion of the table depicts impacts on model performance if an individual covariate is removed from the model
with the lowest AICc value.

Table 7 Akaike weights of covariates generated from the models in
Table 6

Covariate w+(j)

Food availability (Mar) 0.3969

Estimated duration of spawning window 0.4247

Adult entrainment (Dec–Mar) 0.4253

Adult survival (parameter) 0.4255

Juvenile survival (parameter) 0.4454

Juvenile entrainment loss (Apr–Jun) 0.4458

Sub-adult survival (parameter) 0.4463

Food availability (Nov–Dec) 0.4791

Abundance of striped bass 0.4969

Food availability (Apr–Jun) 0.4973

Summer temperature (Jun–Aug) 0.4976

Food availability (Sep–Oct) 0.4976

Abundance of silversides 0.9246

Recruitment (parameter) 1.0000

Power plant operations (May–Jun) 1.0000

Prior fall mid-water trawl index 1.0000

Food availability (Jul–Aug) 1.0000
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environmental factors explained annual variation in the
FMWT abundance index of delta smelt. Entrainment at two
power plants had greater effects toward the beginning of the
four-decade time period. Predation and competition by an
invasive fish, Mississippi silversides, had greater effects in
recent years. Food availability in summer appeared to limit
delta smelt abundance in more than 40% of the years that
were evaluated. Also, the availability of food earlier in the
year may influence survival of early life stages. When
spring food availability was included in the model, the
frequency of food limitation in summer decreased and
effects of food limitation in spring were observed.

Although this effort implicates a small set of factors as
the primary determinants in the decline of delta smelt,
particularly since 2002, the effort to resolve the relative
importance of the causes of decline of delta smelt is not yet
complete. For example, we did not include contaminants
among our covariates due to the lack of adequate data. Also
worthy of consideration is predation on delta smelt and its
competition with a broader array of introduced predator
species (particularly centrarchids), the species richness and
abundances of which have increased dramatically over the
past three decades. As such, our contribution here does not
fully resolve the controversy over the causes of the decline
of delta smelt (IEP MAST 2015), but provides a framework
with which the causes of the of the decline in delta smelt
abundance can be explored as new data become available.

Given the goodness of model fit (Fig. 3), it is fair to ask
whether our life-cycle model is “over specified.” Although
the model included four covariates, it required the estimation
of 10 coefficients. Concerned that models that are over
specified may explain ecological phenomena well, but pre-
dict them poorly, we carried out a cross-validation analysis,
which indicated the model presented here had a relatively
robust ability to predict delta smelt responses outside the

range of years used to derive the coefficients. Also, rather
than being flexible in their functional form, like a third-order
polynomial, the logistic functions we employed required that
the functions be some form of an “s” curve, further reducing
the chance of over-specification. As described earlier, a
limiting-factor model subdivides the data, greatly reducing
the degrees of freedom and goodness of fit is likely inflated.
An area warranting further attention is the development of
model selection criteria that discount limiting factors more
heavily than modifying factors. Finally, there is the question
of whether fluctuations in abundance of delta smelt over four
decades in a rapidly changing ecosystem could be ade-
quately explained with yet fewer variables.

The use of non-linear rather than linear models requires
estimation of initial values of the coefficients. Use of
inaccurate initial values and inclusion of a high number of
covariates might lead to the identification of local, rather
than global, optima. Therefore, consideration of a range of
initial values is required when using this approach. We note
that development of a stochastic rather than a deterministic
model might reduce uncertainties.

Although we identified 10 geographic regions distributed
from the eastern limits of San Francisco Bay to the upper
freshwater reaches of the Delta on the basis of landscape
and ecological differences, we only had sufficient environ-
mental data for seven of them. The exclusion of part of the
range of delta smelt introduces unknown uncertainties into
the modeling effort. Furthermore, the use of abundance-
index data from the FWMT assumes those data are well
correlated with the true size of the delta smelt population; it
is not known whether this assumption is valid. In addition,
exclusion of a factor from the final model does not mean it
has no effect on the species. For example, food availability
in spring is essential. We found that food availability in
summer frequently controls the population. In the same

Fig. 3 Fall mid-water Trawl
Index for delta smelt (orange
line) compared to estimates from
the model with the lowest AICc
value (gray line)
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years that summer food availability is controlling, food
availability in spring also can be insufficient, and if food
shortages in the summer were to be alleviated, we could
expect food availability in spring to control.

The failure to apply the concept of limiting factors has
resulted in efforts to increase delta smelt survival or
recruitment during individual seasons, rather than to develop
a strategy for increasing and sustaining delta smelt abun-
dance across years. For example, the FMWT Index in 2011
was 12 times higher than it was in 2010–a record annual
increase in the index. But by 2012, the abundance index
returned to near the record low. The benefits of all prior
conservation efforts were essentially eliminated by a con-
trolling factor. Rather than focusing conservation efforts
toward increasing delta smelt abundance in each individual
season, we suggest developing a broader strategy to restore
or enhance the resources that limit the recovery of the spe-
cies. Heretofore, it had been difficult to identify and quantify
the impact of limiting factors. Utilizing the tools provided
here to identify the resources that likely will be limiting in
the future, and employing management actions to relax those
limitations, will lead to a more effective allocation of con-
servation resources and increase population resilience.
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Appendix A: The Failure of Conventional
Correlation Analysis

Not every environmental factor is important in every year, in
every season, or in every region. We illustrate the problem
with synthetic data (Table 8). Suppose that food availability
in summer (covariate A) and autumn (covariate B) determine
the abundance (Y) of a species in a particular area. A stan-
dard approach might be to hypothesize that one or the other
factor is regulating abundance (Fig. 4). Both factors are
weakly correlated with the response variable, leading per-
haps to a conclusion that neither factor is significant.

Another hypothesis is that both factors are relevant. The
results of a multiple regression analysis (Table 9) indicate
that neither variable has great statistical significance (p
values are close to 0.2) although the R2 of the multiple
regression is higher than those of single-variable
regressions.

An apparent anomaly here is the data point (A,Y) of
(60,5) and the next closest A observation (50,12.5). If 50
units of A yield an abundance of 12.5, how can 60 units of A
produce an abundance of 5? Dunham et al. (2002) and Cade
and Noon (2003) suggested that some other factor limited
abundance when A= 60. If the data point (A,Y:60,5) has no
bearing on the abundance in autumn, then it should not
receive any weight in an analysis, yet conventional
approaches assign some weight to it to help explain the
variation in abundance.

A better fit for the data is provided by including a pair-
wise interaction between A and B, so the fitted equation
becomes:

Y ¼ β0 þ β1Aþ β2Bþ β3ABþ μ: ð15Þ

The R2 then increases to 0.89, leading perhaps to a
conclusion that the variation has been largely explained and
the results can be used to guide management actions.
However, the implications for resource management can be
misleading. In our example we assumed that covariate A,
summer food availability, can be a controlling factor in

Table 8 Synthetic data on response variable Y given data on
covariates A and B

Year Y A B

Abundance Summer food Autumn food

1 10.0 80 40

2 12.5 50 75

3 7.5 30 35

4 12.5 50 50

5 5.0 60 20

6 5.0 20 70

7 7.5 45 30

Table 9 Results of the multiple regression analysis applied to
synthetic data

R2 Adj R2 Standard error Observations

0.475 0.212 2.823 7

Coefficients Standard error t Statistic P-value

Intercept −0.480 4.885 −0.098 0.926

A 0.098 0.0632 1.545 0.197

B 0.096 0.0603 1.590 0.187
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some years, thereby capping the population potential in the
summer in those years. The functional form of Eq. (15)
suggests that abundance can be increased (new individuals
can be added to the population) by increasing food avail-
ability in the autumn. As an extreme example, if summer
food availability were to be so low as to cause extinction,
the functional form of Eq. (15) would nonetheless suggest
that abundance could still be increased by increasing food
availability in the autumn. The law of limiting factors
asserts that providing more of a given resource, when that
resource is not limiting, will not benefit the target species.
An inappropriate functional form, despite a good fit to the
data, can incorrectly suggest otherwise. Since limiting fac-
tors are a fundamental phenomenon in ecology, we caution
the use of additive models for guiding management actions.

The synthetic data set contains identities. Each unit of
abundance requires 4 units of food in the summer and 4
units of food in autumn. Abundance is regulated by the
minimum available food across periods. The underlying
relations between A and B and Y, in our example, are linear
(Fig. 5). The inability to detect the relevance of limiting
factors in standard regression analyses may result in con-
cluding that significant covariates are insignificant, incor-
rectly estimating coefficients, and inability to explain
variances in the response variable (White 2004).

Alternative approaches

There likely are alternative approaches that can be used to
detect the signals of limiting factors in population data.
Among them may be the use of inverse models (see for
example Tarantola 2005), approximate Bayesian computa-
tion (see for example Blum and Francois 2010, Csilléry
et al. 2010, Sunnåker et al. 2013), modeling with latent
variables (see Masowsky et al. 2014) and analyses incor-
porating a Random Forest approach (Breiman 2001,
Louppe 2015), but it is beyond the scope of this study to
compare the applicability of these approaches. Bayesian and
Forest analyses are preferable approaches because they
implicitly recognize that an existing state is the result of
discrete prior events. Approaches that provide a good fit to
data without capturing the relevant underlying mechanisms
are discouraged.
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