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Chao-Ying Joanne Peng 
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Multiple imputation is illustrated for dealing with missing data in a published SCED study. 

Results were compared to those obtained from available data. Merits and issues of 

implementation are discussed. Recommendations are offered on primal/advanced readings, 

statistical software, and future research. 
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Introduction 

The occurrence of missing data is prevalent in single-case experimental design 

(SCED) studies due to the repeated observation and assessment of an outcome 

behavior in such settings (Franklin, Allison, & Gorman, 1996). Smith (2012) 

reviewed SCED standards and 409 studies published in refereed journals between 

2000 and 2010, and noted “SCEDs undeniably present researchers with a complex 

array of methodological and research design challenges, such as establishing a 

representative baseline,…and appropriately addressing the matter of missing 

observations” (p. 511). Similarly, articles published from 2015 to summer 2016 in 

five journals (Behavior Modification, Journal of Applied Behavior Analysis, 

Journal of Positive Behavior Interventions, Journal of School Psychology, and The 

Journal of Special Education) with similar aims to publish behavioral analysis 

studies in clinical and school settings were examined, and 34 (24%) contained 

missing data. Another 10 (7%) had insufficient information to determine whether 

missing data existed. 

According to the review by Chen, Peng, and Chen (2015) of computing tools 

suitable for analyzing SCED data, missing data are commonly handled in one of 

three ways: (a) deleting missing data via, e.g., RegRand (http://www.matt-

https://doi.org/10.22237/jmasm/1525133280
https://doi.org/10.22237/jmasm/1525133280
mailto:litingc@unr.edu
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koehler.com/regrand), (b) omitting missing sessions or intervals, thus yielding 

results based on available data only (e.g., PROC MEANS in SAS); or (c) replacing 

missing data with 0 (e.g., Simulation Modeling Analysis). Unfortunately, these 

approaches waste information already collected, distort the initial SCED design, or 

misrepresent the results. 

Even though treating missing data is usually not the focus of a substantive 

study, failing to do so properly threatens internal validity, the statistical conclusion 

validity, and weakens the generalizability of any SCED study (Rubin, 1987; 

Schafer, 1997; Shadish, Cook, & Campbell, 2002). Serious consequences can result 

from improper treatments of missing data. First, deleting cases or sessions with 

missing data listwise leads to the loss of information which wastes information 

already collected. Furthermore, the reduced sample may not be representative of 

the population because participants with missing data are not removed randomly. 

A reduced sample is always associated with decreased statistical power and 

increased sampling errors. Second, missing data may prevent researchers from fully 

analyzing the data. Third, removing missing data inevitably alters the study design 

and creates difficulty in integrating results across participants or studies. Popular 

ad hoc methods, such as mean substitution or personal best guesses, can artificially 

inflate correlation among scores, introduce trends not supported by data, bias the 

parameter estimate, and result in inefficient inferences (Little & Rubin, 1987, 2002; 

Peng, Harwell, Liou, & Ehman, 2006). Even when visual analysis is employed to 

determine an intervention effect, a linear interpolation may be superimposed over 

missing data, thus, creating a linear trend that may not really exist. Despite this 

drawbacks, proper treatment of missing data is vital to the validity of conclusions 

drawn from visual analysis as well as from statistical inferences of SCED data 

(Smith, 2012). 

In a Monte Carlo simulation study, Smith, Borckardt, and Nash (2012) 

investigated the statistical power when the Expectation-Maximization (EM) 

procedure was used to replace missing observations in single case time-series data. 

They simulated 10 and 56 data points in the baseline phase and the intervention 

phase, respectively, in order to apply the EM procedure. Although this is a 

principled approach to treating missing data, it is unrealistic to expect to collect 56 

data points from the intervention phase in most SCED studies. Therefore, the results 

from Smith et al. may not be generalizable. 

Because of the threats posed by missing data to interpretations of SCED data 

by visual analysis or by statistics, missing data should not be ignored and should be 

treated properly. The objective of this paper is to illustrate another principled 

method, multiple imputation, as a viable approach for handling missing data in 

http://www.matt-koehler.com/regrand
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SCED studies. It can retain the information already collected and allow for valid 

statistical inferences. Even though multiple imputation has not been routinely 

employed in SCED to deal with missing data, its rationale can be easily understood 

given basic statistical knowledge. Thus, this paper aims to (1) illustrate multiple 

imputation by applying this approach systematically to missing data in a published 

SCED study (Lambert, Cartledge, Heward, & Lo, 2006), and (2) discuss practical 

issues surrounding the application of multiple imputation in SCED contexts. Six 

features of the Lambert et al. (2006) data, including level/level change, trend, 

variability, immediacy of the effect, overlap, and consistency of data in similar 

phases, were systematically assessed, according to the recommendations of the 

What Works Clearinghouse (WWC) Standards Handbook (WWC, 2017), hereafter 

abbreviated as the WWC Handbook and its standards as the WWC Standards. 

Results were contrasted with those based on available data in order to determine 

the effectiveness of an intervention effect. All assessments were conducted using 

SAS 9.4 or the Single Case Research (SCR) website 

(http://www.singlecaseresearch.org). 
 
 

 
 
Figure 1. Number of intervals of disruptive behaviors during single-student responding 
(SSR) and response card (RC) conditions; adapted from Lambert et al. (2006) 
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The Lambert Data Set 

Lambert et al. (2006) implemented a strategy, namely, the response cards or RC, to 

minimize students’ disruptive behaviors during math instruction. The study was 

conducted in two fourth-grade classrooms with a total of nine target students from 

a Midwestern urban elementary school. A reversal (or an ABAB) design was 

employed with two baseline phases (SSR1 and SSR2) and two intervention phases 

(RC1 and RC2). A disruptive behavior, such as engaging in a conversation during 

teacher-directed instruction, provoking others, laughing, or touching others, was 

recorded in 10 intervals of each study session. The dependent variable was the 

number of intervals in which at least one disruptive behavior was observed, with 

10 as the maximum and 0 as the minimum (see Figure 1). Using visual analyses 

and analysis of means, Lambert et al. concluded that the use of response cards was 

effective in decreasing disruptive behaviors for these nine students. 

The breaks in Figure 1 were due to student absences. All students, except for 

B1, had missing data with an average missing data rate at 10%. The highest missing 

rate was 7 (23%) for A3. These breaks were ignored in the analyses of Lambert et 

al. (2006) and in the reanalysis of these data, published in volume 52, issue 2 of the 

Journal of School Psychology, to demonstrate alternative ways of analyzing SCED 

data beyond visual analysis. They were acknowledged as missing data in Chen et 

al. (2015) and in Peng and Chen (2015) in order to maintain the initial structure of 

this study design, while evaluating computing tools’ accuracy and treatment of 

missing data for analyzing SCED data. 

Multiple Imputation 

Multiple imputation provides valid statistical inferences under the missing at 

random (MAR) condition (Little & Rubin, 2002). The MAR condition assumes that 

the probability of missing is not a function of the missing scores themselves, but 

may be a function of observed scores (Little & Rubin, 1987). The MAR condition 

can be made more plausible if variables that explain missingness are included in 

the statistical inferential process. 

Multiple imputation imputes missing data while accounting for the 

uncertainty associated with the imputed values (Little & Rubin, 2002). It accounts 

for the uncertainty by generating a set of m plausible values for each unobserved 

data point, resulting in m complete data sets, each with an estimate of the missing 

values. The m plausible values represent a random sample of all plausible values 

given the observed data. The m complete data sets are analyzed separately using a 

standard statistical procedure, resulting in m slightly different estimates for each 
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parameter, such as the mean. At the final stage of multiple imputation, m estimates 

are pooled together to yield a single estimate of the parameter and its corresponding 

SE. The pooled SE of the parameter estimate incorporates the uncertainty due to the 

missing data treatment (the between imputation uncertainty) into the uncertainty 

inherent in any estimation method (the within imputation uncertainty). 

Consequently, the pooled SE is larger than the SE derived from a single imputation 

method (e.g., mean substitution) that does not consider the between imputation 

uncertainty. Thus, multiple imputation can more accurately estimate the SE of a 

parameter estimate than a single imputation method (Little & Rubin, 2002; Rubin, 

1987). Multiple imputation treats missing data in three steps: (1) imputes missing 

data m times to produce m complete data sets; (2) analyzes each data set using a 

standard statistical procedure; and (3) pools, or combines, the m results into one 

using formulae from Rubin (1987). 

Step 1: Imputation 

The imputation step fills in missing values multiple times using the information 

already contained in the observed data. The preferred imputation method is the one 

that matches the missing data pattern. Three missing data patterns have been 

identified in the literature: univariate, monotone, and arbitrary. A data set has a 

univariate pattern of missing data if the same participants have missing data on the 

same variable(s), or in the same sessions as in Lambert et al. (2006). A dataset has 

a monotone missing data pattern if the variables, or sessions, can be arranged in 

such a way that, when one variable/session score is missing, the subsequent 

variables/session scores are missing as well. The monotone missing data pattern 

occurs frequently in longitudinal studies where, if a participant drops out at one 

point, their data are missing on subsequent measures. If missing data occur in any 

variable/session for any participant in a random fashion, the data set is said to have 

an arbitrary missing data pattern. 

Given a univariate or monotone missing data pattern, one can impute missing 

values using the regression method (Rubin, 1987), or using the predictive mean 

matching method if the missing variable is continuous (Heitjan & Little, 1991; 

Schenker & Taylor, 1996). When the missing data pattern is arbitrary, one can use 

the Markov Chain Monte Carlo (MCMC) method (Schafer, 1997), or the fully 

conditional specification (FCS, also referred to as chained equations) if the missing 

variable is categorical or non-normal (Raghunathan, Lepkowski, van Hoewyk, & 

Solenberger, 2001; van Buuren, 2007; van Buuren, Brand, Groothuis-Oudshoorn, 

& Rubin, 2006). MCMC assumes the joint distribution for all variables in the 

imputation model to be multivariate normal, or bivariate normal if there are two 
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variables in the imputation model. FCS does not hold this normality assumption. 

Both MCMC and FCS have been implemented in PROC MI (SAS Institute Inc., 

2015). 

For the Lambert data set, the missing mean of each phase was imputed for all 

students with a missing score in that phase because there were different numbers of 

sessions implemented in Classes A and B. The MCMC method was specified based 

on the arbitrary pattern of the missing means (meanssr1 to meanrc2, highlighted in 

grey in Table 1) and continuous variables included in the imputation models. Four 

imputation models were constructed, each composed of two variables: the mean 

variable with missing data and an auxiliary variable with complete data. The mean 

variable and the auxiliary variable were from the same phase and were strongly 

correlated; the absolute correlations ranged from 0.31 to 0.58. To impute missing 

SSR1 means (or meanssr1 in Table 1), the auxiliary variable, ar_ssr1, was included 

in the imputation model. The variable ar_ssr1 was academic response during the 

SSR1 phase. Academic response was defined as “an observable response made by 

the student to the teacher’s question. In this study, an academic response was scored 

when a student orally responded to the teacher’s instructional question after raising 

his or her hand and being called on (during single-student responding), or when he 

or she wrote down the answer on the white board following the teacher’s question 

(during response cards) during math lessons” (Lambert et al., 2006, p. 90). 

Similarly, the auxiliary variable ar_ssr2 was used in imputing the missing SSR2 

means (meanssr2). To impute the missing RC1 or RC2 means (meanrc1 or 

meanrc2), the auxiliary accuracy variables acc_rc1 and acc_rc2 were used, 

respectively. Acc_rc1 (acc_rc2) measured the percent of times when students gave 

a correct answer written on the response card during the RC1 (RC2) phase (Lambert 

et al., 2006, p. 90). The four imputation models had to be simple in order to allow 

PROC MI to converge, due to the small number of students (n = 9). 

The auxiliary variables were selected for their strong correlation with the 

missing means (from the same phase), completeness (no missing data themselves), 

and for a wide range or variability (to avoid the singularity problem). One set of 

imputed means are shown in grey in Table 1. SAS computing codes for this step 

are shown in Part A of Appendix A. 

At the end of Step 1 – Imputation, five sets (m = 5) of complete data were 

generated. Given the average missing data rate at about 10%, five imputations were 

considered sufficient (Graham & Schafer, 1999). One set of complete data from 

Class A are shown in Tables 2a (for SSR1-RC1 phases) and 2b (for SSR2-RC2 

phases), and one set of complete data from Class B are shown in Tables 3a (for 

SSR1-RC1 phases) and 3b (for SSR2-RC2 phases). 
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Table 1. Four auxiliary variables (ar_ssr1 to acc_rc2) and one set of imputed scores for 
four variables with missing data (meanssr1 to meanrc2) 
 

Student ar_ssr1 acc_rc1 ar_ssr2 acc_rc2 meanssr1 meanrc1 meanssr2 meanrc2 

A1 0.11 97.1 0.13 95.7 7.0000 0.9819 7.8750 2.0000 

A2 0.10 95.2 0.05 96.7 6.1405 1.3333 8.8750 2.0000 

A3 0.08 68.5 0.03 96.7 7.3748 5.2679 8.5762 2.0293 

A4 0.00 93.8 0.07 96.4 9.0090 1.5716 9.7142 2.0277 

B1 0.10 91.8 0.03 81.1 7.7000 2.6666 7.4286 1.3636 

B2 0.18 85.7 0.15 97.8 4.8478 2.9150 2.8326 2.0739 

B3 0.13 100.0 0.05 72.6 5.8749 0.8333 5.4286 1.0088 

B4 0.17 90.0 0.10 94.6 5.0000 2.1988 4.2857 1.9764 

B5 0.07 97.1 0.08 90.8 6.3000 1.0000 1.8793 1.7918 
 

Note: Only one set of imputed means (meanssr1 to meanrc2) are shown in grey highlights here; variables 
meanssr1 to meanrc2 are rounded off to four decimal places to preserve precision 

Step 2: Analysis 

The second step of multiple imputation analyzes the five (or m) complete data sets 

separately using a statistical procedure that was suited for testing differences 

between phase means, trends, variabilities, and nonoverlap between adjacent 

phases in SCED data. At the end of the second step, five sets of results were 

obtained from separate analyses of the five data sets. SAS computing codes for 

performing t-tests and for computing means for each of five imputed data sets are 

shown in Parts B and C of Appendix A. 

Step 3: Pooling 

The third step of multiple imputation combines the five (or m) results into one. This 

step is implemented into PROC MIANALYZE. PROC MIANALYZE is useful for 

pooling results that are obtained from a model-based analysis, such as a regression 

or logistic analysis. Otherwise, results are pooled using Rubin’s formulae in PROC 

MI (1987) or by hand calculations. Rubin’s formulae combine five results and SEs 

into a single result and its SE. Suppose ˆ
iQ  denotes the estimate of a parameter Q, 

(e.g., a mean) from the ith imputed data set. Its corresponding estimated variance is 

denoted as ˆ
iU . Then the pooled point estimate of Q is given by 

 

 
1

1 ˆ
m

i

i

Q Q
m =

=    (1) 
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Table 2a. Class A’s number of intervals of disruptive behaviors and their ranks from the SSR1 to the RC1 phases (Lambert et al., 
2006) 
 

Class A SSR1  RC1 

Student 1a 2 3 4 5 6 7 8   9 10 11 12 13 14 

A1 7 9 8 6 7 4 5 10  2 0 0.9819 1 0 0 

A2 8 7 6.1405 7 8 6 7 9  3 1 0 4 0 0 

A3 10 7.3748 6 7.3748 6 9 6 10  5.2679 0 1 1 0 0 

A4 10 9.0090 6 4 8 8 9 10   3 6 0 0 1.5716 1 
          

      

 SSR1-Ranks  RC1-Ranks 

Student 1 2 3 4 5 6 7 8  9 10 11 12 13 14 

A1 10.5 13.0 12.0 9.0 10.5 7.0 8.0 14.0  6.0 2.0 4.0 5.0 2.0 2.0 

A2 12.5 10.0 8.0 10.0 12.5 7.0 10.0 14.0  5.0 4.0 2.0 6.0 2.0 2.0 

A3 13.5 10.5 8.0 10.5 8.0 12.0 8.0 13.5  6.0 2.0 4.5 4.5 2.0 2.0 

A4 13.5 12.0 7.5 6.0 9.5 9.5 11.0 13.5  5.0 7.5 1.5 1.5 4.0 3.0 

Total rank 50.0 45.5 35.5 35.5 40.5 35.5 37.0 55.0  22.0 15.5 12.0 17.0 10.0 9.0 

Expected rankb (Yj) 14 13 12 11 10 9 8 7   6 5 4 3 2 1 
 

Note: Values in grey highlights in the upper panel were missing in Lambert et al. and imputed in this study using multiple imputation; their corresponding ranks are 
in grey in the lower panel. Only one set of imputed values are presented here. 
 a Session numbers 
 b Expected ranks are derived from H1 of the Page test  
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Table 2b. Class A’s number of intervals of disruptive behaviors and their ranks from the SSR2 to the RC2 phases of class A 
(Lambert et al., 2006) 
 

Class A SSR2  RC2 

Student 15a 16 17 18 19 20 21 22   23 24 25 26 27 28 29 30 31 

A1 3 8 8 6 10 10 10 8  3 4 1 3 2 4 0 1 0 

A2 8 9 10 7 9 10 8 10  1 1 0 5 3 6 0 0 2 

A3 5 7 10 8.5762 5 10 9 10  4 6 5 7 0 0 0 1 2.0293 

A4 3 8 10 9.7142 10 10 10 5   6 1 5 0 2.0277 2.0277 0 0 1 

          
         

 SSR2-Ranks  RC2-Ranks 

Student 15 16 17 18 19 20 21 22  23 24 25 26 27 28 29 30 31 

A1 7.0 13.0 13.0 11.0 16.0 16.0 16.0 13.0  7.0 9.5 3.5 7.0 5.0 9.5 1.5 3.5 1.5 

A2 11.5 13.5 16.0 10.0 13.5 16.0 11.5 16.0  4.5 4.5 2.0 8.0 7.0 9.0 2.0 2.0 6.0 

A3 8.0 11.5 16.0 13.0 8.0 16.0 14.0 16.0  6.0 10.0 8.0 11.5 2.0 2.0 2.0 4.0 5.0 

A4 8.0 12.0 15.5 13.0 15.5 15.5 15.5 9.5  11.0 4.5 9.5 2.0 6.5 6.5 2.0 2.0 4.5 

Total rank 34.5 50.0 60.5 47.0 53.0 63.5 57.0 54.5  28.5 28.5 23.0 28.5 20.5 27.0 7.5 11.5 17.0 

Expected rankb (Yj) 17 16 15 14 13 12 11 10   9 8 7 6 5 4 3 2 1 
 

Note: Values in grey highlights in the upper panel were missing in Lambert et al. and imputed in this study using multiple imputation; their corresponding ranks are 
in grey in the lower panel. Only one set of imputed values are presented here. 
 a Session numbers 
 b Expected ranks are derived from H1 of the Page test  
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Table 3a. Class B’s number of intervals of disruptive behaviors and their ranks from the SSR1 to the RC1 phases (Lambert et al., 
2006) 
 

 SSR1  RC1 

Student 1a 2 3 4 5 6 7 8 9 10  11 12 13 14 15 16 

B1 10 6 9 4 5 9 6 10 9 9  4 3 4 4 1 0 

B2 7 4 5 4.8478 4.8478 7 8 4 8 8  0 0 0 0 2.9150 2.9150 

B3 6 5.8749 6 5.8749 5.8749 8 9 10 9 8  0 1 2 1 1 0 

B4 8 1 4 6 6 7 8 8 0 2  0 2.1988 0 0 2 6 

B5 9 5 4 2 3 10 4 10 8 8  0 2 1 3 0 0 

            
      

 SSR1-Ranks  RC1-Ranks 

Student 1 2 3 4 5 6 7 8 9 10  11 12 13 14 15 16 

B1 15.5 9.5 12.5 5.5 8.0 12.5 9.5 15.5 12.5 12.5  5.5 3.0 5.5 5.5 2.0 1.0 

B2 12.5 7.5 11.0 9.5 9.5 12.5 15.0 7.5 15.0 15.0  2.5 2.5 2.5 2.5 5.5 5.5 

B3 10.5 8.0 10.5 8.0 8.0 12.5 14.5 16.0 14.5 12.5  1.5 4.0 6.0 4.0 4.0 1.5 

B4 15.0 5.0 9.0 11.0 11.0 13.0 15.0 15.0 2.5 6.5  2.5 8.0 2.5 2.5 6.5 11.0 

B5 14.0 11.0 9.5 5.5 7.5 15.5 9.5 15.5 12.5 12.5  2.0 5.5 4.0 7.5 2.0 2.0 

Total rank 67.5 41.0 52.5 39.5 44.0 66.0 63.5 69.5 57.0 59.0  14.0 23.0 20.5 22.0 20.0 21.0 

Expected rankb (Yj) 16 15 14 13 12 11 10 9 8 7  6 5 4 3 2 1 
 

Note: Values in grey highlights in the upper panel were missing in Lambert et al. and imputed in this study using multiple imputation; their corresponding ranks are 
in grey in the lower panel. Only one set of imputed values are presented here. 
 a Session numbers 
 b Expected ranks are derived from H1 of the Page test  
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Table 3b. Class A’s number of intervals of disruptive behaviors and their ranks from the SSR2 to the RC2 phases of class A 
(Lambert et al., 2006) 
 

 SSR2  RC2 

Student 17a 18 19 20 21 22 23  24 25 26 27 28 29 30 31 32 33 34 

B1 3 5 8 10 10 10 6  3 0 2 4 1 0 1 3 0 1 0 

B2 5 7 6 4 2.8326 6 5  2.0739 0 0 0 2 0 0 2.0739 0 0 0 

B3 2 4 4 5 8 8 7  1 0 2 1.0088 1 0 1 0 1.0088 1 0 

B4 5 6 5 8 4 0 2  1 2 6 0 2 0 1 1 1.9764 1.9764 1.9764 

B5 1.8793 3 0 2 7 7 2  0 1.7918 1 0 2 2 4 0 0 1 1 

            
        

 SSR2-Ranks  RC2-Ranks 

Student 17 18 19 20 21 22 23  24 25 26 27 28 29 30 31 32 33 34 

B1 10.0 13.0 15.0 17.0 17.0 17.0 14.0  10.0 2.5 8.0 12.0 6.0 2.5 6.0 10.0 2.5 6.0 2.5 

B2 14.5 18.0 16.5 13.0 12.0 16.5 14.5  10.5 4.5 4.5 4.5 9.0 4.5 4.5 10.5 4.5 4.5 4.5 

B3 11.5 13.5 13.5 15.0 17.5 17.5 16.0  6.5 2.5 11.5 9.5 6.5 2.5 6.5 2.5 9.5 6.5 2.5 

B4 14.5 16.5 14.5 18.0 13.0 2.0 11.0  5.0 11.0 16.5 2.0 11.0 2.0 5.0 5.0 8.0 8.0 8.0 

B5 10.0 15.0 3.0 12.5 17.5 17.5 12.5  3.0 9.0 7.0 3.0 12.5 12.5 16.0 3.0 3.0 7.0 7.0 

Total rank 60.5 76.0 62.5 75.5 77.0 70.5 68.0  35.0 29.5 47.5 31.0 45.0 24.0 38.0 31.0 27.5 32.0 24.5 

Exp rankb (Yj) 18 17 16 15 14 13 12  11 10 9 8 7 6 5 4 3 2 1 
 

Note: Values in grey highlights in the upper panel were missing in Lambert et al. and imputed in this study using multiple imputation; their corresponding ranks are 
in grey in the lower panel. Only one set of imputed values are presented here. 
 a Session numbers 
 b Expected ranks are derived from H1 of the Page test 
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The variance of Q̅, denoted as T in equation (4), is the weighted sum of two 

variances: the within-imputation variance (U̅) and the between-imputation variance 

(B). Specifically, these three variances are computed as follows: 
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In equation (4), the (1 / m) factor is an adjustment for a lack of randomness 

associated with a finite number of imputations. Theoretically, estimates derived 

from multiple imputation with a small m yield larger sampling variances than 

maximum-likelihood estimates, such as those derived from full information 

maximum likelihood, because the latter are not impacted by a lack of randomness 

caused by multiple imputation. 

Assessment Results According to the WWC Standards 

In assessing the intervention effect, the WWC Standards (WWC, 2017) were used 

while treating missing data in the Lambert Data Set. These standards were 

formulated to help researchers and practitioners determine whether (a) the observed 

pattern of data in the intervention phase is due to the intervention effects, and (b) 

the observed pattern of data in the intervention phase is different from the pattern 

of data, predicated from data in the baseline phase. Six data features, both within 

and between phases, are recommended for analysis by the WWC Standards in order 

to determine the effectiveness of an intervention effect. Analyses of data collected 

from the SSR1 to RC1 and the SSR2 to RC2 phases are presented. 

Assessment of Level/Level Change 

In the WWC Handbook, level was defined as the mean score for data within a phase 

(WWC, 2017). A level change between phases indicates a change in the outcome 

measure due to the intervention. To assess the level and level change from SSR to 

RC phases, the paired-samples t-test was applied to means obtained from one 
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Table 4. Means, SDs, paired-samples t-tests of differences between SSR-RC phases in 
the Lambert data set 
 
 Available Data  Multiple Imputation 

Statistics SSR1-RC1 SSR2-RC2   SSR1-RC1 SSR2-RC2 

Meana  5.90 5.02  5.48 4.92 

SDb  1.22 1.55  1.00 1.51 

nc 9 9  9 9 

t-testd  14.54 9.75  16.44 9.76 

p-valuee <0.0001 <0.0001   <0.0001 <0.0001 
 

Note: aMeans are computed as an average of individuals’ difference score over sessions between SSR and RC 
phases 
 b SDs are computed as the square root of the variance of individuals’ difference scores 
 c n = number of students 
 d paired t-test of SSR−RC differences, df = 9 – 1 = 8 
 e one-tailed probability, rounded up to four decimal places for precision and comparisons 

 
 

baseline and one intervention phases, namely, the means of SSR1-RC1, and the 

means of SSR2-RC2 using available data and multiple imputation. At Step 3 of 

multiple imputation, t-statistics and p-values were pooled across five imputed data 

sets. Results based on multiple imputation and the Available Data are presented in 

Table 4. 

According to Table 4, the four paired-samples t-tests for the difference 

between one SSR phrase and one RC phrase ranged from 16.44 to 9.75 with df = 8 

(i.e. 9 – 1). All four paired-samples t-tests were statistically significant at 

p < 0.0001 (one-tailed), suggesting a level change, specifically a decline from a 

SSR phase to an adjacent RC phase. And the decline implied the effectiveness of 

the intervention. Although the statistical significant results reached the same 

conclusion based on either the Available Data approach or the Multiple Imputation 

approach, the means and SDs convey a different message. For the two SSR versus 

RC comparisons, the mean differences obtained from the Multiple Imputation 

approach (5.48 and 4.92) were not comparable to those under the Available Data 

approach (5.90 and 5.02), whereas the SDs under the Multiple Imputation approach 

(1.00 and 1.51) were comparable to those under the Available Data approach (1.22 

and 1.55). 

Assessment of Trend 

“Trend refers to the slope of the best-fitting straight line for the data within a phase,” 

according to the WWC Handbook (WWC, 2017, p. A-7). Because a best-fitting 

straight line is a limiting definition for trends, we elected to assess monotonic trends 

in the Lambert data sets using the Page test of trends (Busk & Marascuilo, 1992; 



PENG & CHEN 

15 

Marascuilo & Busk, 1988; Peng & Chen, 2015). A monotonic trend can be either 

increasing or decreasing. It is more general than a linear trend because a monotonic 

trend incorporates different slopes throughout a data pattern to reflect an upward 

(or increasing), or a downward (or decreasing), trend in data. Marascuilo and 

McSweeney (1977) and Page (1963) recommended the Page test for testing 

monotonic changes over time. The type of measurement required by the Page test 

is ranks of data or ranked data. Marascuilo and Busk (1988) and Busk and 

Marascuilo (1992) applied the Page test to assess trends in the simple AB design, 

the multiple-baseline AB designs and replicated ABAB designs across students. 

The Page test was conducted for all students as well as for their class trends 

from two adjacent SSR-RC phases. For each Page test, the null hypothesis (H0) 

states that there is no trend in data from the SSR phase to the RC phase. The 

alternative hypothesis (H1) states that there is at least one monotonic decreasing 

trend in data, meaning the RC intervention worked. H0 and H1 are expressed in 

ranks of each student’s scores. Furthermore, the rejection of H0 requires at least one 

inequality, specifically a decline (or improvement). The Page test cannot be 

conducted when missing data are present, because ranks cannot be assigned to 

missing scores; consequently, there was no trend assessment based on available 

data. 
 
 
Table 5. Page test of trends from SSR1 to RC1 phases for Classes A and B (Lambert et 
al., 2006) 
 

 Student Page L L
χ

2

 ES = z = 
L
χ

2
 

z-lower = 
z – 1.645a One-tailed p 

Class A A1 972.8 8.62 2.94 1.29 0.0033 

 A2 958.4 7.34 2.71 1.06 0.0068 

 A3 953.8 7.00 2.64 0.99 0.0103 

 A4 944.0 5.80 2.40 0.77 0.0165 

 Aggregate 3829.0 28.97 5.38 3.74 < 0.0001 

  
     

Class Bb B1 1384.0 6.75 2.60 0.95 0.0094 

 B2 1326.1 3.81 1.94 0.29 0.0601 

 B3 1335.5 4.18 2.04 0.40 0.0412 

 B4 1306.0 2.92 1.71 0.06 0.0875 

 B5 1360.0 5.40 2.32 0.68 0.0201 

 Aggregate 6711.6 22.54 4.75 3.10 < 0.0001 
 

Note: p-values are rounded off to four decimal places for comparison purposes; students B1 and B5 had no 
missing data in SSR1-RC1 phases 
 a This lower limit is for a 95% one-sided CI 
 b Students B3’s and B5’s Page L statistics may not be statistically significant at p < 0.05, if between-
imputation variability was factored into the SE of Page L 
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Table 6. Page test of trends from SSR2 to RC2 phases for Classes A and B (Lambert et 
al., 2006) 
 

 Student Page L L
χ

2

 ES = z = 
L
χ

2
 

z-lower = 
z – 1.645a One-tailed p 

Class A A1 1663.5 7.89 2.81 0.94 0.0050 

 A2 1671.0 8.31 2.88 0.73 0.0039 

 A3 1639.8 6.64 2.58 1.29 0.0101 

 A4 1664.6 8.05 2.82 1.06 0.0079 

 Aggregate 6638.9 30.76 5.54 3.90 < 0.0001 

  
     

Class Bb B1 1975.0 8.90 2.98 1.34 0.0029 

 B2 1997.8 10.09 3.18 1.53 0.0015 

 B3 1967.4 8.52 2.92 1.27 0.0035 

 B4 1895.0 5.30 2.30 0.66 0.0213 

 B5 1825.3 2.95 1.71 0.06 0.0926 

 Aggregate 9660.5 34.27 5.85 4.21 < 0.0001 
 

Note: p-values are rounded off to four decimal places for comparison purposes; A1, A2, and B1 had no missing 
data in the SSR2-RC2 phases 
 a This lower limit is for a 95% one-sided CI 
 b Student B4’s Page L statistic may not be statistically significant at p < 0.05, if between-imputation 
variability was factored into the SE of Page L 

 
 

To apply the Page test, the raw data in the upper panel of Tables 2a, 2b, 3a, 

and 3b were converted to ranks for each student, shown in the lower panels, based 

on one set of imputed values. Ranks assigned to imputed values are shown in grey 

highlights. If scores/imputed values were tied, ties were broken by averaging the 

two corresponding ranks, such as assigning the rank of 10.5 to the two 7s for 

Student A1 in Sessions 1 and 5 during the SSR1 phase (Table 2a). A total rank 

across four students in Class A, or five students in Class B, was subsequently 

weighted by their expected ranks (Yj), suggested by the H1, that is, there was a 

decreasing trend from SSR to RC adjacent phases. The product of the total rank 

weighted by its expected rank was summed over all 14 sessions into the Page 

statistic (L) for Class A and over all 16 sessions for Class B for the SSR1 to RC1 

phases shown in Table 5. The Page L statistic was computed for each imputed data 

set and subsequently pooled across five data sets according to equations (1) to (4). 

For the SSR2 to RC2 adjacent phases, similar calculations were applied and pooled 

results are presented in Table 6. The approximate significance p-value of the L 

statistic was obtained from a chi-square distribution with df = 1 (Page, 1963). 

According to the approximate chi-squares tests, H0 of no trend was rejected for 

Classes A and B (Tables 5 and 6) at p < 0.05. At the individual level, all four 

students in Class A exhibited a statistically significant downward trend in the 
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dependent variable, from SSR1 to RC1 phases, and again from SSR2 to RC2 phases. 

The five students in Class B did not uniformly demonstrate a downward trend due 

to the RC intervention. Students B2 and B4’s Page tests of SSR1 to RC1 data were 

not statistically significant at p < 0.05; Student B5’s Page test of SSR2 to RC2 data 

was not statistically significant at p < 0.05 either. The large-sample approximation 

to the sampling distribution of Page’s L statistic yields acceptable Type-I error rates 

for a directional Page test, as long as the number of sessions > 11 for α = 0.05, or 

the number of sessions > 18 for α = 0.01, according to Bradley (1978), Fahoome 

(2002), and Page (1963). 

The L statistic is conceptually and algebraically equivalent to the average 

Spearman rank correlation coefficient (ρ) between Students’ ranked scores and the 

expected ranks according to a monotonic decreasing (or increasing) trend (Page, 

1963; van de Wiel & Di Bucchianico, 2001). The L statistic can therefore be 

standardized into an ES, or normalized z (Peng & Chen, 2015). These ESs are 

presented in Table 5 for the SSR1-RC1 phases and Table 6 for the SSR2-RC2 

phases. The normalized z is scale-free and ranges from negative to positive values 

without bounds, like Cohen’s d. They differ, however, in their assumptions. 

Cohen’s d assumes normality and equal variances for underlying populations 

(Cohen, 1988), whereas the normalized z does not, because the latter is based on 

ranks of data. 

Because the normalized z follows a standard normal distribution (e.g., 

Fahoome, 2002; Lyerly, 1952), a directional 95% CI for the normalized z can be 

constructed (Peng & Chen, 2015). Tables 5 and 6 show that the lower limits for 

Classes A and B were positive; the earlier rejection of the H0 of no or an increasing 

trend was supported at p < 0.05, in favor of a monotonic decreasing trend. 

Summary of Page L tests, ESs and CIs for Page L 

According to Tables 5 and 6, both Classes A and B demonstrated a monotonic 

decreasing trend from SSR1 to RC1 and from SSR2 to RC2 phases based on the 

Page tests, the corresponding ESs (or zs), and CIs. At the individual level and 

p < 0.05, Students B2 and B4 did not demonstrate a decreasing trend from SSR1 to 

RC1, and Student B5 did not demonstrate a decreasing trend from SSR2 to RC2 

phases. 
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Table 7. Means, SDs, t-tests of differences in similar phases 
 
 Available Data  Multiple Imputation 

Statistics SSR1 SSR2 RC1 RC2  SSR1 SSR2 RC1 RC2 

Meana 7.05 6.54 1.16 1.52  6.86 6.45 1.42 1.58 

SDb 2.18 2.36 1.59 1.86  2.24 2.48 1.84 1.75 

nc 9 9 9 9  9 9 9 9 

|t|d 0.48 0.45  0.36 0.18 

SE 1.07 0.82  1.11 0.85 

p-value (two-tailed) 0.6396 0.6614  0.7208 0.8582 
 

Note: Missing scores are left as missing under the Available Data condition, replaced by multiply imputed 
scores under multiple imputation; p-values are rounded off to four decimal places for comparison purposes 
 a Means are computed as an average of individuals’ mean scores over sessions within each phase 
 b SDs are computed as the square root of the averaged variance of individuals’ variances of scores within 
each phase 
 c n = number of students 
 d two-tailed t-test of equality of two means, df = 9 + 9 – 2 = 16 

Assessment of Variability 

According to the WWC Handbook, “Variability refers to the range or standard 

deviation of data about the best-fitting straight line” (WWC, 2017, p. A-7). Even 

though a straight regression line was not fit to the Lambert data, the SD of scores 

was assessed within and between phases (Table 7). Because Multiple Imputation 

accounts for uncertainty due to imputation and sampling errors, it introduced 

greater variability into data than the Available Data approach. Consequently, its 

corresponding SDs were larger than those obtained under the Available Data 

approach, except for the RC phase, although the differences were no more than 

16% of the smaller SD. Under both approaches, the SDs were larger for the baseline 

phases (SSR1 or SSR2) than their corresponding SDs of the intervention phases 

(RC1 or RC2) as the RC treatment had helped to reduce the disruptive behaviors in 

general. 

Assessment of Immediacy of the Effect 

According to the WWC Handbook, 

 

Immediacy of the effect refers to the change in level between the last 

three data points in one phase and the first three data points of the next. 

The more rapid (or immediate) the effect, the more convincing the 

inference that change in the outcome measure was due to manipulation 

of the independent variable. (WWC, 2017, p. A-7) 
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Applying this definition to Figure 1 using the visual analysis of the available data, 

it was determined data patterns in RC1 or RC2 phase exhibited an immediate 

decreasing effect on disruptive behaviors, compared to data patterns in the 

corresponding SSR1 or SSR2 phase for all students, except for Student B4 from 

SSR2 to RC2 phases. For Students A1, A3, B2, B4, and B5, who had at least one 

missing score among the last three data points of a SSR phase, or the first three data 

points of a RC phase, only Student A3’s imputed scores for RC1, ranging from 5 

to 9 across five imputations, did not support the immediacy effect due to the RC 

intervention. Thus, it was concluded there was an immediacy effect due to the 

intervention for all students in Classes A and B, except for Students A3 (for the 

SSR1-RC phases) and B4 (for the SSR2 to RC2 phases). 

Assessment of Overlap 

According to the WWC Handbook, 

 

Overlap refers to the proportion of data from one phase that overlaps 

with data from the previous phase. The smaller the proportion of 

overlapping data points (or conversely, the larger the separation), the 

more compelling the demonstration of an effect. (WWC, 2017, p. A-7) 

 

To assess the degree of overlap between SSR and RC phases, Tau-U was computed. 

It was selected, among a myriad of nonoverlap indices, due to its straightforward 

interpretation and statistical properties (Parker, Vannest, Davis, & Sauber, 2011). 

The greater the Tau-U value, the less overlap between SSR and RC phases and, 

hence, the stronger evidence for an effective intervention effect. The computation 

of Tau-Us was facilitated by the SCR website. Tau-Us for Classes A and B were 

computed according to the recommendation of Parker and Vannest (2012), that is, 

both were weighted averages of individual students’ Tau-Us. Results are presented 

in Table 8 after pooling across five imputed data sets using equations (1)-(4). 

According to Table 8, Tau-U for SSR1-RC1 phases in Class A was 0.98, 

p < 0.0001, based on Available Data. This Tau-U is interpreted as 98% of pairs of 

data formed from SSR1 phase and RC1 phase showed improvement, i.e. declining 

in the number of intervals in which a disruptive behavior was observed. Tau-U 

decreased to 0.96 based on Multiple Imputation, still statistically significant at 

p < 0.0001. Tau-U for SSR1-RC1 phases in Class B was 0.90, p < 0.0001 based on 

Available Data. Tau-U decreased to 0.89 based on Multiple Imputation, still 

statistically significant at p < 0.0001. Tau-U for Class A’s SSR2-RC2 phases was 
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0.90, p < 0.0001, based on Available Data and Multiple Imputation approach. Tau-

U for Class B’s SSR2-RC2 phases was 0.82 based on Available Data and 0.83 

based on Multiple Imputation. Both Tau-Us were statistically significant at 

p < 0.0001. 
 
 
Table 8. Tau-U for SSR1-RC1 and SSR2-RC2 based on Available Data and the Multiple 
Imputation Approach 
 
  Available Data  Multiple Imputation 

 Student Tau-U Var z p   Tau-U Vara z p 

SSR1-RC1 A1 1.0000 0.1167 2.9277 0.0017  1.0000 0.1041 3.0984 0.0010 
 A2 1.0000 0.1111 3.0000 0.0014  1.0000 0.1041 3.0984 0.0010 
 A3 1.0000 0.1333 2.7386 0.0031  0.9167 0.1197 2.6493 0.0040 
 A4 0.9143 0.1238 2.5984 0.0047  0.9292 0.1045 2.8741 0.0020 
 Class A 0.9791 0.0302 5.6372 <0.0001  0.9630 0.0269 5.8685 <0.0001 
 B1 0.9500 0.0944 3.0913 0.0010  (No missing, same results as Available Data) 

 B2 1.0000 0.1354 2.7175 0.0033  0.9467 0.1008 2.9818 0.0014 
 B3 1.0000 0.1111 3.0000 0.0014  1.0000 0.0944 3.2540 0.0006 
 B4 0.6400 0.1067 1.9596 0.0250  0.6000 0.0944 1.9524 0.0254 
 B5 0.9333 0.0944 3.0370 0.0012  (No missing, same results as Available Data) 
 Class B 0.9018 0.0213 6.1788 <0.0001   0.8852 0.0191 6.4014 <0.0001 

           

SSR2-RC2 A1 0.9167 0.0833 3.1754 0.0007  (No missing, same results as Available Data) 
 A2 1.0000 0.0833 3.4641 0.0003  (No missing, same results as Available Data) 
 A3 0.8036 0.0952 2.6039 0.0046  0.8083 0.0845 2.7807 0.0027 

 A4 0.8571 0.1020 2.6833 0.0036  0.8417 0.0974 2.6973 0.0035 
 Class A 0.8993 0.0226 5.9866 <0.0001  0.9033 0.0256 5.6447 <0.0001 
 B1 0.9481 0.0823 3.3057 0.0005  (No missing, same results as Available Data) 

 B2 1.0000 0.0988 3.1820 0.0007  1.0000 0.0823 3.4868 0.0002 
 B3 0.9841 0.0899 3.2814 0.0005  1.0000 0.0823 3.4868 0.0002 
 B4 0.5536 0.0952 1.7938 0.0364  0.5974 0.0823 2.0830 0.0186 
 B5 0.5667 0.0945 1.8439 0.0326  0.6156 0.0837 2.1281 0.0167 
 Class B 0.8150 0.1355 6.0153 <0.0001   0.8329 0.0165 6.4816 <0.0001 

 

Note: All numbers are rounded off to four decimal places for comparison purposes; when combining the results 
for Class A and Class B, Tau-U is weighted by the inverse of the variance. The standard errors of Classes A 

and B are computed from ( ) 1 / 1 / Var 1+ 1 / Var 2 + 1 / Var 3 + 1 / Var 4A A A A  and 

( ) 1 / 1 / Var 1+ 1 / Var 2 + 1 / Var 3 + 1 / Var 4B B B B , respectively. This method to combine the results from 

multiple students is suggested by Parker and Vannest (2012) 
 a Variance of Tau-U is an inverse function of the total number of sessions or intervals in Class A 
(SSR1 = 8, RC1 = 6, SSR2 = 8, and RC2 = 9) or in Class B (SSR1 = 10, RC1 = 6, SSR2 = 7, and RC2 = 11) 
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All students demonstrated statistically significant improvement from SSR1 

phase to RC1 phase and from SSR2 phase to RC2 phase at p < 0.05, based on the 

two approaches. Variances of Tau-Us were expected to decrease from the Available 

Data condition to Multiple Imputation condition, indeed they decreased for all 

students in Table 8, because Tau-U’s variance is an inverse function of the data 

points; the more data points, the smaller the variance. 

Assessment of consistency of data in similar phases 

According to the WWC Handbook, 

 

Consistency of data in similar phases involves looking at data from all 

phases within the same condition… and examining the extent to which 

there is consistency in the data patterns from phases with the same 

conditions. The greater the consistency, the more likely the data 

represent a causal relation. (WWC, 2017, p. A-7) 

 

To determine the consistency of data, we employed the visual analysis of the data 

patterns between SSR1 and SSR2, and between RC1 and RC2 phases. Furthermore, 

four independent-samples t-tests were applied to similar phases (SSR1 vs. SSR2, 

and RC1 vs. RC2). According to Table 7, the t-test was not statistically significant 

for either the baseline (SSR1 vs. SSR2) or the intervention (RC1 vs. RC2) phases 

at p < 0.05 under the Available Data and Multiple Imputation conditions. These 

results suggested that the mean scores obtained from similar phases were not 

statistically different from each other. We concluded that there was insufficient 

evidence to imply inconsistency of data patterns within SSR or RC phases, 

regardless of how missing data were ignored by the Available Data approach, or 

treated by Multiple Imputation. 

Summary Based on Six Assessments 

The analyses summarized in Tables 2-8 and interpreted above examined all data 

features recommended by the WWC Handbook (WWC, 2017) for determining an 

intervention effect. These assessments showed that the intervention worked 

between each SSR phase and its adjacent RC phase for Class A and Class B as 

groups. At the student level, Student B1 was the only student with complete data, 

whose disruptive behaviors decreased significantly from baseline to intervention 

phases. The disruptive behavior for Students A1, A2, A3, and A4 decreased 
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significantly during SSR1-RC1 and SSR2-RC2. Students B2’s and B4’s disruptive 

behaviors did not decrease significantly at p < 0.05 during the SSR1-RC1 phases, 

but did so during the SSR2-RC2 phases. Student B5’s disruptive behaviors 

decreased significantly at p < 0.05 during the SSR1-RC1 phases, but not during 

SSR2-RC2 phases. In terms of Tau-U as a nonoverlap index, all students exhibited 

significant nonoverlap between SSR-RC phases based on available data or imputed 

data. The detailed analyses of individual’s trends (Tables 5 and 6) and nonoverlap 

(Table 8) complemented results reported in Lambert et al. (2006). According to 

Lambert et al. (p. 93), two students (A2 and B2) showed no overlapping data and 

three students (A1, B1, and B3) showed only one overlapping data point between 

the SSR and RC phases. No other data features were analyzed for individual 

students by Lambert et al. This assessment enriched the analysis of information 

collected from the nine students and provided evidence that the linear interpolation 

approach for handling missing data, such as the missing score for Student A3 during 

the RC1 phase, did not agree with imputed scores, ranging from 5 to 9, according 

to multiple imputation. 

Conclusion 

Missing data occur in various patterns and to varying degrees (Cohen & Cohen, 

1983, pp. 275-299). About 24% of SCED studies published in the five journals 

from 2015 to summer of 2016 clearly had missing data. Because serious 

consequences (e.g., threat to internal validity and statistical conclusion validity, 

limited generalizability, loss of information, bias) can result from improper 

treatment of missing data in visual analysis as well as in statistical inferences, this 

paper aims to propose and illustrate multiple imputation as a principled method for 

dealing with missing data in SCED studies. Multiple imputation was applied to the 

Lambert data set (Lambert et al., 2006) in three steps: imputation, analysis, and 

pooling. Five imputed data sets were analyzed separately, then pooled according to 

the rules of Robin (1987) for each assessment. Results derived from multiple 

imputation suggested that the RC intervention worked effectively for both classes. 

However, individual students did not uniformly benefit from this intervention, as 

previously noted in the section of Summary Based on Six Assessments. The 

analyses of individual data enrich and complement the findings reported in Lambert 

et al. (2006). 

The missing data phenomenon shown in Students A1-A4, and B2-B5 of the 

Lambert data set is referred to as item-level missing (Dong & Peng, 2013). The 

impact of item-level missing on the validity of research findings depends on the 
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mechanisms that led to missing data, the pattern of missing data, and the proportion 

of data missing (Dong & Peng, 2013; Tabachnick & Fidell, 2001, p. 58). All are 

relevant concepts to the understanding of multiple imputation and its 

implementation. Multiple imputation assumes that missing data mechanism is 

MAR (or missing at random). Given only the observed data, it is impossible to test 

whether the MAR condition holds (Carpenter & Goldstein 2004; Horton & 

Kleinman, 2007; White, Royston, & Wood, 2011). The plausibility of MAR can be 

examined by a simple t-test of mean differences between the group with complete 

data and that with missing data (Diggle, Heagerty, Liang, & Zeger, 1995; 

International Business Machines Corporation, 2011; Tabachnick & Fidell, 2013). 

Variables may be included in the statistical inferential process that could explain 

missingness to make the MAR condition more plausible. 

Multiple imputation is applicable to any pattern of missing data, whether it is 

univariate, monotone, or arbitrary (Little & Rubin, 1987; Rubin, 1987). Regarding 

an acceptable proportion of missing data for valid statistical inferences, there is no 

established cutoff in the literature, even though such a proportion directly impacts 

the quality of statistical inferences. Schafer (1999) asserted that a missing rate of 

5% or less is inconsequential. Bennett (2001) maintained that statistical analysis is 

likely to be biased when more than 10% of data are missing. Dong and Peng (2013) 

investigated the performance of multiple imputation, against the complete data 

approach, under 20%, 40%, and 60% of missing data conditions in a between-

subject data set. In terms of bias and standard errors of parameter estimates, the 

20% missing rate yielded results similar to those based on the complete data. The 

60% missing rate resulted in large bias and overestimated standard errors. The 40% 

missing rate yielded results understandably between 20% and 60%. The 

performance of multiple imputation under different missing rates in SCED data 

needs to be further researched. Practical issues relate to implementing multiple 

imputation are presented in Appendix B. 

Multiple imputation has several advantages over ad hoc methods (such as 

mean substitution, listwise deletion) because it (a) retains data already collected, 

(b) maintains the design structure of a SCED study, (c) avoids potential bias that 

can result from deleting a participant or a session/interval due to missing data, and 

(d) captures uncertainty surrounding imputed scores. With the advent of high-speed 

computers and algorithms, multiple imputation has been increasingly applied by 

social scientists as a missing data method. It is a statistically proper approach that 

yields efficient and unbiased estimates for parameters and SE under the MAR 

mechanism (Little & Rubin, 2002). It is applicable for any pattern of missing data 

and a moderate amount of missing data (e.g., Dong & Peng, 2013). Even though a 
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number of issues surrounding multiple imputation require additional research, we 

demonstrated the feasibility of applying multiple imputation to treat missing data 

in a SCED context. Multiple imputation is not making up data. Schafer (1999) 

illustrated the theoretical framework of multiple imputation, which we highly 

recommend. For advanced readings, consider Little and Rubin (2002), Rubin 

(1987), Schafer (1997), SAS Institute Inc. (2015), and Mächler (2015). The latest 

versions of major statistical software (SAS, SPSS, Stata) and R packages offer 

multiple imputation capability that makes this missing data method accessible and 

user-friendly. 

The authors of the WWC Handbook did not recognize or recommend any 

proper missing data method for SCED studies. They preferred analyses be 

conducted on actual, observed data (WWC, 2017). They encouraged reporting the 

statistical package that treats missing data, or to adjust p-values and standard errors, 

if necessary, in the presence of missing data. Thus, there is a void in the WWC 

Handbook on how missing data can be treated properly in order to support the 

claims made about an intervention effect. According to a recent published checklist 

on Single-Case Reporting guideline in BEhavioral Interventions, abbreviated as 

SCRIBE 2016 (Tate et al., 2017), there is a requirement to document sequences 

completed, as well as the number of trials from each session for each participant, 

although, the SCRIBE 2016 checklist does not require an explanation of strategies 

for handing missing data. Because the importance of SCED research in establishing 

and confirming evidence-based practices has been increasingly affirmed (Horner et 

al., 2005; Shadish & Sullivan, 2011; Smith, 2012), it is imperative that SCED 

research be conducted at the highest level of rigor to yield credible and 

generalizable results. Missing SCED data should not be ignored in visual analysis 

or in statistical inferences; they should be properly handled. Multiple imputation 

can significantly improve the inferential validity of single-case studies in applied 

behavior analyses. 
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Appendix A: SAS Codes for Performing Multiple Imputation 
on the Lambert Data 

Part A 

*Impute missing meanssr1 + complete ar_ssr1 from DATA=AB_miss  ---------

------------------------; 

 

PROC MI DATA=AB_miss seed=13951639 out=outAB_MI_meanssr1_ar_ssr1; 

     EM MAXITER=400;               /* set max. iterations of EM 

algorithm to 400     */ 

     MCMC PRIORS=JEFFREYS;         /* set MCMC’s prior to noninformative 

or Jeffreys */ 

     VAR meanssr1 ar_ssr1;  

TITLE 'MI for meanssr1+ar_ssr1'; RUN; 

 

*Impute missing meanrc1 and complete accuracy_rc1 from DATA=AB_miss  ---

------------------------; 

 

PROC MI DATA=AB_miss seed=13951639 out=outAB_MI_meanrc1_accuracy_rc1; 

     EM MAXITER=400; 

     MCMC PRIORS=JEFFREYS; 

     VAR meanrc1 accuracy_rc1;  

TITLE 'MI for meanrc1+accuracy_rc1'; RUN; 

 

*Impute missing meanssr2 and complete ar_ssr2 from DATA=AB_miss  -------

------------------------; 

 

PROC MI DATA=AB_miss seed=13951639 out=outAB_MI_meanssr2_ar_ssr2; 

     EM MAXITER=400; 

     MCMC PRIORS=JEFFREYS; 

     VAR meanssr2 ar_ssr2;  

TITLE 'MI for meanssr2+ar_ssr2'; RUN; 

 

*Impute missing meanrc2 and complete accuracy_rc2 from DATA=AB_miss  ---

------------------------; 
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PROC MI DATA=AB_miss seed=13951639 out=outAB_MI_meanrc2_accuracy_rc2; 

     EM MAXITER=400; 

     MCMC PRIORS=JEFFREYS; 

     VAR meanrc2 accuracy_rc2;  

TITLE 'MI for meanrc2+accuracy_rc2'; RUN; 

Part B 

* Performing paired t-test for adjacent SSR and RC mean differences-----

------------------------; 

 

PROC TTEST DATA=MI_4means_diff;  

VAR diffssr1rc1_mi diffssr2rc2_mi;  

BY _imputation_; RUN;  

TITLE 'Paired t-test based on MI between one SSR phase and one RC 

phase';  

RUN; 

Part C 

*Performing descriptive analyses of means and SDs of five imputed data 

sets---------------------; 

 

PROC MEANS DATA=MI_4means;  

VAR meanssr1 meanrc1 meanssr2 meanrc2 varssr1 varrc1 varssr2 varrc2;  

BY _imputation_; RUN; 

TITLE 'Means and SDs of five imputed data sets';  

RUN;
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Appendix B 

When implementing multiple imputation, other practical issues, such as, the 

selection of auxiliary variables, the specification of an imputation model, the 

number of imputations, the multivariate normality assumption and rounding 

imputed values for categorical variables must be considered. 

The Selection of Auxiliary Variables 

According to Collins, Schafer, and Kam (2001), auxiliary variables are (a) variables 

that are associated with the missing mechanism, MAR for multiple imputation, and 

(b) variables that are correlated with the variables with missing data. They are 

included in an imputation model in order to help generate imputed scores for 

missing data. For the Lambert data set, we selected four auxiliary variables, one for 

each imputation model, based on their strong correlation with the missing scores, 

preferably at least 0.4 in absolute values (Enders, 2010), completeness (van Buuren, 

Boshuizen, & Knook, 1999), and variability (Enders, 2010; van Buuren et al., 1999). 

If missing data are to be expected in a SCED study, it is desirable to collect 

information about potential auxiliary variables such as, age (a demographic 

variable), classroom (a setting variable), or date or session number (a time-related 

variable). An auxiliary variable can be continuous, categorical/nominal, or 

ordinate-level variables (Collins et al., 2001). Even when a participant misses a 

session, the information about his/her auxiliary variable can still be available or 

collected. The inclusion of auxiliary variable(s) is beneficial to the success of 

multiple imputation, especially when the imputation model is simple like the four 

models specified for Lambert data. 

The Specification of an Imputation Model 

Multiple imputation requires two models: the imputation model used in Step 1 and 

the analysis model used in Step 2. Theoretically, multiple imputation assumes that 

the two models are the same. In practice, they can be different (Schafer, 1997). An 

appropriate imputation model is the key to the effectiveness of multiple imputation; 

it should have the following two properties. First, an imputation model should 

include useful variables. Schafer (1997) and van Buuren et al. (1999) recommended 

three kinds of variables to be included in an imputation model: (1) variables that 

are of theoretical interest, and auxiliary variables, namely, (2) variables that are 

associated with the missing mechanism, or (3) variables that are correlated with the 
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variables with missing data. The first kind of variables is necessary, because 

omitting them will diminish the relationship between these variables and other 

variables in the imputation model. The second kind of variables makes the MAR 

assumption more plausible, because they account for the missing mechanism. The 

third kind of variables helps to estimate missing values more precisely. Thus, each 

kind of variables has a unique contribution to the multiple imputation process. 

However, including too many variables in an imputation model may inflate the 

variance of estimates, or lead to non-convergence. Thus, researchers should 

carefully select variables to be included into an imputation model. 

An imputation model should be general enough to capture the assumed 

structure of the data. If an imputation model is more restrictive, namely, making 

additional restrictions, than an analysis model, one of two consequences may follow. 

One consequence is that the results are valid but the conclusions may be 

conservative (i.e., failing to reject the false null hypothesis), if the additional 

restrictions are true (Schafer, 1999). The second consequence is that the results are 

invalid because one or more of the restrictions is false (Schafer, 1999). For example, 

a restriction may restrict the relationship between a variable and other variables in 

the imputation model to be merely pairwise. Consequently, any interaction effect 

will be biased toward zero. To handle interactions properly in multiple imputation, 

Enders (2010) suggested that the imputation model include the product of the two 

variables if both are continuous. For categorical variables, Enders suggested 

performing multiple imputation separately for each subgroup defined by the 

combination of the levels of the categorical variables. 

For the Lambert data set, we constructed a simple imputation model that 

consisted of one auxiliary variable with complete data and one variable with 

missing data to ensure the convergence of the MCMC method. Because the baseline 

phase and the intervention phase had different numbers of sessions in Classes A 

and B, we decided to impute the missing mean of each phase, instead of missing 

session scores. Constructing a simple imputation model based on a phase mean may 

prove to be a necessary strategy in most SCED studies due to its characteristically 

small n and differing number of sessions per phase. 

The Number of Imputations 

The number of imputations necessary in multiple imputation is a function of the 

rate of missing information in a data set. A data set with a large amount of missing 

information requires more imputations. Rubin (1987) provided a formula to 

compute the relative efficiency (RE) of imputing m times, instead of an infinite 
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number of times. However, methodologists have not agreed on the optimal number 

of imputations. Schafer and Olsen (1998) suggested that “in many applications, just 

3-5 imputations are sufficient to obtain excellent results” (p. 548). Schafer and 

Graham (2002) were more conservative in asserting that 20 imputations were 

enough in many practical applications to remove noises from estimations. Graham, 

Olchowski, and Gilreath (2007) commented that RE should not be an important 

criterion when specifying m, because RE has little practical meaning. Other factors, 

such as, the SE, p-value, and statistical power, are more related to empirical 

research and should also be considered, in addition to RE. Graham et al. reported 

that statistical power decreased much faster than RE, as the rate of missing 

information increases and/or m decreases. White et al. (2011) suggested that the 

number of imputations should be greater than or equal to the percentage of missing 

observations in order to ensure an adequate level of reproducibility. 

Because SCED data sets usually do not contain a large number of participants, 

phases, or sessions, nor will a complex or large imputation model be applied, we 

recommend that researchers and analysts start with m = 5 imputations to ensure that 

the imputation process converges and stabilizes. PROC MI defaults m to 5. In 

general, it is a good practice to specify a sufficient m to ensure the convergence of 

multiple imputation within a reasonable computation time (Dong & Peng, 2013). 

The Multivariate Normality Assumption 

The MCMC method implemented in SAS, R, and other statistical packages (e.g., 

Stata) assume multivariate normality for variables included in the imputation model. 

It has been shown that multiple imputation based on the multivariate normal 

assumption can provide valid estimates even when this assumption is violated 

(Demirtas, Freels, & Yucel, 2008; Schafer, 1997, 1999). Furthermore, this 

assumption is robust when the sample size is large and when the missing rate is low, 

although the definition for a large sample size or for a low rate of missing is not 

specified in the literature for between- or within-subject designs (Schafer, 1997). 

When an imputation model contains categorical variables, one cannot use the 

MCMC or regression method directly. If the missing data pattern is arbitrary, 

MCMC based on other probability models (such as the joint distribution of normal 

and binary) can be used for imputation. If the missing data pattern is monotonic or 

univariate, logistic regression and discriminant function analysis can substitute for 

the regression method. SAS, R, Stata, or SPSS provide a wide range of options for 

implementing multiple imputation. Interested readers are referred to volume 45 of 
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the Journal of Statistical Software (http://www.jstatsoft.org/issue/view/v045) for 

software developments on multiple imputation up to 2011. 

Rounding Imputed Values for Categorical Variables 

A common practice is to round the imputed value to the nearest integer, or to the 

nearest plausible value. However, this intuitive strategy could not provide desirable 

results for binary missing values (Ake, 2005; Allison, 2005; Bernaards, Belin, & 

Schafer, 2007; Enders, 2010). Horton, Lipsitz, and Parzen (2003) showed 

analytically that rounding the imputed values of a binary variable led to biased 

estimates, whereas imputed values without rounding led to unbiased results. 

Unfortunately, even less is known about the effect of rounding on imputed values 

of ordinal variables with three or more levels. It is possible that as the level of the 

categorical variable increases, the effect of rounding decreases. Several factors 

influence the performance of a rounding strategy, such as, the missing mechanism, 

the size of the model, distributions of the categorical variables. These factors are 

not within a researcher’s control. Additional research is needed to explore and 

identify viable strategies for dealing with the rounding issue for categorical 

variables during multiple imputation for missing SCED data. 

http://www.jstatsoft.org/issue/view/v045
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