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ABSTRACT

In this dissertation, we investigate the real-time flocking control of Multi-Agent

Systems (MAS) in presence of system uncertainties and dynamic environment. To

handle the impacts from system uncertainties and dynamic environment, a novel

reinforcement learning technique, which is appropriate for real-time implementa-

tion, has been integrated with multi-agent flocking control in this dissertation. The

Brain Emotional Learning Based Intelligent Controller (BELBIC) is a biologically-

inspired reinforcement learning based controller relying on a computational model

of emotional learning in mammalian limbic system. The learning capabilities,

multi-objective properties, and low computational complexity of BELBIC make

it a very promising learning technique for implementation in real-time applica-

tions. Firstly, a novel brain emotional learning based flocking control structure is

proposed. Then, the real-time update laws are developed to tune the emotional

signals based on the real-time operation data. It is important to note that this

data-driven reinforcement learning approach relaxes the requirement for system

dynamics and effectively handle the uncertain impacts of environment. Using the

tuned emotional signals, the optimal flocking control can be obtained. The Lya-

punov analysis has been used to prove the convergence of the proposed design.

The effectiveness of the proposed design is also demonstrated through numerical

and experimental results based on the coordination of multiple Unmanned Air-

craft Systems (UAS) platforms.
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Chapter 1

Introduction

During the past decade, diverse research communities have developed several ad-

vanced control strategies for coordination of Multi-Agent Systems (MAS), see for

example [1, 3–14] and the references therein. In most of these MAS control meth-

ods, flocking problem have been formulated and investigated thoroughly. Flocking

is the collective motion of a large number of self-propelled entities exhibited by

many living beings such as birds, fish, bacteria, and insects [15]. Flocking is also

considered as an emergent behavior, which is caused by a number of simple rules

followed by each agent, and that does not require any central coordination.

The seminal work in [7] introduced three basic rules for simulating the flock-

ing behavior, specifically, separation, alignment, and cohesion. In recent years, there

has been a surge of interest among researchers to improve the flocking behavior

of MAS. One can mention, for example, adaptive flocking control approaches for

dealing with varying and noisy environments [16], [17], robust flocking controllers

to handle model uncertainty [18, 19], and flocking control methods with the capa-

bility of disturbance handling [20].
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Several critical aspects should be considered in the real-time implementation

of control strategies on mobile robotic platforms [21–26], for example, model un-

certainty, disturbances, energy expenses and actuator saturation. Diverse research

efforts have been proposed aiming at addressing the issues arising from these prac-

tical and harsh conditions. Considering model uncertainty and disturbances, dis-

tributed tracking and estimation of MAS with uncertain dynamics has been pre-

sented in [27]. In [28], the problem of robust consensus tracking for MAS with dis-

turbances and unmodeled dynamics has been studied. In addition, neural adap-

tive flocking of MAS has been addressed in [29–31]. More recently, authors in [32]

investigated the application of Q-learning in leader-follower based flocking with

small fixed-wing UAVs.

Also, to tackle the energy expenses and actuator saturation related problems,

the authors in [33] presented a decentralized approach to perform formation ma-

neuvers by groups of mobile robots taking into account the actuator saturation.

Closely related, a flocking control with constraints is proposed in [34]. Swarm ag-

gregation of MAS with actuator saturation has been addressed in [35,36]. Further-

more, a leader-following tracking problem for MAS with a varying-velocity leader

and input saturation was investigated in [37]. In [38], the authors introduced a

decentralized connectivity maintenance strategy for mobile networks with con-

strained inputs. Recently, an energy function-based approach for estimating the

required control force for network connectivity preservation and collision avoid-

ance was presented in [39].

In general, flocking strategies available in the literature are addressing, among

others i.e., (i) the optimization of the MAS flocking control, (ii) the robustness for

dealing with the dynamic environment, and (iii) the capability of dealing with
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MAS uncertainty. However, most of these recent approaches are not designed

for having multi-objective properties i.e., they only considered solving one of the

aforementioned problems. Indeed, when multiple goals are targeted in parallel to

the flocking problem, the computational complexity of the overall problem is not

suitable for real-time implementation. Additionally, most of the existing works

need the knowledge of system dynamics and not applicable in presence of dy-

namic environment.

Therefore, to overcome this deficiency, biologically-inspired methods have been

increasingly employed to solve complex computational problems. Brain Emo-

tional Learning Based Intelligent Controller (BELBIC) is one of the most promising

approaches that adopts the learning model developed in [40] in order to mimic the

functionalities of the brain that are known to produce emotion, i.e., the amygdala,

orbitofrontal cortex, thalamus, and sensory input cortex. Strategies based on BELBIC

have shown to be a very promising solution in terms of robustness and uncertainty

handling [41–43] due to the flexibility of its architecture. BELBIC has two main in-

puts: Sensory Inputs (SI) and Emotional Signal (ES). Properly adjusting both SI and

ES, makes this controller an appealing strategy for addressing real-time applica-

tions [41]. Furthermore, BELBIC architecture has the computational complexity on

the order ofO (n) [44] that is much smaller and better for real-time implementation

compared with other existing learning-based intelligent control methods.

1.1 Contributions

This work contributes to the research of multi-agent systems by developing intel-

ligent cooperative control in a distributed fashion to realize coordinated motion
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control. This dissertation is presented in five papers, and their contributions is

provided below. The common theme in the five papers is the Brain Emotional

Learning (BEL) model.

1.1.1 A Neurobiologically-inspired Intelligent Trajectory Track-

ing Control for Unmanned Aircraft Systems with Uncertain

System Dynamics and Disturbance

The main contribution of this paper consists on advancing the state of the art of the

UAS intelligent control strategies which are capable of handling the system uncer-

tainties and disturbances, and also are appropriate for real-time implementation

due to its low computational complexity. In order to accomplish this goal, we take

advantage of the computational model of emotional learning encountered in the

mammalian limbic system, i.e., BELBIC [43, 45–50].

1.1.2 A Biologically-Inspired Reinforcement Learning based In-

telligent Distributed Flocking Control for Multi-Agent Sys-

tems in Presence of Uncertain System and Dynamic Envi-

ronment

The main contribution of this paper is to utilize the computational model of emo-

tional learning in the mammalian limbic system, i.e., BELBIC, for developing and

experimental validation of a novel intelligent flocking control method for practical
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MAS in presence of uncertainty system dynamics and dynamic environment [51–

55].

1.1.3 A Biologically-Inspired Distributed Fault Tolerant Flocking

Control for Multi-Agent System in Presence of Uncertain

Dynamics and Unknown Disturbance

The main contribution of this paper is to develop Resilient BELBIC (R-BELBIC)

as an intelligent distributed resilient controller for flocking of MAS in presence of

system uncertainties and unknown disturbances. In order to guarantee resilience,

we employed the computational model of emotional learning in the mammalian

limbic system, i.e., BELBIC with context [56, 57].

1.1.4 A Game Theoretic Based Biologically-Inspired Distributed

Intelligent Flocking Control for Multi-UAV Systems with

Network Imperfections

The main contribution of this paper is to develop a model-free distributed intel-

ligent control methodology to overcome the challenges including the unknown

disturbances and uncertainties from environment and system in networked multi-

UAV systems. To this end, we propose a game theoretic based biologically-inspired

distributed intelligent controller, which takes advantage of the game theory and

the computational model of emotional learning in the mammalian limbic system [58–
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60].

1.1.5 Brain Emotional Learning-Based Path Planning and Intel-

ligent Control Co-Design for Unmanned Aerial Vehicle in

Presence of System Uncertainties and Dynamic Environment

The contribution of this paper has three main components, specifically (i) a path

planning and control co-design, (ii) a learning based approach that can effectively

handle the uncertainties from unstable UAV system and complex environment,

and (iii) a low computational learning technique that can be implemented in real-

time. To this end, we utilize the computational model of emotional learning in

mammal’s brain, i.e., BEL, for developing a novel path planning and intelligent

control co-design for practical real-time implementation in UAVs in the presence

of system uncertainties and dynamic environments [61].
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Chapter 2

A Neurobiologically-inspired

Intelligent Trajectory Tracking

Control for Unmanned Aircraft

Systems with Uncertain System

Dynamics and Disturbance

In this paper, a novel neurobiologically inspired intelligent tracking controller is

developed and implemented for Unmanned Aircraft Systems (UAS) in presence of

uncertain system dynamics and disturbance. The methodology adopted, known

as Brain Emotional Learning Based Intelligent Controller (BELBIC), is based on a

novel computational model of emotional learning in mammals’ brain limbic sys-
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tem. Compared with conventional model-based control methods, BELBIC is more

suitable for practical UAS since it can maintain the real-time UAS performance

without known system dynamic and disturbance. Furthermore, the learning ca-

pability and low computational complexity of BELBIC make it very promising for

implementation in complex real-time applications. Moreover, we proved that our

proposed methodology guarantees the convergence. To evaluate the practical per-

formance of proposed design, BELBIC has been implemented into a benchmark

UAS. Numerical and experimental results demonstrated the applicability and sat-

isfactory performance of the proposed BELBIC-inspired design.

2.1 Introduction

Due to recent advances in technology and the formalization of clearer regulations,

Unmanned Aircraft systems (UAS) are being proposed for safely executing differ-

ent kind of applications considered to be too risky for humans [11]. One of the

most versatile UAS platforms is the quad rotorcraft, a vehicle with Vertical Takeoff

and Landing (VTOL) and hovering capabilities [62]. Due to their popularity, UAS

attracted enormous interests from diverse research communities [17, 63–65]. For

example, the authors in [66] proposed an adaptive fuzzy controller for stabilizing

a quad rotorcraft during flight. In addition, adaptive neural control with extreme

learning machine has been proposed in [67]. Closely related, in [68] an adaptive

sliding mode control approach has been utilized for controlling the flight of UAS.

A reinforcement learning method has been employed by authors in [69] towards

the same goal. The authors in [70] proposed a nonlinear robust output feedback

tracking control for stabilizing a UAS by using a quaternion representation. Most

recently, a robust attitude control approach for controlling a miniature quad rotor-
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craft has been proposed by the authors in [71]. Authors in [72] employed a linear

dual disturbance observer based control strategy to improve the trajectory tracking

precision for an indoor quadrotor. Furthermore, an L1 adaptive fault tolerant con-

troller is developed for the trajectory tracking of a quad rotorcraft in [73]. Despite

the effectiveness shown by these previous methodologies, most of these works re-

quire detailed information concerning the system, i.e., the UAS dynamics, in order

to be successfully implemented.

It is well known that, if the model of the system to be controlled is complex and

unknown, or even if some aspects of the model are uncertain, the development

of an appropriate control strategy becomes a very challenging task. Furthermore,

when dealing with real-time systems, in addition to model uncertainties diverse

issues such as environmental disturbances might arise. For this reason, the devel-

opment of control strategies with less dependency on the full knowledge of the

system dynamics is critical for successfully accomplishing the robot’s mission.

Related Work

In recent years, biologically-inspired approaches have been extensively utilized

as a promising solution for computationally complex problems. One of such ap-

proaches, which is based on a computational model that mimics those parts of the

brain which are known to produce emotion, was introduced in [40]. The method-

ology, known as Brain Emotional Learning Based Intelligent Controller (BELBIC),

imitates the emotional parts of the mammalian brain, i.e., the amygdala, orbitofrontal

cortex, thalamus, and sensory input cortex. From a control systems point of view, the

main interest in implementing emotional learning is due to the fact that, this kind
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of methodology is effective when the model dynamics (equations of the system)

are fully or partially unknown.

In [41], authors have demonstrated that BELBIC is a model-free controller which

has shown promising performance when dealing with noise and system uncer-

tainty. BELBIC has two main inputs: Sensory Inputs (SI) and Emotional Signal

(ES), and the flexibility in defining both SI and ES to solve multi-objective prob-

lems [42,46,74,75] makes this controller a practical tool for implementation in real-

time applications. Therefore, BELBIC could be effective for controlling a system

even when the only available information for the designer are the states of system

and the controller performance feedback that is available in the form of a win or

lose signal [76]. Furthermore, BELBIC has a single layered architecture, and there-

fore, its computational complexity is on the order ofO (n) that is much smaller and

better for real-time implementation compared with other existing learning-based

intelligent control.

Main Contributions

The main contribution of this paper consists on advancing the state of the art of

the UAS intelligent control strategies which are capable of handling the system

uncertainties and disturbances, and also are appropriate for real-time implemen-

tation due to its low computational complexity. In order to accomplish this goal,

we take advantage of the computational model of emotional learning encountered

in the mammalian limbic system, i.e., BELBIC. Our recent works in [43] introduced

the theoretical framework for attitude control of a quad rotorcraft using BELBIC.

These results are improved and extended in this paper, by considering the problem
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of stabilizing the full 6 degrees of freedom (DoF) of the UAS and also intelligent

tracking control of UAS, when subjected to unknown dynamics and impacts from

harsh environment, e.g., disturbances. The learning capability and low computa-

tional complexity of the proposed approach enabled its real-time implementation

that has been validated in a UAS platform. The design and experimental valida-

tion presented in this paper are an original work, which have demonstrated very

promising results. Ultimately, we proved that our proposed methodology guaran-

tees the convergence.

The rest of the paper is organized as follows. Section 2.2 presents the problem

formulation, as well as basic information concerning the quad rotorcraft model-

ing, and preliminaries about BELBIC. Our main contribution is introduced in Sec-

tion 2.3, which consists of a real-time quad rotorcraft control application based on

BELBIC. Sections 2.4 and 2.5 present numerical simulation results and experimen-

tal results, respectively. The conclusion of the paper and future directions of our

work are provided in Section 2.6.

2.2 Problem Formulation and Preliminaries

Consider the problem of stabilizing the six DoF of a UAS, while at the same time

performing a trajectory tracking control during a real-time autonomous flight.

Consider also that the dynamics of the UAS are uncertain and not fully available,

and that the platform is evolving in an uncertain environment experiencing exter-

nal disturbances. The main objective of this research consists of the design and

real-time implementation of an intelligent control strategy, which is effective for

stabilizing the UAS during autonomous flights, even under the challenging cir-
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cumstances previously described.

The solution proposed in this paper corresponds to a BELBIC-inspired intelli-

gent control design, which provides the following benefits:

• a model-free controller where the knowledge of system dynamics is not re-

quired.

• uncertainty handling and noise/disturbance rejection are achievable.

• a low computational algorithm that is appropriate for real-time implementa-

tion.

The details concerning the proposed methodology are explained in the follow-

ing subsections.

2.2.1 Representation of the UAS dynamics

For analytically validating the proposed controller, the dynamics of the UAS are

described with respect to a hybrid system of coordinates, which we will call the

H-frame [77]. This system is composed of a set of nonlinear equations expressed

with respect to (w.r.t.) an inertial frame (I-frame), and a set of angular equations

expressed w.r.t. a body fixed frame (B-frame), see Figure 2.1. This new reference

is adopted because its easy to express the UAS dynamics in combination with the

control, in particular for the vertical position, in the inertial frame. Then, the UAS
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Figure 2.1: System Coordinates.

equations expressed in the H-frame are described as follows [77]:

Ẍ = (sinψ sinφ+ cosψ sin θ cosφ)U1

m

Ÿ = (− cosψ sinφ+ sinψ sin θ cosφ)U1

m

Z̈ = −g + (cos θ cosφ)U1

m

ṗ = IY Y −IZZ
IXX

qr − JTP
IXX

qΩ + U2

IXX

q̇ = IZZ−IXX
IY Y

pr − JTP
IY Y

pΩ + U3

IY Y

ṙ = IXX−IY Y
IZZ

pq + U4

IZZ

(2.1)
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where θ, φ, and ψ are Pitch, Roll, and Yaw angles, respectively, U1 is the collective

throttle, and U2, U3, and U4 are the Roll, Pitch, and Yaw moments. IXX , IY Y , and

IZZ are the body moment of inertia around the X , Y , and Z axis, respectively. g

is the acceleration due to gravity, m is the UAS mass, and JTP is the total rota-

tional moment of inertia around the propeller axis. The relationship between the

propellers’ speed and the moments are defined by

U1 = bq(Ω
2
1 + Ω2

2 + Ω2
3 + Ω2

4) (2.2)

U2 = bql(−Ω2
2 −Ω2

3 + Ω2
1 + Ω2

4) (2.3)

U3 = bql(−Ω2
1 −Ω2

2 + Ω2
3 + Ω2

4) (2.4)

U4 = dq(−Ω2
1 + Ω2

2 −Ω2
3 + Ω2

4) (2.5)

Ω = −Ω1 + Ω2 −Ω3 + Ω4 (2.6)

where Ω1, Ω2, Ω3, and Ω4 are front-left, front-right, rear-right, and rear-left pro-

peller speeds, respectively. Also, bq is a thrust factor specific for the quad rotorcraft

platforms, dq is drag factor of the quad rotorcraft and l is the distance between the

center of the quad rotorcraft and the center of the propeller. The nonlinearities of

the quad rotorcraft motors, which is basically the relationship between the motors’

voltage and the propellers’ speed is described as follows

JTP Ω̇ = −KEKM

R
ηN2Ω− dqΩ2 +

KM

R
ηNν

(2.7)

where KE and KM are the electric and mechanic motor constants, respectively, R

is the motor resistance, and ν is the motor voltage. The term N , which represents

a gearbox reduction ratio, and η, which is the conversion efficiency of the gearbox,

may or may not be included, according to the UAS platform adopted for the real-

time experiments.
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2.2.2 Brain Emotional Learning-Based Intelligent Controller

Figure 2.2: Computational model of emotional learning.

BELBIC is a neurobiologically-motivated methodology, based on the computa-

tional model proposed in [78], which describes the emotional learning observed

in the mammalian limbic system. The model, which is graphically shown in Fig-

ure 2.2, has two main parts: Amygdala, which is responsible for immediate learn-

ing, and Orbitofrontal Cortex, responsible for inhibition of any inappropriate learn-

ing happening in the Amygdala.

There are two main inputs to the BELBIC model: Sensory Inputs (SI) and Emo-

tional Signal (ES). The model output equation (MO) can be described as

MO =
∑
i

Ai −
∑
i

OCi (2.8)
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which consists of the difference between Amygdala outputs (Ai) and Orbitofrontal

Cortex outputs (OCi). In this equation, i is the number of sensory inputs.

Amygdala and Orbitofrontal Cortex outputs are calculated by the summation

of all their corresponding nodes. Specifically, the output of each node is defined as

Ai = ViSIi (2.9)

OCi = WiSIi (2.10)

where Wi and Vi are the weights of the Orbitofrontal Cortex and Amygdala, re-

spectively, and SIi is the ith sensory input. The following equations are utilized for

updating Vi and Wi, respectively

∆Vi = KvSIi max

(
0, ES −

∑
i

Ai

)
(2.11)

∆Wi = KwSIi (MO − ES) (2.12)

here, Kv and Kw are the learning rates.

Another input considered in the model corresponds to the maximum of all SI .

This signal (i.e., Ath), which directly comes from the Thalamus to the Amygdala, is

described as

Ath = Vth max (SIi) (2.13)

Here Vth is the weight and the update law is similar to (2.11).

Different approaches have been adopted for tuning the BELBIC parameters.

For example, the authors in [79] implemented a particle swarm optimization-based

approach. In [80] a Lyapunov-based tuning algorithm was adopted. The authors
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in [81] proposed a fuzzy tuning of BELBIC parameters, and successfully utilized

this method for controlling a robotic arm. Additionally, the authors in [47] adopted

the clonal selection algorithm for obtaining BELBIC parameters, and applied it to

the control of a single-link flexible joint manipulator. Trial and error tuning has

also shown to be appropriate, since [43], [41], and [76] relied on this method. In

this paper, a heuristic approach is adopted for defining the appropriate BELBIC

parameters that can significantly reduce the computational complexity.

2.2.3 Control Objectives

Based on the quad rotorcraft model introduced in Subsection 2.2.1, and by employ-

ing the BELBIC methodology introduced in Subsection 2.2.2, the objective of this

research is to design a set of control signals {U1,U2,U3,U4} for the quad rotorcraft

UAS, in such a way that the system is stabilized during flight in all six DoF, even

when the system dynamics are uncertain or unknown, and even in the presence of

environmental noise/disturbances. Furthermore, the proposed controller should

be practically feasible, i.e., should be capable of handling model uncertainty, en-

vironmental noises/disturbances and also low computational complexity which

makes it appropriate for being implemented in the real-time stabilization of an

experimental platform, in our case, the BEBOP Drone from Parrot.
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2.3 BELBIC-based Intelligent Control for UAS

2.3.1 System Design

Generally, there are two approaches, so called direct and indirect, for utilizing the

cognitive and/or intelligent control. The intelligent and/or cognitive model is uti-

lized as a controller block in the direct methodology, while the intelligent and/or

cognitive model is employed for obtaining the controller’s parameters in indirect

methodology. Here, in our work, we adopted the first method i.e., direct, where

a neurobiologically-inspired intelligent methodology based on the computational

model of emotional learning in the mammalian brain is used as the controller

block.

Sensory Input (SI) Function

Emotional Signal (ES) Generator

System 
Output

-+
PlantBELBIC

System 
Input

Objectives

Figure 2.3: BELBIC in the control loop.

Since this research emphasizes the real-time implementation requirement, BEL-

BIC emerges as a natural solution, since its implementation can be accomplished

without increasing the complexity of the overall system. Figure 2.3 shows the BEL-

BIC architecture implemented in this work. The figure shows a closed loop config-

uration consisting of BELBIC block, Emotional signal (ES) generator block, Sensory
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inputs (SI) function block and finally a block for the plant. The overall emotional

based control concept has been implicitly demonstrated in this architecture, which

consists of the critic, learning algorithm, and the action selection mechanism [41].

2.3.2 Emotional Signal and Sensory Input Development

Essentially, BELBIC is an action selection methodology which produces its action

based on Emotional signal (ES) and Sensory input (SI). In general, SI and ES can

be obtained by using the following expressions

SI = G (y, e, u, r) (2.14)

ES = F (y, e, u, r) (2.15)

where y is the system output, e is the system error, u is the control effort, and r

is the system input. The designer can implicitly decide the control objectives e.g.

tracking, flocking, optimal control etc., by choosing the adequateES. For example,

it is possible to choose the ES to reduce the energy expense, to reduce overshoot,

or to achieve a better target tracking performance, among others.

Aiming at designing a model-free controller well suited for implementation

in real-time systems, the BELBIC design proposed here will focus on improving:

(i) target tracking, (ii) disturbance rejection, and (iii) model uncertainty handling.

To fulfill these objectives, the ES is designed in such a way that the increase in

tracking error will represent a negative emotion, e.g., stress, which is then taken as

an evidence that the system performance is not satisfactory. Then, for each of the

control inputs {U1,U2,U3,U4}, the SIl and ESl, for l = {1, . . . , 4}will be designed as

SIl = Kl1e+Kl2

∫
e.dt+Kl3

de

dt
(2.16)
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ESl = Kl4e+Kl5

∫
e.dt+Kl6

de

dt
(2.17)

where Kl1, Kl2, Kl3, Kl4, Kl5, and Kl6 are positive gains. By assigning different

values to these gains, the ES will change its influence on the system behavior. In

this work, different values are used for each one of control inputs of the system,

i.e., Ul, l = 1, ..., 4.

2.3.3 Learning-based Tracking Control

Since multiple performance considerations have to be taken into account all at the

same time in tracking control of UAS, it is a very interesting case for using learning-

based multi-objective methodologies like BELBIC. Intelligent tracking control of

UAS considering the problem of handling the system uncertainties and distur-

bances, additionally being suitable for real-time implementation due to its con-

trol effort reduction capability and low computational complexity, encourages us

to take advantage of the computational model of emotional learning in the mam-

mals’ limbic system, i.e., BELBIC.

From equations (2.16)-(2.17), the BELBIC-inspired control strategy for stabiliza-

tion of a quad rotorcraft UAS is defined as

Ul =
∑
l

Vl.SIl −
∑
l

Wl.SIl

=
∑
l

Vl.

(
Kl1e+Kl2

∫
e.dt+Kl3

de

dt

)
−
∑
l

Wl.

(
Kl1e+Kl2

∫
e.dt+Kl3

de

dt

)
(2.18)

Here, l = 1, ..., 4 makes reference to each control input. Considering the results

obtained in Theorem 1 and by substituting the Emotional Signal with equation



22

(2.17) the BELBIC model output for tracking control of a UAS could be obtained as

follows:

MO = ESl = Kl4e+Kl5

∫
e.dt+Kl6

de

dt
(2.19)

which is clearly satisfies our goal of reducing tracking error.

The overall BELBIC-inspired quad rotorcraft control methodology proposed in

this paper is summarized as pseudo-code in Algorithm 1.

Algorithm 1 : The BELBIC-inspired methodology for controlling a quad rotorcraft.
Initialization:
Set Vl = 0, Wl = 0, and Vth = 0, for i = l, ..., 4.
Define ESl = Objective function, for l = 1, ..., 4.

for each iteration t = ts do
for each control inputs l do

Compute SIl = Kl1e+Kl2

∫
e.dt+Kl3

de
dt

Compute ESl = Kl4e+Kl5

∫
e.dt+Kl6

de
dt

Compute Al = VlSIl
Compute OCl = WlSIl
Compute Ath = Vth max (SIl)
Compute Ul =

∑
lAl −

∑
lOCl

Update Vl
Update Wl

Update Vth
end for

end for

2.3.4 Stability Analysis

The convergence of the weights of Amygdala (Vl) and Orbitofrontal Cortex (Wl)

are presented in Theorem 1.

Theorem 1. Given the BELBIC design as (2.16)–(2.19), there exists the positive BELBIC

tuning parameter, Kv, Kw satisfying
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I.
∣∣[1−Kv (SIl)

2]∣∣ < 1

II.
∣∣[1−Kw (SIl)

2]∣∣ < 1

such that the BELBIC estimated weights of Amygdala (Vl) and Orbitofrontal Cortex (Wl)

converge to desired targets asymptotically.

Proof. Non-adapting Phase

Our goal is to investigate the output of the system in non-adapting phase (i.e.,

when the system completes its learning process) so the equations (2.11) and (2.12)

which are the updating rules of Amygdala and Orbitofrontal Cortex, respectively,

should be taken into consideration. In addition we make an assumption that the

max function in equation (2.11) could be neglected. By substituting (2.9) and (2.10)

in equation (2.8) the output of the model could be defined as follows:

MO =
∑
l

VlSIl −
∑
l

WlSIl

=
∑
l

(Vl −Wl)SIl (2.20)

∆Vl =KvSIl

(
ES −

∑
l

Al

)

=KvSIl

(
ES −

∑
l

VlSIl

)
(2.21)
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∆Wl =KwSIl (MO − ES)

=KwSIl

(∑
l

(Vl −Wl)SIl − ES

)
(2.22)

When the learning process is completed (i.e., after system completes its learning

process) the variations of the weights of Amygdala (∆Vl) and Orbitofrontal Cortex

(∆Wl) will be equal to zero (i.e., ∆Vl = ∆Wl = 0). With the assumption of SIl 6= 0

the following holds:

KvSIl

(
ES −

∑
l

VlSIl

)
=0

⇒
∑
l

VlSIl =ES (2.23)

KwSIl

(∑
l

(Vl −Wl)SIl − ES

)
=0

⇒
∑
l

(Vl −Wl)SIl =ES

⇒
∑
l

WlSIl =0 (2.24)

By substituting (2.23) and (2.24) in equation (2.20) the model output in non-adapting

phase will be as follows:

MO =
∑
l

(Vl −Wl)SIl =
∑
l

VlSIl = ES (2.25)

Main Proof

Considering the results obtained in Subsection 2.3.4 the following should be achieved:

MOl → ESl (2.26)
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Let’s considering the V ∗l is the weight of Amygdala for each control input l when

the system has been learned and let’s ÊSl be the Emotional Signal for each control

input l during the adaptation phase. The following hold:

ESl = V ∗l SIl and ÊSl = VlSIl (2.27)

∆Vl(k) = KvSIl max
(

0, ESl − ÊSl
)

(2.28)

We will investigate the results of the following two cases:

I. ESl − ÊSl ≥ 0

II. ESl − ÊSl < 0

Considering the case I., the proof can be achieved as follows:

∆Vl(k) =KvSIl max
(

0, ESl − ÊSl
)

=KvSIl

(
ESl − ÊSl

)
=KvSIl (V

∗
l SIl − VlSIl)

=KvSIl (V
∗
l − Vl)SIl

=KvSIlṼlSIl

=KvṼl (SIl)
2 (2.29)

where Ṽl = V ∗l − Vl.

Vl (k + 1) =Vl (k) + ∆Vl(k)

Ṽl (k + 1) =V ∗ − Vl (k)−∆Vl(k)

=Ṽl (k)−KvṼl (SIl)
2

=
[
1−Kv (SIl)

2] Ṽl (k) (2.30)
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Considering the case II., it is obvious that when ESl − ÊSl < 0 the max function

in equation (2.28) will force the adaptation in Amygdala to stop and the following

hold:

∆Vl(k) =0

Vl (k + 1) =Vl (k)

Ṽl (k + 1) =Ṽl (k) (2.31)

The proof can be achieved as follows:

∆Wl(k) =KwSIl (MOl − ESl)

=KwSIl (VlSIl −WlSIl − V ∗l SIl)

=KwSIl (− (V ∗l − Vl)SIl −WlSIl)

=KwSIl

((
−Ṽl −Wl

)
SIl

)
=−KwW̃l (SIl)

2 (2.32)

where Ṽl = V ∗l − Vl and W̃l = Ṽl +Wl.

Wl (k + 1) =Wl (k) + ∆Wl(k)

W̃l (k + 1) =Ṽl (k + 1) +Wl (k + 1)

=Ṽl (k) +Wl (k) + ∆Wl(k)

=W̃l (k)−KwW̃l (SIl)
2

=
[
1−Kw (SIl)

2] W̃l (k) (2.33)

Theorem 2. (Closed-loop Stability): Given the initial UAS state x(0) and the BELBIC

estimated weights of Amygdala (Vl(0)) and Orbitofrontal Cortex (Wl(0)) be bounded in the

set Λ. Let the BELBIC be tuned and estimated control policy be given as (2.21), (2.22) and (2.18)
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respectively. Then, there exists positive constants, Kv, Kw, satisfying Theorem 1 such that

UAS state, x(t) and BELBIC weights estimation errors are all asymptotically stable.

Proof. Let’s consider the us is a stable controller for the following system:

ẋ = f(x) + g(x)us (2.34)

There is a Lyapunov function Ls(x) which guarantees the stability of the whole

system:

Ls(x) =
1

2
xTx

Taking the first derivative, we have:

L̇s(x) = xT ẋ

= xT [f(x) + g(x)us]

≤ −lxTx , l > 0 (2.35)

To provide the stability analysis of the actual system, let’s consider the ua is an

actual controller for the following system:

ẋ = f(x) + g(x)ua (2.36)

where ua is as follows:

ua = us + ũ (2.37)

and ũ is the controller which is given by the BELBIC model output MO. Consider-

ing the Lyapunov function LMO(x), the following is obtained:

LMO(x) = A(M̃O)2
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Taking the first derivative, we have:

L̇MO(x) = A(M̃O)(
˙̃

MO)

≤ −A(M̃O)2

≤ −A(ũ)2 (2.38)

Considering the Lyapunov function La(x), the stability proof of overall system is

as follows:

La(x) =
1

2
xTx

Taking the first derivative, we have:

L̇a(x) = xT ẋ

= xT [f(x) + g(x)ua]

= xT [f(x) + g(x)(us + ũ)]

= xT [f(x) + g(x)us + g(x)ũ]

= xT [f(x) + g(x)us] + xTg(x)ũ

≤ −lxTx+ xTg(x)ũ

≤ −lxTx+
l

2
xTx+

2

l
(g(x)ũ)2

≤ − l
2
xTx+

2

l
(g(x)ũ)2

≤ − l
2
xTx− A(ũ)2 (2.39)

Remark 1. Based on the BELBIC theory [41] and (2.18), the intelligent tracking control

of UAS can be obtained while the estimated weights of Amygdala (Vl) and Orbitofrontal

Cortex (Wl) are converging to desired targets. According to Theorem 1, estimated weights

converge to desired targets asymptotically. Therefore, the designed BELBIC input Ul (2.18)

converges to intelligent tracking control of UAS asymptotically.
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Figure 2.4: Altitude Control Results: In this experiment, the UAS should vertically
take off and reach an altitude of 1 meter, while keeping its X , Y , θ, φ, and ψ states
equal to zero. Outputs of the controlled system: the BELBIC-inspired control is
shown in Magenta color, while the CAA controller in Blue color and the PID con-
troller in Green color.

2.4 Simulation Results

A set of numerical simulations are provided in order to demonstrate the effec-

tiveness and performance of the BELBIC-inspired methodology. Additionally, a

comparison between the proposed approach and two different control strategies

is provided, where it is possible to observe the significant improvement in control

performance obtained by utilizing BELBIC.

These simulation results consider four different scenarios: stable vertical take

off is presented in Subsection 2.4.1, while trajectory tracking is addressed in Sub-

section 2.4.2. Additionally, disturbance rejection results are shown in Subsection 2.4.3,
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and system parameters uncertainty handling is investigated in Subsection 2.4.4. In

all the scenarios, a quad rotorcraft model is adopted, with dynamics as presented

in Subsection 2.2.1. Initial velocities are selected equal to zero, and initial position

equal to (X0 = 1, Y0 = 0, Z0 = 0). The quad rotorcraft parameters introduced

in [43] are used through all the simulations. The remaining parameters are intro-

duced in each subsection, as needed.

2.4.1 Stable Vertical Take-off

In this study, a stable vertical take-off task is addressed. Starting from its ini-

tial position, the UAS should vertically take off and reach an altitude of 1 meter,

while keeping its X , Y , θ, φ, and ψ states equal to zero. For comparison pur-

poses, two similar experiments were performed, but using the PID controller in-

troduced in [77] and Control Allocation Approach (CAA) introduced in [82] in-

stead of the BELBIC controller. Figure 2.4 shows the output of the controlled sys-

tem by means of the PID controller, Control Allocation Approach (CAA), and the

BELBIC-inspired controller. From this Figure, it is possible to observe that the

BELBIC-inspired controller outperforms the other controllers’ performance.

2.4.2 Trajectory Tracking

In this study, trajectory tracking of a quad rotorcraft is addressed. Here, a 5m×5m

square shaped reference is assigned for the system to follow, as shown in Fig-

ure 2.5. The scenario is as follows. First, the quad rotorcraft starts by taking off,

and reaches an altitude of 1m. After this, it follows the squared trajectory with a
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speed of 1 m/s. Then, 1 meter before reaching its starting position, the platform

increases its height for another 1 meter, and then flies forward for another 2 meter.

For comparison purposes, in addition to the BELBIC-inspired strategy, two sim-

ilar experiments were performed but using the PID controller introduced in [77]

and Control Allocation Approach (CAA) introduced in [82]. Figures 2.6 and 2.7

show the aircraft (X, Y, Z)-positions and (Roll, Pitch, Yaw)-angles, as controlled

by the PID, Control Allocation Approach (CAA), and the BELBIC-inspired con-

troller, respectively. Similar to the previous scenario, it is possible to observe that

the BELBIC-inspired controller outperforms the other controllers performance.

2.4.3 Disturbance Rejection

In this study, the performance of the proposed strategy when facing disturbances

is investigated. The disturbance comes in the form of a torque of 2 N.m applied to

the quad rotorcraft pitch angle. For comparison purposes, two similar experiments

were performed, but using the PID controller introduced in [77] and Control Allo-

cation Approach (CAA) introduced in [82] instead of the BELBIC controller. Fig-

ure 2.8 shows the pitch angle and rear motor control effort of the quad rotorcraft

generated when using the PID controller, CAA controller, and the BELBIC-inspired

controller. From this Figure, it is observed that the BELBIC-inspired controller is

able to reject the disturbance effectively, and that the obtained behavior is at least

10 times better than the behavior obtained from the PID controller.
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Figure 2.5: Trajectory Tracking of a Quad Rotorcraft BELBIC-inspired control (Ma-
genta), Reference (Blue). A 5m×5m square shaped reference is assigned for the
UAS to follow. The figure shows the UAS hovering at (1, 0, 1) above the starting
position, and also at the end position (3, 1, 2) of the assigned trajectory.

2.4.4 System Parameters Uncertainty Handling

In this study, handling uncertainty in the system parameters is considered. The

same reference trajectory as in Subsection 2.4.2 is assigned to the system. All the

parameters of the quad rotorcraft are changed by ±10 percent of their original

values. For comparison purposes, in addition to the BELBIC-inspired strategy,

two similar experiments were performed but using the PID controller introduced

in [77] and Control Allocation Approach (CAA) introduced in [82]. The objective
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Figure 2.6: The output of the system for intelligent tracking control in X-axis, Y-
axis, and Z-axis, from left to right, respectively. The BELBIC-inspired control is in
the top row and in Magenta color. The outputs of the CAA controller are plotted
on the middle row and in Blue color. The outputs of the PID controller are plotted
on the bottom row and in Green color. In all cases, the reference signal is shown in
Black color.

here is to verify if all strategies are able to track the desired trajectory, taking into

account that all controller settings remain the same as the settings used in Subsec-

tion 2.4.2. In other words, no additional tuning of the controllers was performed

for adapting to the new system parameters. Figures 2.9 and 2.10 show the quad

rotorcraft position and attitude angles, as controlled by the PID controller, CAA

controller, and the BELBIC-inspired controller, respectively. It is possible to ob-

serve that both CAA and PID controllers are not capable of stabilizing the system

with uncertainties, while the BELBIC-inspired strategy is able to successfully con-

trol the system.
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Figure 2.7: The output of the system for intelligent tracking control for Roll, Pitch,
and Yaw angles, from left to right respectively. The BELBIC-inspired control is
plotted in the top row in Magenta color. The outputs of the CAA controller are
plotted in the middle row, in Blue color. The outputs of the PID controller are
plotted in the bottom row, in Green color. For all cases, the reference signal is
plotted in Black.

2.5 Experimental Results

This section presents experimental results showing the performance of the BELBIC-

inspired controller for stabilizing a quad rotor UAS during autonomous flights.

2.5.1 Experimental Testbed

The platform implemented for validation of the proposed algorithm is available at

the Unmanned Systems Laboratory (USL) from the University of Nevada - Reno [83].
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Figure 2.8: Control signal and pitch angle performance: the pitch angle (top plot)
and rear motor control effort (bottom plot) of the quad rotorcraft when facing a
torque of 2 N.m as disturbance to its pitch angle. The BELBIC-inspired control is
shown in Magenta. The CAA controller is shown in Blue. The PID controller is
shown in Green, and the reference signal in Black.

The Base Station of this testbed runs Ubuntu 14.04 OS, the Robot Operating System

(ROS) environment, and Matlab. The proposed algorithms were coded in C/C++,

and were executed at 100Hz. The aerial robot corresponds to a Bebop drone man-

ufactured by Parrot.

The 3-dimensional position of the UAS is obtained by means of a Motion Cap-

ture System (MCS) manufactured by OptiTrack. The information provided by the

MCS is reported to the OptiTrack Interface PC by means of a Gigabyte Ethernet

connection. Next, this information is sent to the Base Station PC by means of an
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Figure 2.9: The figures show the output of the system for intelligent tracking con-
trol in presence of model uncertainty in X-axis, Y-axis, and Z-axis, from left to
right, respectively. Outputs of the controlled system: the BELBIC-inspired control
is in the top row in Magenta color. The CAA controller is on the middle row in
Blue color. The PID controller is on the bottom row in Green color. In all cases the
reference is plotted in Black color.

Ethernet connection. The Base Station computer uses this information to execute

the BELBIC algorithm and to calculate the control signals, which are then sent to

the Bebop platform by means of a WiFi link. The ultimate goal of this experimental

application is to maintain a satisfactory flight of the drone, even when the model

of the UAS is not known, and when external factors affect the performance of the

aerial vehicle. The left hand side (LHS) of Figure 2.11 shows the data flow pro-

posed for the implementation of the BELBIC algorithm. The right hand side (RHS)

of Figure 2.11 shows the experimental evaluation of the proposed algorithm on a
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Figure 2.10: The output of the system for intelligent tracking control in presence of
model uncertainty for Roll, Pitch, and Yaw angles, from left to right, respectively.
The outputs of the controlled system: the BELBIC-inspired control is in the top
row in Magenta color. The CAA controller is in the middle row in Blue color. The
PID controller is in the bottom row in Green color. The reference signal is plotted
in Black color.

Bebop drone.

2.5.2 Real-time Experiments

A set of experimental results demonstrate the satisfactory performance of the pro-

posed method. In this experiment, the attitude control of a quad rotorcraft is pre-

sented. Starting from an initial position in the ground, the UAS executes a take off,
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Figure 2.11: Data flow showing the implementation of the BELBIC-inspired algo-
rithm (left); the experimental evaluation of the proposed algorithm on a Bebop
drone manufactured by Parrot (right).
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Figure 2.12: Outputs of the controlled system, BELBIC-inspired control (Magenta),
conventional PID controller (Green) Reference (Black). Starting from an initial po-
sition in the ground, the UAS executes a take off, and reaches an altitude of 1 meter,
while keeping its X , Y , θ, φ, and ψ states all equal to zero.
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and reaches an altitude of 1 meter, while keeping its X , Y , θ, φ, and ψ states all

equal to zero. For comparison purposes, a similar experiment was performed,

but using the conventional PID controller instead of the BELBIC-inspired con-

troller. Figure 2.12 shows the performance of the controlled system, when using

the conventional PID controller, and when using the proposed BELBIC-inspired

controller. Similar to the results obtained in numerical simulations, it is possible

to observe that the BELBIC-inspired controller outperforms the conventional PID

controller performance.

Similar to this experiment, it is also possible to investigate the tracking problem

addressed in Subsection 2.4.2 which is not included in this paper due to brevity.

2.6 Conclusions

This paper addressed the problem of stabilizing the full 6 DoF of a quad rotor-

craft UAS and also intelligent tracking control of a UAS subjected to unknown

system dynamics and external disturbances. The low-computational model-free

BELBIC, a neurobiologically-motivated intelligent controller, was adopted in or-

der to design and experimentally validate a novel UAS control methodology. The

numerical and experimental flight results, which considered uncertainty and dis-

turbances, demonstrated the effectiveness, applicability, and superior performance

of the BELBIC-inspired controller, when compared to conventional model-based

control methods. In addition, the convergence analysis of the proposed approach

has been studied.

Future work will consider the implementation of a BELBIC-inspired intelligent
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control strategy for addressing the task of UAS-based autonomous transportation

of loads with uncertain characteristics.



41

Chapter 3

A Biologically-Inspired

Reinforcement Learning based

Intelligent Distributed Flocking

Control for Multi-Agent Systems in

Presence of Uncertain System and

Dynamic Environment

In this paper, we investigate the real-time flocking control of Multi-Agent Sys-

tems (MAS) in presence of system uncertainties and dynamic environment. To

handle the impacts from system uncertainties and dynamic environment, a novel
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reinforcement learning technique, which is appropriate for real-time implemen-

tation, has been integrated with multi-agent flocking control in this paper. The

Brain Emotional Learning Based Intelligent Controller (BELBIC) is a biologically-

inspired reinforcement learning based controller relying on a computational model

of emotional learning in the mammalian limbic system. The learning capabilities,

multi-objective properties, and low computational complexity of BELBIC make it

a very promising learning technique for implementation in real-time applications.

Firstly, a novel brain emotional learning based flocking control structure is pro-

posed. Then, the real-time update laws are developed to tune the emotional signals

based on the real-time operation data. It is important to note that this data-driven

reinforcement learning approach relaxes the requirement for system dynamics and

effectively handle the uncertain impacts of the environment. Using the tuned emo-

tional signals, the optimal flocking control can be obtained. The Lyapunov analysis

has been used to prove the convergence of the proposed design. The effectiveness

of the proposed design is also demonstrated through numerical and experimental

results based on the coordination of multiple Unmanned Aircraft Systems (UAS)

platforms.

3.1 Introduction

During the past decade, diverse research communities have developed several ad-

vanced control strategies for coordination of Multi-Agent Systems (MAS), see for

example [1, 3–12] and the references therein. In most of these MAS control meth-

ods, flocking problem have been formulated and investigated thoroughly. Flocking

is the collective motion of a large number of self-propelled entities exhibited by

many living beings such as birds, fish, bacteria, and insects [15]. Flocking is also
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considered as an emergent behavior, which is caused by a number of simple rules

followed by each agent, and that does not require any central coordination.

The seminal work in [7] introduced three basic rules for simulating the flock-

ing behavior, specifically, separation, alignment, and cohesion. In recent years, there

has been a surge of interest among researchers to improve the flocking behavior

of MAS. One can mention, for example, adaptive flocking control approaches for

dealing with varying and noisy environments [16], [17], robust flocking controllers

to handle model uncertainty [18, 19], and flocking control methods with the capa-

bility of disturbance handling [20].

Related Work

Several critical aspects should be considered in the real-time implementation of

control strategies on mobile robotic platforms, for example, model uncertainty,

disturbances, energy expenses and actuator saturation. Diverse research efforts

have been proposed aiming at addressing the issues arising from these practi-

cal and harsh conditions. Considering model uncertainty and disturbances, dis-

tributed tracking and estimation of MAS with uncertain dynamics has been pre-

sented in [27]. In [28], the problem of robust consensus tracking for MAS with dis-

turbances and unmodeled dynamics has been studied. In addition, neural adap-

tive flocking of MAS has been addressed in [29–31]. More recently, authors in [32]

investigated the application of Q-learning in leader-follower based flocking with

small fixed-wing UAVs.

Also, to tackle the energy expenses and actuator saturation related problems,

the authors in [33] presented a decentralized approach to perform formation ma-
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neuvers by groups of mobile robots taking into account the actuator saturation.

Closely related, a flocking control with constraints is proposed in [34]. Swarm ag-

gregation of MAS with actuator saturation has been addressed in [35,36]. Further-

more, a leader-following tracking problem for MAS with a varying-velocity leader

and input saturation was investigated in [37]. In [38], the authors introduced a

decentralized connectivity maintenance strategy for mobile networks with con-

strained inputs. Recently, an energy function-based approach for estimating the

required control force for network connectivity preservation and collision avoid-

ance was presented in [39].

In general, flocking strategies available in the literature are addressing, among

others i.e., (i) the optimization of the MAS flocking control, (ii) the robustness for

dealing with the dynamic environment, and (iii) the capability of dealing with

MAS uncertainty. However, most of these recent approaches are not designed

for having multi-objective properties i.e., they only considered solving one of the

aforementioned problems. Indeed, when multiple goals are targeted in parallel to

the flocking problem, the computational complexity of the overall problem is not

suitable for real-time implementation. Additionally, most of the existing works

need the knowledge of system dynamics and not applicable in presence of dy-

namic environment.

Therefore, to overcome this deficiency, biologically-inspired methods have been

increasingly employed to solve complex computational problems. Brain Emo-

tional Learning Based Intelligent Controller (BELBIC) is one of the most promising

approaches that adopts the learning model developed in [40] in order to mimic the

functionalities of the brain that are known to produce emotion, i.e., the amygdala,

orbitofrontal cortex, thalamus, and sensory input cortex. Strategies based on BELBIC
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have shown to be a very promising solution in terms of robustness and uncertainty

handling [41–43] due to the flexibility of its architecture. BELBIC has two main in-

puts: Sensory Inputs (SI) and Emotional Signal (ES). Properly adjusting both SI and

ES, makes this controller an appealing strategy for addressing real-time applica-

tions [41]. Furthermore, BELBIC architecture has the computational complexity on

the order ofO (n) [44] that is much smaller and better for real-time implementation

compared with other existing learning-based intelligent control methods.

Main Contributions

The main contribution of this paper is to utilize the computational model of emo-

tional learning in the mammalian limbic system, i.e., BELBIC, for developing and

experimental validation of a novel intelligent flocking control method for practi-

cal MAS in presence of uncertainty system dynamics and dynamic environment.

To the best of the authors’ knowledge, this is the first time that BELBIC is imple-

mented for accomplishing MAS flocking in an intelligent and practical manner.

The learning capability of the proposed approach enhances the flocking strategy,

which is very useful when dealing with uncertainty due to the fact that it does not

depend on the system model. Furthermore, the computational cost of implement-

ing this method in a real-time application is feasible. The proposed BELBIC de-

sign provides a controller with multi-objective properties i.e., control optimization,

uncertainty handling, and noise/disturbance rejection while keeping the system

complexity in a practically achievable limit. The main objective is then the design

of a feasible intelligent controller that is able of keeping the flocking performance

as satisfactory as possible, even in presence of system uncertainties and dynamic

environment, in terms of formation control, obstacles avoidance, and target track-
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ing, and also that can be practically applied to real-time systems. Thus, energy

expense and the generation of control signals appropriate for real-time implemen-

tation are addressed. Moreover, we proved that our proposed methodology guar-

antees the designed control signals converge to ideal optimal flocking strategies.

A set of numerical simulations and hardware experimental tests are provided in

order to demonstrate the effectiveness of the proposed approach. Additionally, a

comparison between the proposed approach and two different flocking strategies

is provided, where it is possible to observe the improved flocking strategy attained

with BELBIC.

The rest of the paper is organized as follows. Section 3.2 presents the problem

formulation and some preliminaries about flocking control model and BELBIC.

Our main contribution is introduced in Section 3.3, which consists of a flocking

control strategy based on BELBIC (Subsection 3.3.1) and its learning weights con-

vergence analysis (Subsection 3.3.3). Section 3.4 and Section 3.5 present numerical

simulation and experimental results, respectively. The conclusion of the paper and

future directions of our work are provided in Section 3.6.
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3.2 Problem Formulation and Preliminaries

3.2.1 Flock Modelling

Considering n agents with second order dynamics moving in an m dimensional

space (m = 2, 3), the motion of MAS can be represented as q̇i = pi

ṗi = ui , i = 1, 2, ..., n
(3.1)

where {ui, qi, pi} ∈ IRm are control input, position, and velocity of the agent i,

respectively. A dynamic graph G(υ, ε) consisting of a set of vertices υ and edges

ε is represented by υ = {1, 2, ..., n}, ε ⊆ {(i, j) : i, j ∈ υ, j 6= i}. Each agent is

represented by a vertex, and an individual edge represents a communication link

between a pair of agents. Consider the neighborhood set of agent i defined as

Nα
i = {j ∈ υα :‖ qj − qi‖ < r, j 6= i} (3.2)

with r, a positive constant, being the range of interaction between agents i and

j, and the Euclidean norm in IRm is expressed as ‖ · ‖. To describe the geometric

model of the flock, i.e., the α-lattice [1], the following set of algebraic conditions

should be solved

‖ qj − qi‖ = d ∀j ∈ Nα
i (3.3)

where d is a positive constant representing the distance between two neighbors i

and j. At qi = qj the equation (3.3) causes a singularity for the collective potential

function [1]. Equation (3.3) can be rewritten to resolve the aforementioned problem

as

‖ qj − qi‖σ = dα ∀j ∈ Nα
i (3.4)
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where dα = ‖ d‖σ, and ‖ ·‖σ is the σ-norm expressed by ‖ z ‖σ= 1
ε
[
√

1 + ε‖ z‖2 −

1], ε > 0. Here ε is a positive constant. The σ-norm is a map from IRm to IR ≥ 0 for

a vector z. While the Euclidean norm ‖ z‖ is differentiable everywhere except at

z = 0, the new map ‖ z‖σ is differentiable everywhere.

From the above constraints, a smooth collective potential function can be given

as

V (q) =
1

2

∑
i

∑
j 6=i

ψα(‖ qj − qi‖σ)

where ψα(z) is a smooth pairwise potential function defined as ψα(z) =
∫ z
dα
φα(s)ds,

with φα(z) = ρh(z/rα)φ(z − dα), φ(z) = 1
2
[(a + b)σ1(z + c) + (a − b)], and σ1(z) =

z/
√

1 + z2. Additionally, φ(z) is an uneven sigmoidal function with parameters

0 < a ≤ b, c = |a − b|/
√

4ab to guarantee that φ(0) = 0. The term ρh(z) is a scalar

bump function that smoothly varies between [0,1]. Inspired from [1], a possible

choice for defining ρh(z) is as:
1, z ∈ [0, h)

1
2

[
1 + cos

(
π (z−h)

(1−h)

)]
, z ∈ [h, 1]

0, otherwise

(3.5)

Recall to [1], the flocking control can be developed as

ui = uαi + uβi + uγi (3.6)

This design ensures that MAS avoids obstacles while making all agents to form

a lattice configuration, i.e., the α-lattice [1]. The algorithm consists of three main

terms: uαi which is the interaction component between two α-agents, uβi that is the

interaction component between the α-agent and an obstacle (named the β-agent),
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and uγi being a goal component which consists of a distributed navigational feed-

back term. Specifically, these terms, uαi , uβi , and uγi , are defined as

uαi = cα1
∑
j∈Nα

i

φα(‖ qj − qi‖σ)ni,j

+cα2
∑
j∈Nα

i

aij(q)(pj − pi) (3.7)

uβi = cβ1
∑
k∈Nβ

i

φβ(‖ q̂i,k − qi‖σ)n̂i,k

+cβ2
∑
k∈Nβ

i

bi,k(q)(p̂i,k − pi) (3.8)

uγi = −cγ1σ1(qi − qr)− c
γ
2(pi − pr) (3.9)

where cα1 , cα2 , cβ1 , cβ2 , cγ1 , and cγ2 are all positive constants which are the correspond-

ing weights of the three main flocking control functions, i.e., collision avoidance,

obstacle avoidance and goal [1]. Next, the pair (qr, pr) is defined as virtual leader

of the flock, i.e., the γ-agent which can be represented as q̇r = pr

ṗr = fr(qr, pr)
(3.10)

The terms ni,j and n̂i,k are vectors given as

ni,j =
qj − qi√

1 + ε‖ qj − qi‖2
n̂i,k =

q̂i,k − qi√
1 + ε‖ q̂i,k − qi‖2

Then, the terms bi,k(q) and aij(q) are the elements of the heterogeneous adjacency

matrix B(q) and spatial adjacency matrix A(q), which are described respectively as

follows: bi,k(q) = ρh(‖ q̂i,k − qi‖σ/dβ) and aij(q) = ρh(‖ qj − qi‖σ/rα) ∈ [0, 1], j 6= i.

It is important to note that, rα = ‖ r‖σ, aii(q) = 0 for all i and q, dβ = ‖ d′‖σ,

and rβ = ‖ r′‖σ. Here d′ is a positive constant representing the distance between
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an α-agent with obstacles. The term φβ(z) is a repulsive action function which is

defined as φβ(z) = ρh(z/dβ)(σ1(z − dβ)− 1). Now, it is possible to define the set of

β-neighbors of an α-agent i in a similar way to equation (3.2) as

Nβ
i ={k ∈ υβ :‖ q̂i,k − qi‖ < r

′}

with the positive constant r′ being the range of interaction of an α-agent with ob-

stacles.

In summary, the multi-agent system considered in this research consists of a

group of holonomic quad rotorcraft UAS [83]. The objectives of the agents are to

avoid obstacles, avoid collisions, and tracking the target while making all agents

to form a lattice configuration, i.e., the α-lattice [1]. Each agent will exchange its

operation information (e.g. position, velocity, etc.) with their neighbors. This

connectivity has been demonstrated through a dynamic graph. A dynamic graph

consisting of a set of vertices and edges is considered to represent the system. Each

agent is represented by a vertex, and an individual edge represents a communica-

tion link between a pair of agents.

The flocking algorithm consists of three main terms: (i) the interaction com-

ponent between two α-agents, (ii) the interaction component between the α-agent

and an obstacle (named the β-agent), and (iii) a goal component which consists of

a distributed navigational feedback term.
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Figure 3.1: Block diagram of emotional learning.

3.2.2 Brain Emotional Learning-Based Intelligent Controller: A

novel reinforcement learning approach

BELBIC was first introduced in [41], and since then, it has been successfully uti-

lized in multiple areas. For instance, the authors in [84] applied BELBIC controller

to the neuro-fuzzy model of a micro-heat exchanger. BELBIC based motion control

of omnidirectional three-wheeled robots has been addressed in [85]. BELBIC was

also successfully applied for the attitude control of a quad rotorcraft [43]. More

recently, the navigation of an Unmanned Ground Vehicle (UGV) by employing

BELBIC, was studied in [74]. Closely related, the optimal bi-objective structure

emotional learning for Dynamic Voltage Restorer is addressed in [75].

Additionally, diverse research works have been devoted to the real-time im-
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plementation of BELBIC. For instance, in [86], an implementation on BELBIC on a

DSP was utilized for controlling an interior permanent magnet synchronous motor

drive, whereas in [87] BELBIC was implemented on a Field-Programmable Gate

Array for controlling an overhead traveling crane. Also, BELBIC was practically

applied to the speed control of a digital servo system [46].

The capability of learning is a pivotal characteristic of an intelligent system

which distinguishes it from a traditional system [41]. A common property of the

learning methodologies, to cope with the changing environment in a superior way,

is based on adapting the parameters of the system with various levels of compu-

tational complexity. Furthermore, it is essential for any learning methodology to

have an appraisal mechanism for determining the operational condition of the sys-

tem. One category of appraisal mechanisms is based on the emotional cues [40,78].

This evaluation mechanism determines how external stimuli could affect the ca-

pability of the system to effectively function in short-term and also to retain its

long-term prospects for survival. Emotional Learning, is a learning technique that is

based on emotional appraisals.

The BELBIC methodology is based on a novel architecture of the emotional

learning observed in the mammalian limbic system which was proposed in [78],

and is graphically represented as in Figure 3.1. This model has two main parts:

Amygdala and Orbitofrontal Cortex, which are responsible for immediate learning

and for inhibiting any inappropriate learning happening in the Amygdala, respec-

tively.

Furthermore, there are two important inputs to the BELBIC model, i.e., Sensory

Inputs (SI) and Emotional Signal (ES). Then, a model output equation is defined
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as

MO =
∑
l

Al −
∑
l

OCl (3.11)

which consists of the subtraction of Amygdala outputs (Al) and Orbitofrontal Cor-

tex outputs (OCl). Here, l is the number of sensory inputs.

Amygdala and Orbitofrontal Cortex outputs are computed by the summation

of all their corresponding nodes where the outputs of each node (i.e., Amygdala

node (3.12) and Orbitofrontal Cortex node (3.13)) can be obtained as

Al = VlSIl (3.12)

OCl = WlSIl (3.13)

where Vl and Wl are the weights of Amygdala and Orbitofrontal Cortex, respec-

tively, and SIl is the lth sensory input. To update Vl and Wl the following equations

are used

∆Vl = KvSIl max

(
0, ES −

∑
l

Al

)
(3.14)

∆Wl = KwSIl (MO − ES) (3.15)

where Kv and Kw are the learning rates.

Remark 2. Assigning different values to Kv and Kw will affect the convergence perfor-

mance of the algorithm (i.e., convergence of the weights of Amygdala (Vl) and Orbitofrontal

Cortex (Wl)). In general, assigning the bigger values to these parameters will increase the

learning rate and assigning the smaller values will decrease the learning rate. However, it

is necessary that the designer select the values of these parameters, i.e., Kv and Kw, within

the suitable region given in Theorem 3.
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There is an additional input (i.e., Ath) which directly comes from the Thalamus

to the Amygdala. This input is the maximum of all SI and is obtained as

Ath = Vth max (SIl) (3.16)

Here Vth is the weight and the update law is similar to (3.14).

Several methods have been developed for tuning the BELBIC parameters. For

example, a particle swarm optimization-based approach was used in [79]. A Lyapunov-

based tuning algorithm for a group of linear systems was adopted in [80]. Fuzzy

tuning of BELBIC has been proposed and successfully utilized for controlling a

robotic arm in [81]. Also, the clonal selection algorithm has been recently em-

ployed to obtain BELBIC parameters and has been applied for controlling a single

link flexible joint manipulator [47]. Additionally, trial and error tuning has shown

to be an effective method [43].

Although these approaches may lead to finding the optimal value for BELBIC

parameters, almost most of these update laws add more computational complex-

ity to the system that limited the practical usage of most of these algorithms. In

this paper, a heuristic method was adopted for obtaining the BELBIC parameters.

This approach could significantly reduce the computational complexity of defining

these parameters.

3.2.3 Flocking Control

Based on the flocking problem formulated in Section 3.2.1, and by employing the

BELBIC controller introduced in Section 3.2.2, the objective is to design a control

signal ui for each agent i, in such a way that the motion of all agents in the flock
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represents an emergent behavior arising from simple rules that are followed by in-

dividuals, and does not involve any central coordination. Moreover, the proposed

controller should keep a low level of complexity, in order to be practically imple-

mentable in the real-time flocking of multiple unmanned aircraft systems (UAS)

platforms. In summary, the agents must track a virtual leader (i.e., γ-agent), while

avoiding collisions with every other agent in the group, and while negotiating and

avoiding obstacles encountered in the dynamic environment. The proposed con-

trol law must be capable of satisfying multiple designer objectives, specifically (i)

optimization of the control effort and energy expense, (ii) robustness against en-

vironmental noise/disturbances, (iii) and capability of handling the model uncer-

tainty. These objectives must be accomplished without increasing the complexity

of the system.

3.3 Flocking Control of MAS using BELBIC

3.3.1 System Design

Generally, there are two methodologies, the so-called direct and the indirect method [41],

in the utilization of cognitive and/or intelligent control. In the direct method, the

intelligent and/or cognitive model is employed as a controller block, while in the

indirect method, the intelligent and/or cognitive model is used for obtaining the

controller’s parameters. In our work, the first method i.e., direct approach has

been adopted, where a biologically-inspired intelligent methodology based on the

novel architecture of emotional learning in mammal’s brain is employed as the

controller block.
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In this regard, we need to figure out how to embed this model as a controller

within the overall system architecture. In particular, there is no unique scheme for

utilizing BELBIC in the system architecture. It is based on a fact that the pivotal

property of the BELBIC model is its flexibility in attaining multiple objectives by

assigning the different emotional signals and sensory inputs.

Sensory Input (SI) Function

Emotional Signal (ES) Generator

System 
Output

-+
PlantBELBIC

System 
Input

Objectives

Figure 3.2: BELBIC in the control loop.

The BELBIC architecture implemented in this work is shown in Figure 3.2. It

is a closed loop configuration which consists of BELBIC, Emotional signal genera-

tor (ES), Sensory inputs function (SI), and the plant. This architecture implicitly

demonstrates the overall emotional based control concept which consists of the

critic, learning algorithm, and the action selection mechanism [41].

In this context, the given controller acts as an intelligent distributed flocking

controller. It should be noted that this structure is utilized for each individual

agent separately.

The details of the learning algorithm are given in the following sections.
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3.3.2 Emotional Signal and Sensory Input Development

From a biological point of view, the emotional signal is a generic signal which is

generated internally and could represent different reinforcing inputs from Thala-

mus, Hypothalamus, and parts of the Basal Ganglia [40,78]. Artificially simulating

the model, different parts of the system could generate the emotional signal to

reflect any related criteria.

The primary idea behind the emotional learning based control and/or decision-

making in this work is to produce the action (i.e., output) that regulates the emo-

tional signal (i.e., maximizes the emotional reward or minimizes the emotional

stress), while different sets of sensory inputs are received by the system [41]. The

current situation of the system is represented by the received sensory inputs and

the emotional signals represent how satisfactory the performance of the system

is. In other words, the emotional signal represents the condition of the system by

considering the particular objective of interest.

Essentially, BELBIC is producing its actions based on the Emotional signal (ES)

and Sensory input (SI). In general, SI and ES are defined as

SIi = Gi (y, e, u, r) (3.17)

ESi = Fi (y, e, u, r) (3.18)

where y, e, u, and r are system output, system error, control effort, and system

input, respectively. The designer can implicitly decide the control objectives by

choosing the adequate ES. For example, it is possible to choose the ES to reduce

the energy expense, to maintain network connectivity, or to achieve better target

tracking performance, etc.
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Aiming at designing a practical controller appropriate for implementation in

real MAS, the BELBIC design proposed here will focus on keeping small the con-

trol effort and the energy of the flock, in order to avoid actuator saturation, while

also considering the perfect flocking behavior, which in turn will extend the energy

available for performing the mission. To fulfill this objective, the ES is designed in

such a way that the increase in control effort will represent a negative emotion,

e.g., stress, which is then taken as an evidence that the system performance is not

satisfactory which leads to control effort reduction and energy efficiency. Then, for

each agent i, the SIi and ESi are designed as

SIi = Kα
i,SIu

α
i +Kβ

i,SIu
β
i +Kγ

i,SIu
γ
i (3.19)

ESi = Kα
i,ESu

α
i +Kβ

i,ESu
β
i +Kγ

i,ESu
γ
i (3.20)

where Kα
i,SI , K

β
i,SI , K

γ
i,SI , K

α
i,ES , Kβ

i,ES , Kγ
i,ES are positive gains. By assigning differ-

ent values to these gains, the ES will change its influence on the system behavior.

In this work, identical values are used since the objective is to reduce the overall

control effort and energy of the system.

Remark 3. Assigning different values to parameters in SIi and ESi (i.e., Kα
i,SI , K

β
i,SI ,

Kγ
i,SI , K

α
i,ES , Kβ

i,ES , Kγ
i,ES) would have different impacts on the performance of the whole

system. In other words, these gains provide the design freedom allowing different priorities

for each one of the three different components of flocking. A high gain will make a specific

component more important than the others. However, since our objective in this work is

to reduce the control effort and the energy of the flock, while also considering the perfect

flocking behavior, our only design constraint in choosing these values is to avoid providing

any privileges to a specific component of the flocking elements (i.e., Collision Avoidance,

Obstacle Avoidance, and Navigational Feedback).
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One of the main advantages of designing the ES as in equation (3.20) is that the

flocking objective can be adaptive according to the scenario faced by the system.

For example, the pseudo-code in Algorithm 2 defines the gain Kβ
i,ES depending

on the situation faced by the flock: the presence of obstacles, or the obstacle-free

environment.

In other words, when no obstacle is within a sensing range of an agent, the

obstacle avoidance part will be canceled out from the emotional signal. If the agent

senses an obstacle, depending on the size of the obstacle, the distance of obstacle

with respect to the agent, etc., a value will be assigned to maintain the impact of

the obstacle avoidance part of the emotional signal for the corresponding agent.

Algorithm 2 : Adaptive gain Kβ
i,ES .

if agent i senses an obstacle then
set Kβ

i,ES = computed value with respect to obstacle
else

set Kβ
i,ES = 0

end if

Designing the appropriate functions for SIi and ESi, our goal is to compute

the model output (MOi) in the following section. Then, the model output will be

employed as our intelligent controller output for flocking control of MAS.

3.3.3 Learning-based Flocking Control

Flocking is a very nice case for employing learning-based multi-objective approaches

like BELBIC, since it consists of multiple performance considerations to be taken

into account all at the same time. Learning the flocking behavior both in presence

of obstacles and/or in obstacle free environment while considering the problem
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of handling the system uncertainties and disturbances and also being appropriate

for real-time implementation due to its low computational complexity and control

effort reduction capability, leads us to take advantage of the computational model

of emotional learning in the mammalian limbic system, i.e., BELBIC.

From equations (3.19)-(3.20), the BELBIC for flocking of MAS is defined as

uBELi =
∑
i

Vi.SIi −
∑
i

Wi.SIi

=
∑
i

Vi.
(
Kα
i,SI .u

α
i +Kβ

i,SI .u
β
i +Kγ

i,SI .u
γ
i

)
−
∑
i

Wi.
(
Kα
i,SI .u

α
i +Kβ

i,SI .u
β
i +Kγ

i,SI .u
γ
i

)
(3.21)

Here i = 1, ..., n and n is the number of agents. By considering the results

obtained from Theorem 3 and by substituting the Emotional Signal with equa-

tion (3.20) the BEL-Flocking model output for MAS could be obtained as follows:

MOi = ESi = Kα
i,ESu

α
i +Kβ

i,ESu
β
i +Kγ

i,ESu
γ
i (3.22)

which is exactly demonstrating the flocking behavior of the proposed method.

The overall BELBIC-based flocking methodology proposed is summarized as

pseudo-code in Algorithm 3.

Stability Analysis

The convergence of the weights of Amygdala (Vi) and Orbitofrontal Cortex (Wi)

are presented in Theorem 3.
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Algorithm 3 : The BELBIC-based intelligent flocking control for MAS.
Initialization:
Set Vi = 0, Wi = 0, and Vth = 0, for i = 1, ..., n.
Define ESi = Objective function, for i = 1, ..., n.

for each iteration t = ts do
for each agent i do

Compute SIi = Kα
i,SIu

α
i +Kβ

i,SIu
β
i +Kγ

i,SIu
γ
i

Define Kβ
i,ES using Algorithm 2

Compute ESi = Kα
i,ESu

α
i +Kβ

i,ESu
β
i +Kγ

i,ESu
γ
i

Compute Ai = ViSIi
Compute OCi = WiSIi
Compute Ath = Vth max (SIi)
Compute MOi =

∑
iAi −

∑
iOCi

Update Vi
Update Wi

Update Vth
end for

end for

Theorem 3. Given the BELBIC design as (3.19)–(3.22), there exists the positive BELBIC

tuning parameter, Kv, Kw satisfying

I.
∣∣[1−Kv (SIi)

2]∣∣ < 1

II.
∣∣[1−Kw (SIi)

2]∣∣ < 1

such that the MAS’s estimated weights of Amygdala (Vi) and Orbitofrontal Cortex (Wi)

converge to desired targets asymptotically.

Proof. See Appendix A
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Remark 4. Based on the BELBIC theory [41] and (3.21), the optimal flocking control of

MAS can be obtained while the estimated weights of Amygdala (Vi) and Orbitofrontal

Cortex (Wi) are converging to desired targets. According to Theorem 3, estimated weights

converge to desired targets asymptotically. Therefore, the designed BELBIC input UBEL
i

(3.21) converges to the optimal flocking control of MAS asymptotically.

3.4 Simulation Results

This section presents simulation results demonstrating the performance of the BEL-

BIC for flocking of MAS under four different scenarios:

i. 2-dimensional obstacle-free environment (Subsection 3.4.1)

ii. 2-dimensional environment in presence of obstacles (Subsection 3.4.2)

iii. 3-dimensional obstacle-free environments (Subsection 3.4.3)

iv. 3-dimensional environment in presence of obstacles (Subsection 3.4.4)

Since most of the flocking algorithms in the literature have investigated 2D

agents scenarios, in order to be able to evaluate our proposed methodology in

comparison with them, we present the 2D scenarios in subsections 3.4.1 and 3.4.2

for agents operating in the obstacle-free environment and in presence of obstacles,

respectively. The 3D scenarios presented in 3.4.3 and 3.4.4 are included because our

ultimate goal in this work is to implement our proposed method in a real-time ap-

plication considering multiple UAS, therefore, we need to evaluate the proposed

approach in a 3-dimensional environment in order to be able to experimentally

apply it in a real-world application. We provided the comparison of the controller
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signals of the proposed method with respect to other methods in order to validate

the performance of the proposed controller in terms of reducing the controller ef-

fort and the kinetic energy of the system.

In both 2-dimensional scenarios, a total of 150 agents where employed, while a

total of 50 agents were employed in both 3-dimensional scenarios. Initial velocities

in all cases are equal to zero, and positions randomly distributed in a squared

area. The following parameters are used through all the simulations: r = 1.2dα,

d
′

= 0.6dα, r′ = 1.2d
′ and in the 2-dimensional cases dα = 7, while dα = 4 for the

3-dimensional cases. For the σ-norm the parameter ε = 0.1, for φ(z) the parameters

a = b = 5, for the bump function φα(z) we use h = 0.2, and for φβ(z) we use h = 0.9.

The remaining parameters of the algorithm are specified in each subsection, as

needed.

3.4.1 BELBIC for Flocking in 2-Dimensional Obstacles-Free En-

vironment

Figure 3.3 and Figure 3.4 show two snapshots of the simulation in the obstacle-free

environment. Figure 3.3 shows the 150 agents in their initial positions at t = 0s.

It can be seen that the randomly distributed agents start forming an α-lattice. Fig-

ure 3.4 shows the agents at t = 70s where they are flocking and have successfully

formed a connected network.

For comparison purposes, two similar experiments were performed, but using

the flocking algorithms introduced in [1] and Multirobot Cooperative Learning

for Predator Avoidance (MCLPA) flocking algorithm introduced in [2] instead of
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Figure 3.3: BELBIC-based Flocking of MAS. Simulation in an obstacle-free envi-
ronment. 150 agents randomly distributed in a squared area at t = 0s

.

the BELBIC-based flocking. Figure 3.5, Figure 3.6, and Figure 3.7 show the con-

trol signals generated by the conventional flocking method in [1], MCLPA flock-

ing method in [2], and the BELBIC-based flocking, respectively. The Table 3.1

presents some characteristics of the control signals generated by all three conven-

tional, MCLPA, and the BELBIC-based flocking strategies in an obstacle-free envi-

ronment.

Figure 3.8 shows the Mean Square Value 1
n

∑n
i=1 (ui)

2 of the control effort gen-

erated by the overall group of agents, for the flocking methods in [1], the MCLPA

flocking strategy in [2], and the BELBIC-based flocking in obstacle-free environ-
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Figure 3.4: BELBIC-based Flocking of MAS. Simulation in an obstacle-free envi-
ronment. At t = 70s the 150 agents are flocking and have successfully formed a
connected network.

Table 3.1: Characteristics of the control signals generated by all three flocking
strategies in an obstacle free environment.

Flocking in [1] MCLPA [2] BELBIC-based
Max Value 37.8306 43.9181 6.0529
Min Value −5.8222 −7.1224 −1.2349

Mean Value 0.1343 0.1431 0.1334
Standard Deviation 1.0979E − 04 1.3051E − 04 0.6905E − 04

ment. The plot shows that, despite all methods are able to accomplish flocking of

MAS, the control signals generated by the BELBIC-based flocking are smaller, and

therefore more appropriate to implement in real-robots.

Figure 3.9 presents the Kinetic Energy K(v) = 1
2

∑
i ‖ vi‖

2 associated to the
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Figure 3.5: Control signals generated by the flocking algorithm proposed in [1] in
an obstacle-free environment.

overall group of agents, for the flocking methods in [1], the MCLPA flocking strat-

egy in [2], and the BELBIC-based flocking, in an obstacle free environment. Here

vi = pi − p̄ and p̄ = 1
n

∑
i pi. The plot shows that the Kinetic Energy associated to

the BELBIC-based flocking is smaller, and therefore more appropriate for real-time

implementations.



67

Figure 3.6: Control signals generated by the MCLPA flocking algorithm proposed
in [2] in an obstacle-free environment.
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Figure 3.7: Control signals generated by the BELBIC-based flocking algorithm in
an obstacle-free environment.
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Figure 3.8: Mean Square value of all agents control effort in obstacle-free envi-
ronment. The BELBIC-based flocking is presented in dot-dashed red, the MCLPA
flocking in [2] in dashed green, and the flocking in [1] in solid blue. Notice that the
control signals generated by the BELBIC-based flocking are smaller, and therefore
more appropriate to implement in real-robots.
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Figure 3.9: Kinetic Energy of all agents in an environment free of obstacles. The
BELBIC-Based flocking energy is shown as a dot-dashed red line, while the energy
of the MCLPA flocking in [2] in dashed green and the energy of the flocking in [1]
is shown as a solid blue line. The Kinetic Energy associated to the BELBIC-based
flocking is smaller, and therefore more appropriate for real-time implementations.
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3.4.2 BELBIC-based flocking in 2-Dimensional Environment with

Obstacles

For this scenario, a set of obstacles were created, with the characteristics contained

in the following matrix

OBS =


100 110 120 130 150 160

20 60 40 −20 40 0

10 4 2 5 5 3


Here, the first and second row represent the horizontal and vertical coordinates

of each obstacle, respectively, and the last row represents the obstacle’s radius.

Figure 3.10 and Figure 3.11 show two snapshots of the simulation in presence

of obstacles. Figure 3.10 shows the six obstacles, as well as the 150 agents at t = 0s

in their initial random positions. It can be observed that the agents start to form

the α-lattice, while moving towards the area where the obstacles are located. Fig-

ure 3.11 shows the agents at t = 20s, where it can be observed that they managed to

successfully negotiate the obstacles without any collision. The agents finally form

the connected network after completely passing all the obstacles, as can be seen in

Figure 3.12.

For comparison purposes, two similar experiments were performed, but using

the flocking algorithms introduced in [1] and MCLPA flocking algorithm intro-

duced in [2] instead of the BELBIC-based flocking algorithm. Figure 3.13, Fig-

ure 3.14, and Figure 3.15 show the control signals generated by the conventional

flocking method in [1], MCLPA flocking method in [2], and the BELBIC-based

flocking approach, respectively. From these plots, it is possible to observe that,
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Figure 3.10: Simulation of the BELBIC-based flocking algorithm for MAS evolv-
ing in an environment with obstacles. At t = 0s, the 150 agents are randomly
distributed. The obstacles appear as circles of different sizes.

despite all methods achieve MAS flocking, the controller effort is smaller for the

BELBIC-based flocking methodology. The Table 3.2 presents some characteristics

of the control signals for all three flocking methods introduced in [1], in [2], and

the BELBIC-Based flocking in the presence of obstacles.

Table 3.2: Characteristics of the control signals generated by both flocking strate-
gies in the presence of obstacles.

Flocking in [1] MCLPA [2] BELBIC-based
Max Value 48.0637 65.4242 12.1297
Min Value −86.5126 −98.3016 −21.1641

Mean Value 0.9791 1.2055 0.4306
Standard Deviation 0.0063 0.0097 0.0011
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Figure 3.11: Simulation of the BELBIC-based flocking algorithm for MAS evolving
in an environment with obstacles. At t = 20s, the 150 agents are successfully
negotiating the obstacles without any collision.

Figure 3.16 show the Mean Square value 1
n

∑n
i=1 (ui)

2 of the control effort gen-

erated by the overall group of agents, for the flocking methods in [1], the MCLPA

flocking strategy in [2], and the BELBIC-based flocking, when evolving in an envi-

ronment with obstacles.

Figure 3.17 presents the Kinetic Energy K(v) = 1
2

∑
i ‖ vi‖

2 associated to the

overall group of agents, for the flocking in [1], the MCLPA flocking strategy in [2],

and the BELBIC-based flocking, when agents are evolving in an environment with

obstacles. Here vi = pi − p̄ and p̄ = 1
n

∑
i pi. The plot shows that the Kinetic En-

ergy associated to the BELBIC-based flocking is smaller than the MCLPA flocking
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Figure 3.12: Simulation of the BELBIC-based flocking algorithm for MAS evolving
in an environment with obstacles. At t = 70s, the 150 agents have successfully nav-
igated through the obstacles, without any collision, and have formed a connected
network.

strategy in [2] and similar to the Kinetic Energy generated by the flocking in [1].

However, it is worth noticing that the BELBIC-based flocking signal is smoother,

and therefore more appropriate for real-time implementations.
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Figure 3.13: Control signals generated when using the flocking method introduced
in [1], in an environment with obstacles.
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Figure 3.14: Control signals generated when using the MCLPA flocking method
introduced in [2], in an environment with obstacles.



77

0 10 20 30 40 50 60 70

-25

-20

-15

-10

-5

0

5

10

15

Figure 3.15: Control signals generated when using the BELBIC-based flocking
method, in an environment with obstacles.
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Figure 3.16: Mean Square value of the control effort generated by the overall group
of agents when flocking in an environment with obstacles. The BELBIC-based
flocking is presented in dot-dashed red, the MCLPA flocking strategy in [2] in
dashed green, and the flocking in [1] in solid blue. Notice that the control signals
generated by the BELBIC-based flocking are smaller, and therefore more appropri-
ate to implement in real-robots.
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Figure 3.17: Kinetic Energy associated with the overall group of agents when
evolving in an environment with obstacles. The BELBIC-Based flocking appears as
a dot-dashed red line, while the MCLPA flocking strategy in [2] in dashed green,
and the flocking method in [1] appears as a solid blue line. The Kinetic Energy
of the BELBIC-based flocking is smaller than the MCLPA flocking strategy in [2]
and similar to the Kinetic Energy generated by the flocking in [1]. However, the
BELBIC-based flocking signal is smoother, and therefore more appropriate for real-
time implementations.
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3.4.3 Flocking in a 3-dimensional Obstacle-Free Environment

Figure 3.18 shows the 50 UAS in their initial positions, at t = 0s. Figure 3.19 shows

the UAS at t = 70s where they have successfully formed a 3D connected network.

Figure 3.18: BELBIC-inspired Flocking of MAS in a 3D obstacle-free environment,
at t = 0s.

Figure 3.19: BELBIC-inspired Flocking of MAS. Simulation in a 3D obstacle-free
environment. At t = 70s the 50 UAS have successfully formed a 3D connected
network.
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For comparison purposes, a similar experiment was performed, but using the

flocking algorithm in [1] instead of the BELBIC-inspired flocking.
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3.4.4 Flocking in 3-dimensional Environment with Obstacles

For this scenario, a set of 3D obstacles were created, with the characteristics con-

tained in the following matrix

OBS =



100 110 110 130 130 160

4 10 0 2 10 5

10 3 5 4 6 8

2 3 2 1 3 5


The first three rows represent the (X, Y, Z) coordinates, while the last row repre-

sents the obstacle’s radius.

Figure 3.20 shows the 50 UAS at t = 0s, in their initial random positions, mov-

ing towards the area where the obstacles are located. The UAS form the 3D con-

nected network after completely passing all the obstacles, as can be seen in Fig-

ure 3.21.

Figure 3.20: Simulation of the BELBIC-inspired flocking algorithm for MAS evolv-
ing in an environment with obstacles. At t = 0s, the 50 UAS are randomly dis-
tributed. The obstacles appear as spheres of different sizes.
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Figure 3.21: Simulation of the BELBIC-inspired flocking algorithm for MAS evolv-
ing in an environment with obstacles. At t = 70s, the 50 UAS have successfully
navigated through the obstacles, without any collision, and have formed a 3D con-
nected network.

For comparison purposes, a similar experiment was performed, but using the

flocking algorithm in [1] instead of the BELBIC-inspired flocking.
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3.5 Experimental Results

This section presents experimental results showing the performance of the BELBIC-

inspired flocking for MAS. Figure 3.22 shows the data flow of the proposed algo-

rithm implementation, which considers the stabilization of four quad rotorcraft

UAS.

11/8/16, 3(43 PM

Page 1 of 1file:///Users/steed/Dropbox/Flocking/IFAC_MultipleDrone/ifacconf_latex/figures/Multiple.svg

Figure 3.22: Data flow of the proposed algorithm implementation.
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3.5.1 Experimental Testbed

The platform implemented for validation of the proposed algorithm is available at

the Unmanned Systems Laboratory (USL) from the University of Nevada - Reno [83],

see Figure 3.23. The Base Station of this testbed runs Ubuntu 14.04 OS and the

Robot Operating System (ROS) environment in combination with Matlab. The pro-

posed algorithms were coded in C/C++ and Matlab, and were executed at 100Hz.

The aerial robots correspond to the Bebop drone, manufactured by Parrot.

!"#$%&'&

!"#$%&(& !"#$%&)&

!"#$%&*&

+,-,$&./0%12#&./3#2/4&

Figure 3.23: Experimental testbed: a set of four drones, a motion capture system,
Ground Station computers, and WiFi links.

The 3-dimensional position of the UAS is obtained by means of a Motion Cap-

ture System (MCS) manufactured by OptiTrack. The information provided by the

MCS is reported to the OptiTrack Interface PC by means of a Gigabyte Ethernet

connection. Next, this information is sent to the Base Station PC by means of an

Ethernet connection. The Base Station computer uses this information to execute
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the BELBIC algorithm and to calculate the control signals, which are then sent to

the Bebop platforms by means of a WiFi link.

3.5.2 Real-time Experiments

The ultimate goal of this experimental application is to maintain a satisfactory

flocking of the MAS, even when the model of the UAS is uncertain, and when

unknown external factors affect the performance of the agents. In this experiment,

a total of four UAS were employed, with initial velocities equal to zero, and posi-

tions randomly distributed in a squared area. The following parameters are used

for the experiment: r = 1.2dα, d′
= 0.6dα, r′ = 1.2d

′ , while dα = 2m. For the σ-norm

the parameter ε = 0.1, for φ(z) the parameters a = b = 5, for the bump function

φα(z) we used h = 0.2, and for φβ(z) we used h = 0.9.

Figure 3.24 plots the positions of the four UAS in (X, Y, Z) axis. It can be seen

that all the agents successfully accomplishing the objective of our experimental

application.

Figure 3.25 plots the velocities of the four UAS in (X, Y, Z) axis. It can be seen

that all the agents agreed on the same speed, successfully accomplishing the objec-

tive of our experimental application.
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Figure 3.24: BELBIC-inspired flocking of MAS: agreement in UAS positions in
(X, Y, Z) axis.
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3.6 Conclusions

A biologically-inspired intelligent controller based on a novel architecture of emo-

tional learning in mammal’s brain was proposed for flocking control of MAS. The

methodology, which is given the name BELBIC-based flocking, was designed and

implemented in the real-time coordination of multiple UAS platforms operating

in presence of system uncertainties and dynamic environment. In addition, the

convergence analysis of the proposed approach has been studied. Numerical and

experimental results of the BELBIC-inspired flocking demonstrated the effective-

ness of the proposed approach, as well as its applicability to real-time systems.

3.7 Appendix A

3.7.1 Non-adapting Phase

Our goal is to investigate the output of the system in non-adapting phase (i.e.,

when the system completes its learning process) so the equations (3.14) and (3.15)

which are the updating rules of Amygdala and Orbitofrontal Cortex, respectively,

should be taken into consideration. In addition we make an assumption that the

max function in equation (3.14) could be neglected. By substituting (3.12) and

(3.13) in equation (3.11) the output of the model could be defined as follows:

MO =
∑
l

VlSIl −
∑
l

WlSIl

=
∑
l

(Vl −Wl)SIl (3.23)



90

∆Vl =KvSIl

(
ES −

∑
l

Al

)

=KvSIl

(
ES −

∑
l

VlSIl

)
(3.24)

∆Wl =KwSIl (MO − ES)

=KwSIl

(∑
l

(Vl −Wl)SIl − ES

)
(3.25)

When the learning process is completed (i.e., after system completes its learning

process) the variations of the weights of Amygdala (∆Vl) and Orbitofrontal Cortex

(∆Wl) will be equal to zero (i.e., ∆Vl = ∆Wl = 0). With the assumption of SIl 6= 0

the following holds:

KvSIl

(
ES −

∑
l

VlSIl

)
=0

⇒
∑
l

VlSIl =ES (3.26)

KwSIl

(∑
l

(Vl −Wl)SIl − ES

)
=0

⇒
∑
l

(Vl −Wl)SIl =ES

⇒
∑
l

WlSIl =0 (3.27)

By substituting (3.26) and (3.27) in equation (3.23) the model output in non-adapting

phase will be as follows:

MO =
∑
l

(Vl −Wl)SIl =
∑
l

VlSIl = ES (3.28)
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3.7.2 Main Proof

Considering the results obtained in Subsection 3.7.1 the following should be achieved:

MOi → ESi (3.29)

Let’s considering the V ∗i is the weight of Amygdala for each agent i when the

system has been learned and let’s ÊSi be the Emotional Signal for each agent i

during the adaptation phase. The following hold:

ESi = V ∗i SIi and ÊSi = ViSIi (3.30)

∆Vi(k) = KvSIi max
(

0, ESi − ÊSi
)

(3.31)

We will investigate the results of the following two cases:

I. ESi − ÊSi ≥ 0

II. ESi − ÊSi < 0

Considering the case I., the proof can be achieved as follows:

∆Vi(k) =KvSIi max
(

0, ESi − ÊSi
)

=KvSIi

(
ESi − ÊSi

)
=KvSIi (V

∗
i SIi − ViSIi)

=KvSIi (V
∗
i − Vi)SIi

=KvSIiṼiSIi

=KvṼi (SIi)
2 (3.32)
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where Ṽi = V ∗i − Vi.

Vi (k + 1) =Vi (k) + ∆Vi(k)

Ṽi (k + 1) =V ∗ − Vi (k)−∆Vi(k)

=Ṽi (k)−KvṼi (SIi)
2

=
[
1−Kv (SIi)

2] Ṽi (k) (3.33)

Considering the case II., it is obvious that when ESi − ÊSi < 0 the max function

in equation (3.31) will force the adaptation in Amygdala to stop and the following

hold:

∆Vi(k) =0

Vi (k + 1) =Vi (k)

Ṽi (k + 1) =Ṽi (k) (3.34)

The proof can be achieved as follows:

∆Wi(k) =KwSIi (MOi − ESi)

=KwSIi (ViSIi −WiSIi − V ∗i SIi)

=KwSIi (− (V ∗i − Vi)SIi −WiSIi)

=KwSIi

((
−Ṽi −Wi

)
SIi

)
=−KwW̃i (SIi)

2 (3.35)

where Ṽi = V ∗i − Vi and W̃i = Ṽi +Wi.

Wi (k + 1) =Wi (k) + ∆Wi(k)

W̃i (k + 1) =Ṽi (k + 1) +Wi (k + 1)

=Ṽi (k) +Wi (k) + ∆Wi(k)

=W̃i (k)−KwW̃i (SIi)
2

=
[
1−Kw (SIi)

2] W̃i (k) (3.36)
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Chapter 4

A Biologically-Inspired Distributed

Fault Tolerant Flocking Control for

Multi-Agent System in Presence of

Uncertain Dynamics and Unknown

Disturbance

In this paper, the problem of flocking for Multi-Agent Systems (MAS) in presence

of system uncertainties and unknown disturbances is investigated. A biologically-

inspired novel distributed resilient controller based on a computational model of

emotional learning in the mammalian brain is proposed. The methodology, known

as Brain Emotional Learning Based Intelligent Controller (BELBIC), integrates a



94

resilience mechanism with multi-objective properties into the distributed flocking

control strategy. The developed strategy adopts the learning capabilities of BEL-

BIC with the flocking that makes it a very promising approach, especially while

dealing with system uncertainties and/or unknown disturbances. Furthermore,

the low computational complexity of the designed method makes it very suitable

for practical implementation in real-time applications. Eventually, the effective-

ness of the developed intelligent resilient distributed flocking control approach is

demonstrated through the several simulation scenarios.

4.1 Introduction

Coordination control of Multi-Agent Systems (MAS) has received a great deal of

interests from diverse research communities during the past decade, see [1,3,6,11]

and the references therein. Meanwhile, flocking design for MAS has also attracted

enormous interests [88]. Flocking is a fact in which a large number of self-propelled

entities form the coordinated and collective motion. This phenomenon is exhibited

by many living beings such as birds, fish, bacteria, and insects [15].

In the pioneering work [7], three fundamental rules for simulating the flocking

behavior are introduced, specifically, separation, alignment, and cohesion. Recently,

diverse researchers spent tremendous efforts to improve the flocking behavior of

MAS [6, 17, 88].

However, most of those works only considered the agents with accurate model.

Inherently, MAS contains several critical problems such as system uncertainties

and unknown disturbances from harsh environment. The performance of current

flocking algorithms could be significantly degraded even fail to maintain the sys-
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tem stability due to the dispersion of disturbances and/or uncertainties. Aiming at

addressing the issues arising from practical harsh conditions, diverse research ef-

forts have been proposed. For example, the authors in [27] proposed a distributed

target tracking and estimation algorithm using multiple autonomous agents with

uncertain dynamics. Robust consensus tracking for MAS with disturbances and

unmodeled dynamics has been investigated in [28]. The neural adaptive leader-

follower flocking control of MAS has been addressed in [30]. The authors in [16],

investigated the flocking of MAS with communication delays in a noisy environ-

ment. Adaptive flocking of nonlinear MAS with uncertain parameters is addressed

in [19]. Closely related, the leader-follower flocking problem with a moving leader

and parametric uncertainties is studied in [18]. In [20], flocking with connectivity

preservation of MAS subject to external disturbances has been developed. Most

recently, adaptive architectures for resilient control of networked MAS in the pres-

ence of misbehaving agents has been proposed in [89]. Also, the authors in [90]

presented a resilient formation control for mobile robot teams in a non-cooperative

manner.

However, most of these recent approaches highly depend on entire or partial

information about the system dynamics. Also, the developed learning-based ap-

proaches are computationally complex and not appropriate for real-time imple-

mentation. Moreover, the practical impacts from unknown disturbances have not

been considered in most of the existing flocking algorithms [1, 17, 18]. To over-

come these deficiencies, a novel low-computational biologically-inspired resilient

distributed flocking control algorithm will be proposed in this paper. This pro-

posed method cannot only guarantee the desired flocking performance, and also

handle the system uncertainties and unknown disturbances through a novel low-

computational biologically-inspired learning approach.
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In recent years, intelligent approaches have been extensively utilized for suc-

cessfully solving diverse complex problems [23,91–95]. Among them, biologically-

inspired intelligent approaches have been received tremendous interests by many

researchers because of their inherent potential to deal with computationally com-

plex systems. One of such approaches which adopts the computational model

of emotional learning introduced in [40] is Brain Emotional Learning Based Intel-

ligent Controller (BELBIC). This methods mimics parts of the mammalian brain

which are responsible of producing the emotion i.e., the amygdala, orbitofrontal cor-

tex, thalamus, and sensory input cortex. BELBIC based methodologies have been

demonstrated to be a reliable solution while dealing with uncertainties [43], [41].

Sensory Inputs (SI) and Emotional Signal (ES) are the two main inputs to the BEL-

BIC. This biologically-inspired intelligent controller is an appealing strategy for

solving the multi-objective problems in real-time applications due to the flexibil-

ity in defining both SI and ES [42]. Moreover, BELBIC has a low computational

complexity on the order of O (n).

The main contribution of this paper is to develop Resilient BELBIC (R-BELBIC)

as an intelligent distributed resilient controller for flocking of MAS in presence

of system uncertainties and unknown disturbances. To the best of the authors’

knowledge, this is the first time that R-BELBIC is developed and implemented

for accomplishing MAS flocking. In this paper, we focus on the problem of in-

telligent distributed resilient flocking of MAS. Our proposed methodology builds

on the distributed flocking algorithm. In order to guarantee resilience, we em-

ployed the computational model of emotional learning in the mammalian limbic

system, i.e., BELBIC with context. We then demonstrated that the developed con-

trol law achieves resilient flocking of MAS through both computer-aid simulation

and experimental tests. Ultimately, individual robots follow the developed con-
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trol strategy that ensures resilience, and use the R-BELBIC flocking algorithm to

guarantee the suitable behavior even in the presence of uncertainties and distur-

bances due to the learning capability of the proposed approach. Furthermore, R-

BELBIC has a very low computational cost which makes it a promising method in

a real-time application. The developed R-BELBIC design provides an intelligent

distributed resilient flocking controller with multi-objective properties i.e., control

effort optimization, uncertainty handling, and noise/disturbance rejection, while

maintaining the system complexity in a practically achievable limit. In order to

demonstrate the effectiveness of the proposed approach, a set of numerical simu-

lations are provided. Additionally, a comparison between the developed approach

and conventional flocking strategies is provided, where it is possible to observe the

resilient flocking strategy attained with R-BELBIC.

The rest of the paper is organized as follows. Section 4.2 presents the prob-

lem formulation and preliminaries about MAS flocking and BELBIC. Our main

contribution is given in Section 4.3, which consists of an intelligent distributed re-

silient flocking control strategy of MAS based on R-BELBIC. Section 4.4 presents

numerical simulation results and Section 4.5 presents an experimental validation

of developed method. The conclusion of the paper and future directions of our

work are provided in Section 4.6.

4.2 Problem Formulation and Preliminaries

In this section, some preliminaries are provided and the problem formulation is

briefly discussed. First, the dynamic of the MAS is given, then, flock topology is

modeled by means of a dynamic graph. Next, BELBIC model is introduced, and
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ultimately, the problem is formulated.

4.2.1 MAS Flocking

Consider n agents, with double integrator dynamics, evolving in anm dimensional

space (m = 2, 3). The equations of motion of each agent can be described as q̇i = pi

ṗi = ui i = 1, 2, ..., n
(4.1)

where ui is the control input, qi is the position, and pi is the velocity of the agent i,

respectively. The flock topology is modelled by means of a dynamic graph G(υ, ε)

which consists of a set of vertices υ = {1, 2, ..., n} representing the agents, and

edges ε ⊆ {(i, j) : i, j ∈ υ, j 6= i} representing the communication link between a

pair of agents. The neighborhood set of agent i is described by

Nα
i = {j ∈ υα :‖ qj − qi‖ < r, j 6= i} (4.2)

where r is a positive constant expressing the range of interaction between agents

i and j, and ‖ · ‖ is the Euclidean norm in IRm. The geometric model of the flock,

i.e., the α-lattice [1] is accomplished by solving the following set of algebraic con-

straints

‖ qj − qi‖ = d ∀j ∈ Nα
i (4.3)

where the positive constant d describes the distance between two neighbors i and

j. In order to resolve the singularity problem caused at qi = qj in the collective

potential function, equation (4.3) can be rewritten as

‖ qj − qi‖σ = dα ∀j ∈ Nα
i (4.4)
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where dα = ‖ d‖σ, and ‖ ·‖σ is the σ-norm which is represented by ‖ z‖σ = 1
ε
[
√

1 + ε‖ z‖2−

1], and ε > 0 is a positive constant. For a vector z, the σ-norm represents a map

from IRm to IR ≥ 0. The new map ‖ z‖σ is differentiable everywhere, while the

Euclidean norm ‖ z‖ is not differentiable at z = 0.

Considering the above conditions, a smooth collective potential function is de-

fined as

V (q) =
1

2

∑
i

∑
j 6=i

ψα(‖ qj − qi‖σ)

whereψα(z) is a smooth pairwise potential function determined byψα(z) =
∫ z
dα
φα(s)ds,

with φα(z) = ρh(z/rα)φ(z−dα), and φ(z) = 1
2
[(a+b)σ1(z+c)+(a−b)], with σ1(z) =

z/
√

1 + z2. Notice that φ(z) is an uneven sigmoidal function with 0 < a ≤ b,

c = |a − b|/
√

4ab to guarantee that φ(0) = 0. In addition, ρh(z) is a scalar bump

function which smoothly varies between [0, 1]. A possible choice for determining

ρh(z) is [1] 
1, z ∈ [0, h)

1
2

[
1 + cos

(
π (z−h)

(1−h)

)]
, z ∈ [h, 1]

0, otherwise

(4.5)

The flocking control algorithm ui = uαi + uγi introduced in [1] makes all agents

to form an α-lattice configuration, while at the same time avoiding any collisions,

and following a specific trajectory. The algorithm consists of the following main

components: (i) uαi which is the interaction term between two α-agents i and j, (ii)

uγi which is a goal term and represents a distributed navigational feedback compo-

nent. Each one of these components is explicitly expressed as follows

uαi = cα1
∑
j∈Nα

i

φα(‖ qj − qi‖σ)ni,j + cα2
∑
j∈Nα

i

aij(q)(pj − pi)



100

uγi = −cγ1σ1(qi − qr)− c
γ
2(pi − pr)

where cα1 , cα2 , cγ1 , and cγ2 are positive gains. The pair (qr, pr) represents the γ-agent,

which is the virtual leader of the flock and is described as q̇r = pr

ṗr = fr(qr, pr)
(4.6)

The term ni,j is a vector determined by

ni,j =
qj − qi√

1 + ε‖ qj − qi‖2

The term aij(q) is the element of the spatial adjacency matrix A(q), which is ex-

pressed as aij(q) = ρh(‖ qj − qi‖σ/rα) ∈ [0, 1], j 6= i. In this equation rα = ‖ r‖σ,

aii(q) = 0 for all i and q.

4.2.2 Brain Emotional Learning-Based Intelligent Controller

BELBIC was first introduced in [41], and since then it has been utilized in differ-

ent applications exhibiting very satisfactory results. The authors in [96] applied

this controller for performing the automatic speed control of an asymmetrical six-

phase induction motor. A BELBIC load-frequency control of interconnected power

system has been addressed in [97]. The authors in [43] successfully applied this

controller for the attitude control of a quad rotorcraft. More recently, BELBIC was

employed for the navigation of an Unmanned Ground Vehicle in [74]. Closely re-

lated, the authors in [75] addressed the optimal bi-objective structure emotional

learning for a Dynamic Voltage Restorer.

Furthermore, several research groups have presented experimental applica-

tions based on the real-time implementation of BELBIC. For example, the authors
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in [87] implemented this strategy on a Field-Programmable Gate Array for control-

ling an overhead traveling crane. A Digital Signal Processor board was employed

to practically implement BELBIC for controlling an interior permanent magnet

synchronous motor drive in [86]. The authors in [46] experimentally applied this

strategy for controlling the speed of a digital servo system.

The learning capability of an intelligent system is a pivotal characteristic which

distinguishes it from a conventional system [41]. It is essential for any learning

methodology to have an appraisal mechanism for determining the operational

condition of the system to cope with the changing environment. One category of

appraisal mechanisms is based on the emotional cues [98]. This evaluation mech-

anism determines how external stimuli could affect the capability of the system

to effectively function in short-term and also to retain its long-term prospects for

survival. Emotional Learning, is a learning technique that is based on emotional

appraisals.

The Sensory Inputs (SI) and the Emotional Signal (ES) are the two inputs to

the BELBIC model. The output of this model can be described by the following

equation

MO =
∑
l

Al −
∑
l

OCl (4.7)

which is determined by subtracting the Orbitofrontal Cortex outputs (OCl) from

the Amygdala outputs (Al). In this equation, l represents the number of sensory

inputs.

The outputs of the Amygdala and Orbitofrontal Cortex are computed by adding

all their corresponding nodes, see Figure 4.1, where the outputs of each node are

expressed as

Al = VlSIl (4.8)
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Figure 4.1: Computational model of emotional learning (Consisting of three main
part Amygdala, Orbitofrontal Cortex, and Hippocampus).

OCl = WlSIl (4.9)

where Wl is the weight associated to the Orbitofrontal Cortex, Vl is the weight

associated to the Amygdala, and SIl is the lth sensory input.

In order to update Vl and Wl we use

∆Vl = KvSIl max

(
0, ES −

∑
l

Al

)
(4.10)

∆Wl = KwSIl (MO − ES) (4.11)

where Kv and Kw are the learning rates of the Amygdala and the Orbitofrontal

Cortex, respectively.

There is another input to the Amygdala, which directly comes from the Tha-
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lamus. This input is computed by finding the maximum of all SI and can be de-

scribed as

Ath = Vth max (SIl) (4.12)

Several techniques have been employed for tuning the BELBIC parameters [41,43,

47, 79–81]. In this paper, a heuristic approach is employed for determining the

BELBIC parameters.

4.2.3 Flocking Control Objectives

The problematic and goal of this research can be summarized as follows. Consider-

ing the model uncertainty and disturbances, the new dynamics could be described

as follows:  q̇i = pi

ṗi = ui + χipi + Γi , i = 1, 2, ..., n
(4.13)

where {ui, qi, pi} ∈ IRm are same as (equation 4.1) and χi ∈ IRm×m is the unknown

uncertain parameters matrix and Γi ∈ IRm is an unknown vector of disturbances

respectively.

The objective is then, to design an intelligent distributed resilient controller, in

such a way that the motion of the agents in the flock exhibits an emergent behavior

caused by a set of simple rules, which are executed by each agent independently,

and do not require any central coordination. Moreover, the proposed controller

should keep a low level of complexity, in order to be practically implementable in

the real-time flocking of MAS.

Ultimately, the proposed methodology will enable the flock to track a virtual

leader (i.e., the γ-agent), while avoiding collisions with every other agent in the
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group. Furthermore, the proposed R-BELBIC flocking strategy should be able to

satisfy multiple control objectives, such as (i) minimization of the control effort

and energy expenses, (ii) resilient against environmental noise/disturbances, and

(iii) model uncertainty handling. All of these previous requirements should be

attained without increasing the complexity of the system.

Remark 5. In practical MAS flocking control systems, due to the dynamic environment,

autonomous agents are commonly suffering from different type of faults. Since the dynam-

ics of the quad rotorcrafts employed for real-time experimental evaluation are unknown,

and since we did our experiment in a small laboratory where we have uncertain distur-

bances affecting the MAS due to the close operation of neighboring quad rotorcrafts (i.e.,

wind disturbances). Therefore, in this paper, our analysis is focused on developing an

intelligent distributed resilient controller for flocking of MAS in presence of system un-

certainties and unknown disturbances from complex environment. One can extend our

results also to handle other resources of faults such as network imperfections [99], actuator

faults [100], etc.

Remark 6. Multi-agent systems should operate more economical, more reliable, and much

safer, to be practically applicable in real world scenarios such as tracking, search and rescue,

underwater explorations, etc [101–104]. Therefore, improving the performance of MAS by

leveraging the information about the environment (i.e., context) needs to be studied. It is

worth mentioning that, to the best of authors’ knowledge, this is the first attempt to inte-

grate the Hippocampus to provide the context to the BELBIC model to develop Resilient

BELBIC (RBELBIC) as an intelligent distributed resilient controller for flocking of MAS

in presence of system uncertainties and unknown disturbances. Also, R-BELBIC is im-

plemented in real-time for accomplishing MAS flocking by employing multiple UAS. In

addition, our model also is an appealing strategy for solving the multi-objective problems

in real-time applications due to the flexibility in defining both SI and ES [41]. Moreover,
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R-BELBIC has a low computational complexity. Furthermore, we provided the Lyapunov

stability analysis to demonstrate that our proposed methodology guarantees the conver-

gence of the designed control signals as well as maintain the system stability during the

learning. Hence, it is of both practical and theoretical significance to study different MAS

problems by employing R-BELBIC.

4.3 Intelligent Distributed Resilient Flocking Control of MAS Us-

ing R-BELBIC

One component has been missing from the model described in subsection 4.2.2.

Hippocampus is an important component in emotional conditioning, and it is re-

sponsible for supplying the system with a context [98]. Based on different theories

and models, many roles and functionalities have been assigned to the hippocam-

pus. The hippocampus has been known by many functionalities, including but not

limited to: (i) spatial navigation, (ii) establishing the long-term memory and (iii)

the contextual representations [98]. Also, mapping of the environment based on

the environmental cues is one of the hippocampus responsibilities [98]. Further-

more, the comparison between stored regularities and actual stimuli is one of the

important functionalities of the hippocampal system [98].

Note, our focus is on hippocampus effects on the amygdala model. Here, we

investigated the hippocampus effects on the system by adding the Context block to

the system. “Context is a feature that is frequently defined in the negative, as any stimuli

that is not directly involved in the present experiment, stimuli that somehow encode the en-

tire situation, rather than individual features, or as stimuli that are not being manipulated

by the experimenter” [98].
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Figure 4.2 illustrate the R-BELBIC architecture implemented in this work.

Sensory Input (SI) Function

Emotional Signal (ES) Generator

System 
Output

-+
PlantBELBIC

System 
Input

Objectives

Context

Figure 4.2: R-BELBIC in the control loop.

The general form of the SI and the ES signals are as follow:

SI = G (t, y, e, u, r, CON) (4.14)

ES = F (t, y, e, u, r, CON) (4.15)

where t, e, u, y, and r, are time, system error, control effort, system output, and

system input, respectively. The term CON is a new term which represents the

Context. Specific control objectives can be implicitly determined by choosing the

appropriate ES. For example, it is possible to choose the ES in such a way to op-

timize the energy expense, to preserve network connectivity, or to attain superior

target tracking performance, among others.

Remark 7. Essentially, R-BELBIC is producing its actions based on the Emotional signal

(ES) and Sensory input (SI). The current situation of the system is represented by the

received sensory inputs and the emotional signal represents the condition of the system by

considering the particular objective of interest. Therefore, by assigning different values to

SI and ES, they would have different impacts on the performance of the whole system. In

other words, these functions provide the design freedom allowing different priorities for
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flocking objective such as tracking, varying objectives, etc. However, our objective in this

work is to handle system uncertainties and unknown disturbances, while also considering

the perfect flocking behavior.

The R-BELBIC-inspired flocking focuses on handling the system uncertainties

and disturbances (resilient), while at the same time minimizing the control effort

and the energy of the flock. By doing this, we will accomplish a practical controller

well suited for implementation in real-time applications. In order to fulfill the

above-mentioned objectives, the ES is designed in such a way that the increase in

control effort will express a negative emotion, e.g., stress. Therefore, the more stress

emanated from the system, the more the system performance will be considered

as not satisfactory. In addition, by adding the context term, it becomes resilient

dealing with system uncertainties and disturbances.

The utilized sensory inputs (SIi) and emotional signal (ESi), for each agent i,

are expressed as follows

SIi = Kα
SI,iu

α
i +Kγ

SI,iu
γ
i +KCON

SI,i Υi (ui, qi, pi) (4.16)

ESi = Kα
ES,iu

α
i +Kγ

ES,iu
γ
i +KCON

ES,i Υi (ui, qi, pi) (4.17)

whereKα
SI,i,K

γ
SI,i,K

CON
SI,i ,Kα

ES,i,K
γ
ES,i,K

CON
ES,i are positive constants and Υi (ui, qi, pi)

is a function representing Context. By assigning different values to these gains, the

influence of ES on the system behavior will change. Since this work emphasizes

the resilient control of the system, the gains for the context are greater than the

others.

In a real-time scenario, the MAS could face unexpected events. The designer

can take advantage of the adaptability of the equation (4.17) in order to successfully



108

achieve different flocking objectives. Then, from the equations (4.16)-(4.17), the

BELBIC-inspired flocking of MAS is expressed as

uR−BELi =
∑
i

Vi.SIi −
∑
i

Wi.SIi

=
∑
i

Vi.
(
Kα
SI,iu

α
i +Kγ

SI,iu
γ
i +KCON

SI,i Υi (ui, qi, pi)
)

−
∑
i

Wi.
(
Kα
SI,iu

α
i +Kγ

SI,iu
γ
i +KCON

SI,i Υi (ui, qi, pi)
)

(4.18)

Here i = 1, ..., n and n is the number of agents. By considering the results obtained

from Theorem 4 and by substituting the Emotional Signal with equation (4.17) the

R-BELBIC flocking model output for MAS could be obtained as follows:

MOi = ESi = Kα
ES,iu

α
i +Kγ

ES,iu
γ
i +KCON

ES,i Υi (ui, qi, pi) (4.19)

which is exactly demonstrating the flocking behavior of the proposed method.

Stability Analysis

The convergence of the weights of Amygdala (Vi) and Orbitofrontal Cortex (Wi)

are presented in Theorem 4.

Theorem 4. Given the R-BELBIC design as (4.16)–(4.19), there exists the positive R-

BELBIC tuning parameter, Kvi, Kwi satisfying

I.
∣∣[1−Kvi (SIi)

2]∣∣ < 1

II.
∣∣[1−Kwi (SIi)

2]∣∣ < 1
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such that the MAS’s estimated weights of Amygdala (Vi) and Orbitofrontal Cortex (Wi)

converge to desired targets asymptotically.

Proof. Proof of Theorem 4

In this subsection, to evaluate the performance of the whole system, the behav-

ior of BELBIC main algorithm (4.2.2) and developed R-BELBIC for MAS flocking

is investigated. Since the output of the developed model, when the system com-

pletes its learning phase, is important for our main design, the adaptations rules of

BELBIC is initially used in (4.3) to show the behavior of the BELBIC model. Then,

by utilizing the obtained results in (4.3), the behavior of the developed R-BELBIC

methodology is studied in (4.3).

Non-adapting Phase

Our goal is to investigate the output of the system in non-adapting phase (i.e.,

when the system completes its learning process) so the equations (4.10) and (4.11)

which are the updating rules of Amygdala and Orbitofrontal Cortex, respectively,

should be taken into consideration. In addition we make an assumption that the

max function in equation (4.10) could be neglected. By substituting (4.8) and (4.9)

in equation (4.7) the output of the model could be defined as follows:

MO =
∑
l

VlSIl −
∑
l

WlSIl

=
∑
l

(Vl −Wl)SIl (4.20)



110

∆Vl = KvSIl

(
ES −

∑
l

Al

)

= KvSIl

(
ES −

∑
l

VlSIl

)
(4.21)

∆Wl = KwSIl (MO − ES)

= KwSIl

(∑
l

(Vl −Wl)SIl − ES

)
(4.22)

When the learning process is completed (i.e., after system completes its learning

process) the variations of the weights of Amygdala (∆Vl) and Orbitofrontal Cortex

(∆Wl) will be equal to zero (i.e., ∆Vl = ∆Wl = 0). With the assumption of SIl 6= 0

the following holds:

KvSIl

(
ES −

∑
l

VlSIl

)
= 0

⇒
∑
l

VlSIl = ES (4.23)

KwSIl

(∑
l

(Vl −Wl)SIl − ES

)
= 0

⇒
∑
l

(Vl −Wl)SIl = ES

⇒
∑
l

WlSIl = 0 (4.24)

By substituting (4.23) and (4.24) in equation (4.20) the model output in non-adapting

phase will be as follows:

MO =
∑
l

(Vl −Wl)SIl =
∑
l

VlSIl = ES (4.25)
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Main Proof

Considering the results obtained in Subsection 4.3 the following should be achieved:

MOi → ESi (4.26)

Let’s considering the V ∗i is the weight of Amygdala for each agent i when system

has been learned and let’s ÊSi be the Emotional Signal for each agent i during the

adaptation phase. The following hold:

ESi = V ∗i SIi and ÊSi = ViSIi (4.27)

∆Vi(k) = KviSIi max
(

0, ESi − ÊSi
)

(4.28)

We will investigate the results for the following two cases:

I. ESi − ÊSi ≥ 0

II. ESi − ÊSi < 0

Considering the case I., the proof can be achieve as follows:

∆Vi(k) = KviSIi max
(

0, ESi − ÊSi
)

= KviSIi

(
ESi − ÊSi

)
= KviSIi (V

∗
i SIi − ViSIi)

= KviSIi (V
∗
i − Vi)SIi

= KviSIiṼiSIi

= KviṼi (SIi)
2 (4.29)
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where Ṽi = V ∗i − Vi.

Vi (k + 1) = Vi (k) + ∆Vi(k)

Ṽi (k + 1) = V ∗ − Vi (k)−∆Vi(k)

= Ṽi (k)−KviṼi (SIi)
2

=
[
1−Kvi (SIi)

2] Ṽi (k) (4.30)

Considering the case II., it is obvious that when ESi − ÊSi < 0 the max function

in equation (4.28) will force the adaptation in Amygdala to stop and the following

hold:

∆Vi(k) = 0

Vi (k + 1) = Vi (k)

Ṽi (k + 1) = Ṽi (k) (4.31)

The proof can be achieve as follows:

∆Wi(k) = KwiSIi (MOi − ESi)

= KwiSIi (ViSIi −WiSIi − V ∗i SIi)

= KwiSIi (− (V ∗i − Vi)SIi −WiSIi)

= KwiSIi

((
−Ṽi −Wi

)
SIi

)
= −KwiW̃i (SIi)

2 (4.32)

where Ṽi = V ∗i − Vi and W̃i = Ṽi +Wi.

Wi (k + 1) = Wi (k) + ∆Wi(k)

W̃i (k + 1) = Ṽi (k + 1) +Wi (k + 1)

= Ṽi (k) +Wi (k) + ∆Wi(k)

= W̃i (k)−KwiW̃i (SIi)
2

=
[
1−Kwi (SIi)

2] W̃i (k) (4.33)
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Theorem 5. (Closed-loop Stability): Given the initial UAS state x(0) and the BELBIC

estimated weights of Amygdala (Vl(0)) and Orbitofrontal Cortex (Wl(0)) be bounded in the

set Λ. Let the BELBIC be tuned and estimated control policy be given as (4.21), (4.22) and (4.18)

respectively. Then, there exists positive constants, Kv, Kw, satisfying Theorem 4 such that

UAS state, x(t) and BELBIC weights estimation errors are all asymptotically stable.

Proof. Let’s consider the us is a stable controller for the following system:

ẋ = f(x) + g(x)us (4.34)

There is a Lyapunov function Ls(x) which guarantees the stability of the whole

system:

Ls(x) =
1

2
xTx

Taking the first derivative, we have:

L̇s(x) = xT ẋ

= xT [f(x) + g(x)us]

≤ −lxTx , l > 0 (4.35)

To provide the stability analysis of the actual system, let’s consider the ua is an

actual controller for the following system:

ẋ = f(x) + g(x)ua (4.36)

where ua is as follows:

ua = us + ũ (4.37)
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and ũ is the controller which is given by the BELBIC model output MO. Consider-

ing the Lyapunov function LMO(x), the following is obtained:

LMO(x) = A(M̃O)2

Taking the first derivative, we have:

L̇MO(x) = A(M̃O)(
˙̃

MO)

≤ −A(M̃O)2

≤ −A(ũ)2 (4.38)

Considering the Lyapunov function La(x), the stability proof of overall system is

as follows:

La(x) =
1

2
xTx

Taking the first derivative, we have:

L̇a(x) = xT ẋ

= xT [f(x) + g(x)ua]

= xT [f(x) + g(x)(us + ũ)]

= xT [f(x) + g(x)us + g(x)ũ]

= xT [f(x) + g(x)us] + xTg(x)ũ

≤ −lxTx+ xTg(x)ũ

≤ −lxTx+
l

2
xTx+

2

l
(g(x)ũ)2

≤ − l
2
xTx+

2

l
(g(x)ũ)2

≤ − l
2
xTx− A(ũ)2 (4.39)
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Remark 8. Based on the BELBIC theory [41] and (4.18), the optimal flocking control of

MAS can be obtained while the estimated weights of Amygdala (Vi) and Orbitofrontal Cor-

tex (Wi) are converging to desired targets. According to Theorem 4, estimated weights con-

verge to desired targets asymptotically. Therefore, the designed R-BELBIC input UR−BEL
i

(4.18) converges to optimal flocking control of MAS asymptotically.

In summary, the R-BELBIC-inspired flocking methodology for MAS is pre-

sented as a pseudo-code in Algorithm 4.

Algorithm 4 : The R-BELBIC-based flocking for MAS.
Initialization:
Set Vi = 0, Wi = 0, and Vth = 0, for i = 1, ..., n.
Define ESi = Objective function, for i = 1, ..., n.

for each iteration t = ts do
for each agent i do

Compute SIi = Kα
SI,iu

α
i + Kγ

SI,iu
γ
i + KCON

SI,i Υi (ui, qi, pi)

Compute ESi = Kα
ES,iu

α
i + Kγ

ES,iu
γ
i + KCON

ES,i Υi (ui, qi, pi)
Compute Ai = ViSIi
Compute OCi = WiSIi
Compute Ath = Vth max (SIi)
Compute BELi =

∑
iAi −

∑
iOCi

Update Vi
Update Wi

Update Vth
end for

end for

In general, computing the computational complexity of an algorithm, we are

interested in the maximum growth of the algorithm running time as the size of the

problem gets larger. For these reasons, the O(·) notation is introduced [105].

Definition 1. For two functions Ψ(k) and Ξ(k) of a non-negative parameter k, Ψ(k) =

O(Ξ(k)) if there is a constant φ > 0 such that for all sufficiently large k, Ψ(k) ≤ φΞ(k).

Therefore, the function φΞ(k) is an asymptotic upper bound on Ψ.

Definition 2. Polynomial-time algorithm (i.e., runs in polynomial time) if its running
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time Ψ(k) = O(Π(k)), where Π(k) is a polynomial function of the input size. For-

mally, polynomial-time algorithms are considered to be efficient, and problems for which

polynomial-time algorithms exist are considered computationally efficient.

Computing the computational complexity of the algorithm 4, it is on the or-

der of O(n), where n is the number of the agents. Comparing with other existing

learning based algorithms, the computational complexity of the single output Mul-

tilayer Perceptron (MLP) is on the order of O(cn), where c is the number of hidden

neurons, and it is exponential for both Adaptive Neuro-Fuzzy Inference System

(ANFIS), and Locally Linear Neuro-Fuzzy (LLNF) [106]. Therefore, the proposed

method has lower computational complexity in comparison with other methods

and is more appropriate for implementation in real-time applications.

4.4 Simulation Results

This section presents simulation results demonstrating the performance of the R-

BELBIC for flocking of MAS in two different scenarios: 2-dimensional obstacle-

free environment (Subsection 4.4.1) and 3-dimensional obstacle-free environments

(Subsection 4.4.2). All simulations are carried out on a platform with following

specifications: Windows Server 2012 R2 standard, Processor: Intel(R) Xeon(R) CPU

E5-2680 0 @ 2.70GHz (4 processors), RAM: 8.00 GB.

In 2-dimensional scenario, a total of 150 agents were employed, while a total of

10 agents were employed in 3-dimensional scenario. Initial velocities are equal to

zero, and positions randomly distributed in a squared area. The following param-

eters are used through all the simulations: r = 1.2dα and dα = 4. For the σ-norm
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Figure 4.3: R-BELBIC-based Flocking of MAS. Simulation in an obstacle-free envi-
ronment. 150 agents randomly distributed in a squared area at t = 0s.

the parameter ε = 0.1, for φ(z) the parameters a = b = 5, for the bump function

φα(z) we use h = 0.2. The remaining parameters of the algorithm are specified in

each subsection, as needed. In addition, all the design parameters are provided in

Table 4.1.

Table 4.1: Parameters for designing SI and ES.

Parameter Nominal Value Parameter Nominal Value
Kv 0.02 KCON

SI,i 0.1

Kw 0.08 Kα
ES,i 0.1

Kα
SI,i 0.1 Kγ

ES,i 0.1

Kγ
SI,i 0.1 KCON

ES,i 3

In this study, the performance of the proposed strategy when facing both un-
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Figure 4.4: R-BELBIC-based Flocking of MAS. Simulation in an obstacle-free envi-
ronment. At t = 70s the 150 agents are flocking and have successfully formed a
connected network.

known disturbances and system uncertainties is investigated. The disturbance ap-

pears in the interval between 10 to 20 second which affects all agents speed ran-

domly. A random matrix of ±10 percent is considered for applying uncertainties

to the system.
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4.4.1 Resilient Flocking in a 2-Dimensional Obstacles-Free Envi-

ronment

Figure 4.3 and Figure 4.4 show two snapshots of the simulation in the obstacle-free

environment. Figure 4.3 shows the 150 agents in their initial positions at t = 0s.

It can be seen that the randomly distributed agents start forming an α-lattice. Fig-

ure 4.4 shows the agents at t = 70s where they are flocking and have successfully

formed a connected network. For comparison purposes, two similar experiments

1400 1450 1500 1550 1600 1650 1700 1750
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100
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200

250

300

Figure 4.5: Flocking of MAS in [1]. Simulation in an obstacle-free environment. At
t = 70s the 150 agents are unable to successfully form a connected network.

were performed, but using the flocking algorithm introduced in [1] and [2] instead
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Figure 4.6: Flocking of MAS in [2]. Simulation in an obstacle-free environment. At
t = 70s the 150 agents are unable to successfully form a connected network.

of the R-BELBIC-based flocking. Figures 4.5 and 4.6 show the agents at t = 70s

where they are unable to successfully formed a connected network using flocking

algorithm introduced in [1] and [2] respectively.

Figure 4.7 plots the velocity of all the agents in X-axis, and Y-axis for all con-

trollers. As it can clearly be seen, the R-BELBIC controller could handle system

uncertainties and reject disturbances and force all agents to have an agreement on

their speed.
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Figure 4.7: The velocity of all the agents in X-axis, and Y-axis, from left to right,
respectively. The velocities of the conventional flocking controller [1] are plotted
on the top row. The flocking algorithm in [2] in in middle row and the R-BELBIC-
inspired control is in the bottom row. In all cases, the reference signal is shown
in dashed black color. The disturbance appears in the interval between 10 to 20
second which affects all agents speed randomly.

4.4.2 Resilient Flocking in a 3-Dimensional Obstacle-Free Envi-

ronment

Figure 4.8 and Figure 4.9 show two snapshots of the simulation in the obstacle-free

environment. Figure 4.8 shows the 10 agents in their initial positions at t = 0s. It

can be seen that the randomly distributed agents start forming an α-lattice. Fig-

ure 4.9 shows the agents at t = 55s where they are flocking and have successfully

formed a connected network.
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Figure 4.8: R-BELBIC-based Flocking of MAS. Simulation in an obstacle-free envi-
ronment. 10 agents randomly distributed in a squared area at t = 0s.

For comparison purposes, two similar experiments were performed, but using

the flocking algorithm introduced in [1] and [2] instead of the R-BELBIC-based

flocking. Figures 4.10 and 4.11 show the agents at t = 55s where they were unable

to successfully form a connected network using the flocking algorithm introduced

in [1] and [2] respectively.

Figure 4.12 plots the velocity of all the agents in X-axis, Y-axis, and Z-axis for all

controllers. As it can clearly be seen, the R-BELBIC controller could handle system

uncertainties and reject disturbances and force all agents to have an agreement on

their speed.
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Figure 4.9: R-BELBIC-based Flocking of MAS. Simulation in an obstacle-free en-
vironment. At t = 55s the 10 agents are flocking and have successfully formed a
connected network.
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Figure 4.10: Flocking of MAS in [1]. Simulation in an obstacle-free environment.
At t = 55s the 10 agents were unable to successfully form a connected network.
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Figure 4.11: Flocking of MAS in [2]. Simulation in an obstacle-free environment.
At t = 55s the 10 agents were unable to successfully form a connected network.
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Figure 4.12: The velocity of all the agents in X-axis, Y-axis, and Z-axis, from left
to right, respectively. The velocities of the conventional flocking controller [1] are
plotted on the top row. The flocking algorithm in [2] in in middle row and the
R-BELBIC-inspired control is in the bottom row. In all cases, the reference signal is
shown in dashed black color. The disturbance appears in the interval between 10
to 20 second which affects all agents speed randomly.
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4.5 Experimental Results

This section presents experimental results showing the performance of the R-BELBIC

flocking control for MAS. Figure 4.13 shows the data flow of the proposed algo-

rithm implementation setup.

Matlab

Bebop Driver 2

Bebop Drone 2

Ros Node 
Controller

Motion 
Capture

Position Data

Bebop Driver 4Bebop Driver 1 Bebop Driver 3

Bebop Drone 1 Bebop Drone 3 Bebop Drone 4

Figure 4.13: Data flow of the implementation setup using the R-BELBIC flocking
algorithm.

Experimental Testbed

The platform implemented for validation of the proposed algorithm is available at

the Unmanned Systems Laboratory (USL) from the University of Nevada - Reno,
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see Figure 4.14. The Base Station of this testbed runs Ubuntu 14.04 OS and the

Robot Operating System (ROS) environment in combination with Matlab. The pro-

posed algorithms were coded in C/C++ and Matlab, and were executed at 100Hz.

The aerial robots correspond to the Bebop drone, manufactured by Parrot.

!"#$%&'&

!"#$%&(& !"#$%&)&

!"#$%&*&

+,-,$&./0%12#&./3#2/4&

Figure 4.14: Experimental testbed: a set of four drones, a motion capture system,
Ground Station computers, and WiFi links.

The 3-dimensional position of the UAS is obtained by means of a Motion Cap-

ture System (MCS) manufactured by OptiTrack. The information provided by the

MCS is reported to the OptiTrack Interface PC by means of a Gigabyte Ethernet

connection. Next, this information is sent to the Base Station PC by means of an

Ethernet connection. The Base Station computer uses this information to execute

the R-BELBIC algorithm and to calculate the control signals, which are then sent

to the Bebop platforms by means of a WiFi link.
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Real-time Experiments

The ultimate goal of this experimental application is to maintain a satisfactory

flocking of the MAS, even when the model of the UAS is uncertain, and when

unknown external factors affect the performance of the agents. In this experiment,

a total of four UAS were employed, with initial velocities equal to zero, and posi-

tions randomly distributed in a squared area. The following parameters are used

for the experiment: r = 1.2dα, while dα = 2m. For the σ-norm the parameter

ε = 0.1, for φ(z) the parameters a = b = 5, for the bump function φα(z) we used

h = 0.2.

Figure 4.15 plots the positions of the four UAS in (X, Y, Z) axis. It can be seen

that all the agents successfully accomplishing the objective of our experimental

application.

Figure 4.16 plots the velocities of the four UAS in (X, Y, Z) axis. It can be seen

that all the agents agreed on the same speed, successfully accomplishing the objec-

tive of our experimental application.
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Figure 4.15: R-BELBIC flocking control of MAS: agreement in UAS positions in
(X, Y, Z) axis.
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Figure 4.16: R-BELBIC flocking control of MAS: consensus in UAS velocities in
(X, Y, Z) axis.
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4.6 Conclusion

A neurobiologically-motivated intelligent distributed resilient controller based on

a computational model of emotional learning in the mammalian limbic system

was proposed for flocking control of MAS in presence of system uncertainties and

unknown disturbances. The methodology, called R-BELBIC-inspired flocking, em-

beds a resilience mechanism with multi-objective properties into the flocking con-

trol strategy in a distributed manner. The results from both computer-aid simu-

lation and experimental test demonstrate the effectiveness of proposed R-BELBIC

based resilient distributed flocking control, as well as its applicability for real-time

systems.
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Chapter 5

A Game Theoretic Based

Biologically-Inspired Distributed

Intelligent Flocking Control for

Multi-UAV Systems with Network

Imperfections

Distributed controllers connected through the shared wireless communication net-

work are necessary in designing distributed flocking control schemes for Net-

worked multi-Unmanned Aerial Vehicles (UAVs). Network imperfections such

as time delay, which has been considered as a challenging issue, commonly ex-

ists in the wireless network. Therefore, network imperfections should be taken
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into account in designing distributed control algorithms for networked multi-UAV

systems. Besides of network imperfections, the uncertainty from the complex envi-

ronment and system dynamics is another critical challenge and cannot be ignored

in advanced real-time control development. In this paper, a game theoretic based

biologically-inspired distributed intelligent control methodology is proposed to

overcome those challenges, i.e., networked imperfections and uncertainty from

environment and system, in networked multi-UAV flocking. Considering the lim-

ited computational ability in the practical onboard micro-controller, the proposed

method is adopted based on the game theory, and the emotional learning phe-

nomenon in the mammalian limbic system. The learning capability and low com-

putational complexity of the proposed technique makes it a propitious tool for

implementing in networked multi-UAV flocking even in presence of the network

imperfections and uncertainty from environment and system. Lyapunov analy-

sis and computer-aid numerical simulation results of the implementation of the

proposed methodology demonstrate the effectiveness of this algorithm.

5.1 Introduction

Motivation

Distributed coordination of networked multi-Unmanned Aerial Vehicles (UAVs)

has been studied by diverse research communities in recent years. Due to the

broad applications of flocking in real-world scenarios [1, 7, 34, 107], most of the net-

worked multi-UAV control methodologies are adopted based on the mathematical

model of flocking [3, 6, 11]. In general, three basic rules (i.e., separation, alignment,
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and cohesion) are considered for simulating the flocking behavior [7] which are ob-

served in many living beings (i.e., birds, fish, bacteria, and insects) [15].

Improving the flocking behavior of networked multi-UAV systems has attracted

several researchers in recent years [16,19,20,51]. Network imperfection, e.g., delay,

commonly exists in communication due to the limited communication resource

and heavy traffic in the network [108]. As a result, it is of paramount importance

to address the challenges of network-induced delay and taking the influence of

network-induced delays into account in designing control algorithms for multi-

unmanned aerial vehicles. Besides of network imperfections, the uncertainty from

the complex environment and system dynamics is another critical challenge and

cannot be ignored in advanced applicable control development. Therefore, it is im-

portant to consider the uncertainties from environment and system in designing

control algorithms.

Related works

Diverse research groups have attempted to address the issues arising from the ef-

fects of unknown disturbances and environment and system uncertainties in flock-

ing control of multi-unmanned aerial vehicles/multi-agent systems. For example,

the authors in [109] presented a distributed algorithms for the sensor networks by

considering the effects of the imperfect communication such as link failures and

channel noise. Closely related, a distributed control design for the discrete-time di-

rected multi-agent systems with distributed network-induced delay has been pro-

posed in [110]. Delay-independent flocking control of multi-agent systems have

been addressed in [111], [112]. A distance constrained based adaptive flocking
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control for the multi-agent system with network-induced delay was investigated

in [113]. In [114], the authors studied the design of distributed formation recovery

control for nonlinear heterogeneous multi-agent systems. Recently, coordinated

control of two-wheel mobile robots with input network-induced delay was pre-

sented in [115].

Although all of these proposed methods perform well dealing with the effects

of unknown disturbances and environment and system uncertainties, they still

need the detailed information of the system. In this regard, the development of

control strategies for dealing with the environment and system uncertainties with

less dependency on the full knowledge of the system dynamics is of paramount

importance.

In recent years, intelligent approaches have been extensively utilized for suc-

cessfully solving diverse complex problems [23, 116]. Among them, biologically-

inspired intelligent approaches have been received tremendous interests by many

researchers because of their inherent potential to deal with computationally com-

plex systems. Emotional Learning is one of such approaches, which takes advantage

of a computational model of the amygdala in the mammalian limbic system [40].

This model, known as Brain Emotional Learning Based Intelligent Controller (BEL-

BIC), consists of the Amygdala, Orbitofrontal Cortex, Thalamus, and Sensory Input

Cortex as its main components. From a control systems point of view, BELBIC is a

model-free controller (i.e., model dynamics are fully or partially unknown) which

has shown promising performance under noise and system uncertainty [41].

Sensory Inputs (SI) and Emotional Signal (ES) are two main inputs to BELBIC

model, and it is shown that the multi-objective problems could be solved by defin-

ing appropriate SI and ES [117, 118]. The flexibility in assigning different SI and
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ES makes this controller a practical tool for implementation in real-time appli-

cations. Furthermore, BELBIC could effectively control a system even when the

states of the system and the controller performance feedback are the only available

information [41]. In addition, compared to other existing learning-based intelli-

gent control methods, the computational complexity of BELBIC is on the order of

O (n) which makes it a suitable approach for real-time implementation.

Main Contributions

The main contribution of this paper is to develop a model-free distributed intel-

ligent control methodology to overcome the challenges including the unknown

disturbances and uncertainties from environment and system in networked multi-

UAV systems. To this end, we propose a game theoretic based biologically-inspired

distributed intelligent controller, which takes advantage of the game theory and

the computational model of emotional learning in the mammalian limbic system.

The proposed methodology has a low computational complexity which makes it

a promising method for real-time applications. Furthermore, keeping the system

complexity in a practically achievable limit, the proposed method delivers a con-

troller with multi-objective properties (i.e., control effort optimization, handling

the uncertainties from environment and system, and noise/disturbance rejection).

Moreover, we provided the Lyapunov stability analysis to demonstrate that our

proposed methodology guarantees the convergence of the designed control signals

as well as maintain the system stability during the learning. The learning capabil-

ity of the proposed approach is validated for flocking control of multi-unmanned

aerial vehicles influenced by the unknown disturbances and uncertainties from en-

vironment and system with promising performance. Computer-based numerical
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results of the implementation of the proposed methodology demonstrate the effec-

tiveness of this algorithm for distributed intelligent flocking control of networked

multi-UAV systems.

The rest of the paper is organized as follows. Section 5.2 presents the problem

formulation and some preliminaries about flock modeling with network-induced

delay, game theory, and emotional learning. Our main contribution is introduced

in Section 5.3, which consists of a game theoretic based distributed intelligent

flocking control strategy based on emotional learning. Section 5.4 presents nu-

merical simulation results. The conclusion of the paper and future directions of

our work are provided in Section 5.5.

5.2 Problem Formulation and Preliminaries

5.2.1 Flock Modelling

Assuming the movement of the flock in an m–dimensional space (m = 2, 3), the

equation of motion of the ith agent with continuous-time double integrator dynam-

ics could be described according to the following set of equations: q̇i(t) = pi(t)

ṗi(t) = ui(t) , i = 1, 2, ..., n
(5.1)

where ui(t) ∈ IRm is the control input, {qi(t), pi(t)} ∈ IRm are position, and

velocity of the ith agent, respectively. Consider a dynamic graph G(υ, ε(t)) which

consists of a set of vertices υ = {1, 2, ..., n}, and edges ε(t) ⊆ {(i, j) : i, j ∈ υ, j 6= i}.
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Each vertex represents an agent of the flock while a communication link between

a pair of agents is represented by an edge.

Nα
i (t) = {j ∈ υα : ‖qj(t) − qi(t)‖ < r, j 6= i} is the neighborhood set of agent i,

where the range of interaction between agents i and agent j is defined by a positive

constant r, and ‖ · ‖ is the Euclidean norm in IRm. Solving the set of algebraic

conditions: ‖qj(t)−qi(t)‖ = d ∀j ∈ Nα
i (t), we could describe the geometric model

of the flock, i.e., the α-lattice [1], where the distance between two neighbors i and

j is represented by a positive constant d.

To avoid the singularity of the collective potential function at qi(t) = qj(t), the

σ-norm (i.e., ‖ · ‖σ) is defined where ‖z‖σ = 1
ε
[
√

1 + ε‖z‖2 − 1], and ε is a positive

constant. To resolve the singularity problem, the set of algebraic conditions can be

rewritten as: ‖qj(t)− qi(t)‖σ = dα ∀j ∈ Nα
i (t).

A smooth collective potential function V (q) = 1
2

∑
i

∑
j 6=i ψα(‖qj(t)− qi(t)‖σ)

can be obtained by considering the above-mentioned constraints, where ψα(z) =∫ z
dα
φα(s)ds is a smooth pairwise potential function with φα(z) = ρh(z/rα)φ(z− dα),

φ(z) = 1
2
[(a+ b)σ1(z + c) + (a− b)], and σ1(z) = z/

√
1 + z2.

A possible choice for defining ρ(z), which is a scalar bump function that smoothly

varies between [0,1], is [1]:
1, z ∈ [0, h)

1
2

[
1 + cos

(
π (z−h)

(1−h)

)]
, z ∈ [h, 1]

0, otherwise

(5.2)

ui(t) = uαi + uγi is the flocking control algorithm introduced in [1], which consists

of two main terms:
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(i). uαi is the interaction component between two α-agents and is defined as fol-

lows:

uαi = cα1
∑
j∈Nα

i

φα(‖qj(t)− qi(t)‖σ)ni,j

+ cα2
∑
j∈Nα

i

aij(q)(pj(t)− pi(t)) (5.3)

where cα1 and cα2 are positive constants. The terms ni,j and aij(q) are vector

and the elements of the spatial adjacency matrix A(q), respectively, which are

described as follows:

ni,j =
qj(t)− qi(t)√

1 + ε‖qj(t)− qi(t)‖2

aij(q) = ρh(‖qj(t)− qi(t)‖σ/rα) ∈ [0, 1], j 6= i

where, rα = ‖r‖σ, and aii(q) = 0 for all i and q.

(ii). uγi is a goal component which consists of a distributed navigational feedback

term and is defined as follows:

uγi = −cγ1σ1(qi − qr)− c
γ
2(pi − pr) (5.4)

where cγ1 and cγ2 are positive constants.

5.2.2 Network-induced Delays

Assuming that the state of agent i gets to agent j after passing through a commu-

nication channel with network-induced delay τij > 0, the uαi could be rewritten

as:



140

uαi = cα1
∑
j∈Nα

i

φα(‖qj(t− τij)− qi(t− τij)‖σ)ni,j

+ cα2
∑
j∈Nα

i

aij(q)(pj(t− τij)− pi(t− τij)) (5.5)

In this paper, we consider the case where the network-induced delays in all chan-

nels are equal to τ > 0. Although the delay is deterministic, it is unknown. The

proposed method can effectively handle this unknown delay.

5.2.3 Game Theory and Control

Generally, the following three elements are needed to completely describe a game.

(i). Set of players Π, Π = {1, 2, ..., M} and M is the number of players.

(ii). A set of strategies (Sπ) for each player π ∈ Π. Then, the joint strategy

set is S = S1 × ... × Sπ. A joint strategy could be described as s =

(s1, s2, ..., sM) , s ∈ S.

(iii). A cost function (Cπ : S →R) for each player π ∈ Π. Player π prefers the joint

strategy s to s′ if and only if the corresponding cost function to s is smaller

than the corresponding cost function to s′ (i.e., Cπ(s) < Cπ(s
′
)).

There are several classes of games, in which team games has a great relation-

ship with control theory, among others [119]. Based on the flocking model of net-

worked multi-UAV described in Section 5.2.1, each agent is only sensing its local

information and its own cost function. Therefore, this flocking problem could be

considered as a non-cooperative differential game problem [120, 121].
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The joint strategy s∗ is a Nash equilibrium if the following inequality holds.

Ci(s∗1, ..., s∗π, ..., s∗M) ≤ Ci(s∗1, ..., s
′

π, ..., s
∗
M)

∀s′ ∈ Sπ , ∀π ∈ Π. (5.6)

5.2.4 Brain Emotional Learning-Based Intelligent Controller

Brain Emotional Learning Based Intelligent Controller (BELBIC) is one of the neurobiologically-

motivated intelligent methodologies, which is based on the computational model

of emotional learning observed in the mammalian limbic system proposed in [40].

This model (depicted in Figure 5.1), has two main parts: Amygdala, and Orbitofrontal

Cortex. Amygdala is responsible for immediate learning, while Orbitofrontal Cor-

tex is responsible for inhibition of any inappropriate learning happening in the

Amygdala. Sensory Inputs (SI) and Emotional Signal (ES) are two main inputs to

the BELBIC model.

The output of the BELBIC model (MO) can be defined as

MO =
∑
l

Al −
∑
l

OCl (5.7)

which is calculated by the difference between the Amygdala outputs (Al) and the

Orbitofrontal Cortex outputs (OCl). Here, l is the number of sensory inputs.

The Orbitofrontal Cortex and the Amygdala outputs are calculated by the sum-

mation of all their corresponding nodes, where the output of each node is de-

scribed as:

Al = VlSIl (5.8)

OCl = WlSIl (5.9)
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Figure 5.1: Computational model of emotional learning.

where SIl is the lth sensory input, Vl is the weight of the Amygdala, and Wl is

the weight of the Orbitofrontal Cortex. The following equations are employed for

updating Vl and Wl, respectively:

∆Vl = KvSIl max

(
0, ES −

∑
l

Al

)
(5.10)

∆Wl = KwSIl (MO − ES) (5.11)

where, Kw and Kv are the learning rates.

The maximum of all SIs is another input considered in the model. This signal

(i.e., Ath), which is directly sent from the Thalamus to the Amygdala, is defined as:

Ath = Vth max (SIl) (5.12)

where Vth is the weight and the corresponding update law is the same as Equa-

tion (5.10).
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5.2.5 Objectives

Based on the flocking model of networked multi-UAV described in Section 5.2.1,

and by leveraging the game theory, and computational model of emotional learn-

ing in the mammalian limbic system (i.e., BELBIC) introduced in Sections 5.2.3

and 5.2.4, the objective is to design control signals ui(t), i = 1, ..., n and n is the

number of UAVs, as a game theoretic based biologically-inspired distributed in-

telligent controller, for flocking control of multi-unmanned aerial vehicles. Specifi-

cally, the proposed game theoretic based distributed controller is designed to main-

tain the motion of all agents in the flock in the events of network-induced delay.

5.3 Distributed Intelligent Flocking Control of Networked multi-

UAV Systems using Game Theoretic based Emotional Learn-

ing

5.3.1 System Design

Generally, the intelligent techniques could be utilized for solving different con-

trol problems via direct or indirect approaches. In the direct mode, the intelligent

method is utilized as a controller block, while it is employed for obtaining the con-

troller’s parameters in the indirect mode. In this paper, we propose a game theo-

retic based biologically-inspired distributed intelligent control technique which is

based on the computational model of emotional learning in the mammal’s brain

and utilized it as a controller (i.e., direct mode), for intelligent flocking control of
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multi-unmanned aerial vehicles with network-induced delay.

Specifically, our focus is on the design of a game theoretic based biologically-

inspired distributed intelligent controller for flocking of networked multi-UAV by

using BELBIC because the implementation of it could be accomplished without

increasing the complexity of the overall system. The BELBIC architecture imple-

mented in this work is shown in Figure 5.2. This figure demonstrates a closed loop

configuration which consists of the following blocks: (i) BELBIC block, (ii) Sensory

inputs (SI) function block, (iii) Emotional signal (ES) generator block, and finally

(iv) a block for the plant. This architecture implicitly demonstrates the overall

emotional learning based control concept, which consists of the action selection

mechanism, the critic, and the learning algorithm [41].

Sensory Input (SI) Function

Emotional Signal (ES) Generator

System 
Output

-+
PlantBELBIC

System 
Input

Objectives

Figure 5.2: BELBIC in the control loop.

5.3.2 Emotional Signal and Sensory Input Development

Fundamentally, BELBIC is an action selection technique, in which action is pro-

duced based on the sensory input (SI) and the emotional signal (ES). The general
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forms of SI and ES are given as follows:

SI = G (e, r, y, u) (5.13)

ES = F (e, r, y, u) (5.14)

where e is the system error, r is the system input, y is the system output, and u is

the control effort.

The control objectives (e.g., reference tracking and optimal control) could im-

plicitly be decided by choosing the adequate ES. For example, it is possible to

choose the ES for achieving a better reference tracking performance, for reducing

the overshoot, and/or for the energy expense minimization, among others.

Aiming at designing a game theoretic based distributed intelligent control for

flocking control of multi-unmanned aerial vehicles, the proposed game theoretic

based biologically-inspired technique will focus on improving: (i) reference track-

ing performance, (ii) network-induced delay handling, (iii) control effort optimiza-

tion, and (iv) disturbance rejection.

To accomplish these objectives, for each of the control inputs (i.e., {u1,...,un}),

the SIi will be designed as:

SIi = Kα
SI,iu

α
i +Kγ

SI,iu
γ
i (5.15)

The objective of the overall flock is to form an α–lattice over a finite time inter-

val while tracking a target, which is equivalent to minimizing the following cost

function by each individual agent:

Ci =
Kα
C,i

2
‖ uαi ‖2 +

Kγ
C,i

2
‖ uγi ‖2 (5.16)
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Minimizing the cost function means that every agent will try to minimize the

total flocking error over a finite time interval, while at the same time minimizing

its control effort, therefore the ESi will be designed as:

ESi = Ci = Kα
ES,i ‖ uαi ‖2 +Kγ

ES,i ‖ u
γ
i ‖2 (5.17)

where i = {1, ...n}, Kα
SI,i, K

γ
SI,i, K

α
ES,i =

Kα
C,i
2

, and Kγ
ES,i =

Kγ
C,i
2

are positive gains.

Solving the inequality in (5.6) for the above cost functions, the Nash strategies

could be obtained.

It should be mentioned that, we designed theES in such a way that the increase

in reference tracking error will generate a negative emotion in the system, which is

then taken as an evidence for the unsatisfactory performance of the system. There-

fore, the proposed controller will behave in such a way that it will always minimize

the negative emotion which leads to the satisfactory performance of the system.

5.3.3 Learning-based Intelligent Flocking Control

In flocking control of networked multi-UAV systems, multiple performance con-

siderations have to be taken into account all at the same time, therefore, it is a

very interesting case for using biologically-inspired learning-based multi-objective

methodologies like BELBIC. Designing a model-free distributed intelligent control

for flocking of networked multi-UAV by considering the network-induced delay,

in addition to designing a suitable controller for real-time implementation, encour-

ages us to take advantage of the computational model of emotional learning in the

mammals’ limbic system, i.e., BELBIC.

From equations (5.15)-(5.17), the BELBIC-inspired distributed intelligent flock-
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ing control strategy for networked multi-UAV is defined as

uBELi =
∑
i

Vi × SIi −
∑
i

Wi × SIi (5.18)

here, i = 1, ..., nmakes reference to each control input and n is the number of UAVs.

Considering the results obtained in Theorem 6 and by substituting the Emotional

Signal with equation (5.17) the BELBIC model output of the distributed intelligent

control for flocking of networked multi-UAV could be obtained as follows:

MOi = ESi = Ci = Kα
ES,i ‖ uαi ‖2 +Kγ

ES,i ‖ u
γ
i ‖2 (5.19)

which is clearly satisfies our goal of distributed intelligent flocking control.

5.3.4 Stability Analysis

Theorem 6 is presenting the convergence of the weights of the Amygdala (Vl) and

the Orbitofrontal Cortex (Wl). Theorem 7 is providing the closed-loop stability of

the proposed controller and Remark 9 explains how the proposed method con-

verges to distributed intelligent flocking control of networked multi-UAV.

Theorem 6. Given the BELBIC design as (5.15)–(5.19), there exists the positive BELBIC

tuning parameters, Kv, Kw satisfying

I.
∣∣[1−Kv (SIl)

2]∣∣ < 1

II.
∣∣[1−Kw (SIl)

2]∣∣ < 1
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such that the BELBIC estimated weights of the Amygdala (Vl) and the Orbitofrontal Cortex

(Wl) converge to the desired targets asymptotically.

Proof. See Appendix A

Theorem 7. (Closed-loop Stability): Given the initial networked multi-UAV state x(0)

and the BELBIC estimated weights of the Amygdala (Vl(0)) and the Orbitofrontal Cortex

(Wl(0)) be bounded in the set Λ. Let the BELBIC be tuned and estimated control policy

be given as (5.21), (5.22) and (5.18) respectively. Then, there exists positive constants,

Kv, Kw, satisfying Theorem 6 such that networked multi-UAV state, x(t) and BELBIC

weights estimation errors are all asymptotically stable.

Proof. See Appendix B

Remark 9. Based on the BELBIC theory [41] and (5.18), the distributed intelligent flock-

ing control of networked multi-UAV can be obtained while the estimated weights of the

Amygdala (Vl) and the Orbitofrontal Cortex (Wl) are converging to desired targets. Ac-

cording to Theorem 6, estimated weights converge to desired targets asymptotically. There-

fore, the designed BELBIC input Ul (i.e., Equation (5.18)) converges to distributed intelli-

gent flocking control of networked multi-UAV asymptotically.

5.4 Simulation Results

This section presents computer-based simulation results showing the performance

of the proposed game theoretic based biologically-inspired distributed intelligent

flocking control of multi-unmanned aerial vehicles in an obstacle-free environ-

ment. A total of 20 unmanned aerial vehicles where employed, with initial veloc-
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Figure 5.3: Simulation in an obstacle-free environment. 20 UAVs randomly dis-
tributed in a squared area at t = 0s.

ities equal to zero, and positions randomly distributed in a squared area. The fol-

lowing parameters are used through the simulation: dα = 7, r = 1.2dα, d′
= 0.6dα,

r
′
= 1.2d

′ . For the σ-norm the parameter ε = 0.1, for φ(z) the parameters a = b = 5,

for the bump functions φα(z) and φβ(z), h = 0.2 and h = 0.9, respectively. The same

network-induced delays (i.e., τi,j = τ = 0.3, ∀i) are considered for all unmanned

aerial vehicles.

Figure 5.3 and Figure 5.4 show two snapshots of the simulation in the obstacle-

free environment. Figure 5.3 shows the 50 UAVs in their initial positions at t = 0s

while Figure 5.4 shows the UAVs at t = 40s where they are flocking and have

successfully formed a connected network.
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Figure 5.4: Simulation in an obstacle-free environment. At t = 40s the 20 UAVs are
flocking and have successfully formed a connected network.

For comparison purposes, a similar experiment was performed, but using the

flocking algorithm introduced in [1] instead of the proposed algorithm. Figure 5.5

shows the velocities of all UAVs in X and Y axis for both methods in an obstacle-

free environment under the influence of the networked-induced delay. The plot

shows that, although the delay is deterministic, it is unknown and the proposed

method could effectively handle the influences of the network-induced delay.
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Figure 5.5: Velocities of all UAVs in X and Y axis for both methods in an obstacle-
free environment under the influence of the networked-induced delay. The pro-
posed method top row and the flocking algorithm proposed in [1] bottom row.

5.5 Conclusions

A game theoretic based biologically-inspired distributed intelligent control method-

ology is proposed to overcome the challenges of network-induced delay in flock-

ing of networked multi-unmanned aerial vehicles. The methodology is adopted

based on the emotional learning phenomenon in the mammalian limbic system.

The learning capability and low computational complexity of the proposed tech-

nique makes it a promising tool for implementing in real-time networked multi-

unmanned aerial vehicles flocking considering the influence of network-induced

delay. Computer-based numerical results of the implementation of the proposed

methodology demonstrate the effectiveness of this algorithm for distributed intel-

ligent flocking control of networked multi-UAV.
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5.6 Appendix A

5.6.1 Non-adapting Phase

Our goal is to investigate the output of the system in non-adapting phase (i.e.,

when the system completes its learning process) so the equations (5.10) and (5.11)

which are the updating rules of Amygdala and Orbitofrontal Cortex, respectively,

should be taken into consideration. In addition we make an assumption that the

max function in equation (5.10) could be neglected. By substituting (5.8) and (5.9)

in equation (5.7) the output of the model could be defined as follows:

MO =
∑
l

VlSIl −
∑
l

WlSIl

=
∑
l

(Vl −Wl)SIl (5.20)

∆Vl =KvSIl

(
ES −

∑
l

Al

)

=KvSIl

(
ES −

∑
l

VlSIl

)
(5.21)

∆Wl =KwSIl (MO − ES)

=KwSIl

(∑
l

(Vl −Wl)SIl − ES

)
(5.22)

When the learning process is completed (i.e., after system completes its learning

process) the variations of the weights of Amygdala (∆Vl) and Orbitofrontal Cortex

(∆Wl) will be equal to zero (i.e., ∆Vl = ∆Wl = 0). With the assumption of SIl 6= 0
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the following holds:

KvSIl

(
ES −

∑
l

VlSIl

)
=0

⇒
∑
l

VlSIl =ES (5.23)

KwSIl

(∑
l

(Vl −Wl)SIl − ES

)
=0

⇒
∑
l

(Vl −Wl)SIl =ES

⇒
∑
l

WlSIl =0 (5.24)

By substituting (5.23) and (5.24) in equation (5.20) the model output in non-adapting

phase will be as follows:

MO =
∑
l

(Vl −Wl)SIl =
∑
l

VlSIl = ES (5.25)

5.6.2 Main Proof

Considering the results obtained in Subsection 5.6.1 the following should be achieved:

MOl → ESl (5.26)

Let’s considering the V ∗l is the weight of Amygdala for each control input l when

the system has been learned and let’s ÊSl be the Emotional Signal for each control

input l during the adaptation phase. The following hold:

ESl = V ∗l SIl and ÊSl = VlSIl (5.27)

∆Vl(k) = KvSIl max
(

0, ESl − ÊSl
)

(5.28)

We will investigate the results of the following two cases:
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I. ESl − ÊSl ≥ 0

II. ESl − ÊSl < 0

Considering the case I., the proof can be achieved as follows:

∆Vl(k) =KvSIl max
(

0, ESl − ÊSl
)

=KvSIl

(
ESl − ÊSl

)
=KvSIl (V

∗
l SIl − VlSIl)

=KvSIl (V
∗
l − Vl)SIl

=KvSIlṼlSIl

=KvṼl (SIl)
2 (5.29)

where Ṽl = V ∗l − Vl.

Vl (k + 1) =Vl (k) + ∆Vl(k)

Ṽl (k + 1) =V ∗ − Vl (k)−∆Vl(k)

=Ṽl (k)−KvṼl (SIl)
2

=
[
1−Kv (SIl)

2] Ṽl (k) (5.30)

Considering the case II., it is obvious that when ESl − ÊSl < 0 the max function

in equation (5.28) will force the adaptation in Amygdala to stop and the following

hold:

∆Vl(k) =0

Vl (k + 1) =Vl (k)

Ṽl (k + 1) =Ṽl (k) (5.31)
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The proof can be achieved as follows:

∆Wl(k) =KwSIl (MOl − ESl)

=KwSIl (VlSIl −WlSIl − V ∗l SIl)

=KwSIl (− (V ∗l − Vl)SIl −WlSIl)

=KwSIl

((
−Ṽl −Wl

)
SIl

)
=−KwW̃l (SIl)

2 (5.32)

where Ṽl = V ∗l − Vl and W̃l = Ṽl +Wl.

Wl (k + 1) =Wl (k) + ∆Wl(k)

W̃l (k + 1) =Ṽl (k + 1) +Wl (k + 1)

=Ṽl (k) +Wl (k) + ∆Wl(k)

=W̃l (k)−KwW̃l (SIl)
2

=
[
1−Kw (SIl)

2] W̃l (k) (5.33)

5.7 Appendix B

Let’s consider the us is a stable controller for the following system:

ẋ = f(x) + g(x)us (5.34)

There is a Lyapunov function Ls(x) which guarantees the stability of the whole

system:

Ls(x) =
1

2
xTx
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Taking the first derivative, we have:

L̇s(x) = xT ẋ

= xT [f(x) + g(x)us]

≤ −lxTx , l > 0 (5.35)

To provide the stability analysis of the actual system, let’s consider the ua is an

actual controller for the following system:

ẋ = f(x) + g(x)ua (5.36)

where ua is as follows:

ua = us + ũ (5.37)

and ũ is the controller which is given by the BELBIC model output MO. Consider-

ing the Lyapunov function LMO(x), the following is obtained:

LMO(x) = A(M̃O)2

Taking the first derivative, we have:

L̇MO(x) = A(M̃O)(
˙̃

MO)

≤ −A(M̃O)2

≤ −A(ũ)2 (5.38)

Considering the Lyapunov function La(x), the stability proof of overall system is

as follows:

La(x) =
1

2
xTx
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Taking the first derivative, we have:

L̇a(x) = xT ẋ

= xT [f(x) + g(x)ua]

= xT [f(x) + g(x)(us + ũ)]

= xT [f(x) + g(x)us + g(x)ũ]

= xT [f(x) + g(x)us] + xTg(x)ũ

≤ −lxTx+ xTg(x)ũ

≤ −lxTx+
l

2
xTx+

2

l
(g(x)ũ)2

≤ − l
2
xTx+

2

l
(g(x)ũ)2

≤ − l
2
xTx− A(ũ)2 (5.39)
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Chapter 6

Brain Emotional Learning-Based Path

Planning and Intelligent Control

Co-Design for Unmanned Aerial

Vehicle in Presence of System

Uncertainties and Dynamic

Environment

This paper proposes a novel intelligent path planning and control co-design for

Unmanned Aerial Vehicles (UAVs) in the presence of system uncertainties and dy-

namic environments. In order to simultaneously handle the uncertainties from
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both the UAV platform itself and from the environment, a novel biologically-inspired

approach based on a computational model of emotional learning in mammalian

limbic system is adopted. The methodology, known as Brain Emotional Learn-

ing (BEL), is implemented in this application for the first time. Making use of the

multi-objective properties and the real-time learning capabilities of BEL, the path

planning and control co-design are applied in a synthetic UAV path planning sce-

nario, successfully dealing with the challenges caused by system uncertainties and

dynamic environments. A Lyapunov analysis demonstrates the convergence of the

co-design, and a set of numerical results illustrate the effectiveness of the proposed

approach. Furthermore, it is shown that the low computational complexity of the

method guarantees its implementation in real-time applications.

6.1 Introduction

Path planning and control of Unmanned Aerial Vehicles (UAVs) are in demand for

both military and civilian missions specifically in the mobile robotics area [17, 122,

123]. In general, the critical challenge in path planning is how to efficiently deter-

mine the UAV moving trajectory from current location to the desired location in

a complex environment in real-time. Path planning strategies are also responsible

for collision avoidance, obstacle avoidance, and goal satisfaction. Moreover, how

to develop an intelligent and robust control to achieve the plan under an uncertain

and complex environment is still a relevant and open problem. In recent years,

both path planning and control of Unmanned Aerial Vehicles (UAVs) have been

received a tremendous interests from robotics as well as control societies [17, 123].

Due to the strong interaction between path planning and real-time control, a



160

novel and effective co-design is required. Moreover, the path planning and con-

trol co-design in dynamic environment with unknown moving obstacle is a critical

challenging problem that attracts enormous interests from many practical applica-

tions, e.g., outer space exploration, disaster search and rescue, etc. Diverse research

efforts have been proposed aiming at addressing the issues arising from these con-

ditions i.e., dynamic environments with unpredictable and unknown moving ob-

stacles [123].

Related Works

In [124], the authors presented an evolutionary artificial potential field algorithm

for dynamic path planning of mobile robot. Closely related, harmonic potential-

based communication-aware navigation of mobile agents in cluttered spaces is

proposed in [125]. Scalable lazy satisfiability modulo theory-based motion plan-

ning has been addressed in [126]. Moreover, authors in [127] studied a hierar-

chical path generation for distributed mission planning of UAVs. In [128], the

authors introduced a path planning method with fractional potential fields for au-

tonomous vehicles. Recently, a near-optimal decoupling principle for nonlinear

stochastic systems arising in robotic path planning and control have been investi-

gated in [129].

In general, most existing path planning researches available in the literature,

see [122, 123], and the references therein, address three aspects, specifically, (i)

the optimization of the planned path, (ii) the robustness and adaptivity for deal-

ing with dynamic and uncertain environments, and (iii) the capability of dealing

with unpredictable and unknown moving obstacles. However, these existing ap-
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proaches are not designed for having multi-objective properties which is important

for the path planning and control co-design due to the various constraints existing

in UAVs. Furthermore, the computational complexity of these existing approaches

is not suitable for real-time implementation.

In recent years, solving complex computational problems by means of biologically-

inspired methods have been increasingly employed by many researchers [40, 41,

44]. Brain Emotional Learning (BEL) [41] is one of the most promising learning

techniques. This methodology adopts the computational model developed in [40]

to mimic the parts of the mammalian limbic system which are known for pro-

ducing emotion, i.e., the Amygdala, Orbitofrontal Cortex, Thalamus, and Sensory

Input Cortex. Strategies based on BEL have shown to be a very effective solution

for improving the robustness as well as for handling uncertainties from both phys-

ical systems and environment [41]. BEL has two main inputs: sensory inputs (SI)

and emotional signal (ES). It is worth mentioning that this method is an appealing

strategy for addressing real-time applications with multi-objective properties due

to its flexibility in defining both SI and ES [41]. Furthermore, BEL has a compu-

tational complexity in the order of O(n) which is much more efficient than other

existing learning algorithms [41, 44, 51].

Contributions

The contribution of this paper has three main components, specifically (i) a path

planning and control co-design, (ii) a learning based approach that can effectively

handle the uncertainties from unstable UAV system and complex environment,

and (iii) a low computational learning technique that can be implemented in real-
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time. To this end, we utilize the computational model of emotional learning in

mammal’s brain, i.e., BEL, for developing a novel path planning and intelligent

control co-design for practical real-time implementation in UAVs in the presence

of system uncertainties and dynamic environments. To the best of the authors’

knowledge, this is the first time that BEL is implemented for accomplishing intelli-

gent path planning and control co-design of UAVs. The learning capabilities intro-

duced by the proposed approach to the path planning and coordination of UAVs,

enhances the overall system robustness and performance, which is critical for dif-

ferent real-time applications e.g., emergence response, outer space exploration, etc.

especially when dealing with challenges caused by dynamic and uncertain en-

vironments with multiple unknown moving obstacles. Moreover, the proposed

method is feasible and very promising for implementing into diverse real-time

applications due to its specific low computational complexity. Particularly, the

developed BEL based design provides a path planner with multi-objective prop-

erties i.e., optimizing the path planning, improving the robustness and adaptivity

for path planning which can deal with dynamic and uncertain environments, and

having the capability to handle the impacts from multiple unknown moving ob-

stacles. In addition, the proposed approach keeps the overall computational com-

plexity of the system within a reasonable region. The main objective is then to

design a practically applicable real-time path planner that is able of keeping the

UAV performance as satisfactory as possible in terms of efficiently determining

where the UAV should move from its starting and/or current position to a target

location, while avoiding any collisions between the UAV and potential obstacles,

and also satisfactory tracking a target. In order to demonstrate the effectiveness of

the proposed approach, a set of numerical simulations are provided. A comparison

between the proposed approach and other recent developed path planning strate-
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gies is included, where it is possible to observe the path planning improvement

produced by BEL-inspired technique.

The rest of the paper is organized as follows. Section 6.2 presents the problem

formulation and relevant preliminaries about path planning and BEL technique.

The proposed design is introduced in Section 6.3, which consists of a BEL based

path planning and intelligent control co-design. Section 6.4 presents numerical

simulation results. The conclusion of the paper and future directions of our work

are provided in Section 6.5.

6.2 Problem Formulation and Preliminaries

Consider the real-time autonomous flight of a UAV in dynamic uncertain environ-

ments. The dynamics of the UAV are nonlinear and complex and, as expected from

any real-time platform, the system dynamics are affected by uncertainties, noise,

and disturbances. The main objective of this research consists on the design of

a path planning and intelligent control co-design, which is effective for real-time

autonomous flight of a UAV, even under the system uncertainties and dynamic

environment.

The solution proposed in this paper is a novel path planning and intelligent

control co-design, which provides the following benefits:

• optimizing the path planning.

• improving the robustness and adaptivity for path planning which allows

dealing with dynamic and uncertain environments.
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• capability to handle the impacts from unpredictable and unknown moving

obstacles.

• suitable for real-time implementation due to its low computational complex-

ity.

• ensuring the stability of the system during its online training phase.

The problem formulation and relevant preliminaries about path planning, UAV

modeling, and BEL technique are provided next.

6.2.1 Path Planning in Continuous Spaces

Q
G

C
obs

 

C
obs

 
C
free

C
obs

 

Q
I

Figure 6.1: A path planning problem using configuration space (i.e., C–space)
ideas.
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Consider a robot moving in an m–dimensional workspaceW ⊂ Rm and (m =

2, 3) which contains a set of obstacles O ∈ W . Consider also that Q ∈ C represents

the configuration of robot A(Q), in which Q = (x, y, ψ) and Q = (x, y, z, φ, θ, ψ)

for 2–dimensional and 3–dimensional workspace, respectively. Then, the obstacle

region which is a closed set in C, and the free space which is an open set, could be

described as follows [122]:

Cobs = {Q ∈ C | A(Q) ∩ O 6= ∅} , Cobs ⊆ C

Cfree = C\Cobs

A typical path planning problem is shown in Figure 6.1. The main objective is to

find a path from the start configuration (QI) to the goal configuration (QG) in Cfree.

The entire map represents C = Cfree∪Cobs. In other words, a complete path planning

algorithm must be able to compute a continuous path (i.e., τ : [0, 1] → Cfree), in a

way that τ(0) = QI and τ(1) = QG. Also, if there is no solution for the path

planning problem, it must be able to correctly report that such a path does not

exist.

Various algorithms have been proposed for solving the path planning prob-

lem [122], where they could be categorized as one (or combinations) of the follow-

ing methods: (i) sampling-based planning methods, (ii) combinatorial planning

methods, (iii) optimal planning methods, and (iv) potential field planning meth-

ods. However, most of these methods exhibit issues like the problem of computa-

tional complexity, trapping in local minima, failing to find the solution, etc [122].

To overcome these deficiencies, we utilize the computational model of emo-

tional learning in mammal’s brain, i.e., BEL, for developing a novel path planning

and intelligent control co-design for real-time implementation in UAVs in the pres-
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ence of system uncertainties and dynamic environments.

6.2.2 UAV Dynamics Representation

{I} XI

YI

ZI

XB

YB

ZB

{B}

Figure 6.2: System Coordinates.

In order to analytically validating the proposed controller, the dynamics of

the UAV are described by means of a hybrid system of coordinates, i.e., the H-

frame [77]. This system is composed of a set of angular equations with respect

to (w.r.t.) a body fixed frame (B-frame) and a set of nonlinear equations w.r.t. an

inertial frame (I-frame), see Figure 6.2. The UAV nonlinear equations w.r.t. the

H-frame are described as follows [77]:
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

Ẍ = (sinψ sinφ+ cosψ sin θ cosφ)U1

m

Ÿ = (− cosψ sinφ+ sinψ sin θ cosφ)U1

m

Z̈ = −g + (cos θ cosφ)U1

m

ṗ = IY Y −IZZ
IXX

qr − JTP
IXX

qΩ + U2

IXX

q̇ = IZZ−IXX
IY Y

pr − JTP
IY Y

pΩ + U3

IY Y

ṙ = IXX−IY Y
IZZ

pq + U4

IZZ

(6.1)

Additionally, the propellers’ speed are related to the moments as follows:
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Table 6.1: Definition of system parameters and variables

Parameters Definitions
θ Pitch angle
φ Roll angle
ψ Yaw angle
U1 collective throttle
U2 Roll moment
U3 Pitch moment
U4 Yaw moment
IXX body moment of inertia around the X axis
IY Y body moment of inertia around the Y axis
IZZ body moment of inertia around the Z axis
g acceleration due to gravity
m UAV mass
JTP total rotational moment of inertia around the propeller axis
Ω1 front-left propeller speed
Ω2 front-right propeller speed
Ω3 rear-right propeller speed
Ω4 rear-left propeller speed
bq thrust factor
dq drag factor
l distance between center of the quadrotor and center of the propeller
KE electric motor constant
KM mechanic motor constant
R motor resistance
ν motor voltage
N gearbox reduction ratio
η conversion efficiency of the gearbox



U1 = bq(Ω
2
1 + Ω2

2 + Ω2
3 + Ω2

4)

U2 = bql(−Ω2
2 −Ω2

3 + Ω2
1 + Ω2

4)

U3 = bql(−Ω2
1 −Ω2

2 + Ω2
3 + Ω2

4)

U4 = dq(−Ω2
1 + Ω2

2 −Ω2
3 + Ω2

4)

Ω = −Ω1 + Ω2 −Ω3 + Ω4

(6.2)
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Ultimately, the nonlinearities of the quad rotorcraft motors is described as fol-

lows:

JTP Ω̇ = −KEKM

R
ηN2Ω− dqΩ2 +

KM

R
ηNν (6.3)

The parameters of Equations (6.1), (6.2), and (6.3) are given in Table 6.1.

6.2.3 Brain Emotional Learning

Brain Emotional Learning (BEL) is a neurobiologically-motivated intelligent method-

ologies, which is based on the computational model of emotional learning ob-

served in the mammalian limbic system [40]. This model, depicted in Figure 6.3,

has two main parts: Amygdala, and Orbitofrontal Cortex. Amygdala is responsible

for immediate learning, while Orbitofrontal Cortex is responsible for inhibition of

any inappropriate learning happening in the Amygdala. Sensory Inputs (SI) and

Emotional Signal (ES) are two main inputs to the BEL model.

The BEL model output (MO) can be defined as

MO =
∑
l

Al −
∑
l

OCl (6.4)

which is calculated by the difference between the Amygdala outputs (Al) and the

Orbitofrontal Cortex outputs (OCl). Here, l is the number of sensory inputs.

The Orbitofrontal Cortex and the Amygdala outputs are calculated by the sum-

mation of all their corresponding nodes, where the output of each node is de-
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Figure 6.3: Computational model of emotional learning.

scribed as:

Al = VlSIl (6.5)

OCl = WlSIl (6.6)

where SIl is the lth sensory input, Vl is the weight of the Amygdala, and Wl is

the weight of the Orbitofrontal Cortex. The following equations are employed for

updating Vl and Wl, respectively:

∆Vl = KvSIl max

(
0, ES −

∑
l

Al

)
(6.7)

∆Wl = KwSIl (MO − ES) (6.8)

where, Kw and Kv are the learning rates.
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The maximum of all sensory inputs is another input considered in the model.

This signal, which is directly sent from the Thalamus to the Amygdala, is defined

as:

Ath = Vth max (SIl) (6.9)

with Vth being the weight, and with a corresponding update law similar to the one

shown in Equation (6.7).

Several techniques have been adopted for tuning the BEL parameters. For

instance, genetic algorithm (GA) is adopted for optimally tuning BEL parame-

ters in [130] while a particle swarm optimization-based approach is implemented

in [131]. The authors in [47] adopted the clonal selection algorithm to obtain BEL

parameters, where it has been successfully applied for controlling a single-link

flexible joint manipulator. Moreover, a fuzzy tuning of BEL parameters has been

proposed in [132], and successfully applied for controlling a chaotic system and an

inverted double pendulum system. Trial and error tuning has also shown to be ap-

propriate, since [41] and [51] relied on this method. In this paper, to significantly

reduce the computational complexity, a heuristic approach is utilized for tuning

the BEL parameters.

6.2.4 Objectives

Based on the quad rotorcraft model described in Section 6.2.2, and by leveraging

the brain emotional learning introduced in Section 6.2.3, the objective is to de-

sign a path planning and intelligent control co-design for UAVs. Specifically, the

proposed method is designed for practical real-time implementation in UAVs in

presence of system uncertainties and dynamic environments.
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6.3 Brain Emotional Learning-Based Path Planning and Intelli-

gent Control Co-Design

6.3.1 System Design

The primary idea behind the emotional learning based path planning and/or decision-

making and intelligent control co-design in this work is to produce the action (i.e.,

output) that regulates the emotional signal i.e., the one that maximizes the emo-

tional reward or minimizes the emotional stress, while different sets of sensory

inputs are received by the system [41]. The current situation of the system is rep-

resented by the received sensory inputs while the emotional signals represent how

satisfactory the performance of the system is. In other words, the emotional signal

represents the condition of the system by considering the particular objective.

In this paper, we propose a novel path planning and intelligent control co-

design which is based on the computational model of emotional learning in the

mammal’s brain. The BEL-inspired path planner aims at a practical real-time im-

plementation in UAVs in presence of system uncertainties and dynamic environ-

ments.

It is worth mentioning that the proposed path planner will intelligently learn in

real-time the best path for the UAV, and will provide this information to the control

layer, in such a way it can be used as a control objective. After receiving the latest

learnt path, the BEL-based control algorithm will force the UAV to achieve these

objectives i.e., track the desired path, save the energy etc. in an intelligent manner.
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Figure 6.4: BEL-based path planning architecture.

The design of a BEL-based path planner, is desirable since it could be practically

accomplished without increasing the complexity of the overall system. The BEL-

based path planning architecture implemented in this work is shown in Figure 6.4.

This figure demonstrates a closed loop configuration which consists of the follow-

ing blocks: (i) BEL-based high-level path planner block, (ii) low-level controller

block, (iii) environment block, and finally (iv) a block for the UAV. This architecture

implicitly demonstrates the overall emotional learning based path planning con-

cept, which consists of the action selection mechanism, the critic, and the learning

algorithm.

Intelligent Control Co-Design

In general, intelligent control techniques can be utilized for solving different con-

trol problems via direct or indirect approaches. In the direct mode, the intelligent

method is utilized as a controller block, while it is employed for obtaining the con-

troller’s parameters in the indirect mode. In this paper, we propose an intelligent
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control co-design based on the computational model of emotional learning in the

mammal’s brain, which is utilized as a low-level controller for path planning and

intelligent control co-design of a UAV.

Aiming at designing an intelligent control co-design well suited for implemen-

tation in real-time systems, the proposed methodology aims at improving: (i) tar-

get tracking, (ii) disturbance rejection, and (iii) model uncertainty handling. To

fulfill these objectives, each of the control inputs {U1,U2,U3,U4}, will be designed

as [48]:

SIUAVi = Ki1e+Ki2

∫
e× dt+Ki3

de

dt

ESUAVi = Ki4e+Ki5

∫
e× dt+Ki6

de

dt

Ui =
∑
i

V UAV
i × SIUAVi

−
∑
i

WUAV
i × SIUAVi (6.10)

Here, i = 1, ..., 4 makes reference to each control input. Ki1, Ki2, Ki3, Ki4, Ki5,

and Ki6 are positive gains. By assigning different values to these gains, the ES

will change its influence on the system behavior. In this work, different values are

used for each one of control inputs of the system, i.e., for Ui, i = 1, ..., 4.

6.3.2 Emotional Signal and Sensory Input Development

Fundamentally, BEL is an action selection technique, in which an action is pro-

duced based on the sensory input (SI) and the emotional signal (ES). The general

forms of SI and ES are given as follows:

SI = G (SS,EI, U) (6.11)
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ES = F (SS,EI, U) (6.12)

where SS is the system states vector, EI is the environment information vector,

and U is the control effort vector.

The path planning objectives (e.g., optimizing the path planning and robust-

ness and adaptivity) can be decided implicitly by choosing the adequate ES. For

example, it is possible to choose theES for achieving a better robustness and adap-

tivity performance, for achieving the optimal path, and/or for the energy expense

minimization, among others.

Since our goal is to design a path planning and intelligent control co-design for

UAVs, the proposed biologically inspired co-design technique will focus on: (i) op-

timizing the path planning, (ii) improving the robustness and adaptivity for path

planning which can deal with dynamic and uncertain environments, and (iii) hav-

ing the capability to handle the impacts from unpredictable and unknown moving

obstacles.

To accomplish these objectives, the SI and ES, will be designed as:

SI = K1
SIU1 +K2

SIU2 +K3
SIU3

+K4
SIU4 +K5

SIUPF +K6
SIΥ (EI) (6.13)

ES = K1
ESU1 +K2

ESU2 +K3
ESU3

+K4
ESU4 +K5

ESUPF +K6
ESΥ (EI) (6.14)

where Ui, i = {1, ...4} are the UAV controllers effort, K l
SI , K

l
ES, l = {1, ...6}, are

positive gains, Υ (EI) is a function representing the environment information and

UPF is a potential field function. The ES will change its impact on the system be-
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havior by assigning different values to these positive gains. In this work, different

gains are assigned for each one of the ES and SI .

In this work, the ES is designed in such a way that the increase in reference

tracking error will generate a negative emotion in the system, which is then taken as

an evidence for the unsatisfactory performance of the system. Therefore, the pro-

posed planner will behave in such a way that it will always minimize the negative

emotion, ultimately leading to the satisfactory performance of the system.

6.3.3 Learning-based Path Planner

In path planning of UAVs, multiple performance considerations have to be taken

into account all at the same time, therefore, it is a very interesting case for us-

ing biologically-inspired learning-based multi-objective methodologies like BEL.

Designing a path planner suitable for real- time implementation, as well as an in-

telligent control co-design for UAVs, encourages us to take advantage of the com-

putational model of emotional learning in the mammals’ limbic system, i.e., BEL.

From equations (6.13)-(6.14), the BEL-based path planner for UAVs is defined

as

uBEL = V × SI −W × SI (6.15)

= V × (K1
SIU1 +K2

SIU2 +K3
SIU3

+K4
SIU4 +K5

SIUPF +K6
SIΥ (EI))

−W × (K1
SIU1 +K2

SIU2 +K3
SIU3

+K4
SIU4 +K5

SIUPF +K6
SIΥ (EI))
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Substituting the Emotional Signal with equation (6.14) the BEL model output

of the path planner for UAVs could be obtained as follows:

MO = ES (6.16)

= K1
ESU1 +K2

ESU2 +K3
ESU3

+K4
ESU4 +K5

ESUPF +K6
ESΥ (EI)

which clearly satisfies our goal of path planning for UAVs.

The overall path planner proposed in this paper is summarized as pseudo-code

in Algorithm 5.

Algorithm 5 : The BEL-based methodology for path planning and intelligent con-
trol co-design of UAVs.
Initialization:
Set WUAV = 0, V UAV

th = 0, and V UAV = 0.
Set W = 0, Vth = 0, and V = 0.
Define ES = Objective function.

for each iteration t = ts do
for each control inputs Ui, i = 1, ..., 4 do

Compute
Ui = V UAV

i × SIUAVi −WUAV
i × SIUAVi

Compute SIUAVi

Compute ESUAVi

Update V UAV
i

Update V UAV
th,i

Update WUAV
i

end for
Compute SI = K1

SIU1 +K2
SIU2 +K3

SIU3 +K4
SIU4 +K5

SIUPF +K6
SIΥ (EI)

Compute ES = K1
ESU1 +K2

ESU2 +K3
ESU3 +K4

ESU4 +K5
ESUPF +K6

ESΥ (EI)
Compute A = V × SI
Compute Ath = Vth ×max (SI)
Compute OC = W × SI
Compute BEL = A−OC
Update V
Update Vth
Update W

end for
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6.3.4 Stability Analysis

Theorem 8 presents the convergence of the weights of the Amygdala (Vl) and the

Orbitofrontal Cortex (Wl). Next, Remark 10 explains how the proposed method

accomplishes a path planner for UAVs.

Theorem 8. Given the BEL as shown in Equations (6.13)–(6.16), there exists positive

BEL tuning parameters, Kv, Kw satisfying

I.
∣∣[1−Kv (SIl)

2]∣∣ < 1

II.
∣∣[1−Kw (SIl)

2]∣∣ < 1

such that the BEL estimated weights of the Amygdala (Vl) and the Orbitofrontal Cortex

(Wl) converge to the desired targets asymptotically.

Proof. See Appendix A

Remark 10. Based on the BEL theory [41] and making use of Equation (6.15), the path

planner for UAVs can be obtained while the estimated weights of the Amygdala (Vl) and

the Orbitofrontal Cortex (Wl) are converging to desired targets. According to Theorem 8,

the estimated weights converge to the desired targets asymptotically. Therefore, the de-

signed BEL input U shown in Equation (6.15) asymptotically accomplishes an optimal

path planner for UAVs.
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6.4 Simulation Results

Figure 6.5: Path generated by the BEL-based path planner for workspace with
multiple obstacles with different shape and size.

This section presents computer-based simulation results showing the perfor-

mance of the proposed path planning and intelligent control co-design for un-

manned aerial vehicles. Figure 6.5 shows the results of applying the proposed

method. The initial position is in red and the goal position is plotted in green.
Table 6.2: Comparison of BEL-based path planning and RRT

Algorithms Processing Time Path Length
BEL-based 6.419738E + 01 1.874101E + 03

RRT 8.182490E + 01 1.567674E + 03

For comparison purposes, a similar experiment was performed, but using the

RRT algorithm instead of the proposed algorithm. Figure 6.6 shows the results
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Figure 6.6: Path generated by the RRT-based path planner for workspace with
multiple obstacles with different shape and size.

of applying the RRT method in the same workspace. Table 6.2 summarizes some

relevant outcomes for each one of the two methods.

Furthermore, a similar experiment was performed, in the same workspace, but

using a conventional PID controller instead of the intelligent control co-design.

The results of applying the PID method are shown in Figure 6.7.

Experimental Testbed

The platform implemented for future validation of the proposed algorithm is avail-

able at the Unmanned Systems Laboratory (USL) from the University of Nevada,
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Figure 6.7: Trajectory tracking by the BEL-based control co-design (in Magenta
Color) and PID-based co-design (in Blue Color) for workspace with multiple ob-
stacles with different shape and size.

Reno. The Base Station of this testbed runs Ubuntu 14.04 OS, the Robot Operat-

ing System (ROS) environment, and Matlab. The UAV platform corresponds to a

Bebop drone manufactured by Parrot.

The 3-dimensional position of the UAV is obtained by means of a Motion Cap-

ture System (MCS) manufactured by OptiTrack. The information provided by the

MCS is reported to the OptiTrack Interface PC by means of a Gigabyte Ethernet

connection. Next, this information is sent to the Base Station PC by means of an

Ethernet connection. The Base Station computer uses this information to execute

the BEL algorithm and to calculate the path planing and intelligent control co-

design, which are sent to the Bebop platform by means of a WiFi link. Figure 6.8

shows the experimental testbed which will be used for future evaluation of the
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Figure 6.8: The experimental testbed for future evaluation of the proposed algo-
rithm on a Bebop drone manufactured by Parrot.

proposed algorithm on a Bebop drone.

6.5 Conclusions and Future Works

In this paper, a joint intelligent path planning and control co-design for UAVs in the

presence of system uncertainties and dynamic environment has been investigated.

The proposed approach, which makes use of a biologically-inspired methodology

know as BEL was implemented for the first time in this application. The novel

co-design enhanced the UAV for dealing with the challenges caused by system

uncertainties and dynamic environments. Furthermore, the proposed method is
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very promising for implementation in real-time applications due to its specific low

computational complexity. Numerical results of the BEL-based path planning and

intelligent control co-design for UAVs demonstrate the effectiveness of the pro-

posed approach.

6.6 Appendix A

6.6.1 Non-adapting Phase

Our goal is to investigate the output of the system in non-adapting phase (i.e.,

when the system completes its learning process). In addition we make an assump-

tion that the max(·) function in equation (6.7) could be neglected. By substituting

equations (6.5) and (6.6) in equation (6.4) the output of the model could be defined

as follows:

MO =
∑
l

VlSIl −
∑
l

WlSIl

=
∑
l

(Vl −Wl)SIl (6.17)

∆Vl =KvSIl

(
ES −

∑
l

Al

)

=KvSIl

(
ES −

∑
l

VlSIl

)
(6.18)

∆Wl =KwSIl (MO − ES)

=KwSIl

(∑
l

(Vl −Wl)SIl − ES

)
(6.19)



184

When the learning process is completed i.e., after system completes its learning

process the variations of the weights of Amygdala (∆Vl) and Orbitofrontal Cortex

(∆Wl) will be equal to zero (i.e., ∆Vl = ∆Wl = 0). With the assumption of SIl 6= 0

the following holds:

KvSIl

(
ES −

∑
l

VlSIl

)
=0

⇒
∑
l

VlSIl =ES (6.20)

KwSIl

(∑
l

(Vl −Wl)SIl − ES

)
=0

⇒
∑
l

(Vl −Wl)SIl =ES

⇒
∑
l

WlSIl =0 (6.21)

By substituting equations (6.20) and (6.21) in equation (6.17) the model output in

non-adapting phase will be as follows:

MO =
∑
l

(Vl −Wl)SIl =
∑
l

VlSIl = ES (6.22)

6.6.2 Main Proof

Considering the results obtained in Subsection 6.6.1 the following should be achieved:

MOl → ESl (6.23)

Let V ∗l be the weight of Amygdala for each control input l when the system has

been learned and let ÊSl be the Emotional Signal for each control input l during

the adaptation phase. The following equations hold:

ESl = V ∗l SIl and ÊSl = VlSIl (6.24)
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∆Vl(k) = KvSIl max
(

0, ESl − ÊSl
)

(6.25)

We will investigate the results of the following two cases:

Case I. ESl − ÊSl ≥ 0

Case II. ESl − ÊSl < 0

Considering the case I., the proof can be achieved as follows:

∆Vl(k) =KvSIl max
(

0, ESl − ÊSl
)

=KvSIl

(
ESl − ÊSl

)
=KvSIl (V

∗
l SIl − VlSIl)

=KvSIl (V
∗
l − Vl)SIl

=KvSIlṼlSIl

=KvṼl (SIl)
2 (6.26)

where Ṽl = V ∗l − Vl.

Vl (k + 1) =Vl (k) + ∆Vl(k)

Ṽl (k + 1) =V ∗ − Vl (k)−∆Vl(k)

=Ṽl (k)−KvṼl (SIl)
2

=
[
1−Kv (SIl)

2] Ṽl (k) (6.27)

Considering the case II., it is obvious that when ESl − ÊSl < 0 the max function

in equation (6.25) will force the adaptation in Amygdala to stop and the following

holds:

∆Vl(k) =0

Vl (k + 1) =Vl (k)

Ṽl (k + 1) =Ṽl (k) (6.28)
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The proof can be achieved as follows:

∆Wl(k) =KwSIl (MOl − ESl)

=KwSIl (VlSIl −WlSIl − V ∗l SIl)

=KwSIl (− (V ∗l − Vl)SIl −WlSIl)

=KwSIl

((
−Ṽl −Wl

)
SIl

)
=−KwW̃l (SIl)

2 (6.29)

where Ṽl = V ∗l − Vl and W̃l = Ṽl +Wl.

Wl (k + 1) =Wl (k) + ∆Wl(k)

W̃l (k + 1) =Ṽl (k + 1) +Wl (k + 1)

=Ṽl (k) +Wl (k) + ∆Wl(k)

=W̃l (k)−KwW̃l (SIl)
2

=
[
1−Kw (SIl)

2] W̃l (k) (6.30)
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Chapter 7

Conclusions and Future Directions

In this dissertation a biologically-inspired intelligent controller based on a novel ar-

chitecture of emotional learning in mammal’s brain was proposed for distributed

control of MAS. The methodology, which is a biologically-inspired reinforcement

learning, was designed and implemented in the real-time coordination of multiple

UAS platforms operating in presence of system uncertainties and dynamic envi-

ronment.
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7.1 Conclusions

7.1.1 A Neurobiologically-inspired Intelligent Trajectory Track-

ing Control for Unmanned Aircraft Systems with Uncertain

System Dynamics and Disturbance

This paper addressed the problem of stabilizing the full 6 DoF of a quad rotor-

craft UAS and also intelligent tracking control of a UAS subjected to unknown

system dynamics and external disturbances. The low-computational model-free

BELBIC, a neurobiologically-motivated intelligent controller, was adopted in or-

der to design and experimentally validate a novel UAS control methodology. The

numerical and experimental flight results, which considered uncertainty and dis-

turbances, demonstrated the effectiveness, applicability, and superior performance

of the BELBIC-inspired controller, when compared to conventional model-based

control methods. In addition, the convergence analysis of the proposed approach

has been studied.
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7.1.2 A Biologically-Inspired Reinforcement Learning based In-

telligent Distributed Flocking Control for Multi-Agent Sys-

tems in Presence of Uncertain System and Dynamic Envi-

ronment

In this paper a biologically-inspired intelligent controller based on a novel architec-

ture of emotional learning in mammal’s brain was proposed for flocking control of

MAS. The methodology, which is given the name BELBIC-based flocking, was de-

signed and implemented in the real-time coordination of multiple UAS platforms

operating in presence of system uncertainties and dynamic environment. In ad-

dition, the convergence analysis of the proposed approach has been studied. Nu-

merical and experimental results of the BELBIC-inspired flocking demonstrated

the effectiveness of the proposed approach, as well as its applicability to real-time

systems.

7.1.3 A Biologically-Inspired Distributed Fault Tolerant Flocking

Control for Multi-Agent System in Presence of Uncertain

Dynamics and Unknown Disturbance

A neurobiologically-motivated intelligent distributed resilient controller based on

a computational model of emotional learning in the mammalian limbic system

was proposed for flocking control of MAS in presence of system uncertainties and

unknown disturbances. The methodology, called R-BELBIC-inspired flocking, em-
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beds a resilience mechanism with multi-objective properties into the flocking con-

trol strategy in a distributed manner. The results from both computer-aid simu-

lation and experimental test demonstrate the effectiveness of proposed R-BELBIC

based resilient distributed flocking control, as well as its applicability for real-time

systems.

7.1.4 A Game Theoretic Based Biologically-Inspired Distributed

Intelligent Flocking Control for Multi-UAV Systems with

Network Imperfections

A game theoretic based biologically-inspired distributed intelligent control method-

ology is proposed to overcome the challenges of network-induced delay in flock-

ing of networked multi-unmanned aerial vehicles. The methodology is adopted

based on the emotional learning phenomenon in the mammalian limbic system.

The learning capability and low computational complexity of the proposed tech-

nique makes it a promising tool for implementing in real-time networked multi-

unmanned aerial vehicles flocking considering the influence of network-induced

delay. Computer-based numerical results of the implementation of the proposed

methodology demonstrate the effectiveness of this algorithm for distributed intel-

ligent flocking control of networked multi-UAV.
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7.1.5 Brain Emotional Learning-Based Path Planning and Intel-

ligent Control Co-Design for Unmanned Aerial Vehicle in

Presence of System Uncertainties and Dynamic Environment

In this paper, a joint intelligent path planning and control co-design for UAVs in the

presence of system uncertainties and dynamic environment has been investigated.

The proposed approach, which makes use of a biologically-inspired methodology

know as BEL was implemented for the first time in this application. The novel

co-design enhanced the UAV for dealing with the challenges caused by system

uncertainties and dynamic environments. Furthermore, the proposed method is

very promising for implementation in real-time applications due to its specific low

computational complexity. Numerical results of the BEL-based path planning and

intelligent control co-design for UAVs demonstrate the effectiveness of the pro-

posed approach.

7.2 Future Directions

Several future work items are inline. In Chapter 2 the implementation of a BELBIC-

inspired intelligent control strategy for addressing the task of UAS-based autonomous

transportation of loads with uncertain characteristics will be considered for future

work. In Chapters 3 and 4 one can extend our results also to handle other resources

of faults such as network imperfections, actuator faults, etc. Also, in this disserta-

tion, we assumed that all the parts using the same clock and has the time stamp for

maintaining the synchronization. Since both the Amygdala and the Orbitofrontal
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Cortex are located at the same layer in the BELBIC model, they could be consid-

ered to work with the same clock. Since the synchronization is a critical issue, and

put all the parts in the same clock might not be the best solution. We will consider

the synchronization issue in the future work. In Chapter 5 we took advantage of

the game theory for designing the ES where every agent tried to minimize the

total flocking error over a finite time interval, while at the same time minimizing

its control effort. This work can be extended by designing a zero-sum game. Fi-

nally, in Chapter 6 a joint intelligent path planning and control co-design for UAVs

in the presence of system uncertainties and dynamic environment has been pro-

posed. Future works will consider improving the performance of the proposed

method as well as providing the experimental results. Furthermore, extending the

proposed method for applying to MAS will be under consideration.
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