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Abstract

In this work we present a bivariate distribution of X and N, where N has a Poisson

distribution and X is the maximum of N independent, identically distributed expo-

nential variables. The joint bivariate distribution is developed, along with some useful

representations of the model. The results also include univariate marginal and condi-

tional distributions, moments and the covariance matrix, simulation, and estimation

of the parameters.
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Chapter 1

Introduction

Extreme values are a topic of interest in many different industries and various aspects

of life. Businesses hope to obtain maximum profits and minimize costs. Companies

may wonder, “What is the greatest number of orders we will have to fill in a given

day?” or “What is the longest wait time a customer will experience today?” Insurance

companies hope to predict and be able to cover most of their largest claims. Casinos

wish to know the maximum they will be liable for if a player wins big. Water resource

engineers want to know the probability of water storage falling below an unsafe value.

A builder desires to know the largest magnitude of an earthquake to expect, maximum

wind speeds, maximum snow load, and other extreme conditions to consider. Often

the maximum, rather than the minimum, is of most interest. Frequently the maximum

is the hardest value to predict and it is commonly unbounded.

When the distribution of a non-negative continuous random variable is known,

we can use the probability density function, fX(x), to obtain the probability that the
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variable will be less than or equal to a value α, which is equivalent to the probability

the maximum value is no more than α. This relationship is stated below.

P (X ≤ α) =
∫ α

0
fX(x) dx. (1.1)

Alternatively we can use the cumulative distribution function,

P (X ≤ α) = FX(α). (1.2)

These equations are useful when the big question of “What is the probability my

variable of interest will be no more than α?” is asked. However, they only apply to

a single random variable. When we are concerned about the maximum value of N

random variables, which are mutually independent, but share a common distribution

function, it is well-known to calculate this as follows:

P
(

max
1≤i≤N

Xi ≤ α
∣

∣

∣N = n
)

= P (Xi ≤ α for each i = 1, 2, ..., n)

= [P (Xi ≤ α)]n

= [FX(α)]n. (1.3)

Note the above function is a genuine cumulative distribution function (c.d.f.) itself

and is valid even when n is not an integer, as long as n > 0. In particular when F is

exponential, this distribution coincides with the generalized exponential distribution

studied in Gupta and Kundu (1999).
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Beyond the expansion to a c.d.f. for N random variables, we can study a bivariate

distribution of both the maximum of N variables and the distribution of N , where

N itself is a random variable. When the discrete distribution of N is known, further

properties of the maximum of the random variables can be derived. It is useful,

however difficult, to consider both the number of terms and the maximum of those

terms concurrently.

The maximum of N independent, identically distributed (i.i.d.) exponential

variables where N is a geometric random variable (N ∼ GEO(p)) was studied by

Kozubowski and Panorska (2008). Geometric random variables can be found in na-

ture in such areas as water resources and climate. It can also appear in the subject of

finance, particularly in the area of exchange rates (See [5]). The bivariate model of the

sum of the geometric number of exponential variables was discussed in Kozubowski

and Panorska (2005). For a comprehensive treatment of bivariate models for sums

and maxima of a geometric number of exponential random variables and their appli-

cations please see Kozubowski, Panorska, and Biondi (2008).

In this thesis we study the maximum of i.i.d. exponential variables that arrive at

the rate of the Poisson distribution. To accomplish this we let N be a Poisson random

variable with parameter λ > 0 and probability mass function (p.m.f.)

fN(n) = P (N = n) =
e−λλn

n!
, n ∈ {0, 1, 2, ...} . (1.4)

We shall denote this distribution by POISSON (λ). Also, we let X1, X2, ..., XN be
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N i.i.d. exponential variables with parameter β > 0, given by the probability density

function (p.d.f.)

fXi
(x) = βe−βx, x ≥ 0, (1.5)

and c.d.f.

FXi
(x) = 1 − e−βx, x ≥ 0. (1.6)

We shall denote this distribution by EXP(β). We then consider

X = max
1≤i≤N

Xi, (1.7)

and in this research we study the bivariate distribution of the random vector (X, N).

By construction of our model we have a bivariate vector in which the distribution is

neither continuous nor discrete. When considering applications of our bivariate model

it is advantageous that the Poisson distribution is closely related to the exponential

distribution. It is common to consider N exponential variables which arrive at a

Poissonian rate. For example, the number of customer arrivals can be modeled with

the Poisson distribution, where the length of time between two consecutive arrivals

has an exponential distribution. The memoryless property of exponential distribution

is useful in many applications, which further supports why our model is important.

For instance, regarding the customer example, the memoryless property states that
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the probability a minute will pass before the next customer arrives is equal to the

probability that another minute will pass before the next customer will arrive given

that three minutes have already passed with no customer arrivals.

In equation (1.3) we had a deterministic number of terms, n. It is straightforward

to expand this idea to fit our model with a random number of terms. By independence

of the Xi’s and N we have

P
(

max
1≤i≤N

Xi ≤ α, N = n
)

= [P (Xi ≤ α)]n · P (N = n) = [FX(α)]n · fN(n). (1.8)

A related bivariate distribution that has been studied in the past is the sum of

N i.i.d. discrete random variables. Most closely related to this research is the work

of Park (1970) who found properties of the bivariate distribution of the total time

for the emission of particles emitted from a radioactive substance and the number of

these particles, where the waiting times of the emissions are exponentially distributed

and the number of particles has a Poisson distribution.

This is closely related to a Poisson Process, where the waiting time between

observations is exponentially distributed, but the total time to be studied is not set.

The results from this thesis can be applied to Park’s radioactive particles example,

where our results would apply to the maximum of the radioactive particle decay times

in conjunction with the number of emitted particles. The choice for us to study a

bivariate model, rather than a univariate model with constant N is clear here. One

would expect the maximum time for decay to be largely affected by the number of
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particles. Another application of our model is closely related to queuing theory, which

has many applications to businesses concerned with maximum customer wait times.

Sarabia and Guillén (2008) emphasize the value of studying a bivariate model

rather than two univariate models. They use various models for the bivariate vector

(S,N), where S is the sum of random variables, and N is the number. Their appli-

cation of interest is from the insurance industry where N represents the number of

claims and S represents the total claim amount.

Kozubowski and Panorska (2005) studied the bivariate distribution of the sum

of N exponential variables, where N ∼ GEO(p). Biondi, Kozubowski, and Panorska

(2005) applied this model to stochastic hydrology. This bivariate distribution can be

expanded upon by letting N be a negative binomial process, dependent on time. This

expansion was studied by Kozubowski, Panorska, and Podgórski (2008). An idea for

further study in conjunction to this thesis is to study properties of the random process

(X(t), N(t)) =

(

max
1≤i≤N(t)

Xi, N(t)

)

, t ≥ 0. (1.9)

This work is organized as follows. The construction of the bivariate p.d.f. and

c.d.f. is presented in Chapter 2, useful representations of the bivariate model appear

in Chapter 3, univariate marginal and conditional distributions are treated in Chapter

4, derivation of moments and the covariance matrix appear in Chapter 5, and finally

estimation and simulation are discussed in Chapter 6 and the appendices.
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Chapter 2

Definition and basic properties

We begin by defining our bivariate model.

Definition 2.0.1 A random vector

(X, N)
d
=
(

max
1≤i≤N

Xi, N
)

, (2.1)

where the {Xi} are i.i.d. exponential variables with p.d.f. (1.4), and N is a Poisson

variable with p.m.f. (1.5), independent of the {Xi}, is said to have a BMEP distribu-

tion with parameters β > 0 and λ > 0. This distribution is denoted by BMEP(β, λ).

BMEP stands for bivariate distribution of the maximum of exponential variables and

Poisson marginals.
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2.1 The joint probability density function

Let f(x, n) denote the joint p.d.f. of (X, N) ∼ BMEP(β, λ), while fX|N=n(x) and

fN(n) denote the conditional p.d.f. of X given N = n and the marginal p.d.f. of N ,

respectively. Since the joint p.d.f. is the product

f(x, n) = fX|N=n(x) · fN(n),

it can be derived through a conditioning argument. We have the following two cases.

Case 1: N = n = 0. If there are 0 events, then X = max1≤i≤N Xi = 0. Therefore,

fX|N=0(x) =



















1 if x = 0

0 otherwise

. (2.2)

Since fN(0) = e−λ, we immediately obtain

f(x, 0) = fX|N=0(x) · fN(0) =



















e−λ if x = 0

0 otherwise

. (2.3)

Case 2: N = n ∈ N . Given N = n ∈ N , where N is the set of natural numbers, X

is the maximum of n i.i.d. EXP(β) variables. Thus, the c.d.f. of X given N = n is

FX|N=n(x) = P (X ≤ x|N = n)

= P
(

max
1≤i≤N

Xi ≤ x
∣

∣

∣N = n
)

= P (Xi ≤ x for each i = 1, 2, ..., n)
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= [P (Xi ≤ x)]n

= [1 − e−βx]n, x ≥ 0. (2.4)

Next, the p.d.f. of X given N is found to be

fX|N=n(x) = F
′

X|N=n(x) = nβe−βx(1 − e−βx)n−1, x > 0. (2.5)

Thus, for case 2,

f(x, n) = fX|N=n(x) · fN(n)

= nβe−βx(1 − e−βx)n−1 ·
e−λλn

n!

= βe−βx−λλn (1 − e−βx)n−1

(n − 1)!
, x > 0. (2.6)

Combining cases 1 and 2 we now state the joint p.d.f. in the proposition below.

Proposition 2.1.1 Let (X, N) ∼ BMEP(β, λ). Then the joint p.d.f. of (X, N)

is

f(x, n) =











































e−λ if x = n = 0

βe−βx−λλn (1 − e−βx)n−1

(n − 1)!
if x > 0, n ∈ N

0 otherwise

. (2.7)
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This can be written more compactly as,

f(x, n) = e−λ

{

I{(0,0)}(x, n) + βe−βxλn (1 − e−βx)n−1

(n − 1)!
I(R+×N )(x, n)

}

, (2.8)

where IA(·) denotes the indicator function of the set A:

IA(x) =



















1 if x ∈ A

0 if x /∈ A.

2.2 The joint cumulative distribution function

Let us denote the joint c.d.f. of (X, N) by F (x, y), and proceed in finding F (x, y)

using two cases.

Case 1: x < 0 or y < 0. Clearly F (x, y) = 0.

Case 2: x ≥ 0 and y ≥ 0. In this case,

F (x, y)
(1)
= P (X ≤ x, N ≤ y)

(2)
=

n
∑

k=0

P (X ≤ x, N = k)

(3)
=

n
∑

k=0

P (X ≤ x|N = k) · P (N = k)

(4)
=

n
∑

k=0

[1 − e−βx]k ·
e−λλk

k!

(5)
= e−λ

n
∑

k=0

λk

k!
[1 − e−βx]k, (2.9)



11

where n in line (2) is the greatest integer less than or equal to y, and in line (4) we

use equation (2.4). Note that in the special case x = 0 the quantities [1 − e−β·0]k in

line (4) are zero for k ≥ 1 and 1 for k = 0.

Combining all cases we now state the joint c.d.f. in the proposition below.

Proposition 2.2.1 Let (X, N) ∼ BMEP(β, λ). Then the joint c.d.f. of (X, N)

is

F (x, y) =











































e−λ if x = 0 and y ≥ 0, or if x > 0 and y = 0

e−λ
[[y]]
∑

k=0

λk

k!
[1 − e−βx]k if x > 0 and y > 0

0 otherwise,

(2.10)

where [[·]] denotes the greatest integer function.
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Chapter 3

Representations

In this chapter we shall derive useful representations of BMEP random vectors.

3.1 Mixture representation

By rewriting the joint p.d.f. of (X, N) found in equation (2.8) as

f(x, n) = [e−λ]I{(0,0)}(x, n) +

[1 − e−λ]
e−λ

1 − e−λ

(1 − e−βx)n−1

(n − 1)!
βe−βxλnI(R+×N )(x, n), (3.1)

we see that f(x, n) can be represented as a mixed distribution, which with probability

e−λ is a point mass at {0, 0}, or with probability 1−e−λ is a random vector (X̃, Ñ) ∈

R+ ×N given by the p.d.f.
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g(x, n) =























e−λ

1 − e−λ

(1 − e−βx)n−1

(n − 1)!
βe−βxλn if x > 0, n ∈ N

0 otherwise

. (3.2)

Let us verify that g(x, n) is a valid p.d.f., that is, verify
∞
∑

n=1

∫ ∞

0
g(x, n) dx = 1. We

have

∞
∑

n=1

∫ ∞

0
g(x, n) dx

(1)
=

∞
∑

n=1

∫ ∞

0

e−λ

1 − e−λ

(1 − e−βx)n−1

(n − 1)!
βe−βxλn dx

(2)
=

e−λ

1 − e−λ

∞
∑

n=1

λn

(n − 1)!

∫ ∞

0
(1 − e−βx)n−1βe−βx dx

(3)
=

e−λ

1 − e−λ

∞
∑

n=1

λn

(n − 1)!
lim
t→∞

∫ t

0
(1 − e−βx)n−1βe−βx dx

(4)
=

e−λ

1 − e−λ

∞
∑

n=1

λn

(n − 1)!
lim
t→∞

∫ 1−e−βt

0
un−1 du

(5)
=

e−λ

1 − e−λ

∞
∑

n=1

λn

(n − 1)!
lim
t→∞

(1 − e−βt)n

n

(6)
=

e−λ

1 − e−λ

∞
∑

n=1

λn

(n − 1)!

1

n

(7)
=

e−λ

1 − e−λ

∞
∑

n=1

λn

n!

(8)
=

e−λ

1 − e−λ
(eλ − 1) =

1 − e−λ

1 − e−λ
= 1,

where in line (4) we use the substitution u = 1 − e−βx and in line (8) we note

ex =
∞
∑

n=0

xn

n!
. Further, rewriting equation (3.1) as

f(x, n) = [e−λ]I{(0,0)}(x, n) + [1 − e−λ]g(x, n)I(R+×N )(x, n), (3.3)
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we see the joint p.d.f. of the BMEP distribution, f(x, n), sums to 1 over its domain

as well:

f(0, 0) +
∞
∑

n=1

∫ ∞

0
f(x, n) dx = e−λ + [1 − e−λ]

∞
∑

n=1

∫ ∞

0
g(x, n) dx

= e−λ + [1 − e−λ] · 1 = 1.

We can express the mixture representation of (X, N) as a stochastic identity using

the vector (X̃, Ñ), along with Bernoulli random variable I, which indicates whether

or not N = 0. The following proposition formalizes this idea.

Proposition 3.1.1 If (X, N) ∼ BMEP(β, λ), then

(X, N)
d
= (IX̃, IÑ), (3.4)

where (X̃, Ñ) is a random vector with p.d.f. g(x, y) given by (3.2), and I is an

indicator random variable, independent of (X̃, Ñ), taking on the values of 1 and 0

with probabilities 1 − e−λ and e−λ, respectively.

Proof Let G(x, y) represent the joint c.d.f. of (IX̃, IÑ). We consider the following

cases.

Case 1: If x < 0 or y < 0, then we have

G(x, y) = P (IX̃ ≤ x, IÑ ≤ y) = 0,

since I ∈ {0, 1} and (X̃, Ñ) ∈ R+ ×N .
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Case 2: If x = 0 and y ≥ 0, we have

G(x, y) = P (IX̃ ≤ 0, IÑ ≤ y)

= P (IX̃ ≤ 0, IÑ ≤ y|I = 0) · P (I = 0) +

P (IX̃ ≤ 0, IÑ ≤ y|I = 1) · P (I = 1)

= P (0 ≤ 0, 0 ≤ y) · e−λ + P (X̃ ≤ 0, Ñ ≤ y)(1 − e−λ)

= 1 · e−λ + 0 · (1 − e−λ) = e−λ.

Case 3: If x > 0 and y = 0, then

G(x, y) = P (IX̃ ≤ x, IÑ ≤ 0)

= P (IX̃ ≤ x, IÑ ≤ 0|I = 0) · P (I = 0) +

P (IX̃ ≤ x, IÑ ≤ 0|I = 1) · P (I = 1)

= P (0 ≤ x, 0 ≤ 0) · e−λ + P (X̃ ≤ x, Ñ ≤ 0)(1 − e−λ)

= 1 · e−λ + 0 · (1 − e−λ) = e−λ.

Case 4: If x > 0 and y > 0, then we have

G(x, y)
(1)
= P (IX̃ ≤ x, IÑ ≤ y)

(2)
= P (IX̃ ≤ x, IÑ ≤ y|I = 0) · P (I = 0) +

P (IX̃ ≤ x, IÑ ≤ y|I = 1) · P (I = 1)

(3)
= P (0 ≤ x, 0 ≤ y) · e−λ + P (X̃ ≤ x, Ñ ≤ y)(1 − e−λ)
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(4)
= 1 · e−λ + (1 − e−λ)

n
∑

k=1

∫ x

0
g(t, k)dt

(5)
= e−λ + (1 − e−λ)

n
∑

k=1

∫ x

0

e−λ

1 − e−λ

[1 − e−βt]k−1

(k − 1)!
βe−βtλkdt

(6)
= e−λ + e−λ

n
∑

k=1

λk

k!

∫ x

0
kβ[1 − e−βt]k−1e−βtdt

(7)
= e−λ + e−λ

n
∑

k=1

λk

k!
[1 − e−βx]k

(8)
= e−λ

n
∑

k=0

λk

k!
[1 − e−βx]k,

where in line (4), n is the greatest integer less than or equal to y. Combining cases

1-4 we see that the joint c.d.f. of (IX̃, IÑ) is equivalent to F (x, y), the joint c.d.f. of

(X, N), given in (2.10). Therefore we have proven that (X, N)
d
= (IX̃, IÑ).

3.2 An alternative representation

Here we develop an alternative representation of BMEP random vectors, where in-

stead of the maximum we have the sum of exponential components. This represen-

tation, which is closely connected with properties of order statistics in exponential

samples, can be explained by conditioning on N. Indeed, let (X, N) be a BMEP

random vector with parameters β and λ. Then, according to Definition 2.0.1, given

N = k, the random variable X is the maximum of k i.i.d. exponential variables with

parameter β, so its c.d.f. takes on the form

P (X ≤ x|N = k) = (1 − e−βx)k, x ≥ 0.
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The above is the c.d.f. of the generalized exponential distribution, studied in Gupta

and Kundu [3], which is known to have the stochastic representation

(X|N=k)
d
=

k
∑

j=1

Ej

j
, (3.5)

where the Ej are i.i.d. exponential variables with parameter β. Replacing the deter-

ministic number of terms, k, with a random number of terms, N , we obtain a similar

representation for X, and more generally, (X, N), which is formally stated in the

result below.

Proposition 3.2.1 If (X, N) ∼ BMEP(β, λ), then

(X, N)
d
=

(

N
∑

i=1

Xi

i
, N

)

. (3.6)

Proof Let H(x, y) represent the joint c.d.f. of

(

N
∑

i=1

Xi

i
, N

)

. We consider the fol-

lowing cases.

Case 1: If x < 0 or y < 0, then since N ≥ 0 and Xi ≥ 0 for each i, H(x, y) =

P (
∑N

i=1
Xi

i
≤ x, N ≤ y) = 0.

Case 2: x = 0 and y ≥ 0. Here we have

H(x, y)
(1)
= P

(

N
∑

i=1

Xi

i
≤ 0, N ≤ y

)

(2)
= P

(

N
∑

i=1

Xi

i
< 0, N ≤ y

)

+ P

(

N
∑

i=1

Xi

i
= 0, N ≤ y

)

(3)
= 0 + P

(

N
∑

i=1

Xi

i
= 0, N ≤ y

)
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(4)
= P

(

N
∑

i=1

Xi

i
= 0

∣

∣

∣

∣

N = 0

)

· P (N = 0) +

P

(

N
∑

i=1

Xi

i
= 0

∣

∣

∣

∣

N = 1

)

· P (N = 1) +

P

(

N
∑

i=1

Xi

i
= 0

∣

∣

∣

∣

N = 2

)

· P (N = 2) + ... +

P

(

N
∑

i=1

Xi

i
= 0

∣

∣

∣

∣

N = n

)

· P (N = n)

(5)
= 1 · P (N = 0) + 0 + 0 + ... + 0 = e−λ,

where n in line (4) is the greatest integer less than or equal to y.

Case 3: x > 0 and y = 0. In this case, we have

H(x, y) = P

(

N
∑

i=1

Xi

i
≤ x, N ≤ 0

)

= P

(

N
∑

i=1

Xi

i
≤ x, N < 0

)

+ P

(

N
∑

i=1

Xi

i
≤ x, N = 0

)

= 0 + P

(

N
∑

i=1

Xi

i
≤ x, N = 0

)

= P

(

N
∑

i=1

Xi

i
≤ 0

∣

∣

∣

∣

N = 0

)

· P (N = 0)

= 1 · P (N = 0) = e−λ.

Case 4: If x > 0 and y > 0, we have

H(x, y)
(1)
= P

(

N
∑

i=1

Xi

i
≤ x, N ≤ y

)

(2)
=

n
∑

k=0

P

(

N
∑

i=1

Xi

i
≤ x, N = k

)

(3)
=

n
∑

k=0

P

(

k
∑

i=1

Xi

i
≤ x, N = k

)
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(4)
=

n
∑

k=0

P (
k
∑

i=1

Xi

i
≤ x) · P (N = k)

(5)
=

n
∑

k=0

[1 − e−βx]k ·
e−λλk

k!

(6)
= e−λ

n
∑

k=0

λk

k!
[1 − e−βx]k,

where in line (2), n is the greatest integer less than or equal to y. In line (4) we use

the fact that the Xi’s are independent of N , and in line (5) we use the stochastic

representation (3.5) of the generalized exponential distribution of Gupta and Kundu

[3].

Combining cases 1-4 we see that H(x, y) coincides with the c.d.f. (2.10). There-

fore we have proven that (X, N)
d
=

(

N
∑

i=1

Xi

i
, N

)

.
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Chapter 4

Marginal and conditional

distributions

In addition to the joint probability distribution of the vector (X, N) it is useful to

know univariate distributions for each variable. Having the marginal probability dis-

tribution of one variable we can see how this particular variable behaves irrespective

to the second variable. Another important distribution is the conditional distribu-

tion, the probability distribution of one variable when the value of the other variable

is known. In this chapter we will derive the marginal and conditional probability

distributions connected with the BMEP model.
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4.1 Marginal distributions of X̃ and Ñ

We will begin by finding the marginal distributions of X̃ and Ñ of the Mixture

Representation (3.4) given in Proposition 3.1.1. We start with the marginal p.d.f. of

X̃, denoted by fX̃(x):

fX̃(x)
(1)
=

∞
∑

n=1

g(x, n)

(2)
=

∞
∑

n=1

e−λ

1 − e−λ

(1 − e−βx)n−1

(n − 1)!
βe−βxλn

(3)
=

λβe−βxe−λ

1 − e−λ

∞
∑

n=1

(λ[1 − e−βx])n−1

(n − 1)!

(4)
=

λβe−βxe−λ

1 − e−λ
eλ[1−e−βx]

(5)
=

λβe−βx

1 − e−λ
e−λe−βx

, x > 0, (4.1)

where in line (4) we note that ex =
∑∞

n=0
xn

n!
. It is easy to see that fX̃(x) integrates

to 1. Indeed, we have

∫ ∞

0
fX̃(x) dx =

∫ ∞

0

λβe−βx

1 − e−λ
e−λe−βx

dx
(1)
=

λβ

1 − e−λ

∫ 0

−λ

1

λβ
ey dy =

ey

1 − e−λ

∣

∣

∣

∣

0

−λ
= 1,

where in (1) we used the substitution y = −λe−βx.

We can integrate the marginal p.d.f. of X̃ to obtain the marginal c.d.f. of X̃.

FX̃(x)
(1)
=

∫ x

0
fX̃(x) dx

(2)
=

∫ x

0

λβe−βx

1 − e−λ
e−λe−βx

dx
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(3)
=

1

1 − e−λ

∫ −λe−βx

−λ
ey dy

(4)
=

1

1 − e−λ

(

e−λe−βx

− e−λ
)

, x > 0, (4.2)

where in line (3) we use the substitution y = −λe−βx. We note that the function FX̃

is non-decreasing, lim
x→∞

FX̃(x) = 1, and lim
x→0

FX̃(x) = 0, as desired.

On the other hand, Ñ has marginal p.m.f.

fÑ(n)
(1)
=

∫ ∞

0
g(x, n) dx

(2)
=

e−λ

1 − e−λ

λn

(n − 1)!

∫ ∞

0
(1 − e−βx)n−1βe−βx dx

(3)
=

e−λ

1 − e−λ

λn

(n − 1)!

∫ 1

0
yn−1 dy

(4)
=

e−λ

1 − e−λ

λn

(n − 1)!

yn

n

∣

∣

∣

∣

1

0

(5)
=

e−λ

1 − e−λ

λn

n!

(6)
=

λn

n!(e−λ − 1)
, (4.3)

where in (3) we used the substitution y = 1 − e−βx.

We use the fact that ex =
∞
∑

n=0

xn

n!
in step (2) below, to see that fÑ(n) summed

over all possible values of Ñ equals 1, as desired. We have

∞
∑

n=1

fÑ(n)
(1)
=

1

eλ − 1

∞
∑

n=1

λn

n!

(2)
=

1

eλ − 1
(eλ − 1)

(3)
= 1.

The marginal c.d.f. of Ñ is

FÑ(n) =
n
∑

i=1

fÑ(i) =
1

eλ − 1

n
∑

i=1

λi

i!
. (4.4)
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4.2 The marginal probability distributions of X

and N

By Definition 2.0.1, the marginal p.m.f. of N is the Poisson distribution,

fN(n) =
e−λλn

n!
for n = 0, 1, 2, ... . (4.5)

Remark In view of representation (3.4) of Proposition 3.1.1, we have the relation

N
d
= IÑ , where Ñ has the p.m.f. (4.3) while I, independent of Ñ takes on the values

of 1 and 0 with probabilities 1 − e−λ and e−λ, respectively. Thus, it is clear that

N = 0 if and only if I = 0, the probability of which is e−λ, while for n ∈ N we have

P (N = n) = P (N = n|I = 1) · P (I = 1) = P (Ñ = n) · P (I = 1)

=
e−λλn

n!(1 − e−λ)
· (1 − e−λ) =

e−λλn

n!
,

which coincides with the Poisson probability (4.5). Incidentally, this also shows the

relation

fÑ(n) = P (Ñ = n) =
P (N = n)

P (N > 0)
, n ∈ N .

Next, we find the marginal c.d.f. and the marginal p.d.f. of X. Recall from equa-

tion (3.4) that (X, N)
(d)
= (IX̃, IÑ). This implies X

d
= IX̃, where X̃ is a continuous
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random variable with c.d.f. found in equation (4.2) to be

FX̃(x) =
1

1 − e−λ

(

e−λe−βx

− e−λ
)

, x > 0.

Thus, we can calculate FX(x) as follows:

FX(x) = P (X ≤ x) = P (IX̃ ≤ x)

= P (IX̃ ≤ x|I = 0) · P (I = 0) + P (IX̃ ≤ x|I = 1) · P (I = 1)

= P (0 ≤ x) · e−λ + P (X̃ ≤ x) · (1 − e−λ)

= e−λI[0,∞)(x) + (1 − e−λ) ·
1

1 − e−λ

(

e−λe−βx

− e−λ
)

I(0,∞)

= e−λe−βx

I{[0,∞)}. (4.6)

This leads to the following result.

Proposition 4.2.1 Let (X, N) ∼ BMEP(β, λ). Then the marginal cumulative

distribution function of X is

FX(x) =



















0 if x < 0

e−λe−βx

if x ≥ 0

. (4.7)

We note that the function FX is non-decreasing, lim
x→−∞

FX(x) = 0, and lim
x→∞

FX(x) =

1, as desired. Observe that FX(0) = e−λ while lim
x→0−

FX(x) = 0, showing that the dis-

tribution of X has a point mass of e−λ at X = 0, which agrees with the representation

X
d
= IX̃. In other words, X = 0 with probability e−λ and X = X̃ with probability
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1 − e−λ, where X̃ is a continuous random variable with the p.d.f.

fX̃(x) =
λβe−βx

1 − e−λ
e−λe−βx

, x > 0.

To summarize this, we can express the marginal p.d.f. of X as follows:

fX(x) = e−λI{0}(x) + (1 − e−λ)fX̃(x)I{(0,∞)}(x)

= e−λI{0}(x) + λβe−λe−βx−βxI{(0,∞)}(x) (4.8)

= e−λI{0}(x) + (1 − e−λ)fX̃(x).

Since we verified that fX̃(x) integrates to 1 in equation (4.2), it follows that fX(x)

integrates to 1 as well. We state the marginal p.d.f. of X formally below.

Proposition 4.2.2 Let (X, N) ∼ BMEP(β, λ). Then the marginal probability

distribution of X is given by fX(X), where

fX(x) =







































e−λ if x = 0

λβe−λe−βx−βx if x > 0

0 otherwise

. (4.9)
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4.3 The conditional probability distribution of X

given N

We saw in equation (2.2) that the conditional p.d.f. of X for the case N = 0 is as

follows:

fX|N=0(x) =



















1 if x = 0

0 otherwise

.

Combining this with equation (2.5), we obtain the following result.

Proposition 4.3.1 Let (X, N) ∼ BMEP(β, λ). Then the conditional probabil-

ity distribution of X given N = n is given by fX|N=n(x), where

fX|N=n(x) =







































nβe−βx(1 − e−βx)n−1 if n ∈ N and x > 0

1 if n = 0 and x = 0

0 otherwise

. (4.10)

We can then note that the conditional c.d.f. of X for case N = 0 is,

FX|N=0(x) = P (X ≤ x|N = 0) =



















1 if x ≥ 0

0 otherwise.

Combining this with equation (2.4), we obtain the following result.

Proposition 4.3.2 Let (X, N) ∼ BMEP(β, λ). Then the cumulative condi-
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tional probability distribution function of X given N = n is FX|N=n(x), where

FX|N=n(x) =







































[1 − e−βx]n if n ∈ N and x ≥ 0

1 if n = 0 and x ≥ 0

0 otherwise

. (4.11)

4.4 The conditional probability distribution of N

given X

Next we find the conditional p.m.f. of N given X = x. We proceed using two cases.

Case 1: For x = 0 we will use the equation fN |X=0(n) = f(0,n)
fX(0)

. First, note that by

the marginal p.d.f. of X found in Proposition 4.2.2, we have fX(0) = e−λ. Thus, in

view of Proposition 2.1.1, for n = 0 we have

fN |X=0(0) =
f(0, 0)

fX(0)
=

e−λ

e−λ
= 1.

In addition, for n ∈ N , we have

fN |X=0(n) =
f(0, n)

fX(0)
=

0

e−λ
= 0.
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In summary,

fN |X=0(n) =



















1 if n = 0

0 otherwise

. (4.12)

We note that
∞
∑

n=1

fN |X=0(n) = 1 as desired.

Case 2: If x > 0, then by Propositions 2.1.1 and 4.2.2, we arrive at

fN |X=x(n) =
f(x, n)

fX(x)

=
βe−βx−λλn(1 − e−βx)n−1

(n − 1)!
·

1

λβe−λe−βx−βx
(4.13)

=
e−λ(1−e−βx)[λ(1 − e−βx)]n−1

(n − 1)!
, n ∈ N .

Noting that ex =
∞
∑

n=0

xn

n!
, we see below that fN |X=x(n) summed over all possible values

of n equals 1, as desired. We have

∞
∑

n=1

fN |X=x(n) =
∞
∑

n=1

e−λ(1−e−βx)[λ(1 − e−βx)]n−1

(n − 1)!
= e−λ(1−e−βx)eλ(1−e−βx) = 1.

Having completed cases 1 and 2, we make the following proposition.

Proposition 4.4.1 Let (X, N) ∼ BMEP(β, λ). Then the conditional probabil-
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ity distribution of N given X = x is given by fN |X=x(n) where,

fN |X=x(n) =











































1 if n = x = 0

e−λ(1−e−βx)[λ(1 − e−βx)]n−1

(n − 1)!
if n ∈ N and x > 0

0 otherwise

(4.14)

Remark Note that N |X = x is a shifted Poisson random variable. More precisely,

for x > 0, N |X = x has the same distribution as Z + 1, where Z is a Poisson with

parameter λ(1 − eβx).
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Chapter 5

Moments

In this chapter we find various representations for bivariate and univariate moments

connected with the BMEP model. To begin, we obtain a general expression for

E[XηNγ], and then proceed to obtain various special cases for particular values of η

and γ.

5.1 The general case E[XηNγ]

We recall in equation (3.4) that (X, N)
d
= (IX̃, IÑ). This allows us to proceed as

follows:

E[XηNγ] = E[(IX̃)η(IÑ)γ] = E[Iη+γ] · E[X̃ηÑγ].
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We shall assume throughout that η, γ ≥ 0. Noting that for η + γ > 0 we have

E[Iη+γ] = 1 · P (I = 0) + 0 · P (I = 0) = 1 − e−λ, we obtain

E[XηNγ]



















E[X̃ηÑγ] if η = γ = 0

(1 − e−λ) · E[X̃ηÑγ] otherwise

. (5.1)

We next find E[X̃ηÑγ].

E[X̃ηÑγ]
(1)
=

∞
∑

n=1

∫ ∞

0
xηnγg(x, n) dx

(2)
=

∞
∑

n=1

∫ ∞

0
xηnγ e−λ

1 − e−λ

(1 − e−βx)n−1

(n − 1)!
βe−βxλn dx

(3)
=

βe−λ

1 − e−λ

∞
∑

n=1

nγλn

(n − 1)!

n−1
∑

k=0

(

n − 1

k

)

(−1)k
∫ ∞

0
xηe−βx(k+1) dx

(4)
=

βe−λ

1 − e−λ

∞
∑

n=1

nγλn

(n − 1)!

n−1
∑

k=0

(

n − 1

k

)

(−1)k 1

[β(k + 1)]η

·
∫ ∞

0
[β(k + 1)x](η+1)−1e−βx(k+1) dx

(5)
=

βe−λ

1 − e−λ

∞
∑

n=1

nγλn

(n − 1)!

n−1
∑

k=0

(

n − 1

k

)

(−1)k Γ(η + 1)

[β(k + 1)]η+1

(6)
=

βe−λ

1 − e−λ

Γ(η + 1)

βη+1

∞
∑

n=1

nγλn

(n − 1)!

n−1
∑

k=0

(

n − 1

k

)

(−1)k 1

(k + 1)η+1

(7)
=

e−λ

1 − e−λ

Γ(η + 1)

βη

∞
∑

k=0

(−1)k

(k + 1)η+1

∞
∑

n=k+1

nγλn

(n − 1)!

(

n − 1

k

)

(8)
=

e−λ

1 − e−λ

Γ(η + 1)

βη

∞
∑

k=0

(−1)k

(k + 1)η+1

1

k!

∞
∑

n=k+1

nγλn

(n − 1)!

(n − 1)!

(n − k − 1)!

(9)
=

e−λ

1 − e−λ

Γ(η + 1)

βη

∞
∑

k=0

(−1)k

k!(k + 1)η+1

∞
∑

n=0

(n + k + 1)γλn+k+1

n!
, (5.2)
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where in line (5) we introduce the gamma function,

Γ(z) =
∫ ∞

0
tz−1e−t dt. (5.3)

It will be useful to note that for a positive integer n, Γ(n) = (n − 1)!.

In particular, when η = γ = 0, we expect E[X̃ηÑγ] to be 1. Indeed, we have

E[X̃0Ñ0] =
e−λ

1 − e−λ

Γ(1)

β0

∞
∑

k=0

(−1)k

k!(k + 1)0+1

∞
∑

n=0

(n + k + 1)0λn+k+1

n!

=
e−λ

1 − e−λ
(−1)

∞
∑

k=0

(−λ)k+1

(k + 1)!

∞
∑

n=0

λn

n!

=
e−λ

1 − e−λ
(−1)(e−λ − 1)eλ = 1. (5.4)

Using equations (5.1), (5.2), and (5.4), we now state an expression for E[XηNγ] in

the proposition below.

Proposition 5.1.1 Let (X, N) ∼ BMEP(β, λ). Then for any non-negative η

and γ we have,

E[XηNγ] =























1 if η = γ = 0

Γ(η + 1)

eλβη

∞
∑

k=0

(−1)k

k!(k + 1)η+1

∞
∑

n=0

(n + k + 1)γλn+k+1

n!
otherwise.

.(5.5)

5.2 Special cases for moments of (X, N)

We can derive expressions for univariate moments by letting γ or η equal 0. The first

moment in the univariate case represents the mean. This, in addition to the second



33

moment, will reveal the variance. In this section we will find the first and second

moments for X and N . Additionally, we will find the special case of E[XN ], which

will be useful in deriving covariance of X and N .

A special case of E[XηNγ] where γ = 0 gives us E[Xη]. By equation (5.5), for

η 6= 0,

E[Xη] = e−λ Γ(η + 1)

βη

∞
∑

k=0

(−1)k

k!(k + 1)η+1

∞
∑

n=0

(n + k + 1)0λn+k+1

n!

= e−λ Γ(η + 1)

βη

∞
∑

k=0

(−1)kλk+1

k!(k + 1)η+1
eλ

=
Γ(η + 1)

βη

∞
∑

k=0

(−1)kλk+1

k!(k + 1)η+1
.

Therefore,

E[Xη] =























1 if η = 0

Γ(η + 1)

βη

∞
∑

k=0

(−1)kλk+1

k!(k + 1)η+1
otherwise

. (5.6)

Further, when we let γ = 0 and η = 1 we have E[X]. First we consider the function

L(λ) =
∞
∑

n=1

(−λ)n

n · n!
. (5.7)

Then,

L′(λ) =
∞
∑

n=1

n(−λ)n−1(−1)

n · n!
=

1

λ

∞
∑

n=1

(−λ)n

n!
=

e−λ − 1

λ
.
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Thus, we have

L(λ) =
∞
∑

n=1

(−λ)n

n · n!
=
∫ λ

0

e−t − 1

t
dt. (5.8)

Next, by equation (5.6),

E[X] =
Γ(2)

β

∞
∑

k=0

(−1)kλk+1

k!(k + 1)2

=
1

β

∞
∑

k=0

(−1)kλk+1

(k + 1)!(k + 1)

= −
1

β

∞
∑

n=1

(−λ)n

n · n!

= −
1

β
L(λ)

=
1

β

∫ λ

0

1 − e−t

t
dt. (5.9)

Also via equation (5.6), this time with η = 2, we find E[X2] as follows:

E[X2] =
Γ(3)

β2

∞
∑

k=0

(−1)kλk+1

k!(k + 1)3

=
2

β2

∞
∑

k=0

(−1)kλk+1

k!(k + 1)3
. (5.10)

This can be written in terms of certain definite integrals. Indeed, observe that

E[X2] = − 2
β2 · H(λ), where

H(λ) =
∞
∑

k=1

(−1)kλk

k! k2
.
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Note that

H ′(λ) =
∞
∑

k=1

(−1)kkλk−1

k! k2
=

1

λ
L(λ),

so that

H(λ) =
∫ λ

0

1

x
L(x) dx.

In view of (5.8), we have

H(λ) =
∫ λ

0

1

x

∫ x

0

e−t − 1

t
dt dx,

or, by changing the order of integration, we get

H(λ) =
∫ λ

0

e−t − 1

t

∫ λ

t

1

x
dx dt,

which becomes

H(λ) = ln λ
∫ λ

0

e−t − 1

t
dt −

∫ λ

0

e−t − 1

t
ln t dt.

We finally obtain

E[X2] = −
2

β2
{L(λ) ln λ − M(λ)}, (5.11)
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where L(λ) is given by (5.8) while

M(λ) =
∫ λ

0

e−t − 1

t
ln t dt. (5.12)

Another special case of E[XηNγ] with γ = 1, η = 1 gives us E[XN ]. First, it will be

useful to note,

∞
∑

n=0

(n + k + 1)λn+k+1

n!

(1)
=

∞
∑

n=0

(k + 1)λn+k+1

n!
+

∞
∑

n=0

n · λn+k+1

n!

(2)
= (k + 1)λk+1eλ + λk+1eλ

∞
∑

n=0

e−λλn

n!
n

(3)
= (k + 1)λk+1eλ + λk+1eλE[N ]

(4)
= (k + 1)λk+1eλ + λk+1eλλ

(5)
= eλλk+1(k + 1 + λ), (5.13)

where N in line (3) had Poisson distribution with mean λ. Thus, by equation (5.5),

we have

E[XN ] = e−λ Γ(2)

β

∞
∑

k=0

(−1)k

k!(k + 1)2

∞
∑

n=0

(n + k + 1)λn+k+1

n!

= e−λ 1

β

∞
∑

k=0

(−1)k

k!(k + 1)2
eλλk+1(k + 1 + λ)

=
1

β

(

∞
∑

k=0

(−1)k

k!(k + 1)2
λk+1(k + 1) +

∞
∑

k=0

(−1)k

k!(k + 1)2
λk+1(λ)

)

=
1

β

(

−
∞
∑

k=0

(−λ)k+1

(k + 1)!
− λ

∞
∑

k=0

(−λ)k+1

(k + 1)(k + 1)!

)

=
1

β

(

−(e−λ − 1) − λL(λ)
)
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=
1

β

(

1 − e−λ + λ
∫ λ

0

1 − e−t

t
dt

)

. (5.14)

Another special case of E[XηNγ] is when η = 0 and we are left with E[Nγ]. By

equation (5.5), for γ 6= 0,

E[Nγ] = e−λ Γ(1)

β0

∞
∑

k=0

(−1)k

(k + 1)!

∞
∑

n=0

(n + k + 1)γλn+k+1

n!
.

Thus,

E[Nγ] =























1 if γ = 0

e−λ
∞
∑

k=0

(−1)k

(k + 1)!

∞
∑

n=0

(n + k + 1)γλn+k+1

n!
otherwise

. (5.15)

The special case of E[Nγ] when γ = 2 yields

E[N2] = e−λ
∞
∑

k=0

(−1)k

(k + 1)!

∞
∑

n=0

(n + k + 1)2λn+k+1

n!

= e−λ
∞
∑

k=0

(−1)k

(k + 1)!
λk+1

[

2(k + 1)
∞
∑

n=0

λn

n!
n + (k + 1)2

∞
∑

n=0

λn

n!
+

∞
∑

n=0

λn

n!
n2

]

= −e−λ
∞
∑

k=0

(−λ)k+1

(k + 1)!
·

[

2(k + 1)

(

0 +
∞
∑

n=1

λn

n!
n

)

+ (k + 1)2eλ +
∞
∑

n=0

λn

n!
(n(n − 1) + n)

]

= −e−λ
∞
∑

k=0

(−λ)k+1

(k + 1)!
·

[

2(k + 1)
∞
∑

n=1

λn

n!
n + (k + 1)2eλ +

∞
∑

n=0

λn

n!
n(n − 1) +

∞
∑

n=0

λn

n!
n

]

= −e−λ
∞
∑

k=0

(−λ)k+1

(k + 1)!
·
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[

2(k + 1)
∞
∑

n=1

λn

n!
n + (k + 1)2eλ +

∞
∑

n=2

λn

n!
n(n − 1) +

∞
∑

n=1

λn

n!
n

]

= −e−λ
∞
∑

k=0

(−λ)k+1

(k + 1)!
·

[

2(k + 1)λ
∞
∑

n=1

λn−1

(n − 1)!
+ (k + 1)2eλ + λ2

∞
∑

n=2

λn−2

(n − 2)!
+ λ

∞
∑

n=1

λn−1

(n − 1)!

]

= −e−λ
∞
∑

k=0

(−λ)k+1

(k + 1)!

[

2(k + 1)λeλ + (k + 1)2eλ + λ2eλ + λeλ
]

= −
∞
∑

k=0

(−λ)k+1

(k + 1)!

[

2(k + 1)λ + (k + 1)2 + λ2 + λ
]

= 2λ2
∞
∑

k=0

(−λ)k

k!
−

∞
∑

k=0

(−λ)k+1

k!
(k + 1) − (λ2 + λ)

∞
∑

k=0

(−λ)k+1

(k + 1)!

= 2λ2
∞
∑

k=0

(−λ)k

k!
−

∞
∑

k=0

(−λ)k+1

k!
k −

∞
∑

k=0

(−λ)k+1

k!
− (λ2 + λ)

∞
∑

k=0

(−λ)k+1

(k + 1)!

= 2λ2e−λ −
∞
∑

k=1

(−λ)k+1

k!
k + λ

∞
∑

k=0

(−λ)k

k!
− (λ2 + λ)(e−λ − 1)

= 2λ2e−λ − λ2
∞
∑

k=1

(−λ)k−1

(k − 1)!
+ λe−λ − λ2e−λ + λ2 − λe−λ + λ

= 2λ2e−λ − λ2e−λ + λe−λ − λ2e−λ + λ2 − λe−λ + λ

= λ2 + λ, (5.16)

which is what we expect, since N ∼ POISSON (λ) ⇒ E[N2] = λ + λ2.

When γ = 1, equation (5.15) gives us

E[N ] = e−λ
∞
∑

k=0

(−1)k

(k + 1)!

∞
∑

n=0

(n + k + 1)λn+k+1

n!

= −e−λ
∞
∑

k=0

(−λ)k+1

(k + 1)!

(

(k + 1)
∞
∑

n=0

λn

n!
+

∞
∑

n=0

λn

n!
n

)

= −e−λ
∞
∑

k=0

(−λ)k+1

(k + 1)!

(

(k + 1)eλ +
∞
∑

n=1

λn

n!
n

)

= −e−λ
∞
∑

k=0

(−λ)k+1

(k + 1)!

(

(k + 1)eλ + λ
∞
∑

n=1

λn−1

(n − 1)!

)
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= −e−λ
∞
∑

k=0

(−λ)k+1

(k + 1)!

(

(k + 1)eλ + λeλ
)

= −
∞
∑

k=0

(−λ)k+1

(k + 1)!
(k + 1 + λ)

= −
∞
∑

k=0

(−λ)k+1

(k + 1)!
(k + 1) − λ

∞
∑

k=0

(−λ)k+1

(k + 1)!

= λ
∞
∑

k=0

(−λ)k

k!
− λ(e−λ − 1)

= λe−λ − λe−λ + λ

= λ, (5.17)

as expected since N ∼ POISSON (λ). Having demonstrated that E[N2] = λ2 + λ

and E[N ] = λ, we have given validity to equation (5.15). However, since N ∼

POISSON (λ), the following equation can be used to determine E[Nγ], and is much

more concise.

E[Nγ] =
∞
∑

n=0

e−λλn

n!
nγ. (5.18)

We now have completed several special cases and are able to provide the covariance

matrix in the proposition below.

L(λ) =
∞
∑

n=1

(−λ)n

n · n!
.

Proposition 5.2.1 If (X, N) ∼ BMEP(β, λ), then E[X] =
−L(λ)

β
, E[N ] = λ
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and the covariance matrix of (X, N) is













2M(λ) − 2L(λ) ln λ − L2(λ)

β2

1 − e−λ

β
1 − e−λ

β
λ













, (5.19)

where L(λ) =
∫ λ

0

e−t − 1

t
dt, and M(λ) =

∫ λ

0

e−t − 1

t
ln t dt.
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Chapter 6

Simulation and Estimation

In practice the values of the parameters of the BMEP distribution are almost never

certain and have to be estimated based on the sample data. That is why it is valuable

to develop methods of estimation of our parameters, β and λ. In order to test the

success of our estimation methods it is useful to simulate data with known β and

λ, and then estimate β and λ using the simulated data. In this chapter we develop

methods of estimation as well as a technique to simulate BMEP data.

6.1 Simulation

One method to simulate the random variable X of the BMEP distribution is to strictly

follow the definition of X by generating N random EXP(β) variables and then set

X to the maximum of these exponential variables. A second way to simulate X is

to use the alternative representation discussed in Chapter 3 by generating N random
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exponential variables and summing the Ej

j
terms.

A third, more efficient, way to simulate X is to generate one random variable

rather than N random variables. We note that a continuous random variable with

c.d.f. F can be generated by first generating U , a random variable from the standard

uniform distribution, and next computing F−1(U). This is because F−1(U) has dis-

tribution F (See [10]). We can use this to simulate the random variable X, however

X is dependent on N . Therefore N needs to be generated first. Random discrete

variables can be simulated by generating U and setting the discrete variable to N

where, if P (N = nj) = pj then,

N =















































































n0 if U < p0

n1 if p0 ≤ U < p0 + p1

...

nj if
∑j−1

i=1 pi ≤ U <
∑j

i=1 pi

...

. (6.1)

Recall from Proposition 4.3.2 that FX|N=n(x) = [1 − e−βx]n if n ∈ N and x ≥ 0. So

F−1
X|N=n(U) = −

ln(1 − U1/n)

β
if n ∈ N and U ∈ (0, 1). (6.2)

Thus, to simulate random data from the BMEP distribution with parameters β and

λ we follow the steps below.

Step 1: Generate a standard uniform random variable U and determine N according
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to equation (6.1) and the p.m.f. of N , P (N = n) = e−λλn

n!
, n ∈ N .

Step 2: If N = 0 then set X to zero since the maximum of zero exponentials is zero.

Otherwise, proceed to steps 3 and 4.

Step 3: Regenerate the standard uniform random variable U .

Step 4: Set X equal to F−1(U) where F−1(U) is defined in equation (6.2).

Appendix I contains a program written in C++ which generates random data from

the BMEP distribution.

6.2 Moment Estimators

Moment estimators are found by setting sample moments equal to the equation for

the population moments and solving for the parameters which are to be estimated.

Below are the equations for the first moments of X and N we will use to estimate

the two parameters of the BMEP distribution, β and λ. By Proposition 5.2.1,

X̄ =
1

β

∫ λ

0

1 − e−t

t
dt and N̄ = λ,

where X̄ =
1

m

m
∑

j=1

Xj and N̄ =
1

m

m
∑

j=1

Nj. Solving this system for β and λ leads to the

proposition below.

Proposition 6.2.1 Suppose (X1, N1), (X2, N2), ..., (Xm, Nm) form a random

sample where (Xi, Ni) ∼ BMEP(β, λ) and there exists at least one Ni such that
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Ni > 0. Then the moment estimators, β̌ and λ̌ of β and λ, respectively, are

β̌ =
1

X̄

∫ N̄

0

1 − e−t

t
dt and λ̌ = N̄ . (6.3)

We note that by the method of moments that estimators for β and λ can be explicitly

found.

6.3 Maximum Likelihood Estimators

Suppose (X1, N1), (X2, N2), ..., (Xm, Nm) form a random sample from the BMEP

distribution for which the parameters β and λ are unknown, and that there exists

at least one Ni such that Ni > 0. In this section we find the maximum likelihood

estimators (M.L.E.s) for β and λ.

Recall from Proposition 2.1.1 that,

f(x, n) =











































e−λ if x = n = 0

βe−βx−λλn (1 − e−βx)n−1

(n − 1)!
x > 0, n ∈ N

0 otherwise

.

Since f(x, n) varies when x = 0 versus when x > 0 we define

k(z) =



















1 if z > 0

0 if z = 0

. (6.4)
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We also let

A =
m
∑

j=1

k(Nj), (6.5)

which represents the number of the values in the random sample that have the N

component greater than 0. Note that 0 ≤ A ≤ m. Finally we let C = the set of all

j’s in the range 1, 2, 3, ...,m such that Nj > 0. Therefore A = |C| = the number of

elements in C.

We begin by finding, fn((~x, ~n)|(β, λ)), the p.d.f. associated with our random sam-

ple, and then proceed to find the λ and β that maximize this p.d.f.. By independence,

we have

fn ((~x, ~n)|(β, λ)) =
m
∏

j=1

f(Xj, Nj)

=
m−A
∏

i=1

e−λ
∏

j∈C

βe−βXj−λλNj
(1 − e−βXj)Nj−1

(Nj − 1)!

=
e−λmβAλ

∑

j∈C
Nje−β

∑

j∈C
Xj
∏

j∈C(1 − e−βXj)Nj−1

∏

j∈C(Nj − 1)!
. (6.6)

Notice that
∑

j∈C Nj = mN̄ , since for j /∈ C, Nj = 0. Similarly,
∑

j∈C Xj = mX̄.

We note also there are no λ or β in the denominator in (6.6). So, to maximize

fn((~x, ~n)|(β, λ)), we need to find the λ > 0 and β > 0 that maximize the numerator

in (6.6). We let k(λ, β) represent the numerator. Therefore,

k(λ, β) = e−λmλmN̄ · βAe−βmX̄
∏

j∈C

(1 − e−βXj)Nj−1
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= v(λ) · u(β),

where

v(λ) = e−λmλmN̄ (6.7)

and

u(β) = βAe−βmX̄
∏

j∈C

(1 − e−βXj)Nj−1. (6.8)

Having separated k(λ, β) into the product of a function of λ and β will be useful in

finding each M.L.E. of our parameters.

6.3.1 Maximum Likelihood Estimator of λ

To find the M.L.E. for λ we maximize ln v(λ). First we see there is an inflection point

at λ = N̄ :

ln v(λ) = −λm + mN̄ ln λ =⇒
d

dλ
ln v(λ) = −m +

mN̄

λ
= 0 =⇒ λ = N̄ (6.9)

Next we see λ = N̄ is indeed the maximum of ln v(λ), since

d

dλ
ln v(λ) > 0 for λ < N̄ and

d

dλ
ln v(λ) < 0 for λ > N̄.
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We conclude the M.L.E. for λ is N̄ , and denote this as

λ̂ = N̄ . (6.10)

6.3.2 Maximum Likelihood Estimator of β

To find the M.L.E. of β we wish to maximize w(β) = ln u(β). However, this cannot

be done explicitly. First we prove β̂ exists by showing that w(β) has a maximum.

We begin by showing the limit to the left and right of w(β) are both −∞.

lim
β→0

w(β) = lim
β→0







A ln β − βmX̄ +
∑

j∈C

ln[(1 − e−βXj)Nj−1]







= −∞− 0 −∞ = −∞.

lim
β→∞

w(β)
(1)
= lim

β→∞







A ln β − βmX̄ +
∑

j∈C

ln[(1 − e−βXj)Nj−1]







(2)
= lim

β→∞

{

A ln β − βmX̄
}

+ 0

(3)
= lim

β→∞
β

(

A ln β

β
− mX̄

)

(4)
= lim

β→∞
β · lim

β→∞

(

A ln β

β
− mX̄

)

(5)
= lim

β→∞
β · lim

β→∞

(

A

β
− mX̄

)

(6)
= ∞ · (0 − mX̄) = −∞,
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where in step (5) L’Hospital’s Rule was used. Next we show that w(β) is concave

down everywhere. Indeed, the first derivative of w is found to be

d

dβ
w(β) =

A

β
− mX̄ +

∑

j∈C

(Nj − 1)Xj
e−βXj

1 − e−βXj

=
A

β
− mX̄ +

∑

j∈C

(Nj − 1)Xj
1

eβXj − 1
, (6.11)

so that the second derivative becomes

d2

dβ2
w(β) = −

A

β2
+
∑

j∈C

(1 − Nj)Xj
2 eβXj

(eβXj − 1)2
(6.12)

< 0,

since (1 − Nj) ≥ 0 for j ∈ C. Therefore, since w(β) has limits to the left and right

approaching −∞ and it is concave down everywhere, w(β) has a unique maximum.

We summarize our findings in the following result.

Approximating β̂ can be accomplished through the Newton Method. Completing

iterations of

βn+1 = βn −
d
dβ

w(βn)
d2

dβ2 w(βn)
(6.13)

will approximate the solution of d
dβ

w(β) = 0, which represents the M.L.E. of β. Ap-

pendix II contains a computer program written in C++ which calculates iterations

of (6.13) given m sample points (Xj, Nj) to find β̂.
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We now state the M.L.E.s of β and λ in the preposition below.

Proposition 6.3.1 Suppose (X1, N1), (X2, N2), ..., (Xm, Nm) form a random

sample where (Xi, Ni) ∼ BMEP(β, λ) and there exists at least one Ni such that

Ni > 0. Then the maximum likelihood estimators, β̂ and λ̂ of β and λ, respectively,

are

β̂ = β such that A
β
− mX̄ +

∑

j∈C(Nj − 1)Xj
1

eβXj−1
= 0 (6.14)

and

λ̂ = N̄ . (6.15)

Where C = the set of all js in the range 1, 2, 3, ...,m such that Nj > 0, and A = |C|

= the number of elements in C.

6.4 Results

As mentioned above, the program in Appendix II uses the Newton Method to find

β̂, which will approximate the solution to (6.14). The program also calculates β̌ and

λ̂ = λ̌ using equations (6.3) and (6.15). To provide data for, as well as test, the

program in Appendix II, a program was written (see Appendix I) which generates n

random vectors of the BMEP distribution according to the steps outlined in Section

6.1. That is, we choose values for β and λ, generate sample data from the BMEP

distribution, and then use this sample data to estimate the values of β and λ to test
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our derivations for β̌, β̂, and λ̂ = λ̌. Some results of the two programs are listed in

Table 6.1 below. The sample sizes used for the illustration were 50, 100, 500, 1,000,

5,000, and 10,000. For each sample size parameter pairs were chosen to be β = 0.5

with λ = 0.5, β = 0.5 with λ = 1, β = 0.5 with λ = 5, β = 1 with λ = 0.5, β = 1

with λ = 1, β = 1 with λ = 5, β = 5 with λ = 0.5, β = 5 with λ = 1, and β = 5 with

λ = 5.

In Table 6.1, we see as n increases the variance of the estimators decreases as

expected, and the mean estimators become closer to the true parameters. Since the

method of moment estimator for λ, (λ̌) is equal to the M.L.E. for λ, (λ̂), the estimators

are equally successful. In regard to β, the method of moments estimators means and

M.L.E. means are consistently approximately equal, and thus equally close to the

theoretical means. However, an advantage of the M.L.E. can been seen in the mean

squared error entries. We see that the maximum likelihood estimator for β, (β̂) is less

volatile than the method of moments estimator for β, (β̌). This is true in every case

presented in the table, which is interesting since the bias of an M.L.E. can be large

in smaller samples. On the other hand, a small variance in the M.L.E. is expected in

the larger samples since the M.L.E. is an asymptotically unbiased estimator.
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n β̌ β̂ λ̌ = λ̂ β̌ β̂ λ̌ = λ̂ β̌ β̂ λ̌ = λ̂

β = 0.5, λ = 0.5 β = 0.5, λ = 1 β = 0.5, λ = 5
50 0.521690 0.521479 0.500344 0.512084 0.512013 0.999960 0.502601 0.502317 5.001254

0.014204 0.013469 0.010150 0.006731 0.006162 0.020346 0.001540 0.001439 0.099671
100 0.509753 0.509923 0.500292 0.505476 0.505592 1.001680 0.501585 0.501378 4.999193

0.006087 0.005808 0.005098 0.003044 0.002831 0.009811 0.000758 0.000713 0.049830
500 0.501668 0.501749 0.500135 0.501358 0.501367 0.999407 0.500261 0.500199 4.999949

0.001133 0.001070 0.001028 0.000585 0.000535 0.001961 0.000152 0.000142 0.010150
1,000 0.501115 0.501137 0.499894 0.500768 0.500755 1.000142 0.500138 0.500107 4.999665

0.000548 0.000521 0.000506 0.000304 0.000278 0.000988 0.000074 0.000070 0.005052
5,000 0.500115 0.500157 0.500061 0.500187 0.500209 0.999954 0.500064 0.500072 5.000253

0.000112 0.000105 0.000098 0.000060 0.000057 0.000213 0.000015 0.000014 0.000987
10,000 0.500076 0.500081 0.499962 0.500095 0.500109 0.999905 0.499984 0.499984 5.000152

0.000056 0.000053 0.000049 0.000029 0.000027 0.000096 0.000008 0.000007 0.000508
β = 1, λ = 0.5 β = 1, λ = 1 β = 1, λ = 5

50 1.046488 1.046851 0.498360 1.020425 1.020306 0.999354 1.005790 1.004589 5.004230
0.059819 0.057032 0.009793 0.026836 0.024751 0.019722 0.006269 0.005868 0.100198

100 1.019168 1.020045 0.500768 1.009600 1.009731 1.000323 1.003609 1.003207 4.995724
0.024563 0.023495 0.004917 0.012580 0.011619 0.009871 0.003043 0.002855 0.049148

500 1.002693 1.002715 0.499665 1.002381 1.002448 0.999700 1.001000 1.000953 4.999688
0.004543 0.004325 0.001013 0.002377 0.002175 0.002006 0.000599 0.000563 0.010118

1,000 1.002555 1.002521 0.499720 1.001225 1.001334 0.999651 1.000500 1.000460 4.999166
0.002214 0.002119 0.000509 0.001189 0.001109 0.000994 0.000305 0.000286 0.005079

5,000 1.000486 1.000432 0.499952 1.000481 1.000473 0.999839 1.000064 1.000060 5.000242
0.000439 0.000420 0.000100 0.000233 0.000216 0.000201 0.000059 0.000056 0.001015

10,000 1.000247 1.000232 0.500003 1.000188 1.000180 0.999817 0.999932 0.999947 5.000028
0.000219 0.000205 0.000048 0.000122 0.000114 0.000106 0.000031 0.000029 0.000499

β = 5, λ = 0.5 β = 5, λ = 1 β = 5, λ = 5
50 5.193465 5.198325 0.501436 5.106850 5.105734 1.001156 5.034111 5.027455 5.003208

1.385641 1.318273 0.010144 0.675965 0.624088 0.019881 0.154776 0.143213 0.101965
100 5.108695 5.108118 0.499246 5.055750 5.055452 1.000886 5.015890 5.013152 4.999424

0.621071 0.591093 0.005029 0.309984 0.285638 0.009925 0.073144 0.068861 0.049726
500 5.023684 5.024920 0.499865 5.011401 5.011646 1.000413 5.002543 5.002090 5.000172

0.110548 0.104959 0.000972 0.060590 0.055929 0.001962 0.015408 0.014262 0.009912
1,000 5.007123 5.007701 0.499998 5.005585 5.005750 1.000064 5.001554 5.000902 4.999356

0.055109 0.051851 0.000499 0.029858 0.027593 0.000988 0.007592 0.007043 0.005028
5,000 5.003261 5.003096 0.499991 5.001090 5.000851 0.999950 5.000554 5.000481 5.000314

0.011142 0.010479 0.000099 0.005839 0.005387 0.000198 0.001483 0.001394 0.000980
10,000 5.001876 5.001891 0.499887 5.001415 5.001433 0.999969 5.000500 5.000490 4.999453

0.005461 0.005148 0.000049 0.003047 0.002872 0.000105 0.000720 0.000671 0.000477

Table 6.1: Mean (top entry) and mean squared error (bottom entry) of the method
of moments and the maximum likelihood estimators of the BMEP parameters β and
λ based on 10,000 simulations.



52

Appendix I

/ 
This program s imu la t e s random data from the BMEP d i s t r i b u t i o n .
The inputs the program w i l l prompt f o r are beta , lambda , and
the number o f data po in t s d e s i r ed .

The program needs to be compiled with a C++ compi le r and the
r e s u l t s w i l l be wr i t t en to a text f i l e named ”random data . txt . ”

Example :

After compi l ing the C++ code and f o l l ow i ng the prompts
with 5 as the input f o r beta , 10 as the input f o r lambda , and
100 as the input f o r the number o f data points , a sample
output r e s u l t s f i l e shows ,

100 data po in t s .
X N

0.34747472536598017 3
0.33569883513526738 15
. . .
0 .54027051818993688 9 ,

which i s a l i s t o f 100 sample ve c t o r s from the BMEP
d i s t r i b u t i o n with beta = 5 , lambda = 10 .
 /
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#inc lude <iostream>
#inc lude <f stream>
#inc lude <c s t d l i b > // f o r rand ( )
#inc lude <ctime>
#inc lude <cmath>
us ing namespace std ;

void main ( )
{
ofstream fout (” random data . txt ” ) ;
srand ( time (0 ) ) ; // seed random number genera to r

double num points ;
double lambda ;
double beta ;
cout << ”Enter beta ( beta>0 ) : ” ;
c in >> beta ;
cout << ”Enter lambda ( lambda>0 ) : ” ;
c in >> lambda ;
cout << ”How many data po in t s ? (1 − 10 ,000) ” ;
c in >> num points ;

i n t N;
double X;
fout << num points << ” data po in t s . ” << endl ;
f out << ”\ t X \ t\ t N ”<< endl ;
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f o r ( i n t i =0; i<num points ; i++)
{

// begin Step 1

// i n i t i a l i z e standard uniform R.V.
double U = 0 ;

// generate 20 decimal p l a c e s f o r cont inuous random
// va r i ab l e by choos ing a # 0−9 f o r each decimal p lace
double power o f 10 = 1 ;
f o r ( i n t j =0; j <20; j++)

{
power o f 10  = 10 ;
U += ( double ) ( rand ( ) % 10 ) / power o f 10 ;
}

// apply equat ion ( 6 . 1 )
double cumulat ive = 0 ;
i n t done = 0 ;
f o r ( i n t n = 0 ; done !=1; n++)

{
// p = eˆ(−lambda ) lambdaˆn / n !
double p = exp(−lambda ) ;
f o r ( double denom = n ; denom>=1; denom−−)

p = p  lambda / denom ;
cumulat ive += p ;
i f (U < cumulat ive )

{
N = n ;
done = 1 ; // ends loop
}

}
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// begin Step 2

i f ( N == 0 )
{
X = 0 ;
}

e l s e

// begin Step 3

{

// i n i t i a l i z e standard uniform R.V.
U = 0 ;

// generate 20 decimal p l a c e s f o r cont inuous
// random va r i ab l e by choos ing a number 0−9
// f o r each decimal p lace
power o f 10 = 1 ;
f o r ( j = 0 ; j <20; j++)

{
power o f 10  = 10 ;
U += ( double ) ( rand ( ) % 10 ) / power o f 10 ;
}

// begin Step 4

// apply equat ion ( 6 . 2 )
X = −l og (1 − pow(U, ( double )1/N) ) / beta ;

} // end o f e l s e

f out . p r e c i s i o n ( 2 0 ) ;
f out << X << ”\ t ” << N << endl ;
} // f o r each po int

cout << ”View r e s u l t s in random data . txt f i l e . ” << endl ;
f out . c l o s e ( ) ;
whi l e ( 1 ) ; // keeps window open
}
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Appendix II

/ This program es t imate s the BMEP parameters beta and lambda
us ing sample data from the BMEP d i s t r i b u t i o n . The program ! s
inputs are sample data po in t s from the BMEP d i s t r i b u t i o n and
the outputs are the Method o f Moments Est imators and the
Maximum Like l i hood Est imators f o r beta and lambda . The
program can handle up to 10 ,000 data po in t s as input .

The program needs to be compiled with a C++ compi le r and the
r e s u l t s w i l l be wr i t t en to a text f i l e named ” r e s u l t s . txt , ”
which can be found in the same f o l d e r as the program code i s
saved . The sample data po in t s f o r the program should be
saved to a f i l e named ”random data . txt , ” which should be
saved to the same f o l d e r as the program code i s saved . The
f i r s t l i n e o f the input f i l e should s t a t e the number o f data
po in t s in the format ”XXX data po in t s . ” The second l i n e o f
the input f i l e should conta in the headers ”X” and ”N”
separated by a tab . The f o l l ow i n g l i n e s o f the input f i l e
should conta in the random BMEP data with X l i s t e d f i r s t and
N l i s t e d second on each l i n e , where X and N are separated by
a tab .

For example , the input f i l e should look l i k e t h i s :
100 data po in t s .

X N
0.34747472536598017 3
0.33569883513526738 15
. . .
0 .54027051818993688 9

After compi l ing the C++ code t yp i c a l output w i l l look l i k e
t h i s :
moment e s t imator o f beta = 4.705048429
MLE of beta = 4.677619166
moment e s t imator o f lambda = MLE of lambda = 9.29  /
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#inc lude <iostream>
#inc lude <f stream>
#inc lude <cmath>
us ing namespace std ;

void main ( )
{
double X[ 1 0 0 0 0 ] ;
i n t N[ 1 0 0 0 0 ] ;
o f s t ream fout (” r e s u l t s . txt ” ) ;

// Open the f i l e generated by the generate data program
i f s t r e am inData ;
inData . open (” random data . txt ” ) ;
i f ( ! inData )

{
cout << ” F i l e could not be opened . ” << endl ;
whi l e ( 1 ) ; // keeps window open
}

// determine number o f data po in t s
i n t num points ;
inData >> num points ;

// sk ip tex t in fo rmat ion
char junk [ 1 0 ] ;
inData >> junk >> junk >> junk >> junk ;

// read in (X , N) po in t s
f o r ( i n t i = 0 ; i < num points ; i++)

inData >> X[ i ] >> N[ i ] ;
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// f i nd sum of X and sum of N
double sum of X=0, sum of N=0;
f o r ( i =0; i < num points ; i++)

{
sum of X += X[ i ] ;
sum of N += N[ i ] ;
}

// f i nd X bar and N bar
double X bar = sum of X/num points ;
double N bar = sum of N/num points ;

// f i nd A o f equat ion ( 6 . 5 )
double A = 0 ;
f o r ( i =0; i < num points ; i++)

{
i f (N[ i ] >0)

A++;
}

// f i nd moment e s t imator o f beta by apply ing equat ion ( 6 . 3 )

double MOM of beta ;
i f ( A > 0 ) // otherwise , i f A = 0 then X bar = 0

// and moment e s t imator o f beta i s undef ined
{

// compute Riemann i n t e g r a l with 100000 p a r t i t i o n s
double width = N bar /100000;
double i n t e g r a l = 0 ;
f o r ( i = 0 ; i <100000; i++)

{
double t = i  width + width /2 ;
i n t e g r a l += width  ( 1 − exp(−t ) ) / t ;
}

MOM of beta = i n t e g r a l / X bar ;
}
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// f i nd MLE est imator o f beta
// by apply ing i t e r a t i o n s o f ( 6 . 1 3 )

double MLE of beta ;
i f (A > 0) // otherwise , i f A = 0 then 2nd d e r i v a t i v e

// o f w( beta ) w i l l equal ze ro and MLE of
// beta i s undef ined

{
double b e t a t o t r y = MOM of beta , l a s t b e t a t r i e d ;
double sum ; // sum found in equat ion ( 6 . 1 1 )
double sum2 ; // sum found in equat ion ( 6 . 1 2 )

f o r ( i = 0 ; i < 100 ; i++) // s e t max i t e r a t i o n s to 100
{
sum = 0 , sum2=0;

f o r ( i n t j =0; j < num points ; j++)
{
i f (N[ j ] > 0) // f o r j in C

{
sum += (N[ j ]−1)  X[ j ]

/ ( exp ( b e t a t o t r y  X[ j ] ) − 1 ) ;
sum2 += (1−N[ j ] )  pow(X[ j ] , 2 )

 exp ( b e t a t o t r y  X[ j ] )
/ pow( ( exp ( b e t a t o t r y  X[ j ] ) − 1) , 2 ) ;

}
}

// equat ion ( 6 . 1 3 )
b e t a t o t r y = be t a t o t r y

− ( A / b e t a t o t r y
− num points  X bar + sum )
/ (−A / pow( be ta to t ry , 2 ) + sum2 ) ;

// i f converges a lready , qu i t loop
i f ( b e t a t o t r y / l a s t b e t a t r i e d == 1.00000 && i >1)

i =123;
l a s t b e t a t r i e d = be t a t o t r y ;
}

MLE of beta = be t a t o t r y ;
}
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fout . p r e c i s i o n ( 1 0 ) ;

i f (A > 0)
{
f out << ”moment es t imator o f beta = ”

<< MOM of beta << endl ;
f out << ”MLE of beta = ” << MLE of beta << endl ;

f out << ”moment es t imator o f lambda = MLE of lambda = ”
<< N bar << endl ;

}
e l s e

{
f out << ” Al l po in t s are ( 0 , 0 ) . No es t imate made . ” ;
}

f out . c l o s e ( ) ;
cout << ”View r e s u l t s in r e s u l t s . txt f i l e . ” << endl ;
whi l e ( 1 ) ; // keeps window open
}
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Notation

R+ The set of positive real numbers

N The set of natural numbers {1,2,3,...}

d
= Equality in distribution



62

Bibliography

[1] Biondi, F., Kozubowski, T.J., and Panorska, A.K. (2005). A new model for

quantifying climate episodes, International Journal of Climatology, 25, 1253-

1264.

[2] Deitel, H.M. and Deitel, P.J. (2003). C++ How To Program, Upper Saddle River,

NJ: Prentice Hall.

[3] Gupta, R.D. and Kundu, D. (1999). Generalized exponential distributions, Aus-

tralia & New Zealand Journal of Statistics, 41(2), 173-188.

[4] Kozubowski, T.J. and Panorska, A.K. (2005). A mixed bivariate distribution

with exponential and geometric marginals, Journal of Statistical Planning and

Inference, 134, 501-520.

[5] Kozubowski, T.J. and Panorska, A.K. (2008). A mixed bivariate distribution

connected with geometric maxima of exponential variables, Communications in

Statistics: Theory and Methods, 37, 2903-2923.



63

[6] Kozubowski, T.J. and Panorska, A.K. (2009). A note on the joint distribution

involving Poissonian sum of exponential variables, Advances and Applications in

Statistical Sciences, in press.

[7] Kozubowski, T.J., Panorska, A.K., and Biondi, F. (2008). Mixed multivariate

models for random sums and maxima, Indian Statistical Institute Platinum Ju-

bilee Volume, 149-175.

[8] Kozubowski, T.J., Panorska, A.K., and Podgórski, K. (2008). A bivariate Lévy
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