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ABSTRACT 

 

Measured streamflow data in a given basin are important for determining regional 

patterns of climate and streamflow trends, but are often unavailable or extend back less 

than 100 years. Observed streamflows can be regressed against tree-ring data that serve 

as proxies for streamflow to extend the measured record, however this empirical 

approach cannot account for factors that do not directly affect tree-ring growth, but which 

may influence streamflow. To reconstruct past streamflows in a more mechanistic way, 

seasonal water balance models were reviewed and developed for the upper West Walker 

River basin that can use proxy precipitation and air temperature data derived from tree-

ring records. The final model incorporates simplistic relationships between temperature, 

precipitation, and other components of the hydrologic cycle, and operates at a seasonal 

time scale. The model was able to reproduce streamflow with an r2 of 0.90, and a RMSE 

of 7.50 cm with average seasonal air temperature as input. Simulated streamflow was 

0.66% greater than observed streamflow for WY 1940 through WY 2006. This model 

was subsequently used to simulate the effects of wildfire on streamflow in the upper West 

Walker River Basin. The earliest historical record of wildfire in this basin dates back to 

1961, with the most recent recorded in 2005. Evapotranspiration and runoff coefficients 

were adjusted to simulate reduced vegetation cover as a result of fire, and were applied to 

the dry season when fire was recorded and the subsequent wet season to reflect time 

required for re-vegetation to occur. The resulting r2 value decreased to 0.85, with RMSE 

increasing to 9.02 cm, and the overall streamflow simulation increased to 1.57% greater 
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than observed streamflow. Based on the results of this modeling exercise, the modeling 

approach with average seasonal air temperature would be appropriate for utilizing proxy 

tree-ring data as input. The model performed very well using only air temperature and 

precipitation as input and incorporated 6 parameters representing hydrologic processes 

influencing streamflow. However, simulating wildfire with this model did not improve 

streamflow simulations, indicating that the model was sensitive to modeling such 

landcover manipulations.  
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CHAPTER 1: INTRODUCTION 

 

Water resources in the west 

Water resource variability is of particular importance in the arid western United 

States where water resources are already limited and population is rapidly growing 

(Brockerhoff 2000). Increasing development and population are expected to further 

increase the demand for water resources in this region (Horton 1996). Infrastructure 

consisting of expensive aqueducts and reservoirs has been developed in many areas in the 

western U.S. to supply water to urban areas from distant sources (Hundley 1992). 

Methods such as this may be needed more in the future to meet continued and increasing 

demands.  

In addition, water supplies in the western states are anticipated to decrease due to 

increased demand and as a result of climate change. According to current trends and 

future projections outlined by Seager et al. (2007) and Field et al. (2007), precipitation 

patterns and temperatures in the western U.S. have already been changing and are 

projected to continue. In mountainous regions that receive precipitation in the form of 

snow, air temperature increases have changed timing and frequency of precipitation 

events, resulting in an increase in precipitation in the form of rain rather than snow, and 

differences in when precipitation falls in the season and when snow melts (Stewart et al. 

2004, Field et al. 2007, Maurer et al. 2007, Day 2009). A decrease of approximately 

15-30% in snow water equivalent during spring, and decrease in snow cover in the 
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mountainous west during spring and summer over the last 50+ years has been observed 

(Field et al. 2007). This trend in temperature is projected to continue, thus continuing to 

impact spring/summer snowmelt as well as growing seasons and number of frost-free 

days. These changes have implications for influencing streamflow, which has been 

increasing in the eastern part of the U.S. but decreasing in the western states (Field et al. 

2007, Sharpe et al. 2007, Sheppard 2010), with peak streamflow in western mountain 

ranges occurring 1-4 weeks earlier than in the 1940’s (Stewart et al. 2004, Field et al. 

2007). The changes in timing of snowmelt have been correlated with wildfire frequencies 

(Westerling et al. 2006), which can in turn impact streamflow by reducing 

evapotranspiration (ET) (Wohlegemuth et al. 2006) and causing an increase in surface 

runoff (Beyers et al. 2005, Wohlegemuth et al. 2006). An overall “drying” of the 

southwestern U.S. is projected (Seager et al. 2007). There are indications that more 

frequent and severe droughts have already been occurring in the west (Field et al. 2007).  

Current climate models predict average annual air temperatures will increase to 

levels ranging 1-2 oC higher than today by 2050 in the western U.S. which could affect 

water availability by influencing changes in precipitation type and snowmelt. As the 

demand for water resources increases, it is important to understand how water resource 

availability will change. This is particularly important in the western U.S. where water is 

already a limited resource, and availability can be severely influenced by climate and 

climate change. One of the challenges for understanding the impacts of climate change on 

water availability is understanding past trends and the implications for future trends. 

Instrumental climate data are limited to approximately 100 years or so, providing only a 
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brief snapshot of past climate for that period of time. Measured streamflow data typically 

span 100 years at most as well, which is not long enough to determine long-term 

responses to climate change (Saito et al. 2008, Gray and McCabe 2010, Solander et al. 

2010), and there is need to extend streamflow records in a way that will allow a better 

understanding of the past. 

 

Extending instrumental records 

Dendrochronology using moisture sensitive tree species can greatly improve our 

understanding of past climate and streamflow where observational data are limited 

(Swetnam et al. 1999, Hurteau et al. 2007, Sheppard 2010). Tree-rings have been used to 

reconstruct a number of climatic variables related to the hydrology of a given area 

including streamflow, snowpack, and drought (Woodhouse 2003, Woodhouse et al. 

2009). Thus, analyses using dendrochronology can provide proxy data for measured data 

that are limited or nonexistent. Other sources of proxy data can include pollen records, 

ice cores, and sediment cores, but the use of tree-rings is much better at producing 

climatic records at finer temporal resolutions, such as annual or seasonal time series of 

precipitation variability or air temperature (Biondi et al. 2005, Sheppard 2010). 

Variations in ring sequence width signify changes in rates of tree growth, which is a 

function of nutrient availability, location, climatic variables, and tree species, and the 

degree to which tree-rings can represent climatic variability can be greatly influenced by 

many factors including the species of tree and surrounding environment (Biondi 1999, 

Hurteau et al. 2007).  
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Traditionally, streamflow reconstructions using tree-rings have been generated 

using regression approaches that extend records back hundreds or thousands of years, 

providing the ability to examine past trends.  Correlation between tree-ring growth and 

climate factors such as precipitation can be regressed against measured precipitation 

values to generate a much longer climate record (Campelo et al. 2009). However, these 

approaches do not incorporate physical processes impacting streamflow such as 

evapotranspiration and infiltration, and how these processes may be affected by changes 

in land-use patterns, geomorphology or vegetation dynamics (Saito et al. 2008, Solander 

et al. 2010). Problems with regression-based streamflow reconstructions from tree-ring 

data can arise in cases such as with wildfire. The higher runoff, lower infiltration, and 

lower evapotranspiration due to decreased vegetation after wildfire (Wohlegemuth et al. 

2006) could result in a higher streamflow than what a streamflow reconstruction derived 

from tree-rings would indicate if based solely on regression techniques.  

Tree-ring data can also be used as proxy input data for more mechanistic, physical 

process-based reconstructions, such as through the use of a watershed model (Saito et al. 

2008, Gray and McCabe 2010, Solander et al. 2010). Watershed models allow for 

investigation of the influence of physical processes such as infiltration, 

evapotranspiration, snowmelt, or runoff on streamflow (Saito et al. 2008, Solander et al. 

2010), which regression-based streamflow reconstructions cannot do. The use of tree-ring 

records with a watershed model can allow for better understanding of the variability of 

streamflow reconstructions and their sensitivity to situations such as wildfire. 
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Research goals 

This research project consisted of investigation and further development of a 

method for incorporating tree-ring proxy precipitation and air temperature data with a 

seasonal water balance model to reconstruct past streamflow in the upper Walker River 

Basin, CA, USA. The ultimate goal of this research is to utilize a mechanistic modeling 

approach to reconstruct past streamflow, and to investigate how climate-independent 

factors such as changes in land cover or infiltration could influence estimates of past 

flows, something regression-based models are not able to do. Methods such as this can 

provide useful information about interactions of various components of the water cycle, 

including the interaction between runoff, snowmelt, and evapotranspiration under warmer 

climatic regimes. 

 

Water balance models 

Water balance models were first developed decades ago, and have been revised 

over time for many different uses (Alley 1984, Xu 2002).  These models have been used 

for water management issues such as determining seasonal patterns of irrigation demand, 

soil moisture stresses, and prediction of streamflow. Water balance models keep track of 

water input and outflow by accounting for precipitation and snowmelt, 

evapotranspiration, streamflow, runoff and groundwater (Alley 1984). Water balance 

models range from extremely simplistic to very complex, depending on what is 

represented and what the model objectives are.  
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Simple water balance models incorporate mechanisms impacting streamflow such 

as evapotranspiration, infiltration, groundwater flow, and runoff and generally have few 

parameters (Xu and Singh 1998). They have been used to investigate hydrologic cycles 

on many different spatial and temporal scales. Most commonly they have been used on a 

daily time scale, but they have been increasingly used at monthly as well as yearly 

temporal resolutions, especially when used for climate-related research and projections 

(Xu and Singh 1998). The water year (WY), defined as the 12-month period beginning 

October 1st through September 30th of the following year, is considered a closed annual 

water budget in northern latitudes because all snow typically melts during spring/summer 

and therefore does not carry over to the following WY. Because of this, it may not be 

necessary to model snow at the annual WY time scale in western U.S. watersheds. 

Modeling snow is, however, an important factor for investigation of seasonal snowmelt 

influences on hydrologic processes because some snow will carry over into the next time 

step. 

Runoff due to snowmelt from mountainous catchments is an important source of 

water in the western United States. The quantity and timing of the runoff depend on a 

number of interdependent factors that relate to climate, vegetation, and topography 

(Kelleners et al. 2010). Snowmelt alone accounts for more than 80% of streamflow in 

California (Maidment 1993) and has also been cited as a primary source of groundwater 

recharge, runoff, and soil moisture in the arid/semi-arid western U.S. (Maidment 1993, 

Marks et al. 1999, Kelleners et al. 2010). Thus, modeling snowmelt is crucial for 
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modeling water resources in arid regions dependent on water supplies derived from 

snowpack. 

Unfortunately in many regions, modeling snow faces the same problems 

modeling streamflow does: limited instrumental data. Some basins have instrumentation 

for measuring snow depth, though this is measured primarily in valleys, and many basins 

have no instrumentation at all (Stanzel et al. 2008). Extrapolation of air temperature, 

precipitation, wind speed, cloud cover, albedo, and many other factors that influence 

snow and snowmelt can be difficult, and can be significantly different across short 

distances (Ferguson 1999). There are many approaches for modeling snowmelt, including 

the temperature-index or degree-day approaches, which are frequently-used empirical 

methods for estimating snowmelt, and the energy balance method (Walter et al. 2005), 

which uses short-wave and long-wave radiation to calculate snowmelt and typically 

requires more input data.  

 

Previous work 

 Several studies have been done thus far relating tree-ring patterns to hydrologic 

modeling at a watershed scale. These models investigated the use of either precipitation 

as the only input, or both precipitation and air temperature input to model the hydrologic 

processes for surface runoff, ET, groundwater flow, baseflow, and snowmelt (Saito et al. 

2008, Gray and McCabe 2010, Solander et al. 2010). 

Saito et al. (2008) used a water balance model adapted from a model developed 

by Fiering (1967) to model the upper West Walker River watershed in California. This 
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simple watershed model operated on a WY timescale and represented observed data 

reasonably well (r2 = 0.87, n = 63 years), but did not include a snow component (Saito et 

al. 2008). Without snow the Saito et al. (2008) model has four parameters (Figure 1).  

 
 
Figure 1. Simple water balance model as modified by Saito et al. (2008). a is the fraction 
of precipitation that becomes runoff; b is the fraction of infiltration that evapotranspires; 
c is the fraction of groundwater (GW) storage that becomes baseflow; d is the fraction of 
GW storage that becomes GW flow; GW storage is the groundwater left after baseflow 
and GW flow are removed. 
 

 
 

Solander et al. (2010) modified the model used by Saito et al. (2008) to operate on 

a seasonal timescale and used a temperature-index approach for addressing snow 

precipitation and melt to incorporate the influence of snow on hydrologic processes. The 

simplicity of the temperature-index approach for modeling snow precipitation and melt 

has led to its wide use for ice and snowmelt calculations in modeling (Hock 2003, Walter 
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et al. 2005). This model was calibrated to the upper Meadow Valley Wash watershed in 

southeastern Nevada, and comparison of calibrated model output to observed data had an 

r2 of 0.81 (n = 18 years). However, some calibrated parameter values were unrealistic and 

end-of-May snow was not accounted for. This particular basin had the added 

complications of a dam and upstream diversions for seasonal irrigation, which both 

influence streamflow during part of the year. Thus, this model was only used for the part 

of the year with natural flow regimes when such diversions were not supposed to occur. 

Figure 2 shows the setup of the Solander et al. (2010) model.  

Gray and McCabe (2010) utilized the monthly Thornthwaite water balance model 

(McCabe and Markstrom 2007) to generate annual streamflows for the Upper 

Yellowstone drainage. Model calibration resulted in an r2 of 0.71 for the period of 1911 

to 1995 using the Parameter-Elevation Regressions on Independent Slopes Model 

(PRISM) precipitation and air temperature data as input. PRISM estimates precipitation 

and temperature values for regions with no instrumentation by using spatial datasets, 

point data, and digital elevation models (Daly et al. 1994). When PRISM temperature 

data and tree-ring-derived precipitation were used as input, model calibration resulted in 

an r2 of 0.56. Tree-ring derived precipitation data were developed at an annual resolution 

by calibrating tree growth against PRISM precipitation for the record between 1895 and 

2004 (Daly et al. 1994). 
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Figure 2. Solander et al. (2010) temperature-index water balance model, where a is the 
fraction of snowmelt and rain that becomes runoff; b is the fraction of infiltration that 
becomes evapotranspiration; c is the fraction of GW storage that becomes baseflow; d is 
the fraction of GW storage that becomes GW flow; Cm = melt rate factor (cm oC-1 
month-1); Tb is the base temperature of snowpack (oC); Tmaxsnow is the maximum 
temperature at which precipitation is snow (oC).  
 

 
 
 

The Thornthwaite water balance model has been in use for decades (Thornthwaite 

1948, McCabe and Markstrom 2007), requires only precipitation and air temperature 

input, and incorporates a snow component. The model uses 7 parameters to account for 

snow precipitation, rain precipitation, latitude, soil water storage capacity, direct runoff, 

surplus runoff, and snowmelt and operates on a monthly time step. To model the Upper 

Yellowstone drainage at an annual resolution, Gray and McCabe (2010) performed a 
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series of aggregation and disaggregation steps, which can introduce more uncertainty into 

the modeling process. Figure 3 depicts how the Thornthwaite model is set up (McCabe 

and Markstrom 2007). 

 

 
Figure 3. Thornthwaite water balance model (McCabe and Markstrom 2007), where r is 
drofac, the fraction of rain that becomes direct runoff; sr is the runoff factor, a fraction of 
soil-moisture storage that becomes surplus runoff; t is STC, soil water storage capacity 
(cm); m is meltmax, the maximum snowmelt rate applied to snow storage; e is the 
temperature above which all precipitation is rain (oC); f is the temperature below which 
all precipitation is snow (oC). PET is defined as potential ET; AET is defined as actual 
ET. This model also incorporates a parameter value for latitude that is not represented in 
the schematic. 
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Layout of thesis 

This thesis is organized in chapters, with the first chapter providing a background 

of water balance models, previous research relating to this project, and the importance of 

understanding past climate as it relates to water resources variability. The second chapter 

provides details of the study methods including justification for model structure, the 

model set-up and boundary conditions, and descriptions of how data were organized and 

analyzed. Results of the modeling approaches were outlined and discussed in the third 

chapter, with discussion focused on the various models’ results based on criterion 

outlined in the methods. The final chapter discusses the conclusions of this research.  
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CHAPTER 2: METHODS 
 
 

Study Overview 

This study began with an investigation and review of water balance models that 

would be suitable for use with proxy tree-ring climate records for reconstructing seasonal 

streamflow in the upper West Walker River at the USGS streamflow gauge (gauge 

number 10296000) near Coleville, CA. Once suitable models were determined, 

modifications were incorporated into each model to allow modeling at a seasonal time 

step and account for snow precipitation and melt. Due to the temporal resolution of tree-

ring data, a smaller time step is not possible. The models were then run in a parameter 

estimation process to determine performance statistics for each model and to determine 

the “best” model to subsequently use for wildfire scenario modeling. Results from the 

wildfire scenario were examined to assess model sensitivity to such occurrences.  

 
Site description 
 

The Walker River watershed originates in the eastern Sierra Nevada mountain 

range near Bridgeport, CA, crossing over the California border into Nevada, and 

terminating at Walker Lake, NV, approximately 250 kilometers downstream. Headwaters 

of the Walker River originate at elevations greater than 3,000 meters and the entire 

watershed includes more than 10,600 km2 along the western boundary of the Great Basin 

(Sharpe et al. 2007). The majority of streamflow in the river originates as snowmelt from 

the Sierra Nevada snowpack. This snowpack provides water storage for surrounding and 

downstream irrigated agriculture, recreation, fisheries, habitat, and municipal uses. 
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During a typical year, river volume increases as snow melts during spring, with peak flow 

usually occurring in May or June. During years with deep snowpack in winter, however, 

peak flow can occur as late as July. During years with little snowpack, flow can be 

severely decreased and remain low throughout the rest of the year (Sharpe et al. 2007). 

This can have dramatic impacts on those who depend on the downstream flow. A large 

research project in the Walker River watershed is currently investigating water 

conservation, economic impacts, and river channel health and issues (Sharpe et al. 2007).  

Climate in the upper Walker River Basin varies seasonally, with cold winters and 

precipitation in the form of snow, and dry hot summers. This basin is on the eastern side 

of the Sierra Nevada mountain range within a rain shadow, which drastically reduces the 

amount of precipitation received on eastern slopes. Precipitation falls primarily in the 

form of snow, but when rain does occur, flooding can result from rainfall melting snow at 

higher elevations (rain-on-snow events), altering streamflow in the Walker River (Sharpe 

et al. 2007). Average annual precipitation measured in the nearest town to the upper 

Walker River basin, Bridgeport, CA, is 2.54 cm. Temperatures can vary greatly in this 

region, ranging from an average minimum temperature of -4.4 oC in winter to an average 

maximum temperature of 16.7 oC in summer as measured at Bridgeport, CA (WRCC 

2006). 

The geology of the Walker River Basin centers around the modern Sierra Nevada 

batholiths, which formed around 225 to 65 million years ago (Hill 1975). These 

batholiths formed as molten granitic material that invaded the sedimentary rock below the 

surface of the earth (Hill 1975). Magma melted existing rock, partially incorporating 
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some of it, and depositing veins of gold and other metals. The intense heat from the 

molten granitic material caused new minerals to crystallize in overlying volcanic and 

sedimentary rock, creating metamorphic rock in the process (Hill 1975). Once buried, the 

molten material cooled over several million years before solidifying into large bodies of 

granite. These bodies of granite now form the modern Sierra Nevada mountain range. 

During this time, natural environmental chemical processes, or “weathering,” were 

eroding the overlying external rock, exposing the batholiths in the region until finally 

becoming an area of low, gently rolling granitic hills. 

Around 20 million years ago volcanic eruptions blanketed the area with lava 

flows and volcanic material (Reed 1933). As eruptions increased in frequency, the eastern 

edge of the modern Sierra Nevada mountain range began to rise and tilt along fault lines. 

These processes of uplift and erosion continue to shape and wear down the Sierra Nevada 

mountain range (Hill 1975). The eastern side of the range is considerably more tilted at 

approximately 25o and is less weathered due in part to the rain shadow on this side of the 

range (Reed 1933). The oldest known rocks in the Sierra Nevada consist of limestone, 

chert, shale, and sandstone, much of which has been modified by metamorphic processes 

into schist, marble, slate, and quartzite. The fossils that have been found date back to 

Paleozoic, Triassic, and Jurassic periods (Reed 1933, Hill 1975).  

Humans began to occupy the area at least 11,000 years ago (Wilkinson 1992, 

Grayson 1993, Horton 1996). As with many other watersheds in the west, there has been 

and continues to be a considerable demand on water resources in this region for fish, 

agriculture, development, and mining (Wilkinson 1992, Horton 1996). Explorer Peter 
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Ogden discovered the Walker River sometime around 1829, though few records from this 

event exist. Continued exploration of the region utilized the river as a “guide” across the 

Sierra Nevada. Once settlers began migrating westward in search of gold, settlement near 

water sources began in earnest, and the west fork of the Walker River was utilized as a 

water source for herdsman and ranchers who settled in Smith Valley and Mason Valley 

between 1856 and 1859 (Horton 1996). 

While only approximately 25% of the Walker River watershed lies in California, 

most of the precipitation that contributes to streamflow in the watershed falls within that 

25%. The majority of water consumption in the watershed lies downstream in both 

California and Nevada. Uses for irrigation around Topaz Lake, in Antelope Valley, Smith 

Valley, and Mason Valley account for almost 90% of the water consumption in the basin 

(Horton 1996). Further downstream uses include habitat creation and maintenance at the 

Mason Valley Wildlife Management Area (Sharpe et al. 2007, NDOW 2010), cooling 

ponds for NVenergy’s Fort Churchill Power Generating Station (NVenergy 2010), and 

recreational uses along the river and at Walker Lake, where the river terminates. This 

study focuses in the upper West Walker River, a sub-basin of the Walker River basin near 

the headwaters of the west fork of the Walker River (Figure 4).  
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Figure 4. Walker River basin. The upper West Walker River basin is delineated in blue, 
with the entire Walker River Basin outlined in black. 
 

 
 
 

 

The upper West Walker River basin is characterized by high elevations with minimal 

development that includes areas for camping, fishing, and a small Marine Corps 

Mountain Warfare Training Facility. This region has not been directly utilized for 
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agricultural crops and thus does not have diversions or dams influencing streamflow. 

Wildfires have been recorded periodically in the upper West Walker River, with 7 

occurring in 1991 alone. The most recent fire to occur in the region was in 2005.  

 

Model selection and considerations 

There are a number of important considerations in selecting a water balance 

model for reconstructing streamflow using tree-ring proxy data. Firstly it is widely 

recognized that many watershed models require a significant amount of input data 

(Farmer et al. 2003). Tree-ring records can only produce proxy precipitation and air 

temperature data, so reconstructing streamflow using proxy data from tree-ring records 

requires a model that only needs air temperature and precipitation data as input. The lack 

of available data indicates that the model structure should be simplistic to reduce 

introduced error (Atkinson et al. 2002, Farmer et al. 2003, Butts et al. 2004). Another 

consideration for choosing a simplistic water balance model is that increasing model 

structure complexity may lead to over-parameterization. 

Secondly, the upper Walker River basin is dominated by snow precipitation, as 

are many other basins in the western U.S. Because snowmelt contributes heavily to 

streamflow in this basin, it is important to model snowmelt changes and the effect on 

streamflow regimes. Using a simple water balance model approach can allow the 

flexibility to incorporate a snow modeling component while maintaining a simple model 

structure. 
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Thirdly, reconstructing streamflow using tree-ring proxy data is limited to 

modeling at an annual or possibly seasonal temporal resolution. Patterns of tree-ring 

growth cannot be easily analyzed at finer temporal resolutions (Sheppard 2010). Models 

operating at time scales finer than annual or seasonal will require disaggregation that will 

introduce more uncertainty into the modeling approach. For this study, models were set 

up at a seasonal resolution to better represent snowmelt and precipitation. 

Several water balance models were evaluated for their suitability for 

reconstructing seasonal streamflow based on data and model limitations. Models such as 

TOPMODEL (Beven 1997) and SEAMOD (Salas and Cardenas 1989) incorporate 

topography, soil characteristics, basin storage and ET, but were deemed inappropriate for 

use in this project because they need more input, introduce too many parameters, work at 

too fine of a timescale, and/or do not incorporate a snow component (Table 1).  

The WASMOD model (Water And Snow balance Model) approach for factoring 

snow precipitation and melt (Xu 2002) has promise for use with proxy tree-ring air 

temperature data, though the full WASMOD model introduces too many parameters and 

requires too many inputs to be a viable model for streamflow reconstruction. The 

Thornthwaite modeling approach (McCabe and Markstrom 2007) is another potential 

model that could be used, as it too incorporates a simplistic way to account for snow, 

while having few parameters and requiring only air temperature and precipitation input. 

However, ET was only dependant on temperature inputs, so it would not be changed by 

altered land cover. In addition, the Thornthwaite model operates at a monthly time step 

and would require aggregation or model modification to operate at longer time steps. 
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Table 1. Models investigated for use with tree-ring proxy data for seasonal streamflow 
reconstruction.  
 
 

 

 

 The simple water balance model adapted from Fiering (1967) by Saito et al. 

(2008) was examined, but it does not have a snow component and operates at an annual 

timescale. Although the Solander et al. (2010) model was seasonal and included a snow 

MODELS Snow component No. of 
parameters Timescale Disadvantages 

TOPMODEL 
(Beven 1997) YES 5 Hourly Not seasonal 

Seasonal Model (SEAMOD) 
(Salas and Cardenas 1989) NO 

7  
Without 

snow 
Seasonal 

No snow,  
Too many 
parameters 

Water And Snow balance Model 
(WASMOD) 
(Xu 2002) 

YES 3-6 Weekly 
Monthly 

Need 
humidity 

Not seasonal 

Simple Water Balance Model 
(Saito et al. 2008) NO 

4 
Without 

snow 
Annual No snow 

Not seasonal 

Water Balance Model with 
Temperature Index 
(Solander et al. 2010) 

YES 7 Seasonal 

Was not run 
for both 
seasons, 
Requires 
further 

development 

Thornthwaite Water Balance Model 
(McCabe and Markstrom 2007) YES 7 Monthly 

Annual Not seasonal 
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component, it was only used to model the wet season. Ultimately, models were narrowed 

down to the simple water balance used by Saito et al. (2008) that was augmented with 

WASMOD snow calculations (Model A), and the simple water balance model used by 

Saito et al. (2008) that was augmented with the Thornthwaite water balance model snow 

calculations (Model B). These models were chosen because they met the required criteria, 

or were easily modified to meet the necessary requirements. Both models were set up for 

seasonal 6 month time steps running from the beginning of the WY in October through 

March (wet season), and from April to the end of the WY in September (dry season). 

The simple water balance model used by Saito et al. (2008) (Figure 1) uses 

equations 1-8:  

 

Eq. 1  SRt = a!Pt   ,  0 ≤ a ≤ 0.9 

Eq. 2  ETt = b! It   ,  0 ≤ b ≤ 1 

Eq. 3  BFt = c!GSt"1   ,  0 ≤ c ≤ 1 

Eq. 4  GFt = d !GSt"1   ,  0 ≤ d ≤ 1, 0 ≤	
  c + d ≤ 1 

Eq. 5  It = Pt ! SRt  

Eq. 6  DPt = It !ETt  

Eq. 7  GSt =GSt!1 +DPt !BFt !GFt  

Eq. 8  Qt = SRt +BFt  
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where SRt = surface runoff for season t; ETt = evapotranspiration for season t; BFt = 

baseflow for season t; GFt = groundwater flow for season t; It = infiltration for season t; 

DPt = deep percolation for season t; GSt = groundwater storage for season t; GSt−1 = 

groundwater storage for previous season (or initial boundary condition for season 1); Pt = 

precipitation for season t; and Qt = streamflow for season t. 

For Model A, two additional parameters determine how much precipitation is 

snow, and how much of that snow melts during the each season using equations 9-12: 

 

Eq. 9  snowt = Pt 1! e
[(ct!s)/(s!w)]

2{ }
+

 

Eq. 10  meltt = spt!1 1! e
! (ct!w)/(s!w)[ ]2{ }

+

 

Eq. 11  raint = Pt ! snowt  

Eq. 12  spt = spt!1 + snowt !meltt  

 

where the plus sign (+) means x+  = max(x,0) (Xu 2002), Pt is defined as precipitation at 

season t, ct is air temperature (oC) for season t, s is temperature below which precipitation 

is snow (oC), and w is temperature above which all snow begins to melt (oC). Snowt is 

defined as snow during season t, raint is the amount of precipitation that was rain during 

season t (Eq. 11) for surface runoff determination, and spt is defined as the snowpack 

during season t (Eq. 12). The simplicity of the WASMOD snow component in Model A 

allows the use of air temperature to estimate snowmelt and runoff from determinations of 

how much precipitation falls in the form of snow, and at which temperature the snow 
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melts. In this model melt is directly calculated based on temperature, rather than from a 

separate melt factor. Figure 5 depicts how Model A is set up.  

 
 

 
Figure 5. Model A; simple water balance model with WASMOD snow component, 
where a is the fraction of snowmelt and rain that becomes runoff; b is the fraction of 
infiltration that becomes ET; c is the fraction of GW that becomes baseflow; d is the 
fraction of GW that becomes GW flow; s is the temperature below which precipitation is 
snow; w is the temperature above which snow begins to melt. GW storage is the 
groundwater left after baseflow and GW flow are removed.  
 
 

 
 

Model B operates at the same seasonal scale as Model A and also requires only 

precipitation and air temperature input. The original Thornthwaite water balance model 

uses 7 parameters to account for snow precipitation, rain precipitation, latitude, soil water 
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storage capacity, direct runoff, surplus runoff, and snowmelt, and operates at a monthly 

time step (McCabe and Markstrom 2007). In this adaptation of the Saito et al. (2008) 

model the snow component has parameters for temperature above which all precipitation 

is rain (e), temperature below which all precipitation is snow (f), and a fraction 

representing the maximum snowmelt rate, m (meltmax). Tt is the temperature at season t. 

Snow precipitation (Psnow) falling between the thresholds for e and f, and rain 

precipitation (Prain) are calculated based upon these three parameters in Equations 13 and 

14, respectively.  

 

Eq. 13  Psnow = P!
e"Tt
e" f
#

$
%

&

'
(
 

 

Eq. 14  snowrain PPP −=  

 

 

When snow has been calculated, accumulation is determined through equations 15-16, 

taking into account snowmelt, storage, and the meltmax factor, m: 

 

Eq. 15  SMFt =m!
Tt " f
e" f

#

$
%

&

'
(
 

 

Eq. 16  Meltt = snostor ! SMF  
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where SMF is the fraction of snow storage that melts during season t (cm); m is meltmax; 

Tt is the temperature (oC) for season t; f is the temperature below which all precipitation 

is snow (oC); e is the temperature above which all precipitation is rain (oC); snostor is the 

amount of snow storage for season t (cm), and Meltt is snowmelt (cm) during season t 

that is added to rain precipitation to determine surface runoff. In the event that SMF is 

greater than m, SMF is set to meltmax. Figure 6 depicts how Model B is set up. Equations 

for both Model A and Model B were entered into Microsoft Excel to run the models. 

 
 
Figure 6. Model B; simple water balance model with Thornthwaite snow component, 
where a is the fraction of snowmelt and rain that becomes runoff; b is the fraction of 
infiltration that becomes ET; c is the fraction of GW that becomes baseflow; d is the 
fraction of GW that becomes GW flow; e is the temperature above which precipitation is 
rain; f is the temperature below which precipitation is snow, and m is meltmax, the 
maximum melt rate. GW storage is the groundwater left after baseflow and GW flow are 
removed.  
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Model input & output 

PRISM air temperature and precipitation values for WY 1940-2006 were used in 

lieu of proxy air temperature and precipitation data as input during model parameter 

estimation. PRISM data were obtained at 2.5 arc-minute resolution for 12 grids 

representing the upper West Walker River Basin that included the Coleville, CA USGS 

gage 10296000. These data are available at monthly time steps from the PRISM Climate 

Group (Daly et al. 2000). Because the resolution of temperature derived from tree-rings 

can only be seasonal at best, it was necessary to determine what temperatures to use to 

represent seasonal temperatures. Monthly maximum and minimum PRISM air 

temperatures were averaged for each month over all months of the season to get 

maximum and minimum seasonal temperatures representing each season. In addition, 

monthly maximum and minimum temperatures were averaged to get monthly average 

temperatures which were then averaged over the season to get average seasonal 

temperatures. Once temperature data were processed, they were incorporated into each 

model in order to determine how each model performed based on different temperature 

schemes. Model A incorporating minimum seasonal temperature is denoted “Model 

Amin,” Model A incorporating maximum seasonal temperature is denoted “Model Amax,” 

and Model A incorporating average seasonal temperature is denoted “Model Aave.” 

Similarly, “Model Bmin,” “Model Bmax,” and “Model Bave” denote Model B incorporating 

minimum, maximum, and average seasonal temperatures, respectively. 

Data processing was also done to aggregate monthly PRISM precipitation and 

observed streamflow to a seasonal time step. Both precipitation and streamflow were 
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summed over each wet and dry season. Output from model parameter estimation was 

streamflow discharge in cm/season. Measured streamflow during WY 1940–2006 at 

USGS gauge station 10296000, West Walker River near Coleville, CA, was used for 

comparison of modeled results. The water balance model was calibrated using 66 years of 

seasonal stream flow data from the USGS streamflow gauge. According to Vogel (2006), 

water balance models should be calibrated with at least 30 years of continuous data. 

 

Parameter estimation 

An important step in the model identification process is the estimation of a 

suitable parameter set that has feasible values and produces reasonable model outputs. 

Model parameters are usually estimated through calibration of measured time-series of 

runoff (streamflow discharge) over a sufficiently long period (Butts et al. 2004). The 

required length of the time-series depends, among other things, on the complexity of the 

model structure used and available data. It might range from a short period of time for a 

simple model structure to a long period of time for a more complex model. Regardless of 

model structure, it is important to calibrate a model using a sufficient length of time to 

avoid the problem of simulating a climate period that may not be representative of the 

regional climate as a whole (Wagener and Wheater 2006). 

For this study, the parameters of each model structure were adjusted until the 

observed system output and the model output showed acceptable levels of agreement. 

Manual calibration does this in a trial-and-error procedure, often using a number of 

different measures of performance and visual inspection of plotted seasonal streamflow 
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(Boyle et al. 2000). It can yield good results, but can also be very time consuming 

(Wagener et al. 2003). Manual calibration also allows a degree of researcher subjectivity, 

which can lead to introduced error. Automated parameter estimation can reduce both 

time, and subjectivity. Thus, Excel “Solver” was used to estimate parameters that resulted 

in estimated streamflows that most closely matched observed streamflows at the 

Coleville, CA gage.  

Model parameter estimation was conducted using a “Monte Carlo” style approach 

with uniform starting value distribution similar to the one used in Saito et al. (2008) and 

Solander et al. (2010). This style of approach is common and is used to determine if the 

same parameter results are returned when different, random starting parameter values are 

used (Wagener et al. 2003). It is particularly useful when there is a high level of 

uncertainty associated with acceptable parameter values, as well as when using a model 

that is underdetermined, and this method provides a more robust and reliable estimate of 

parameters (Wagener et al. 2003). The approach works by starting with random 

parameter values, finding “best” fit between simulated and observed streamflow, and 

repeating the process over multiple runs. For this study this process was run 500 times. 

Model parameters for Model A included snow/rain temperature thresholds (s, w), 

the proportion of rain plus snowmelt that became surface runoff (a), the proportion of 

infiltration that was lost through evapotranspiration (b), the proportion of groundwater 

that became baseflow (c), and the proportion of infiltration that became groundwater flow 

(d). In addition, the initial groundwater storage (GSi) needed to be estimated. Parameter 

estimation was done for these parameters for 66 years of the measured streamflow record 
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(WY 1940-2006). For Model B, the same parameters controlling surface runoff (a), the 

proportion of infiltration that was lost through evapotranspiration (b), the proportion of 

groundwater that became baseflow (c), and the proportion of infiltration that became 

groundwater flow (d) were adjusted as well as the snow components controlling 

snowmelt, (meltmax, m), rain precipitation (e), and snow precipitation (f). 

To apply the Monte Carlo approach, random values were generated for initial 

parameter values within acceptable ranges (Table 2). These boundaries (ranges) were 

determined based on soil conditions in the upper West Walker River basin, availability of 

infiltrated water and GW storage, and current literature. The upper boundary for 

parameter a was set at 0.9 as in Saito et al. (2008) because soil survey data acquired from 

the National Resources Conservation Service for this area is classified as Soil Group D, 

indicative of slower infiltration rates and higher surface runoff. These soils consist 

primarily of clays that have a high shrink-swell potential, soils that have a clay pan or 

clay layer at or near the surface, and soils that are shallow over nearly impervious 

material, and/or soils that have high water table (NRCS 1993). These soils have a very 

slow rate of water transmission, therefore, the upper boundary for parameter a was set to 

reflect a higher runoff potential. The upper boundaries for b, c, and d were set to 1.0, as 

ET, baseflow, and GW flow could not exceed available infiltrated water or GW storage 

(Saito et al. 2008). Lower boundary conditions for a, b, c, and d were set to 0.0. 

Boundary conditions for the snow component in the models, temperature below which all 

precipitation was snow (s), temperature above which snow melted (w), temperature above 

with all precipitation was rain (e), temperature below which all precipitation was snow (f) 
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for Model B, and the maximum melt rate fraction, m, were based on Solander et al. 

(2010) and Gray and McCabe (2010), and ranged between 0.0 oC to 3.89 oC.  

 
 
 
Table 2. Acceptable ranges for parameter estimation, where a is the fraction of snowmelt 
and rain that becomes runoff; b is the fraction of infiltration that becomes ET; c is the 
fraction of GW that becomes baseflow; d is the fraction of GW that becomes GW flow; e 
is the temperature above which precipitation is rain; f is the temperature below which 
precipitation is snow, s is the temperature below which precipitation is snow; w is the 
temperature above which snow begins to melt, and m is meltmax. Constraints were set so 
that parameters c + d ≤ 1.0; s – w ≥ 0.2 (oC); and e – f ≥ 0.2 (oC).  
 

 

 Once random values were entered, the Excel add-in Solver was used to iterate 

and minimize the root mean squared error (RMSE) for simulated versus observed 

streamflow according to Equation 15,  

 

Model A 
Parameters Ranges Model B 

Parameters Ranges 

a ≥ 0.0; < 0.9 a ≥   0.0; < 0.9 

b ≥   0.0; < 1.0 b ≥   0.0; < 1.0 

c ≥   0.0; < 1.0 c ≥   0.0; < 1.0 

d ≥   0.0; < 1.0 d ≥   0.0; < 1.0 

s (oC) ≥  0.0; ≤ 3.89; > w e (oC)  ≤ 3.89; > f 

w (oC) ≥  0.0; ≤ 3.89; < s    f (oC) ≥ 0.0; < e 

  m > 0.0; < 1.0 
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Eq. 15  RMSE = 1
n

Qt
sim !Qt

obs( )
2

t=1

n

"  

 

where “n” is defined as the number of observations (in this case the number of seasons), 

and Qt
sim  and Qt

obs are defined as the simulated and observed streamflow values (in 

centimeters per season) at time-step t, respectively. 500 sets of random initial parameter 

values were simulated in Excel. Solver ran through 100 iterations with each set of 

random initial parameter values to arrive at the lowest RMSE. In addition to RMSE, 

coefficient of determination (r2) (Equation 16), and percent bias (Equation 17) were 

calculated to evaluate model performance: 
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Eq. 17  %Bias =
(Qt

sim !Qt
obs )

t=1
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where Qt
sim  and Qt

obs are defined as the averages of simulated and observed streamflow at 

time-step t, respectively. r2 is commonly used to evaluate the representation of general 

trends of observed data, RMSE is commonly calculated to quantify the difference 

between observed and simulated data, and %bias is used to determine the overall under- 

and over- estimation of simulated estimates compared to observed data.  

 

Assessment of best model for use with proxy data 

Preliminary tree-ring streamflow reconstructions for the upper Walker River basin 

had an r2 of 0.22 over the period between 1939 and 2001 (Saito et al. 2008), and have 

since been improved to an r2 of 0.47 (unpublished results from F. Biondi). Improvement 

of proxy data from tree-rings can further improve regression-based streamflow 

reconstructions and improve both model function and performance, but was not in the 

scope of this research. Although proxy data could not be used as input to the model, 

statistical results from Model A and Model B were compared to determine which model 

was the best candidate for use with proxy tree-ring data. In addition, the models were 

evaluated regarding which temperature scheme used (maximum, minimum, or average 

seasonal temperature) provided the best results. Because future simulations with the 

selected model can only use one parameter set, parameters calculated by averaging the 

outcomes of the 500 Monte Carlo runs were used as input to generate and evaluate model 

statistics and performance.  
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“What-if” Wildfire scenario 

Wildfire directly influences vegetation dynamics, but also has influences on soil 

properties such as hydrophobicity, infiltration, and runoff. A literature search for how 

wildfire is modeled, as well as a search for information on wildfires in the region of the 

study area indicated that infiltration and ET are greatly influenced by fire severity and by 

fire temperature (Krammes and DeBano 1965, Scott and Van Wyk 1990, Neary et al. 

2003, Beyers et al. 2005, Rau et al. 2005). Literature suggests that decreases in soil 

infiltration can result in higher runoff depending on the soil type, severity of fire, and the 

amount of surface area that was burned (Krammes and DeBano 1965).  

Wildfire data were obtained from the California Fire Resources Assessment 

Program online database for Mono County California, where the upper West Walker 

River basin is located. A Geographic Information System (GIS) was used to identify 

wildfires within the watershed boundary using a watershed boundary shapefile obtained 

from Scotty Strachan at the University of Nevada, Reno.  

Wildfire data consisted of the date when fire occurred (fire season), and the 

location of fire within the watershed. Additional data including burn area and duration of 

fire were accessed using GIS, however these data were inconsistent and were not used for 

wildfire analysis on streamflow. Because the model is applied to the entire watershed 

equally, the exact location of the fire was not used in analysis of wildfire effect on 

streamflow, and fire was assumed to apply to the entire watershed.  

Average parameter values from all 500 Monte Carlo simulations from the best 

model were used for this scenario. Once fire seasons had been determined, the model was 
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adjusted to reflect estimates of increased runoff. Runoff was adjusted to be between 12% 

and 32% higher, as suggested by literature (Osborn et al. 1964, Krammes and DeBano 

1965), and was represented for this model by increasing parameter a by 0.12. This 

parameter was applied to the dry season when fire occurred as well as the wet season 

immediately following the fire.  

In addition to affecting runoff, fire affects ET in two ways. First, evaporation 

typically increases after a fire because shading from plant canopy is reduced, resulting in 

higher surface temperatures. This reduces water availability for infiltration. Secondly, 

removing vegetation in a watershed severely reduces transpiration. Reduction in 

transpiration rates can, in some cases, be directly proportional to the fraction of 

vegetation lost due to wildfire (Wohlegemuth et al. 2006). Unless the fire severity is 

minimal, the decrease in transpiration will be greater than the increase in evaporation, 

resulting in lower overall ET after a wildfire event. Thus, to simulate wildfire effects on 

ET, ET estimates were decreased by 20% across the entire watershed by reducing 

parameter b in the model by 0.2. Similar to the parameter a adjustment, the reduced 

parameter b was applied only to the dry season when wildfire occurred and wet season 

immediately following. Once parameters were adjusted for wildfire based on documented 

occurrences generated using GIS, overall r2, RMSE and %bias were calculated to 

evaluate effects of wildfire on estimating streamflows. In addition, these parameters were 

calculated between the original model and the revised wildfire model to see how sensitive 

the model was to these changes.  
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CHAPTER 3: RESULTS & DISCUSSION 

 

Model error and uncertainty 

Many factors contribute to sources of error in water balance model predictions, 

including the number of model parameters, model equations, model structure and error 

associated with input data, or any measurements and estimations (Atkinson et al. 2002, 

Farmer et al. 2003, Butts et al. 2004, Oudin et al. 2006). The very nature of modeling can 

often over-simplify model parameters, introducing error into the model, and causing it to 

fail to reproduce complex and interdependent hydrologic processes (Atkinson et al. 2002, 

Farmer et al. 2003, Butts et al. 2004, Oudin et al. 2006). For example, in this modeling 

project the assumption that model parameters are constant over time and space is a 

simplification that introduces error (Atkinson et al. 2002, Wagener et al. 2003). 

Difficulty extrapolating precipitation measurements across an entire watershed 

can lead to an over- or under-prediction of runoff in models as well. However, use of 

extrapolated values for precipitation from PRISM (Daly et al. 1994) resulted in 

streamflow representation that reflected observed streamflow fairly well in the upper 

West Walker River basin (Saito et al. 2008), and can be very useful when instrumental 

precipitation or air temperature data are not available or representative of the basin. There 

is also the assumption that any instrumental records available and used for 

reconstructions are representative of historic climate data throughout the reconstruction 

period (Saito et al. 2008, Sheppard 2010). 

Another problem when comparing between simulated streamflow and observed 
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streamflow for calibration of the model is that a good fit of the simulated to observed data 

can be made with unrealistic parameter values (Boyle et al. 2000). These errors can occur 

when measures such as RMSE or r2 are used to evaluate model performance without the 

use of other performance metrics. For example, use of r2 is a common statistic for 

comparing simulated streamflow to observed streamflow, but it is a measurement of 

representing trends and not necessarily how well modeled the magnitude of results 

compare to the magnitude of observed flow measurements (Wagener et al. 2003). Thus, 

the use of multiple objective statistical functions is recommended to increase the ability 

to evaluate model performance. For example, the use of annual, seasonal, or monthly 

streamflow bias calculations can be used in conjunction with RMSE and r2 calculations 

(Boyle et al. 2000, Wagener et al. 2003) as was done in this study. 

 

Model performance 

For Model A, the best performing model and temperature scheme was Model Aave 

using average seasonal temperature, with the worst performing being Model Amin (Table 

3). Model Aave had the highest seasonal r2 for both seasons, the best wet season RMSE, 

the lowest overall %bias, the lowest overall average RMSE. Model Bmax using maximum 

seasonal temperatures performed the best for Model B according to statistical measures. 

Model Bave performed the worst, with the highest RMSE and lowest r2. Model Bmax had 

the lowest dry season RMSE and dry season %bias at 9.57 cm and -1.28%, respectively.  

According to dry season %biases all models were better at estimating streamflow 

in the dry season than in the wet (Table 3). The Model that best simulated dry season 
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streamflow was Model Bmax. This model under-predicted streamflow by 1.28%. Overall, 

the model that had the lowest overall %bias for all seasons was Model Aave, over-

predicting streamflow between WY 1940 and WY 2006 by 0.66%.  

Over-estimation of streamflow during the wet season for most of the models 

could have been a result of inappropriate seasonal temperature representation, as seen 

with Model Amax and Model Bmax over-predicting seasonal streamflow by more than 

26.00%. These models used maximum seasonal temperatures, and not only did the 

temperature influence precipitation, with all precipitation being rain, resulting in a lack of 

snowmelt, but both Model Amax and Model Bmax did not produce runoff (a = 0.00) for any 

simulations. The lack of snow precipitation is unrealistic, since snow is the primary 

source of water contributing to dry season streamflow in this region of the U.S. (Stewart 

et al. 2004, Maurer 2007, Maurer et al. 2007, Day 2009, Hidalgo et al. 2009, Clow 2010). 

Averaged seasonal temperatures resulted in an average runoff fraction (a) ranging 

from 0.00 for Model Amax and Model Bmax to 0.64 for Model Aave, whereas minimum 

seasonal temperatures resulted in average runoff fractions of 0.19 for Model Bmin and 

0.47 for Model Amin (Figure 7). As mentioned previously, the 500 simulations using the 

Monte Carlo-styled approach indicated that parameter estimates for Model Amax and 

Model Bmax were unrealistic, so no further discussion of the parameters is made for those 

models. The ranges simulated for all other models’ parameter a were lower than the 0.74 

found in Saito et al. (2008). A possible explanation for the reduced a values in Model A 

and Model B compared to Saito et al. (2008) could be the incorporation of a snow 

component, which directly influences the form of precipitation available for contribution 
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to runoff. Snow precipitation would not be available for runoff until temperature 

increased enough to allow melt to occur. Ponce and Shetty’s (1995) analysis of water 

balances in different regions of the world indicates runoff coefficients are typically lower 

than the a values found in this study for regions with annual precipitation of less than 100 

mm/year. The low a values estimated in this study indicate that much more of the 

seasonal precipitation is treated as infiltration, meaning more water is available for ET, 

infiltration, GW flow, and baseflow. However, Ponce and Shetty’s (1995) model was 

annual and did not account for snow. The water balances were also done on a spatial 

scale much larger than the upper West Walker River Basin. The low a value seen in 

Solander et al. (2010) can possibly be accounted for by the fact that dry season was not 

modeled and streamflow diversions were present upstream.  

 For parameter b, Saito et al. (2008) reported a value of 0.38, with Solander 

reporting 0.70 with the addition of a snowmelt component. In this study, b average values 

ranged from 0.02 to 0.29 for Model A, and were estimated at between 0.01 and 0.02 for 

all temperatures for Model B (see Figure 7). Thus, average b values for this study 

resulted in a lower proportion of the infiltrated water treated as ET as compared to the 

previous studies. Although the parameter was lower, the amount of ET may have been 

similar. ET estimates from the models were compared to the California Irrigation 

Management Information System (Jones 1999) for Zone 11, Central Sierra Nevada. 

Seasonal comparisons of ET for Model A and Model B to CIMIS (Jones 1999) seasonal 

ET references indicate that even the highest seasonal ET estimates of 18.73 cm during the 

wet season of WY 1982 for Model Amin, was just over half of CIMIS estimates for wet 
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season ET (36.22 cm/season). The other models estimated a maximum ET of less than 3 

cm/season. ET values ranged from 0.08-21.43 cm/year in Saito et al. (2008) and 5.58-

31.40 cm for the months October-May in Solander et al. (2010). Shevenell (1996) 

estimates ET for the dry season at 125.86 cm and for the wet season at 16.13 cm for 

Region 2, where the upper West Walker River basin is located. Thus simulated wet 

season ET is similar for Model Amin, but extremely low for the other models. In addition, 

dry season ET estimates were consistently lower than wet season estimates through every 

model. Shevenell (1996) estimates that ET for Region 2 (Topaz Lake, NV) greater than 

2000 m elevation for February through November would approach zero where 

temperatures are below 0.00 oC or there is the presence of snow. Since the entire upper 

West Walker River basin is above 2000 m elevation (lowest elevation: 2031 m) and often 

has snow present after February, lower ET estimates predicted by the model could 

therefore be much lower than the 125.86 cm estimated by Shevenell (1996). 

 Average “best” estimates for parameter c ranged between 0.22 (Model Aave) to 

0.77 (Model Amax). These were significantly higher than both Saito et al. (2008), 0.0, and 

Solander et al. (2010), also 0.0. Due to parameters a and b having lower estimates in both 

Model A and Model B, we might expect to see higher values for c, as well as d, since 

precipitation was not contributing very much to runoff or ET. However, smaller fractions 

can represent higher volumes. Average values for parameter d ranged from 0.13 (Model 

Bave) to 0.74 (Model Aave). Parameter d increased from 0.39 in Saito et al. (2008) to 0.57 

in Solander et al. (2010) with both values falling within the ranges generated with Model 

A and Model B (see Figure 7).  
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Initial groundwater storage (GSi) estimates in the model decreased from 

approximately 127 cm in Saito et al. (2008) to between 10.62 cm and 42.64 cm for 

Models A and B using all temperatures. Initially, no boundary conditions were set for GSi 

other than that it had to be greater than 0.0 cm. After unrealistic GSi values were 

estimated, an upper bound of 100 cm was set to prevent spikes in streamflow seen during 

the first season simulations in Model B. 

Parameter m, representing the maximum melt rate (%), had an average value over 

500 simulations in Model Bmax of 0.57, or 57%, similar to the value suggested for use by 

McCabe and Markstrom (2007) of 0.5 (Figure 8). Parameter m was higher for Model Bave 

and Model Bmin, averaging 0.62 (62%) and 0.85 (85%) over 500 simulations, 

respectively. Comparison between parameters influencing snow precipitation and melt 

could not be made with the Saito et al. (2008) model due to that model not incorporating 

a snow component. The method for determining snow and melt in Solander et al. (2010) 

used a temperature-index approach, making direct comparison with that model 

inappropriate as well. Solander et al. (2010) also did not model the dry season due to the 

fact that streamflow is diverted from the system to be utilized for irrigation, altering 

natural flow used for calibration during that season. 

Estimates for Model Bave indicated that parameters a and c were not very robust, 

ranging across the spectrum of boundary conditions (see Table 3 and Figure 7). This is 

also seen in b, c, and d in Model Amin, and to a lesser extent for parameters a, c, and d in 

Model Bmin, and parameters b, c and d in Model Aave. Parameter b represented the ET 

coefficient in this model, and was very close to zero across all models except Model Amin, 
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where parameter b was 0.29.  The most robust parameter estimate was seen for Model 

Aave, where parameter a was consistently between 0.56 and 0.66, with an average value 

of 0.64 ± 0.02 over 500 model simulations. A runoff factor of 0.64 would be more 

consistent with soil conditions described earlier for this basin. Snow component 

parameters (e, f, s, w and m) were not very robust, though average estimates over the 500 

simulations were considered reasonable (Figure 8 and 9).  

 
 
Figure 7. Results of parameter estimation process for Model A and Model B using all 
temperature schemes for parameters a, b, c, and d.  
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Table 3. Results of Monte Carlo simulations using PRISM data for input. Values shown 
are average ± one standard deviation, with ranges of values over the 500 simulations in 
parentheses. “n” = number of seasons modeled; “Std” is the standard deviation. 
 

Model Aave       Model Bave     
Parameter (units)   500 Simulation results   Parameter (units)   500 Simulation results 
n   134   n   134 
a   0.64 ± 0.02 (0.56-0.66)   a   0.40 ± 0.45 (0.00-0.90) 
b   0.05 ± 0.14 (0.00-0.80)   b   0.01 ± 0.04 (0.00-0.25) 
c   0.22 ± 0.09 (0.12-1.00)   c   0.49 ± 0.33 (0.09-1.00) 
d   0.74 ± 0.16 (0.00-0.84)   d   0.13 ± 0.12 (0.00-0.27) 
s (oC)   3.25 ± 0.89 (0.47-3.89)   e (oC)   1.98 ± 1.06 (0.20-3.89) 
w (oC)   0.57 ± 0.37 (0.19-3.69)   f (oC)   1.44 ± 0.93 (0.00-3.69) 
GSi (cm)   12.73 ± 16.54 (0.00-97.07)   m (MeltMax)   0.62 ± 0.43 (0.13-1.00) 
        GSi (cm)   42.64 ± 39.93 (0.00-100.00) 
r2   0.90 ± 0.02 (0.82-0.90)   r2   0.70 ± 0.21 (0.06-0.90) 
RMSE (cm)   7.50 ± 0.74 (7.27-10.04)   RMSE (cm)   15.52 ± 8.12 (8.07-26.33) 
Overall %Bias   0.66 ± 1.53 (-3.63-5.79)   Overall %Bias   5.25 ± 24.53 (-23.81-29.59) 
Wet r2   0.28 ± 0.06 (0.06-0.31)   Wet r2   0.11 ± 0.08 (0.01-0.32) 
Wet RMSE (cm)   3.74 ± 1.17 (3.33-7.71)   Wet RMSE (cm)   5.42 ± 1.23 (3.81-11.92) 
Wet %Bias   -0.95 ± 4.20 (-9.66-13.41)   Wet %Bias   40.41 ± 17.25 (18.05-64.97) 
Dry r2   0.78 ± 0.04 (0.64-0.80)   Dry r2   0.49 ± 0.30 (0.14-0.78) 
Dry RMSE (cm)   9.90 ± 0.60 (9.71-12.04)   Dry RMSE (cm)   20.77 ± 12.32 (9.40-35.27) 
Dry %Bias   2.28 ± 1.20 (-1.93-2.72)   Dry %Bias   -29.92 ± 31.92 (-67.68- -1.20) 
Ave Qsim (cm)   26.36 ± 0.12 (25.93-26.43)   Ave Qsim (cm)   20.70 ± 7.72 (11.83-27.68) 
Std Qsim (cm)   21.70 ± 0.17 (21.11-21.96)   Std Qsim (cm)   13.31 ± 7.37 (4.75-19.94) 
Ave Qobs (cm)   25.90   Ave Qobs (cm)   25.90 
Std Qobs (cm)   23.51   Std Qobs (cm)   23.51 
              
Model Amax       Model Bmax     
Parameter (units)   500 Simulation results   Parameter (units)   500 Simulation results 
n   134   n   134 
a   0.00 ± 0.00 (0.00-0.00)   a   0.00 ± 0.00 (0.00-0.00) 
b   0.02 ± 0.06 (0.00-0.25)   b   0.02 ± 0.05 (0.00-0.25) 
c   0.77 ± 0.06 (0.75-1.00)   c   0.76 ± 0.05 (0.75-1.00) 
d   0.23 ± 0.06 (0.00-0.25)   d   0.24 ± 0.05 (0.00-0.25) 
s (oC)   1.63 ± 0.79 (0.20-2.69)   e (oC)   1.68 ± 0.91 (0.20-3.77) 
w (oC)   0.60 ± 0.65 (0.00-2.39)   f (oC)   0.76 ± 0.81 (0.00-3.57) 
GSi (cm)   10.62 ± 5.94 (0.00-30.16)   m (MeltMax)   0.57 ± 0.38 (0.00-1.00) 
        GSi (cm)   11.28 ± 6.12 (0.00-33.73) 
r2   0.90 ± 0.00 (0.89-0.90)   r2   0.89 ± 0.00 (0.89-0.90) 
RMSE (cm)   8.14 ± 0.02 (8.12-8.25)   RMSE (cm)   8.14 ± 0.03 (8.08-8.28) 
Overall %Bias   26.92 ± 0.42 (26.08-28.54)   Overall %Bias   26.96 ± 0.41 (26.10-28.37) 
Wet r2   0.04 ± 0.00 (0.03-0.05)   Wet r2   0.04 ± 0.00 (0.03-0.04) 
Wet RMSE (cm)   6.39 ± 0.06 (6.35-6.65)   Wet RMSE (cm)   6.40 ± 0.06 (6.36-6.77) 
Wet %Bias   55.16 ± 0.90 (53.44-58.63)   Wet %Bias   55.20 ± 0.88 (53.44-58.30) 
Dry r2   0.77 ± 0.00 (0.77-0.78)   Dry r2   0.77 ± 0.00 (0.77-0.78) 
Dry RMSE (cm)   9.57 ± 0.00 (9.56-9.59)   Dry RMSE (cm)   9.57 ± 0.02 (9.46-9.66) 
Dry %Bias   -1.31 ± 0.06 (-1.55- -1.15)   Dry %Bias   -1.28 ± 0.06 (-1.57- -1.08) 
Ave Qsim (cm)   27.62 ± 0.02 (27.54-27.69)   Ave Qsim (cm)   27.62 ± 0.02 (27.53-27.72) 
Std Qsim (cm)   19.83 ± 0.04 (19.68-19.91)   Std Qsim (cm)   19.83 ± 0.04 (19.70-19.92) 
Ave Qobs (cm)   25.90   Ave Qobs (cm)   25.90 
Std Qobs (cm)   23.51   Std Qobs (cm)   23.51 
              
Model Amin       Model Bmin     
Parameter (units)   500 Simulation results   Parameter (units)   500 Simulation results 
n   134   n   134 
a   0.47 ± 0.28 (0.00-0.75)   a   0.19 ± 0.33 (0.00-0.90) 
b   0.29 ± 0.37 (0.00-1.00)   b   0.01 ± 0.03 (0.00-0.25) 
c   0.32 ± 0.25 (0.00-1.00)   c   0.68 ± 0.26 (0.10-1.00) 
d   0.40 ± 0.21 (0.00-1.00)   d   0.16 ± 0.09 (0.00-0.25) 
s (oC)   2.07 ± 1.54 (0.35-3.89)   e (oC)   2.66 ± 1.66 (0.20-3.89) 
w (oC)   1.27 ± 1.03 (0.15-3.69)   f (oC)   1.09 ± 0.97 (0.00-3.69) 
GSi (cm)   39.33 ± 29.52 (0.12-99.95)   m (MeltMax)   0.85 ± 0.33 (0.14-1.00) 
        GSi (cm)   24.93 ± 33.78 (0.00-100.00) 
r2   0.71 ± 0.17 (0.46-0.90)   r2   0.80 ± 0.21 (0.16-0.91) 
RMSE (cm)   12.30 ± 3.56 (8.14-17.47)   RMSE (cm)   10.71 ± 6.72 (7.21-25.63) 
Overall %Bias   10.58 ± 10.90 (-0.35-42.56)   Overall %Bias   4.28 ± 14.22 (-20.30-27.67) 
Wet r2   0.03 ± 0.01 (0.00-0.04)   Wet r2   0.12 ± 0.07 (0.00-0.32) 
Wet RMSE (cm)   7.13 ± 1.93 (5.40-14.20)   Wet RMSE (cm)   4.89 ± 1.06 (3.88-8.36) 
Wet %Bias   26.79 ± 22.66 (1.01-102.80)   Wet %Bias   20.20 ± 19.00 (1.16-57.92) 
Dry r2   0.45 ± 0.30 (0.00-0.78)   Dry r2   0.66 ± 0.26 (0.09-0.78) 
Dry RMSE (cm)   15.54 ± 5.62 (9.46-24.01)   Dry RMSE (cm)   14.05 ± 9.87 (9.43-35.87) 
Dry %Bias   -5.63 ± 5.04 (-18.00- -0.73)   Dry %Bias   -11.65 ± 25.86 (1.22- -68.75) 
Ave Qsim (cm)   25.66 ± 1.17 (23.98-27.65)   Ave Qsim (cm)   24.04 ± 5.65 (11.75-27.66) 
Std Qsim (cm)   19.93 ± 1.24 (16.62-24.45)   Std Qsim (cm)   18.42 ± 6.70 (4.76-21.99) 
Ave Qobs (cm)   25.90   Ave Qobs (cm)   25.90 
Std Qobs (cm)   23.51   Std Qobs (cm)   23.51 
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Figure 8. Results of parameter estimation process for Model B using all temperature 
schemes for parameters e, f and m. 

 

 
Figure 9. Results of parameter estimation process for Model A using all temperature 
schemes for parameters s and w. 
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Once the Monte Carlo simulations were completed, averages of the 500 simulations were 

calculated for each parameter value for each model. The averaged parameter values were 

then put into each corresponding model and simulated streamflow was plotted against 

observed streamflow for the period between WY 1940-2006 and resulting statistics were 

calculated (Table 4). Initial parameter values randomly generated during the Monte Carlo 

simulations were also investigated to determine the influences of individual parameters 

on each performance metric (Appendix, Figures 18-29).  

 

 
Table 4. Summary of model results using parameter values averaged over 500 Monte 
Carlo simulations for Models A and B with all temperature schemes. Values in bold 
represent the best outcome of the metric over all models. 
 
 

 
 

The plot for Model Aave shows a very good fit (Figure 10), with an r2 of 0.90, RMSE of 

7.29 cm, and wet season and dry season %bias of -0.73 and 2.52, respectively. This  

model had the lowest overall %bias, representing streamflow very well. Using averaged 

parameter values for Model Amax indicated that the averaged parameter values for this 

model did a good job representing streamflow trends (Figure 11), and this model had a 
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high r2 (0.90), and low RMSE (8.13 cm). However, Model Amax using averaged 

parameter values over-predicted streamflow by 27.48% over the period beginning in WY 

1940 and ending in WY 2006.  

 

 
Figure 10. Model Aave, the simple water balance model with WASMOD snow 
calculations incorporating average seasonal temperatures.  
 
 

 
 
 
 
Figure 11. Model Amax, the simple water balance model with WASMOD snow 
calculations incorporating maximum seasonal temperatures. 
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The plot for Model Amin shows a poor fit (Figure 12), with an r2 of 0.01, RMSE of 27.65 

cm, and the overall %bias is much higher, at 109.12%, an indication of over-prediction 

for simulated streamflow. This model had the highest overall %bias when averaged 

parameter values were used, represented streamflow very poorly, and does not represent 

the physical processes influencing streamflow well.  

 

 
Figure 12. Model Amin, the simple water balance model with WASMOD snow 
calculations incorporating minimum seasonal temperatures. 
 

 

 

The plot for Model Bave with averaged parameter values shows a poor fit (Figure 

13), with an r2 of 0.00, RMSE of 24.05 cm. This model had the second highest overall 

%bias and the second highest seasonal %bias values for both wet and dry seasons, 

representing streamflow very poorly. Thus, the averaged parameter values for this model 

did not do a good job representing appropriate observed streamflows.   
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Figure 13. Model Bave, the simple water balance model with Thornthwaite snow 
calculations incorporating average seasonal temperatures. 
 

 

 

 

Using averaged parameter values for Model Bmax indicated that the averaged parameter 

values for this model did a good job representing streamflow trends (Figure 14), and this 

model had a high r2, and low RMSE. However, Model Bmax, like Model Amax, using 

averaged parameter values over-predicted streamflow, in this case by 27.37% over the 

period beginning in WY 1940 and ending in WY 2006. Results between Model Amax and 

Model Bmax were very similar. 
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Figure 14. Model Bmax, the simple water balance model with Thornthwaite snow 
calculations incorporating maximum seasonal temperatures. 
 
 

 
 

 

Using averaged parameter values for Model Bmin resulted in a poor representation of 

observed streamflows (Figure 15), or representing appropriate ranges for estimated 

parameters.  

 

 
Figure 15. Model Bmin, the simple water balance model with Thornthwaite snow 
calculations incorporating minimum seasonal temperatures. 
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 The r2 from simulated streamflow for all models except Model Amin, Model Bave, 

and Model Bmin were slightly better than in Saito et al. (2008) (r2 = 0.87) and Solander et 

al. (2010) (r2 = 0.81) . One possible explanation for lower r2 for Model Amin, Model Bave, 

and Model Bmin, is that in all of these models wet season streamflow was not represented 

well. r2 values were very low during wet season, at 0.02, 0.35, and 0.26, respectively. 

Since precipitation primarily falls during the wet season in this region, one would expect 

to see that precipitation stored as snowpack, but instead we see greater snowmelt, 

resulting in a higher simulation of streamflow. Model Aave had a high r2 value, but also 

represented snow precipitation, snowmelt, and runoff, resulting in a very good simulation 

of streamflow for both seasons as compared to observed streamflow. 

 

Assessment of best model for use with proxy data 

 Once Monte Carlo simulations for Model A and Model B with all temperatures 

were completed, all models were compared to determine best model performance (see 

Table 4). Model Aave was chosen as the most appropriate model to use with proxy data 

based on lowest RMSE, highest r2, and lowest overall %bias. Importantly, Model A has 1 

fewer parameter than Model B, and is considered to be the more parsimonious model, 

accounting for the same physical processes with greater simplicity, while also performing 

the best when using only air temperature and precipitation data as input. Thus, Model 

Aave was chosen as the most appropriate model to use with proxy tree-ring air 

temperature and precipitation data and was also used for simulating wildfire in the upper 

West Walker River.  
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“What-if” wildfire scenario 

 GIS analysis for the upper West Walker River basin indicated 14 wildfires 

occurred during the period between WY 1940 and 2006 with no fires recorded prior to 

1961 in this basin (Figure 16). All wildfires occurred during the dry season. Seven fires 

occurred during the dry season of 1991 at various locations in the watershed. 

 

Figure 16. Wildfires in the upper West Walker River basin between WY 1940 and 2006.  
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Results from the wildfire scenario were compared to observed streamflow during 

recorded fire seasons, as well as to Model Amax simulated streamflow during recorded fire 

seasons (Table 5). Comparison was also made over the entire period of record between 

WY 1940 and 2006. When parameters reflecting wildfires were used in Model Aave 

between WY 1940 and WY 2006, an overall r2 of 0.85, was obtained, which was lower 

than Model Aave without the wildfire parameter adjustments (Figure 17).  

 
 
 
Figure 17. Simulated streamflow incorporating wildfire effects compared to observed 
streamflow for the period between 1960 and 2006. Arrows indicate seasons when 
wildfire occurred. No wildfire was recorded in this basin prior to 1961. 
 

 

 

The RMSE was 9.02 cm, slightly higher than Model Aave. The overall %bias was 1.57%, 

which was worse than Model Aave without wildfire parameter changes, but still a very 

good simulation of streamflow (Table 5).  
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Table 5. Statistical measures for wildfire simulation compared to Model Aave results. 
 

 
 

 

Overall, incorporating wildfire parameter adjustments resulted in greater overall %bias, a 

lower r2, and slightly higher RMSE. Average streamflow for the wildfire simulation 

worsened slightly compared to observed streamflow for the modeling period, from 26.36 

cm for Model Aave to 25.39 cm for the wildfire simulation, as compared to the observed 

average of 25.90 cm.  

Comparisons of the averages from wildfire seasons relative to the observed 

streamflow and Model Aave indicate not only that the wildfire seasons generally had 

lower streamflow, but that the wet season immediately following wildfire generally had 

higher streamflow than Model Aave simulated streamflow (Table 6). Wildfire simulated 

streamflow was less than observed in all dry seasons when wildfire occurred, and greater 

than observed streamflow during the wet season following a fire episode. This can be 

seen when streamflow is plotted for observed, Model Aave, and wildfire seasons (see 

Figure 14). The model appears to be overestimating streamflow for the subsequent wet 

season. 
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Table 6. Observed, Model Aave simulated, and Wildfire simulated streamflow 
(cm/season) for the dry season when wildfire occurred and wet season immediately 
following.  
 
 

 
 

 

 

Had Model Aave been consistently under-predicting streamflow, an adjustment of 

parameters to reflect wildfire may have produced better estimates of streamflow. 
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However, this was not the case, so incorporation of wildfire moved estimates slightly 

further away from observed streamflow, which may have been a result of Model Aave 

having already taken into account wildfire during the parameter estimation process. In 

addition, wildfire may have been over-estimated because wildfire was assumed to 

influence the entire watershed for this study.  

A disadvantage of modeling wildfire in this basin was that the wildfire data 

acquired for the upper West Walker River basin were missing burn area for almost all 

fires historically recorded. In addition, a spatial component was not available in this 

modeling approach to account for the size of wildfires even if data were available. For 

this modeling scenario only ET and runoff parameters were adjusted to reflect effects due 

to wildfire. However, wildfire can also alter snowmelt and snow accumulation patterns, 

which were not accounted for through this modeling approach. These wildfire influences 

are similar to increased air temperature effects on snowmelt and accumulation patterns. 

Accumulation of snow tends to be higher in areas burned by wildfire, and timing and 

amount of snowmelt can be greatly influenced by lack of vegetation. Reduction in 

vegetation canopy cover exposes snow to greater solar radiation, resulting in both earlier 

and faster snowmelt during a season (Wohlegemuth et al. 2006). To better understand 

how wildfire influences streamflow another parameter could have been introduced to 

address snow melt, or the temperature threshold parameter accounting for melt (w) could 

have been adjusted to reflect changes in vegetation that influence solar radiation 

influences on snowpack. This might be in the form of lowering the threshold to a level 

that would generate greater snowmelt availability in the simulations.  
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CHAPTER 4: CONCLUSIONS 

 

Overall, the simple water balance modeling approach with a seasonal snow 

component was very successful. The simplicity of the WASMOD snow component 

allowed only air temperature and precipitation to be used as input data, thus making it 

suitable for use with proxy tree-ring data. The model also performed very well with only 

those two input data, suggesting the appropriateness for use when little data are available.  

The lack of water diversions from the watershed in this basin removed the 

complications seen in Solander et al. (2010), and contributed to the model’s success by 

allowing the ability to model each season by comparing to natural flow. The inclusion of 

a snow component also improved streamflow simulation over the Saito et al. (2008) 

model, which did not take into account snow or snowmelt, and operated annually rather 

than seasonally. Furthermore, the results of this study should be considered a beneficial 

tool for reconstructing past streamflow. 

Developing proxy tree-ring data for air-temperature and precipitation for future 

use with this model is one of the main areas of future work needed to complete this 

project. Proxy tree-ring data have the potential to extend the period of record back many 

centuries, and when used as model input, can greatly improve understanding of past 

streamflow in this basin. Additional work is also required to relate tree-ring data with 

seasonal temperatures for use in modeling snow precipitation and melt.  

It would also be beneficial to test this model in similar watersheds to determine 

how well the model can reproduce long-term hydrologic fluctuations elsewhere, and to 
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evaluate the model’s ability to be generalizable. Preferably, the model would be 

successful when applied to other basins that have long measured streamflow records and 

more basin-specific physical measurements of hydrologic variables, in order to provide 

better parameter estimates for this model.  

Model Aave was ultimately deemed the best model for use with proxy tree-ring 

data. The similarities between Model A and Model B indicate that several models 

simulated streamflow well with different seasonal air temperature inputs, however, the 

lack of snow precipitation and melt in two of the better performing models indicate that 

use of maximum seasonal air temperatures is not appropriate to use as temperature input.  

 Model Aave was also used for simulating wildfire influences on seasonal 

streamflow. The wildfire simulations represented observed streamflow very well, with a 

low RMSE, high r2 value, and an overall streamflow bias less than 2.0%. However, 

results from the wildfire simulations were not as good as Model Aave simulations.  
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APPENDIX 
 
 
 
 Initial parameter values were investigated for the best performing model, Model 

Aave (Model A using average seasonal temperatures) and the corresponding Model B, 

Model Bave, over parameter space to better evaluate the influences of individual 

parameters on each performance metric for RMSE, r2, and overall %bias (Figures 18-29). 

Initial values generated during the Monte Carlo-styled approach varied within parameter 

space set by model boundary condition constraints, with all parameters covering 

parameter space with an even distribution based upon constraints. The upper boundary 

condition was set at 0.9 for parameter a (runoff fraction) as in Saito et al. (2008) based on 

Soil Group D (NRCS 1993). The upper boundary condition for b (ET fraction), c 

(baseflow fraction), and d (groundwater flow fraction) was set to 1.0, as ET, baseflow, 

and GW flow could not exceed available infiltrated water or GW storage (Saito et al. 

2008). Lower boundary conditions for a, b, c, and d were set to 0.0. Boundary conditions 

for the snow component in the models, s, w, e, f, and m, were based on Solander et al. 

(2010) and Gray and McCabe (2010), and ranged between 0.0 oC to 3.89 oC, with 

parameter s and e always being greater than w and f, respectively. In order to prevent 

temperature parameters from being identical, which prevented the model from running, a 

constraint was added to require a 0.2 oC difference in temperature between parameters s 

and w for Model Aave, and between parameters e and f for Model Bave, which was 

determined to be the minimum temperature difference necessary based on model 

functionality.  
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 As parameter a values approach 0.6, RMSE is minimized, while %bias is 

consistently reduced as parameter a values increase. r2 values also seem to be higher 

when parameter a increases, with the range of values narrowing after the value of a 

reaches about 0.5. Parameters b, and d do not appear to influence r2, however, all 

parameters at all values do not improve r2 above a threshold of 0.91. RMSE remains 

consistent over parameter space for parameter b and %bias consistently decreased as 

parameter value increased, consistent with an under-estimation of streamflow due to a 

greater fraction of water lost to ET. Parameters c and d show a similar RMSE trend of 

remaining consistent across parameter space, with RMSE becoming slightly more 

variable at higher parameter values. Snow parameters for Model Aave seem to indicate 

that parameter s (temperature below which all precipitation is snow) influences r2, but not 

%bias or RMSE. When temperature ranges between 0.0 oC and around 0.75 oC, r2 

increases as temperature increases, however, when temperature reaches around 0.75 oC, 

r2 does not improve until temperature reaches around 1.0 oC. After 1.0 oC, r2 does not 

increase beyond 0.91. Parameter w (temperature above which snowmelt begins) appears 

to influence r2 at lower temperatures.  

 Model Bave appears not to be as strongly influenced by parameter a, with RMSE 

remaining relatively constant across parameter space. Around parameter value 0.6, 

RMSE appears to increase slightly as parameter values increase. RMSE remained 

relatively constant across parameter space for parameters b, c, and d, and r2 did not 

appear to be influenced by parameters a, b, c, or d, with r2 remaining constant over 

parameter space as well. When %bias was investigated, it appears that parameter a 
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strongly controlled estimation of streamflow, with %bias indicating under-estimation of 

streamflow until parameter values reached around 0.2, after which %bias increased 

greatly and became more varied. Parameters b, c, and d did not appear to influence %bias 

in Model Bave. Assessment of parameter m, meltmax, appears to indicate that as values of 

m increase RMSE and % bias variability increase, while variability in r2 sharply 

decreases at values around 0.3, with r2 values ranging between 0.0 and 0.2.  
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Figure 18: Model Aave initial a, b, c and d parameter values over 500 runs plotted against 
RMSE. 
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Figure 19: Model Aave initial s and w parameter values over 500 runs plotted against 
RMSE. 
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Figure 20: Model Bave initial a, b, c and d parameter values over 500 runs plotted against 
RMSE. 
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Figure 21: Model Bave initial e, f and m parameter values over 500 runs plotted against 
RMSE. 
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Figure 22: Model Aave initial a, b, c and d parameter values over 500 runs plotted against 
r2. 
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Figure 23: Model Aave initial s and w parameter values over 500 runs plotted against r2. 
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Figure 24: Model Bave initial a, b, c and d parameter values over 500 runs plotted against 
r2. 
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Figure 25: Model Bave initial e, f and w parameter values over 500 runs plotted against r2. 
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Figure 26: Model Aave initial a, b, c and d parameter values over 500 runs plotted against 
%bias. 
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Figure 27: Model Aave initial s and w parameter values over 500 runs plotted against 
%bias. 
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Figure 28: Model Bave initial a, b, c and d parameter values over 500 runs plotted against 
%bias. 
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Figure 29: Model Bave initial e, f and m parameter values over 500 runs plotted against 
%bias. 
 

 




