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ABSTRACT 

 
3D-FAST is a finite-layer model to compute pavement mechanical responses under 

dynamic (i.e., time-variable) non-uniform load of any shape. Surface loads, including 

vertical load and braking shear loads are discretized into waves propagating in time 

domain and spatial domains employing three-dimensional (3-D) Fourier transform. This 

transformation allows 3D-FAST to integrate the frequency-dependent material 

characterization with the harmonics composing the surface loads. In the model 

formulation, the main unknowns are displacements, and all other responses (i.e. stresses, 

strains, velocities and accelerations) are determined based on the displacement field. 

Layer interface boundary conditions were incorporated into 3D-FAST and may be 

adjusted to account for interface slippage. The equilibrium equations are set to be 

satisfied for every wave in the frequency domain for a representative differential element 

and for each time step. Using inverse Fourier transform, the responses can be obtained at 

the desired depths for the full spatial domain, generating informative graphical 3-D 

surface plots animated with time. Some practical applications of 3D-FAST are modelling 

FWD with any pulse shape and pavement analysis for roughness-induced dynamic loads. 

The runtime of the model is considerably shorter compared to finite-element methods 

with no concern regarding mesh identification. The unique formulation of the model also 

allows for further computational efficiency by incorporation parallel processing into the 

model. 3D-FAST is a computationally efficient model for computing pavement 

responses, specifically in combination with mechanistic empirical (M-E) approaches. The 
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superposition principle represented by Boltzmann’s equation can be effectively integrated 

with 3D-FAST because it simplifies to multiplication in frequency domain. The non-

uniform Fourier transform was proposed as a means of reducing computational runtime, 

however, it should be noted that it introduces some approximation to the results. 3D-

FAST was verified and validated, and a sample application was demonstrated. The 3D-

FAST verification process was performed by investigating rheological model, 

specifically, Kelvin, Maxwell, and Burger models. The results obtained by 3D-FAST 

were compared to classical solutions derived for strain amplitude and phase angle of 

these models and were matched very well. 3D-FAST results were validated by one of the 

experiments conducted at the full-scale Box facility at the University of Nevada, Reno. 

The measured deflections from LVDTs and stresses from pressure cells were compared 

with 3D-FAST results in terms of response pulse shape and peak value. The comparison 

revealed a descent match between 3D-FAST results and data collected by the experiment 

instrumentation. As for the 3D-FAST application, the roughness-induced vehicle 

dynamic loading was investigated for a sample road profile. The dynamic load was 

obtained using quarter-car simulation, and was used as the load input for 3D-FAST. A 

variety of response types were computed for this example at different locations within 

pavement structure. 
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CHAPTER 1  INTRODUCTION 

 

Appropriate, timely, and precise estimation of pavement mechanical responses is of 

significance importance for modeling pavement behavior and predicting pavement 

performance. Calculations associated with these estimations are complex depending on 

different environmental and structural factors contributing to the problem of interest. 

With the evolution of mechanistic-empirical (ME) pavement design methods, the reliable 

estimation of pavement mechanical responses (i.e., stresses, strains and displacements) 

has become crucial in order to predict pavement performance. For instance, the 

mechanistic-empirical pavement design guide (MEPDG) employs mechanical responses, 

specifically strains, to predict pavement fatigue cracking and rutting life as performance 

measures (NCHRP, 2004). Therefore, any deviations in computing pavement responses 

adversely influences pavement performance prediction. 

1.1    Pavement Mechanical Responses 

Reliable estimation of pavement responses is of significant importance, especially when 

pavement mechanistic-empirical (M-E) models are to be used. Typically, M-E models 

use pavement responses to predict distresses such as fatigue cracking, rutting, and 

thermal cracking (DAGHIGHI & NAHVI, 2014; Wang, Keshavarzi, & Kim, 2018; Zhu, 

Dave, Rahbar-Rastegar, Daniel, & Zofka, 2017). These distresses adversely affect 

pavement performance. So a better estimation of pavement responses leads to better 

prediction of pavement distresses. In M-E models, pavement distresses are correlated to 

one or more pavement responses. For instance, fatigue cracking is correlated with tensile 
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strain at the bottom of asphalt concrete (AC) layer in MEPDG (NCHRP, 2004). 

Therefore, reliable estimation of pavement responses significantly contributes to realistic 

prediction of pavement performance. 

In every ME design method, there are four critical factors influencing the results: 

traffic load levels, material characteristics, pavement structure, and environmental 

conditions. A pavement mechanical response analysis model should consider these 

factors and the variability of them in the process of estimating pavement responses 

(Bozorgzad, 2017; Hand & Epps, 2000). Traffic loads are critical inputs for the response 

analysis model that are defined by the shape of tire-pavement contact area and pressure 

amplitude. Many pavement response analysis models consider simplified conditions for 

traffic loads. However, it is ideal for a response analysis model to simulate actual tire-

contact shape and contact stress amplitude as it is more rational. Furthermore, the effect 

of road surface conditions (i.e., road roughness) on the dynamic-induced tire loads should 

be considered in the model. 

Material characteristics influence pavement responses primarily because of 

material mechanical behavior (e.g., linear elastic, stress-dependent, or viscoelastic) and 

associated material properties (Mokhtari & Nejad, 2012; Tirado, Gamez-Rios, Fathi, 

Mazari, & Nazarian, 2017). In flexible pavements, asphalt concrete (AC) used in the 

upper layers of the structure has viscoelastic properties, meaning that these properties are 

predominantly a function of temperature and loading frequency (Bazzaz, Darabi, Little, 

& Garg, 2018; Nemati & Dave, 2017).  

Environmental conditions may influence pavement performance by means of 
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moisture diffusion in the form of water or evaporation, leading to moisture damage 

(Bozorgzad, Kazemi, & Moghadas Nejad, 2018; Bozorgzad, Kazemi, & Nejad, 2018). 

However, the environmental conditions (specifically air temperature, wind speed, and 

solar radiation) influence pavement temperature, which in turn influences the modulus of 

viscoelastic layers such as AC (Alavi, Pouranian, & Hajj, 2014; Arabzadeh, Ceylan, Kim, 

Gopalakrishnan, & Sassani, 2016; Y. H. Huang, 1993). An ideal pavement response 

analysis model not only should account for material characteristics, but also should 

address the effects of variation in environmental conditions on material properties, and 

subsequent computed responses (You, Kim, Rami, & Little, 2018). 

In recent years, the operation of overweight (OW) vehicles and superheavy loads 

(SHLs) has increased substantially, leading to an increase in pavement damage and 

potential of premature failure (D. Batioja-Alvarez, Kazemi, Hajj, Hand, & Siddharthan; 

Hajj et al., 2018). According to U.S. Federal Government regulations, OW vehicles are 

defined as vehicles with a gross vehicle weight (GVW) between 80,000 lb and 250,000 lb 

(FHWA, February 5, 2017). A SHL is typically defined as a load with a GVW of 250,000 

lb or higher, which may increase up to a few million pounds. The analysis of OW 

vehicles and SHLs needs special considerations which is different than the analysis of 

typical standard vehicles as used in current pavement design procedures. Batioja et al. 

developed a methodology to estimate pavement damage and its associated costs based on 

remaining life concept and Monte-Carlo simulations (D. D. Batioja-Alvarez, Kazemi, 

Hajj, Siddharthan, & Hand, 2018). This methodology uses AC critical responses to 

predict pavement design life. With respect to SHL, further investigations should be 
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performed to evaluate specific cases. These investigations may include, but not limited 

to, bearing capacity analysis, service limit analysis, and slope stability of pavement 

shoulders. All of these analyses again require specific pavement responses as input. Thus, 

it is essential to develop a pavement response model that can handle these elevated load 

levels in order to enhance pavement design process. 

In special cases, a flexible pavement may include sloped shoulders, or there may 

exist buried utilities (e.g., pipes) at a certain depth from the pavement surface. These 

cases need special attention when a load, specifically a SHL, is expected to move on the 

pavement. For a pavement with sloped shoulders, shoulder slope stability is critical and 

needs to be evaluated. To conduct slope stability analysis for pavement shoulders, stress 

induced by moving vehicles is needed at certain points of the shoulder. Reliable 

estimation of these stresses leads to a reliable slope stability evaluation. In the special 

case of buried utilities, stress, strain, and displacement at the wall of buried utilities must 

be calculated to ensure that the utility does not fail. Furthermore, service limit analysis of 

a pavement may need vertical surface displacement checks which are an output of a 

pavement response analysis model. All of these cases reveal the significance of the need 

for reliable pavement response estimation. 

1.2    Problem Statement 

Pavement mechanical responses are essential to predict pavement performance and 

serviceability. For instance, mechanistic-empirical performance predictive models 

provided by MEPDG use pavement responses to predict pavement cracking and rutting. 

In another example, vertical surface deflection can be used as a measure of pavement 
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serviceability. A higher level of reliability in estimating pavement mechanical responses 

yields to a more reliable pavement performance prediction. This reliability is primarily 

related to the pavement mechanical model that is being used to estimate pavement 

mechanical responses. The most common pavement mechanical responses obtained by a 

response model are stresses (normal and shear), strains (normal and shear), and 

displacements. The secondary responses that may be of less application are velocities and 

accelerations. A pavement mechanical response analysis model should be able to estimate 

these responses considering different factors contributing to estimation of these 

parameters. As mentioned in the introduction, the main factors contributing to this 

estimation are traffic load levels, material characteristics, pavement structure, and 

environmental conditions. The problem to be addressed in this dissertation is defined as 

developing a framework (pavement mechanical model) to estimate pavement mechanical 

responses at a high level of reliability for dynamic loads applied at pavement surface so 

that these responses can be used as inputs for evaluation of pavement performance and 

serviceability. In the statement of problem, pavement structure is given including layer 

thicknesses and layer interface bonding conditions (i.e., fully-bonded, partially-bonded, 

or no bond). Furthermore, material characteristics constituting pavement layers are 

known (e.g., linear elastic, viscoelastic). The loading conditions is also known, which is 

generally a dynamic load. The loading conditions should be representative of real 

pavement loading conditions. Environmental conditions primarily influence responses by 

affecting pavement temperature, which in turn affects the dynamic modulus of 

viscoelastic layers, leading to change in pavement responses. The solution of the stated 

problem should be an estimation of pavement mechanical responses due to dynamic load 
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including stresses, strains, and deflections at a specific point within the pavement 

structure, as a function of time. 

1.3    Research Motivation and Objectives 

The objective of this dissertation was to develop a pavement mechanical model called 

3D-FAST: 3-Dimensional Fourier Analysis of pavement Structures under Transient 

loading. The primary motivation for developing this model was to develop a model that 

could accurately analyze pavement responses under dynamic loading (i.e., load that 

varies with time) in a timely manner. Considering the factors mentioned earlier, this 

model should be capable of viscoelastic material characterization, as well as modeling 

axle loads and configurations with any tire-pavement contact shape and pressure 

distribution. Furthermore, the model was intended to be computationally efficient with 

shorter runtime compared to conventional counterpart methods (e.g. finite-element) so 

that it could conveniently be incorporated into ME design methods. 

There are different features associated with 3D-FAST. Figure 1.1 presents these 

features in a chart format. This chart basically demonstrates different objectives pursued 

with development of 3D-FAST. The following a summary of these features: 

 Loading Conditions: One of the primary objectives of 3D-FAST development 

was allowing for dynamic pavement surface loading. Dynamic load (unlike 

static load) may vary with time. The variation of load may be either because 

of the loading protocol such as load applied by a falling-weight deflectometer 

(FWD), or due to pavement surface irregularities (i.e., pavement roughness) 
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which lead to dynamic load. 3D-FAST is capable of handling a wide range of 

loading times that can be as short as impact loads (such as that of FWD) all 

the way to loads applied by a vehicle travelling at slow speeds. Moreover, 3D-

FAST allows for any tire-pavement contact shape which can be non-circular 

and/or non-uniform. Load representation will be discussed in Chapter 3 and 

Chapter 4. 

 Material Characteristics: One of significant issues with structural modeling of 

flexible pavements is the material characterization of viscoelastic layers. A 

viscoelastic layer typically has a deflection that varies with time. Typically, a 

viscoelastic material keeps deforming with time under constant loading 

(viscoelastic creep) and will have time-varying displacement characteristics, 

even if the load is not present (viscoelastic relaxation). In many software 

packages, viscoelastic layers are characterized as linear elastic for simplicity 

to reduce model runtime. In 3D-FAST, however, viscoelastic layers are 

considered using a linear viscoelastic (LVE) material characterization. A 

master curve can be defined for viscoelastic materials, or if the frequency-

dependency of modulus is known (e.g., in forms of closed-form solutions) 

those can be used to characterize viscoelastic materials. The viscoelastic 

material characterization is due to the fact that 3D-FAST performs the 

associated calculations in the frequency domain. More details about 

viscoelastic material characterization will be provided in Section 3.4.6 and 

Section 4.2.3. 
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 Pavement Structure: 3D-FAST is a finite-layer method meaning that it is 

capable of handling layered structures such as pavements. The robustness of 

3D-FAST, in terms of model formulation and runtime, is due to the wave 

propagation feature of the model that is based on the layered structure 

assumption. The bonding conditions at layer interfaces can be either fully 

boded, partially bonded, or un-bonded. The bottom boundary can be rigid 

(e.g., bedrock) or semi-infinite conditions can be considered. 

 Finite-Layer Model: 3D-FAST is a finite-layer model, which uses the concept 

of wave propagation. The wave propagation concept is based on the wave 

laws in physics that waves propagate into the pavement structure. While the 

amplitude of the waves changes as they propagate into the pavement, the 

frequency remains the same. A three-dimensional Fast Fourier Transform 

(FFT) was used to decompose pavement surface loads into the waves. More 

details about the finite-layer model provided in Section 2.2. The formulation 

based on the finite-layer solution is presented in Chapter 3 (for constant-

speed moving load) and Chapter 4 (for a general dynamic load). 

 Computation Runtime: The finite-layer solution for a pavement structure not 

only leads to valuable modeling features, such as viscoelastic material 

characterization, but it also allows for further optimization of the model 

runtime. The reason why this improvement of the model is possible is that 

waves obtained by FFT can be processed independently, and superposition 

principle can be used to obtain the desired response(s) from the individual 
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responses obtained for the waves. Parallel processing is an effective technique 

for reducing 3D-FAST runtime and can be efficiently integrated into the 

model since waves defining the load can be analyzed independently. The 

superposition principle can also be incorporated into the model using 

convolution integral. Convolution integral is used in the frequency domain 

calculations as a means of implementing the superposition principle. Details 

about the computational features of 3D-FAST are presented in Chapter 5. 
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Figure 1.1. Chart. Different features of 3D-FAST. 
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1.4    Dissertation Outline 

In Chapter 1 the significance of pavement responses is described and 3D-FAST is 

introduced as a model to estimate pavement mechanical responses under dynamic loading 

for various loading conditions. Furthermore, the problem is stated along with research 

motivation and objectives. In Chapter 2 the background of pavement structural modeling 

is presented by a brief review of past modeling research works. Finite-layer and finite-

element models are presented and compared in this chapter. 

 Chapter 3 and Chapter 4 focus on the model formulation. The formulation 

including load representation, forms of displacements, constitutive equations, boundary 

conditions, and material characterization are presented in these chapters. Chapter 3 

presents the finite-layer solution for loads moving at constant speed. Chapter 4 extends 

the formulation and presents the 3D-FAST formulation applicable to arbitrary dynamic 

loading. 

 Chapter 5 summarizes the unique computational features of 3D-FAST including 

features for reducing model runtime, viscoelastic material characterization, and using 

inverse Fourier transform to obtain surface plots of responses. Chapter 6 presents the 

verification, validation, and application of 3D-FAST using classical closed-form 

solutions, large-scale testing data, and investigation of roughness-induced dynamic 

loading, respectively. Chapter 7 presents a summary of findings and conclusions 

collected through this dissertation, as well as recommendations for future research.  
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CHAPTER 2  BACKGROUND 

 

2.1    Introduction 

Early efforts to compute pavement responses using mechanistic models dates back to the 

1960’s (R. V. Siddharthan, Yao, & Sebaaly, 1998). At that timeframe, pavement 

engineers and researchers started criticizing the idea of using instrumented road test 

results for pavement design purposes (R. Siddharthan, Hajj, Sebaaly, & Nitharsan, 2015). 

The primary reason for the criticism was based on the fact that the obtained test results 

were only valid for the specific conditions under which the test was conducted. Since 

then, many mechanistic models have been developed and evolved to compute pavement 

mechanical responses. With simultaneous advances in computer hardware and software 

technologies, the researchers had the opportunity to develop computer software packages 

based on these mathematic models. The early pavement analysis software packages such 

as ELSYM5, WESLEA, and BISAR were based on multi-layered elastic theory (MLET) 

analysis (Ahlborn, 1972; De Jong, Peutz, & Korswagen, 1972). MLET analysis is based 

on linear elastic material properties with several simplifying assumptions such as uniform 

circular loading, weightless layers, and stationary loading conditions. One or more layers 

of flexible pavements are typically comprised of asphalt concrete (AC) which is a 

viscoelastic material, with its properties a function of temperature and loading frequency. 

The frequency dependent characteristics of viscoelastic materials is affected by dynamic 

loading conditions (e.g., vehicle speed). MLET does not account for viscoelastic material 

characterization or dynamic loading conditions. With time, models evolved to account for 
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viscoelastic material characterization. Some software packages addressing viscoelastic 

material characterization include CIRCLY, KENLAYER, ILLIPAVE, and MICHPAVE 

(Harichandran, Yeh, & Baladi, 1990; Y. H. Huang, 1993; Thompson, 1982; Wardle, 

1977). These software packages address linear viscoelastic (LVE) material 

characterization, so that they are not able to account for damage. 

2.2    Finite-Element vs. Finite-Layer 

Today the analysis conducted by most commercial software packages for pavement 

mechanical response is based on the finite-element method (FEM). In FEM, the 

pavement layers are broken down into a substantially large number of elements and 

establishing the equilibrium and continuity equations for each element under given 

loading conditions. CIRCLY, KENLAYER, and ILLIPAVE are among the software that 

employ FEM (Y. H. Huang, 1993; Thompson, 1982; Wardle, 1977). Another approach 

for pavement mechanical response analysis is the finite-layer method. The finite-layer 

method is based on considering each pavement layer as a separate element by itself. Load 

is propagated into the pavement structure based on wave propagation concepts. Figure 

2.1 schematically presents the discretizing strategy for finite-element and finite-layer 

methods. The finite-layer method has the following advantages compared to the finite-

element method: 

 There is no need for meshing associated with the finite-layer method. With the 

finite-element method, the meshing strategy is critical. The finer the meshing 

element size used, the greater the computational time require, but convergence is 
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possibly guaranteed. If coarser meshing elements are used convergence will be 

jeopardized, while computational runtime will be decreased. Thus, there is a 

trade-off between fine meshing and computational runtime. With the finite-layer 

method, there is no such concern. 

 The finite-element method requires high computational capacity due to the large 

number of unknowns associated with a particular problem. In contrary, the 

number of unknowns are significantly less with the finite-layer method which 

translates to more efficient computational runtime. 

 Since most of the solving processes in finite-element models are iterative, only a 

small portion of calculations can be parallelized. Thus, parallel processing is not 

an effective technique for enhancing finite-element runtime. With the finite-layer 

method, load is decomposed into a number of waves through Fourier transform 

and each load can be analyzed independently. Thus, parallel processing can be 

easily incorporated with finite-layer method resulting in further computational 

time efficiency. 

 According to these characteristics, the finite-layer method was employed to 

develop 3D-FAST. Only a few pavement models have been developed based on the 

finite-layer method, specifically 3D-Move and Viscowave (ARC, 2013; Lee, 2014). 3D-

Move was developed by Siddhartan et al. for analyzing pavement structures under non-

stationary and constant speed moving loads (R. V. Siddharthan et al., 1998). A software 

package called 3D-Move Analysis®, available in the public domain with hundreds of 
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users worldwide, was developed based on this model (ARC, 2013). The 3D-Move model 

formulation is based on taking two-dimensional Fourier transform on the surface load and 

solving equilibrium and continuity equations for the entire pavement system for each and 

every wave. While many other models are limited to circular uniform tire-pavement 

contact pressure, there is no such limitation in 3D-Move, so that the contact pressure can 

be non-circular and/or non-uniform. Viscowave is another finite-layer analysis model 

which can also account for constant-speed moving load (Lee, 2014). Since Viscowave’s 

formulation employs Hankel transform, it can only handle circular uniform tire-pavement 

contact pressure. 3D-Move and Viscowave both account for viscoelastic material 

characterization.  

 

 

  
(a) (b) 

 

Figure 2.1. Photo. Schematic presentation of discretization of elements: (a) finite-

element method (FEM); and (b) finite-layer method. 
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 3D-FAST is basically an extension to 3D-Move in order to consider dynamic 

pavement loading conditions. The formulation was modified to include the effect of time 

as a new Fourier variable, so that the dynamic loading (i.e., load that varies with time) 

can be considered. While analyzing pavement mechanical responses under dynamic load 

with 3D-FAST is an enhancement compared to 3D-Move, all the 3D-Move specific 

features including non-circular, non-uniform tire contact pressure and viscoelastic 

material characterization are included in 3D-FAST. The 3D-Move formulation is 

presented in Chapter 3. Following that, the 3D-FAST formulation is explained in detail 

in Chapter 4. In these chapters, the model overview including surface load 

representation, boundary conditions, material characterization, and finite-layer solution 

are presented. Specific features associated with 3D-FAST are presented in Chapter 5. 

Validation, verification, and application of 3D-FAST is presented in Chapter 6. 
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CHAPTER 3  FINITE-LAYER SOLUTION FOR LAYERED PAVEMENT 

STRUCTURE: CONSTANT-SPEED MOVING LOAD 

 

As mentioned in the previous chapter, early pavement mechanical analysis models were 

based on multi-layer linear elastic theory (MLET). For instance, VESYS, BISAR and 

KENLAYER are among the popular software packages using this approach (De Jong et 

al., 1972; Y. Huang, 1993; Kenis, 1978). Some of the advantages of these software 

packages are that they are computationally efficient, and the mathematical formulation 

behind them is not very complex. Shortcomings of them are the inability in modeling 

non-circular moving load, lack of capability to model non-uniform stress distribution, 

limitation of tire contact pressure, non-symmetric interface shear stress, and viscoelastic 

material characterization. The finite-element method (FEM) has been employed to 

overcome some of the shortcomings associated with MLET. In this regard, ILLIPAVE, 

MICHPAVE, etc. were software packages developed based on FEM (Harichandran et al., 

1990; Thompson, 1982). 

3.1    3D-Move 

Although, many of the shortcomings of MLET can be resolved using FEM, other specific 

issues such as influence of external boundaries, incorporation of damping, and element 

discretization still remain. Therefore, 3D-Move was developed as a robust pavement 

response analysis model for evaluation of a specific load case. The original formulation 

of 3D-Move was developed by Siddharthan et al. (R. V. Siddharthan et al., 1998). 3D-

Move uses a finite-layer approach and accounts for viscoelastic material characterization. 



18 

 

 

Furthermore, the model is capable of analyzing loads of a moving vehicle at constant 

speed with non-uniform and/or non-circular load on its axles. The ability to model 

vehicle speed is particularly critical for superheavy load (SHL) vehicles, because they 

operate at notably low speeds which can cause significant pavement damage. Stresses 

induced by SHL vehicles are significantly higher than that of standard (or reference) 

80,000 lb reference vehicle. This is because superheavy load vehicles typically have 

higher tire loads and they operate at very slow speeds. As a result, pavement 

serviceability may be subjected to risk and increased levels of rutting could be 

anticipated. A direct consequence of lower vehicle speed is lower effective modulus for 

layers (e.g., surface HMA layer) that exhibit viscoelastic behavior. This results in much 

larger stresses in the unbound pavement layers that support the surface layer. 3D-Move is 

capable of computing pavement responses under vehicles moving at constant speed on a 

specific pavement structure with known material properties. 

Surface shear stresses in both horizontal and lateral direction can be modeled 

independently with 3D-Move with no limitation such as symmetry. This is very 

important when analysis of interface shear stresses from vehicle breaking are to be 

investigated. Though not included in the original formulation, 3D-Move formulation 

allows for providing three-dimensional (3-D) surface plots for a specific pavement 

response at a desired depth, where the distribution of critical pavement response at that 

depth is displayed. Additionally, it allows for layer interface conditions such as 

debonding or slippage can be modeled using 3D-Move. These unique features were 

added in the newer version of 3D-Move, called 3D-Move ENHANCED. The above-
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mentioned features make 3D-Move a robust pavement response analysis model that is 

ideally appropriate for incorporation with M-E pavement design procedures.  

Pavement responses obtained can also be used for further investigation of the 

pavement load-bearing characteristics. For instance, the bearing capacity of the subgrade 

layer can be evaluated using the vertical stress at the subgrade level, which is an output of 

3D-Move. 

3.2    3D-Move Analysis® Software 

3D-Move Analysis software was developed at the University of Nevada, Reno based on 

the formulation developed by Siddharthan et al. (R. V. Siddharthan et al., 1998).The 

software is available for public use and was a product of the asphalt research consortium 

(ARC) projects. The core of 3D-Move Analysis® software was initially developed in 

FORTRAN in 1998. Later, a graphical user interface (GUI) was developed in C and C# 

programming languages to make 3D-Move Analysis® a stand-alone user-friendly 

software (El-Desouky, 2003). The most current available software version is 2.1. Figure 

3.1 presents a screenshot of this version of 3D-Move Analysis®. The software has been 

used by more than 750 users from 50 countries around the globe. Figure 3.2 illustrates 

the countries with 3D-Move Analysis® software users (shown in red). 3D-Move 

Analysis® is capable of analyzing pavement structures under both stationary and 

constant-speed moving load. 
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Figure 3.1. Screenshot. Main window of 3D-Move Analysis® software version 2.1. 

 

Figure 3.2. Photo. Countries with 3D-Move Analysis ® users (shown in red). 
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3.3    3D-Move ENHANCED 

A newer version of 3D-Move Analysis® was developed to be incorporated with 

SuperPACK, a software designed for superheavy load (SHL) analysis. This newer version 

of 3D-Move is called 3D-Move ENHANCED.  From a computer programming 

prospective, the formulation of 3D-Move formulation is complex to be implemented. For 

instance, the formulation contains two-dimensional forward and inverse Fourier 

transform, as well as substantial matrix calculations. A number of different computer 

programming languages were scrutinized to evaluate if they support these features, as 

well as other features, such as stand-alone execution, graphical user interface, and 

capability to support convenient connection between SuperPACK components. 

Mathematical features offered by MATLAB such as forward and inverse Fourier 

transform and comprehensive support of matrix calculations serve the needs for 

implementing 3D-Move ENHANCED formulation. Thus, MATLAB was selected 

because it supports two-dimensional Fourier transform and handles large matrix 

manipulations very efficiently. Moreover, MATLAB supports GUI programming which 

was intended to be used by SuperPACK. In addition, one can compile a MATLAB code 

and publish it as a stand-alone software package.  

3D-Move ENHANCED is basically the response analysis engine of SuperPACK 

and the model is based on the original formulation developed by Siddharthan et al. (R. V. 

Siddharthan et al., 1998). However, a number of enhancements were incorporated into 

3D-Move ENHANCED. They are primarily with respect to method of calculating 
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responses, interface bond, and runtime improvement. These enhancements are 

investigated independently in Section 3.5. 

3D-Move ENHANCED has a number of unique features inherited from its 

original formulation. It is of significant importance to note that 3D-Move ENHANCED 

performs all the associated calculations in the frequency domain using fast Fourier 

transform (FFT) algorithm. For instance, since 3D-Move ENHANCED employs two-

dimensional Fourier transform to describe vehicle loading, tire loads can be non-uniform 

and of any shape. Furthermore, 3D-Move ENHANCED calculations are independent for 

different Fourier waves. Thus, a parallel processing scheme was incorporated into 3D-

Move ENHANCED formulation in order to improve the runtime.(S. F. Kazemi & 

Shafahi, 2013). Furthermore, viscoelastic materials (e.g., hot-mix asphalt and HMA) 

could be characterized based on 3D-Move ENHANCED formulation. 3D-Move 

ENHANCED also considers the influence of pavement temperature and vehicle speed on 

the modulus of viscoelastic material(s) used in pavement layers that exhibit such 

characteristics. 

3.4    Formulation 

The finite-layer approach was employed in 3D-Move Analysis® and 3D-Move 

ENHANCED formulation (both called 3D-Move in this chapter), which is based on the 

wave propagation concept. In the finite-layer approach, each layer is modeled as a 

separate element, as opposed to the finite-element method where each layer is 

decomposed into many elements. In the finite-layer method, the load is decomposed into 

many waves represented in the frequency domain. Displacements are considered to be the 
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primary unknowns in 3D-Move. In finite-layer modeling, it is assumed that 

displacements have the same frequency as the load for every wave. However, their 

amplitudes vary within the pavement structure. This is the concept of wave propagation 

which is central to the finite-layer method. Details about 3D-Move formulation are 

presented in this section.  

3.4.1 Surface Load Representation 

A Pavement surface load is represented as a two-dimensional domain in x- and y-

directions. As mentioned earlier, FFT algorithm is applied on the load to transform it to 

the frequency domain. The x-direction is the vehicle travel direction and y-direction is the 

horizontal direction perpendicular to it. Figure 3.12 schematically shows the coordinates 

used in the presented formulation. 

 

Figure 3.3. Photo. Schematic presentation of tire load and discretization of surface 

load to be used with Fast Fourier Transform (FFT). 
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The surface load can be of any shape with any contact stress distribution. Surface 

load representation would be the equation presented in Figure 3.4. 

 

𝑝(𝑥, 𝑦) = ∑∑𝐴𝑚𝑛𝑒
𝑖𝜔𝑥𝑥𝑒𝑖𝜔𝑦𝑦

𝑁

𝑛=1

𝑀

𝑚=1

 

Figure 3.4. Equation. Surface load representation (stationary conditions). 

 

Here, p(x, y) is load stress for a point with coordinate of (x, y), and M and N are the total 

number of waves in x- and y-direction, respectively. Furthermore, m and n are wave 

numbers, and ωx and ωy are frequencies in the x- and y-directions, respectively. Amn is the 

Fourier coefficient matrix, which is determined by applying a two-dimensional fast 

Fourier transform (FFT) algorithm on the load matrix (i.e., p(x, y)). Considering the 

loaded vehicle is travelling at constant speed V toward the x-direction, the modified load 

representation equation for speed is the equation presented in Figure 3.5 where t is time. 

 

𝑝(𝑥, 𝑦) = ∑∑𝐴𝑚𝑛𝑒
𝑖𝜔𝑥(𝑥−𝑉𝑡)𝑒𝑖𝜔𝑦𝑦

𝑁

𝑛=1

𝑀

𝑚=1

= ∑∑𝐴𝑚𝑛𝑒
𝑖(−𝑉𝜔𝑥)𝑡𝑒𝑖𝜔𝑥𝑥𝑒𝑖𝜔𝑦𝑦

𝑁

𝑛=1

𝑀

𝑚=1

 

Figure 3.5. Equation. Surface load representation modified for vehicle speed. 

 

As an example, a tire load with 15 cm radius footprint and a uniform tire pressure 

of 900 kPa is presented in Figure 3.6, Figure 3.7, and Figure 3.8, for perspective, top, 

and side views, respectively, considering M = 512 and N = 512 as the number of waves 

representing the load. The Fourier coefficient for this sample tire load was obtained by 
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applying the two-dimensional FFT. The Fourier coefficients typically have a complex 

form with real and imaginary parts. The absolute value of Fourier coefficients 

corresponding to this tire load are presented in Figure 3.9, Figure 3.10, and Figure 3.11 

for perspective, top, and side views, respectively. 

 

 

 

Figure 3.6. Plot. Schematic presentation of a tire load with 15 cm foot print radius 

and uniform 900 kPa uniform pressure (perspective view). 
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Figure 3.7. Plot. Schematic presentation of a tire load with 15 cm foot print radius 

and uniform 900 kPa pressure (top view). 

 

 

Figure 3.8. Plot. Schematic presentation of a tire load with 15 cm foot print radius 

and uniform 900 kPa pressure (side view). 
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Figure 3.9. Plot. Absolute values of Fourier Coefficients of a tire load with 15 cm 

foot print radius and uniform 900 kPa pressure (perspective view). 

 

 

Figure 3.10. Plot. Absolute values of Fourier Coefficients of a tire load with 15 cm 

foot print radius and uniform 900 kPa pressure (top view). 
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Figure 3.11. Plot. Absolute values of Fourier Coefficients of a tire load with 15 cm 

foot print radius and uniform 900 kPa pressure (side view). 

 

3.4.2 General Forms of Displacements 

As mentioned earlier, displacements are the main unknowns in the 3D-Move formulation. 

If the displacement field is known, then stress and strain fields are obtained by employing 

stress-displacement and strain-displacement constitutive equations, respectively. 

Denoting displacement in x-, y-, and z-directions with u1, u2, and u3, respectively, the 

general form of displacements are presented in the equation in Figure 3.12 for the three 

directions (j = 1, 2, 3). 

𝑢𝑗(𝑥, 𝑦, 𝑧, 𝑡) = ∑ ∑�̃�𝑗(𝑧)𝑒
𝑖𝜔𝑥(𝑥−𝑉𝑡)𝑒𝑖𝜔𝑦𝑦

𝑁

𝑛=1

𝑀

𝑚=1

 

Figure 3.12. Equation. General form of displacements. 
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In this equation, �̃�𝑗(𝑧)  is displacement amplitude at the depth of interest (z) in 

frequency domain. This equation is based on the wave propagation concept, in which 

�̃�𝑗(𝑧) is a function of depth, as the waves propagate into the pavement structure. 

3.4.3 Constitutive Equations 

Constitutive equations are used to obtain stresses and strains from displacements. The 

normal strain-displacement constitutive equation is presented in Figure 3.13. 

 

𝜀𝑗𝑗 =
𝜕𝑢𝑗

𝜕𝑗
 

Figure 3.13. Equation. Normal strain-displacement constitutive equation. 

 

In this equation, εjj is normal shear strain in the jth direction. The shear strain-

displacement constitutive equation is presented in Figure 3.14. 

 

𝜀𝑗𝑘 =
1

2
(
𝜕𝑢𝑗
𝜕𝑘

+
𝜕𝑢𝑘
𝜕𝑗
) 

Figure 3.14. Equation. Shear strain-displacement constitutive equation. 

  

In this equation, εjk is shear strain on the plane with normal in the j direction, and 

stretching in the k direction. The stress-displacement constitutive equations need more 

effort to be derived compared to strain-displacement equations. To obtain stress-

displacement constitutive equations, stress-strain constitutive relationships should be 

developed first, and then combined with the strain-displacement equations. For the one-
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dimensional case, the stress-strain relationship is simply represented by the well-known 

Hook’s law. However, in the three-dimensional case, the normal stress-strain relationship 

is presented in Figure 3.15. 

 

𝜎𝑗𝑗 = 𝜆 ∙ 𝑡𝑟(𝜀) + 2𝐺 ∙ 𝜀𝑗𝑗  

Figure 3.15. Equation. Normal stress-strain constitutive equation. 

  

In this equation, λ and G are first and second Lamé parameters, respectively. It 

has been shown that the second Lamé parameter is equal to shear modulus. Furthermore, 

σjj is normal stress in the jth direction, ε is the strain tensor, and tr(.) is the trace function. 

In frequency domain, this equation is the equation presented in Figure 3.16. 

  

�̃�𝑗𝑗 = 𝜆 ∙ 𝑡𝑟(𝜀̃) + 2𝐺 ∙ 𝜀�̃�𝑗  

Figure 3.16. Equation. Normal stress-strain constitutive equation (frequency 

domain version). 

 

In this equation, ~ denotes the frequency domain equivalent for the parameter of 

interest. Applying strain-displacement derived earlier, one can develop normal stress-

displacement constitutive equation. To derive shear stress-displacement constitutive 

equation, the shear strain-displacement equation developed earlier should be used 

coupled with shear stress-strain equation, which leads to the equation presented in Figure 

3.17. All the parameters used in this equation are as previously defined. 
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Figure 3.17. Equation. Shear stress-shear strain constitutive equation. 

 

3.4.4 Solution Scheme 

The equations of equilibrium of forces for an arbitrary element in a pavement structure 

and for a specific wave are presented in Figure 3.18. 

  

𝜕𝜎𝑗𝑘
𝜕𝑗

= 𝜌
𝜕2𝑢𝑗
𝜕𝑗2

 

Figure 3.18. Equation. Equilibrium equation. 

 

In this equation, ρ is density and all parameters are as previously defined. 

Rearranging this equation using stress-displacement constitutive equations leads to a 

system of differential equations with three (3) equations and three (3) unknowns (i.e., 

displacements in the three (3) directions). By solving the system of equations, the 

solution presented in Figure 3.19 is obtained for displacement in frequency domain for 

the specific wave of interest. 

 

�̃�𝑗 = 𝐴1𝑒
𝑛1𝑧 + 𝐴2𝑒

𝑛2𝑧 + 𝐴3𝑒
−𝑛1𝑧 + 𝐴4𝑒

−𝑛2𝑧 + 𝐴5𝑧 ∙ 𝑒
𝑛1𝑧 + 𝐴6𝑧 ∙ 𝑒

𝑛2𝑧 

Figure 3.19. Equation. Solution for displacements in frequency domain. 
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This equation represents the displacement in the three (3) directions as the finite-

layer solution of the pavement system, and is called the displacement function. In the 

displacement function, A1 to A6 are unknown coefficients for each layer, which are 

determined by boundary conditions. Furthermore, n1 and n2 are the eigenvalues for the 

pavement system, which are calculated using the equations presented in Figure 3.20 and 

Figure 3.21. In these equations, all parameters are as previously defined. 

 

𝑛1 = √𝜔𝑥2 +𝜔𝑦2 −
𝜌(𝜔𝑥 ∙ 𝑉)2

𝜆 + 2𝐺
 

Figure 3.20. Equation. First eigenvalue for pavement system. 

 

𝑛2 = √𝜔𝑥2 +𝜔𝑦2 −
𝜌(𝜔𝑥 ∙ 𝑉)2

𝐺
 

Figure 3.21. Equation. Second eigenvalue for pavement system. 

 

After calculating displacements, stresses and strains would be calculated using 

their corresponding constitutive equations, which were presented earlier. 

3.4.5 Boundary Conditions 

Boundary conditions are employed to obtain the six (6) unknown coefficients (A1 to A6) 

of the displacement function (equation presented in Figure 3.19). There are three (3) 

types of boundary conditions: 1) surface boundary, 2) interface boundary, and 3) bottom 

boundary. For a pavement structure composed of C layers, there are three (3) surface 
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boundary conditions, 6 × (C-1) interface boundary conditions, and three (3) bottom 

boundary conditions, for each individual wave. Therefore, there are 6C boundary 

conditions that may be used to find A1 to A6 appeared in the displacement function, for 

every layer (6C unknowns). 

Based on 3D-Move formulation, surface boundary conditions are in terms of 

vertical normal stress and shear stresses (longitudinal and lateral) applied on the 

pavement surface. Load representation for surface normal stress can be found in the 

equation presented in Figure 3.4. The same representation could be used for longitudinal 

and lateral shear stresses. In general, normal stress and shear stress may be defined by the 

equation presented in Figure 3.22 where j = 1, j = 2, and j = 3 correspond to x-, y-, and z-

directions, respectively. 

 

𝜎𝑗𝑧(𝑥, 𝑦) = ∑∑(�̂�𝑗𝑘)𝑚𝑛𝑒
𝑖𝜔𝑥(𝑥−𝑉∙𝑡)𝑒𝑖𝜔𝑦𝑦

𝑁

𝑛=1

𝑀

𝑚=1

 

Figure 3.22. Equation. Surface load representation for normal stress and shear 

stresses. 

 

In this equation, (�̂�𝑗𝑘)𝑚𝑛is the Fourier coefficient matrix and all the other 

parameters are as previously defined. The surface boundary conditions are the equations 

presented in Figure 3.23. 

  

�̃�𝑗𝑘(𝜔𝑥 , 𝜔𝑦 , 0) = �̂�𝑗𝑘(𝜔𝑥 , 𝜔𝑦, 0) 

Figure 3.23. Equation. Three (3) surface boundary conditions. 
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Recall that �̃�𝑗𝑘  and �̂�𝑗𝑘  are frequency domain values for pavement stress responses 

and applied stress for a wave with spatial frequencies of ωx and ωy in x- and y-direction, 

respectively. 

As for the interface boundary conditions, considering fully bonded conditions at 

layer interfaces, boundary conditions would be the equality of stresses and displacements 

for upper and lower layers at their interface. There are three (3) equilibrium equations 

and three (3) continuity equations at layer interfaces. Equations presented in Figure 3.24 

and Figure 3.25 present equilibrium and continuity equations, respectively. 

  

�̃�𝑗𝑧
−(𝜔𝑥 , 𝜔𝑦 , 𝐻) = �̃�𝑗𝑧

+(𝜔𝑥 , 𝜔𝑦 , 0) 

Figure 3.24. Equation. Three (3) equilibrium equations for layer interface boundary 

conditions. 

 

�̃�𝑗
−(𝜔𝑥 , 𝜔𝑦 , 𝐻) = �̃�𝑗

+(𝜔𝑥 , 𝜔𝑦, 0) 

Figure 3.25. Equation. Three (3) continuity equations for layer interface boundary 

conditions. 

 

In this equation, �̃�𝑗𝑧
−(𝜔𝑥 , 𝜔𝑦 , 𝐻) and �̃�𝑗𝑧

+(𝜔𝑥 , 𝜔𝑦, 0) are stress at the bottom of 

upper layer and at the top of lower layer, respectively, considering H is the thickness of 

the upper layer. Furthermore, �̃�𝑗
−(𝜔𝑥 , 𝜔𝑦 , 𝐻) and �̃�𝑗

+(𝜔𝑥 , 𝜔𝑦 , 0) are displacement in the 

jth direction at the bottom of the upper layer and at the top of the lower layer, 
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respectively. All parameters used in this equation are in frequency domain for a specific 

wave with spatial frequencies of ωx and ωy in x- and y-directions, respectively. 

The bottom boundary conditions are considered as no displacement at a certain 

depth of the last layer. The equation for the bottom boundary condition is presented in 

Figure 3.28. 

   

�̃�𝑗(𝜔𝑥 , 𝜔𝑦 , 𝐻𝑁) = 0 

Figure 3.26. Equation. Three (3) bottom boundary conditions. 

 

In this equation, HN is the location of the bottom boundary with respect to the last 

layer interface. 

3.4.6 Viscoelastic Material Characterization 

One of the unique features of 3D-Move is viscoelastic material characterization. Since 

the formulation is based on Fourier transform, the frequency of each wave can be used to 

obtain the corresponding elastic modulus of viscoelastic material such as asphalt concrete 

(AC). Based on the equation presented in Figure 3.5, time frequency of loading may be 

calculated using the equation presented in Figure 3.27. 

 

𝜔𝑡 = −𝜔𝑥 ∙ 𝑉 

Figure 3.27. Equation. Time frequency of loading for viscoelastic material 

characterization. 
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Recalling that in this equation, V is the speed of the vehicle and ωx is the spatial 

frequency for the wave of interest in the x-direction. ωt may be used with an AC shear 

modulus master curve or a rheological model (e.g., Kelvin model, Maxwell model, 

Burger model, etc.) to determine the viscoelastic material shear modulus for the wave of 

interest using its frequency. The equation presented Figure 3.27 states that the time 

frequency of loading is a function of vehicle speed. Knowing that the effect of pavement 

temperature is included in dynamic modulus master curve, the pavement temperature and 

vehicle speed are taken into consideration in the formulation of 3D-Move. 

3.5    Enhancements to 3D-Move Analysis® 

In the previous section, the 3D-Move ENHANCED formulation was described. However, 

a number of additional enhancements were incorporated into this formulation, and they 

are discussed in this section. These enhancements include generating surface plots, 

interface bond conditions, and runtime improvement. 

3.5.1 Surface Plots 

In the original 3D-Move formulation, pavement mechanical responses were calculated 

for a specific point within pavement structure using an iteration process for all the waves 

in x- and y-directions. However, in the new formulation (i.e., 3D-Move ENHANCED), 

inverse Fourier transform was employed to obtain surface plots for pavement responses at 

a specific depth. In this method, the corresponding response for each wave is first 

calculated in frequency domain. Then, the response is transformed into spatial domain 

using inverse Fourier algorithm. These methods can be applied for all fifteen (15) 
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mechanical responses (i.e., three (3) displacements, six (6) stresses, and six (6) strains). It 

is worth mentioning that the surface plot of responses can be generated for a particular 

time step of analysis. As an example, the top and perspective view for a sample 

superheavy quad axle are presented in Figure 3.28 and Figure 3.29. The vertical surface 

displacement under this superheavy quad axle traveling at climbing speeds is presented in 

Figure 3.30 as a three-dimensional (3-D) surface plot. 

 

 

Figure 3.28. Illustration. A sample quad superheavy quad axle (top view). 
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Figure 3.29. Illustration. A sample quad superheavy quad axle (perspective view). 

 

 

 

Figure 3.30. Illustration. Surface plot for vertical displacement at pavement surface 

under sample superheavy quad axle. 

 

3.5.2 Interface Bond Conditions 

Interface debonding is a significant issue in pavement construction because the only 

solution is to remove and replace the debonded AC areas (S.-F. Kazemi, Hand, Hajj, 

Sebaaly, & Siddharthan, 2017). This issue is particularly critical for pavements subjected 

to SHL, or airfield pavements that are constructed to carry large aircraft loadings 

(Arabali, Sakhaeifar, Freeman, Wilson, & Borowiec, 2017). Sometimes mitigation 

strategies such as steel plates are used to decrease the detrimental effects of overweight 

vehicle or superheavy load vehicle moves. In this case, the steel plates and existing 
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pavement surface layer do not represent a fully bonded condition. Therefore, proper 

modeling of layer bond condition is essential for flexible pavements experiencing SHL 

move. Layer interface debonding was incorporated into 3D-Move ENHANCED. 

The analytical approach used in the 3D-Move ENHANCED formulation, 

specifically the formulation of interface boundary conditions allows for effective 

incorporation of various interface bond condition models. The equations employed in 3D-

Move ENHANCED for interface boundary condition considering fully bonded conditions 

is presented in Figure 3.24 and Figure 3.25 for continuity and equilibrium criteria, 

respectively. These equations assume fully bonded conditions at the layer interface. 

There has been several methods suggested in the literature to model slippage or 

debonding at layer interfaces (De Jong et al., 1972; Maina, De Beer, & Matsui, 2007). 

The slippage model developed by Maiana et al. was used to model interface bond 

conditions. Based on this model, the layer interface boundary condition should be 

modified to account for layer interface debonding. The modified equation for interface 

layer boundary conditions, considering layer interface bond conditions are presented in 

Figure 3.31 and Figure 3.32 for x- and y-directions, respectively. 

 

𝑢1
−(𝐻𝑖) − �̃�1

+(0) =
𝜏𝑥𝑧
𝑖 (𝐻𝑖)

𝐾𝑥𝑥
 

Figure 3.31. Equation. Modified layer interface boundary conditions to include 

interface bond conditions in x-direction. 
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𝑢2
−(𝐻𝑖) − �̃�2

+(0) =
𝜏𝑦𝑧
𝑖 (𝐻𝑖)

𝐾𝑦𝑦
 

Figure 3.32. Equation. Modified layer interface boundary conditions to include 

interface bond conditions in y-direction. 

 

In these equations, the formulation is provided for the interface of ith and (i + 1)th 

layer, noting that the closest layer to pavement surface is numbered as 1; and layer 

number increases with increasing depth. Also, Kxx and Kyy are slippage stiffness in x- and 

y- directions, respectively;   iHu

1  and   iHu

2  are displacements in x- and y-directions, 

respectively, at the bottom of ith layer; )0(1

u  and )0(2

u  are displacements in x- and y- 

directions, respectively, on top of the (i + 1)th layer; and  i
i

xz H  and  i

i

yz H   are 

longitudinal and lateral shear stresses, respectively, at the interface of ith and (i + 1)th 

layer. A schematic of modeling layer debonding in 3D-Move is presented in Figure 3.33. 

 

 

Figure 3.33. Illustration. Schematic of modeling layer debonding in 3D-Move. 
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3.5.3 Runtime Improvement 

As previously mentioned, MATLAB was used to develop 3D-Move ENHANCED. 

Employing inverse Fourier transform was very effective in reducing 3D-Move 

ENHANCED runtime compared to the iteration method used in the original formulation, 

which is based on computing response(s) of interest at specific response points using 

summation of all responses over all waves. Not only is the new approach substantially 

faster than the original approach, but it also generates surface plots for different response 

types. 

Another mechanism used to improve runtime was parallel processing (Rauber & 

Rünger, 2013). In fact, formulation of 3D-Move ENHANCED allows for using parallel 

processing, because the waves can be processed independently. Therefore, values for 

response(s) of interest could be determined by assigning waves to different processing 

units. Finally, responses in frequency domain are collected from all the processing units 

and assembled. Pavement responses are transformed into space domain using inverse 

Fourier transform. The speed up factor was close to 3.0 for a quad processor (75% speed 

up factor), showing that parallel processing could efficiently improve 3D-Move 

ENHACNED runtime. 3D-Move ENHANCED runtime for different number of pavement 

layers ranging from one (1) to 10 (ten) layers is presented in Table 3.1. The considered 

pavement structure was comprised of a surface layer with viscoelastic material, and 

elastic material for the rest of the layers. 
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Table 3.1. Runtime for 3D-Move ENHANCED Considering Parallel Processing 

Using Four (4) Processing Units.  

Number of Layers Runtime (second) 

1 (one) 11 

2 (two) 22 

3 (three) 33 

4 (four) 45 

5 (five) 56 

6 (six) 67 

7 (seven) 79 

8 (eight) 90 

9 (nine) 102 

10 (ten) 115 

 

3.6    Summary 

In this chapter, the formulation of 3D-Move was presented. First, the original formulation 

of 3D-Move was presented. This formulation was implemented in the 3D-Move Analysis 

® software. Thereafter, the 3D-Move ENHANCED formulation along with its 

enhancement compared to the original 3D-Move formulation was presented. 3D-Move 

ENHANCED was used as the engine for calculating pavement mechanical responses in 

the SuperPACK software, a software for analyzing flexible pavements exposed to 

superheavy load moves. In both formulations (called the 3D-Move formulation), 

pavement mechanical responses are computed under a vehicle load that is traveling at a 

constant speed. The formulation is based on finite-layer approach, which implements the 

concept of wave propagation. The surface load is represented as a composition of waves 

traveling in x- and y- directions using a two-dimensional fast Fourier transform (FFT). 

Subsequently, all the calculations are performed in the frequency domain. The main 

unknowns of 3D-Move ENHANCED are displacements in the three (3) directions. 
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Stresses and strains are calculated based on displacements using stress-displacement and 

strain-displacement constitutive equations, respectively. The 3D-Move formulation is 

capable of modeling viscoelastic material behavior. 

 A number of enhancement were made to the original 3D-Move formulation in the 

development of 3D-Move ENHANCED. Modifications included characterization of 

surface loading, interface conditions that allow for slippage, and runtime improvement. 

Since inverse Fourier transform is employed in 3D-Move ENHANCED, surface plots for 

a particular response could be obtained at the desired depth(s). Parallel processing was 

incorporated into the formulation noting that waves could be processed independently.  
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CHAPTER 4  3D-FAST FORMULATION: FINITE-LAYER SOLUTION 

FOR DYNAMIC LOADING CONDITIONS 

 

4.1    Introduction 

3D-FAST (3-Dimensional Fourier Analysis of pavement Structures under Transient 

loading) is the model developed as the primary objective of this research. 3D-FAST is a 

finite-layer model to compute pavement mechanical response (i.e., stresses, strains, and 

displacements, velocities, and acceleration). There are different aspects associated with 

3D-FAST including load characterization, wave propagation, displacement function, 

constitutive equation, frequency domain calculations, boundary conditions, viscoelastic 

material characterization, superposition principle, and model runtime. In this 

introduction, a general description is provided for these aspects. 

 Realistic pavement surface loading is a substantial feature of 3D-FAST. In many 

currently available software packages there are three limitations with surface loading: 1) 

surface load must be of uniform stress distribution, 2) surface load should be circular in 

shape, and 3) surface load should be symmetric. In particular, models that use multi-layer 

elastic theory (MLET) require the load to be circular with uniform stress distribution. The 

reason for that is MLET uses Hankel transform. With finite-element method (FEM) there 

is typically no limitation on load shape and stress distribution. However, appropriate 

meshing is an important issue since defining a fine mesh to represent the surface load 

increases the model runtime. If modeling dynamic load is the case, meshing becomes 

even a greater concern. With 3D-FAST formulation, however, since the model uses 

discrete Fourier transform, there is no concern with respect to model convergence. The 
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meshing should be fine enough so that the details of the loading is captured appropriately. 

Theoretically, the sampling frequency of load should be higher than the Nyquist 

frequency which is the minimum rate at which the loading signal should be sampled 

(Oppenheim, 1999). Siddharthan et al. investigated the sampling frequency of the load 

and concluded that a node spacing of Δx = Δy = 0.01 m meets the requirement for 

Nyquist frequency theorem (R. V. Siddharthan et al., 1998). The surface loading 

representation and associated formulation is discussed in Section 4.2.1. 

 The concept of wave propagation is central to the finite-layer method used in the 

development of 3D-FAST. In order to employ this concept, the loading should be 

transformed from spatial and time domains to the frequency domain. This transformation 

is carried out through a three-dimensional fast Fourier transform (3-D FFT) algorithm. 

The wave propagation concept considers that the waves obtained in the frequency domain 

propagate into the pavement structure. During the propagation process, the amplitude of 

the waves changes as a function of depth while the frequency remains constant. More 

details about the wave propagation concept and associated formulation is presented in 

Section 4.2.2. 

 Displacement function is the terminology used in this research to identify the 

displacement as a function of a series of input parameters. These inputs are layer 

unknowns, eigenvalues for the pavement system, and depth of interest. The displacement 

function in the finite-layer formulation of 3D-FAST has the same role as the shape 

functions in the finite-element method. This function is derived as a direct result of 

applying the wave propagation concept. The final step in the 3D-FAST formulation is 
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obtaining displacement function. The displacement functions are initially obtained in the 

frequency domain and will be transformed back to the spatial and time domains using a 

three-dimensional inverse fast Fourier transform (3-D IFFT) algorithm at the desired 

depth. The mathematical representation of displacement function is presented in Section 

4.2.5. 

 The primary unknowns in 3D-FAST formulation are displacements. If the 

displacement field is known, all the other responses (e.g., stresses, strains.) can be 

obtained using the corresponding constitutive equations. For instance, stress-

displacement constitutive equations are used to obtain the stress field based on the 

displacement field. While eventually all the responses are obtained in the spatial and time 

domain using IFFT, the derived constitutive equations are in the frequency domain since 

3D-FAST formulation is in that domain. The derivation of constitutive equations is 

presented in Section 4.2.4. 

 Frequency domain calculation is a robust feature of 3D-FAST that incorporates a 

substantial flexibility into the model implementation. The frequency domain allows for a 

significant improvement of the model efficiency in terms of model runtime, 

implementation of superposition principle, using parallel processing, and material 

characterization. In Chapter 5, the unique computational features of 3D-FAST are 

discussed. These features are the direct outcome of using frequency domain for 

performing calculations. 

 Viscoelastic material characterization is a significant feature of 3D-FAST. A 

viscoelastic material exhibits both viscous and elastic deformation behavior as it 
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experiences loading. Generally speaking, viscoelastic materials have time-dependent 

deformation properties. There are two important aspects of viscoelastic material 

characterization in 3D-FAST formulation. First, this characterization is based on the 

assumption that the complex modulus of viscoelastic material is a function of loading 

frequency. Second, the linear viscoelastic material characterization conditions exist. For 

the first assumption, if complex modulus of the viscoelastic material is frequency 

dependent then it can be incorporated into 3D-FAST formulation. For instance, for 

asphalt concrete (AC) the results of dynamic modulus test can be used to characterize the 

complex modulus as a function of loading frequency. Typically, AC master curve is 

employed for this purpose. Viscoelastic rheological models (e.g., Kelvin, Maxwell, 

Burgers, and Zener) can also be used to characterize viscoelastic materials since the 

material complex modulus can be related to loading frequency using these models. 

 As for the second aspect of viscoelastic material characterization, linearity is the 

assumption. The linear viscoelastic assumption allows for the use of superposition 

principle presented by the Boltzmann's principle. The Boltzmann's principle is defined as 

the equation presented in Figure 4.1. 

 

 𝜎(𝑡) = ∫ 𝐸(𝑡 − 𝑡′)
𝑑𝜀(𝑡)

𝑑𝑡′
𝑑

𝑡

−∞
𝑡′ 

Figure 4.1. Equation. Boltzmann’s principle representing the superposition of loads 

for viscoelastic material characterization. 
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 In this equation, 𝜎(𝑡) and 𝜀(𝑡) are the stress and strain at time t, E is the modulus, 

and t' is the integral variable. The interesting note is that the Boltzmann’s principal is 

technically a convolution integral. By taking Fourier transform of both sides of this 

equation, the integral will be reduced to a simple multiplication in the frequency domain. 

 

 𝜎(𝜔) = 𝐸(𝜔) ∙ 𝜀(𝜔) 

Figure 4.2. Equation. The representation of superposition in the frequency domain. 

 

 In this equation, 𝜎(𝜔), 𝜀(𝜔), and 𝐸(𝜔) are stress, strain, and modulus in the 

frequency domain, respectively. Though this equation is valid for one-dimensional 

uniaxial loading, it can be extended to accommodate three-dimensional conditions. 

 The equation presented in Figure 4.2 is significantly practical as it is the key to 

use superposition principal in order to obtain a specific response under different loading 

scenarios without the need to perform additional analysis (i.e., additional 3D-FAST runs). 

Details about viscoelastic material characterization and associated formulation is 

presented in Section 4.2.3. Furthermore, details about using the superposition principle in 

3D-FAST is presented in Section 5.4. 

 The boundary conditions are very critical in the solving process in the 3D-FAST 

formulation, which are used to obtain the unknowns of displacement function. These 

conditions include surface boundary conditions, layer interface boundary conditions, and 

bottom boundary conditions. There are six unknowns per layer per wave in the 3D-FAST 

formulation. These unknowns are obtained by employing boundary conditions. The 
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boundary conditions are applied for each and every wave obtained by the application of 

FFT on the load. The surface boundary conditions are based on the equilibrium of forces 

considering both vertical stress (e.g., tire load) and shear stresses (longitudinal and 

lather). Thus, one can model shear forces applied on the pavement surface based on the 

surface boundary conditions. Interestingly, these forces can be a function of time. Layer 

interface boundary conditions are based on the equilibrium of stresses and continuity 

equations. The layer interface boundary conditions are flexible in order to accommodate 

for layer debonding conditions. The bottom boundary condition is based on the zero 

displacement at a certain depth due to the rigid boundary (e.g., a bedrock layer) or can be 

modified to represent the semi-infinite boundary conditions for zero displacement at a 

relatively large depth. Details about the mathematical formulation of boundary conditions 

are presented in Section 4.2.6. 

 Runtime is an important aspect of every numerical model. An efficient 

computational runtime may not be achieved until processing units are employed 

efficiently and the computational tasks are assigned to those units at a highly optimized 

level. In general, model runtime for 3D-FAST is shorter compared to finite-element 

models. Furthermore, since associated calculations are conducted in the frequency 

domain, further improvement can be achieved. Use of parallel processing as well as non-

uniform Fourier transforms are two means of reducing 3D-FAST runtime. Parallel 

processing is an efficient technique to reduce the runtime by assigning the computational 

tasks to different processing units considering that the tasks are fully or partially 

independent. For instance, parallel processing can effectively incorporated with Monte-
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Carlo simulation as simulation steps are independent (D. Batioja-Alvarez, Kazemi, Hajj, 

Siddharthan, & Hand, 2017; D. D. Batioja-Alvarez et al., 2018). In the 3D-FAST 

formulation, since linear viscoelastic material characterization is the case, and 

superposition principle is applicable, therefore waves can be processed independently to 

obtain displacement function. Once all the waves are processed, the results can be 

superposed to assemble the response in the frequency domain, and consequently in the 

spatial and time domains using IFFT. Another approach to reduce model runtime is to use 

non-uniform Fourier transform. The uniform Fourier transform is based on equal mesh 

spacing leading to arithmetic progression of wave frequencies after applying FFT. 

However, the non-uniform FFT is based on processing part of the waves which the 

frequency of them does not necessarily form an arithmetic progression. The certain 

waves chosen to be processed using non-uniform Fourier transform should be ideally the 

waves that have the most contribution to the response of interest. Then, the corresponding 

response can be interpolated for the other waves, or those waves can be ignored. The 

non-uniform Fourier transform significantly decreases model runtime but does not 

analyze the entire spectrum of the waves, so it introduces some approximation to the 

results. Details about mathematical presentation of parallel processing and non-uniform 

Fourier transform, and associated interaction of them with the 3D-FAST formulation are 

presented in Chapter 5. 

4.2    Formulation 

The mathematical formulation of 3D-FAST is presented in this section. This formulation 

is performed in the frequency domain by initially transforming the load through fast 
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Fourier transform (FFT) algorithm. The load is basically a three-dimensional (3-D) 

matrix as a function of spatial coordinates x and y (x is travel direction and y is the 

horizontal direction perpendicular to it) and the time coordinate (denoted by t). Then, the 

general form of displacements (called displacement function in this research) are derived 

in the frequency domain which contains six unknowns per wave per layer based on the 

derived solution for displacement function. As previously mentioned in this chapter, the 

displacement function is derived based on the wave propagation concept using 

constitutive equations. The unknowns in the displacement function are calculated using 

the boundary conditions for each and every wave traveling in the spatial domains (x and 

y) and time domain (t). Once the displacement field is derived in the frequency domain, 

other responses (e.g., stresses, strains) can be derived using the corresponding 

constitutive equations. After processing all the waves, the responses in the spatial and 

time domains are obtained using inverse fast Fourier transform (IFFT). These responses 

are presented as three-dimensional matrices, and dimensions of them correspond to x, y, 

and t. 

4.2.1 Surface Load Representation 

In the developed formulation, pavement surface load is represented as a function of 

longitudinal direction (x-direction), transverse direction (y-direction), and time (t). Figure 

4.3 schematically presents the loading under an arbitrary load of any shape and stress 

distribution. The load needs to be discretized in x-, y-, and t-directions with evenly spaced 

nodes denoted by Δx, Δy, and Δt, respectively, so that a Fourier transform algorithm can 

be applied on the load matrix in order to transform it to the frequency domain. 



52 

 

 

 

Figure 4.3. Photo. Schematic of non-uniform non-circular dynamic load in 3D-

FAST. 

 

Fast Fourier transform (FFT) is a common variant of Fourier transformation 

algorithms, which is considerably time efficient. A three-dimensional fast Fourier 

transform (3-D FFT) is applied on the dynamic load. The dynamic load representation 

employed in the 3D-FAST formulation is presented in Figure 4.4. 

 

 𝑝(𝑥, 𝑦, 𝑡) = ∑ ∑ ∑ 𝐴𝑚𝑛𝑘𝑒
𝑖𝜔𝑥𝑥𝑒𝑖𝜔𝑦𝑦𝑒𝑖𝜔𝑡𝑡𝑀

𝑚=1
𝑁
𝑛=1

𝐾
𝑘=1  

Figure 4.4. Equation. Surface load representation (dynamic loading conditions). 

 

In this equation, p(x, y, t) is the loading (e.g., tire load) contact pressure which can 

be vertical normal stress (σzz), longitudinal shear stress (τxz), or transverse shear stress 

(τyz). The three-dimensional matrix of Fourier coefficients, Amnk, is determined by 
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applying FFT on the load. The wave numbers corresponding to x-, y-, and t-directions are 

denoted by m, n, and k, respectively. The total number of waves in x-, y-, and t-directions 

are denoted by M, N, and K, respectively. Spatial frequency in the x-direction, y-

direction, and time frequency are denoted by ωx, ωy, and ωt, respectively. The imaginary 

unit is demonstrated as i. 

4.2.2 Wave Propagation 

The formulation of 3D-FAST is based on the finite-layer method, and wave propagation 

is central to this method. In general, each wave is characterized by three parameters: 

amplitude, frequency, and phase angle. As described in the load representation section, 

the dynamic loading applied on the pavement surface can be decomposed into a series of 

waves in the x-, y-, and t-direction using FFT. Waves are basically identified by elements 

of the Amnk matrix. Each wave can be processed independently which allows for 

employing parallel processing. Additionally, different waves do not necessarily have the 

same contribution to a certain response at a specific response point. As a specific wave 

propagates into the pavement structure, the frequency of the wave does not change, 

however, the wave amplitude changes as a function of depth. Figure 4.5 presents the 

concept of wave propagation schematically. 
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Figure 4.5. Illustration. Wave propagation concept in the finite-layer method. 

 

Based on Figure 4.5, if the displacement at the pavement surface is represented 

by a wave, the displacement at an arbitrary depth of z = zi would be a wave that maintains 

the original load spatial and time frequencies (ωx, ωy, and ωt) but with a different 

amplitude, which is a function of zi. The mathematical equation obtained based on the 

wave propagation concept is called displacement function and is presented in Figure 4.6.  

 

𝑢𝑗(𝑥, 𝑦, 𝑧, 𝑡) = ∑∑∑ �̃�𝑗(𝑧)𝑒
𝑖𝜔𝑥𝑥𝑒𝑖𝜔𝑦𝑦𝑒𝑖𝜔𝑡𝑡

𝑀

𝑚=1

𝑁

𝑛=1

𝐾

𝑘=1

 

Figure 4.6. Equation. Displacement function representing general form of 

displacements. 

 

In this equation, 𝑢𝑗(𝑥, 𝑦, 𝑧, 𝑡) is displacement and j = 1, 2, and 3 correspond to the 

displacement in x-, y-, and z-directions, respectively (see Figure 4.3). For instance, u1 

represents the displacement in the x-direction. The amplitude of the displacement is �̃�𝑗(𝑧) 

in the frequency domain, which is a function of desired depth (z). All the other 
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parameters are as previously defined. 

In the 3D-FAST formulation, the primary unknowns of the model are 

displacements, which is similar to FEM. While displacements in FEM are typically 

determined by the shape functions and element type, in the finite-layer method (e.g., 3D-

FAST) displacements are a function of depth of interest and harmonics characteristics 

(i.e., amplitude, frequency, and phase sift) corresponding to the Fourier variables (x, y, 

and t). Displacement function is the terminology used for this function in the current 

study. The displacement function will be derived later as the solution of finite-layer 

method. 

4.2.3 Viscoelastic Material Characterization 

One of the exceptional features of 3D-FAST is the capability to accommodate for 

viscoelastic material characterization. According to the equation presented in Figure 4.4, 

dynamic load is decomposed into waves that travel in three directions (x, y, and t). The 

time frequency of loading (ωt) can be used to obtain corresponding dynamic complex 

modulus for each wave for a viscoelastic layer such as AC. This frequency can be 

calculated using the equation presented in Figure 4.7. 

 

{
𝜔𝑡 = 2𝜋

𝑘

𝐾. ∆𝑡
𝑘 ≤ 𝐾/2

𝜔𝑡 = −2𝜋
𝑘

𝐾. ∆𝑡
𝑘 > 𝐾/2

 

Figure 4.7. Equation. Angular frequency of loading for the time Fourier variable. 
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In this equation, k is the wave number, K is the total number of waves in the time domain, 

and Δt is the load sampling interval in the time domain. The frequency used in this 

equation is the angular frequency of loading time. Typically, the frequency of loading 

time is used for dynamic modulus master curve to incorporate viscoelastic material 

characterization. The equation presented in Figure 4.8 is used to convert angular 

frequency to frequency. In this equation, 𝑓𝑡 is the frequency of loading time. 

 

𝑓𝑡 = 𝜔𝑡/2𝜋 

Figure 4.8. Equation. Conversion of angular frequency of loading time to frequency 

of loading time. 

 

4.2.4 Constitutive Equations 

As noted earlier, displacements are the primary unknowns in the 3D-FAST formulation. 

Strain-displacement and stress-displacement constitutive equations are employed to 

compute strains (normal and shear) and stresses (normal and shear) from the 

displacements, respectively. The derivation of constitutive equations for 3D-FAST is 

similar to that of 3D-Move as presented in Section 3.4.3. 

Strain-displacement constitutive equations are presented in Figure 4.9 using 

index notation. 

𝜀𝑗𝑘 =
1

2
(
𝜕𝑢𝑗
𝜕𝑘

+
𝜕𝑢𝑘
𝜕𝑗
) 

Figure 4.9. Equation. Strain-displacement constitutive equation. 
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In this equation, 𝜀𝑗𝑘  is strain with j and k representing direction, which either of 

these two parameters can correspond to x-, y-, and z-directions, respectively (see Figure 

4.3). If j and k refer to the same directions, then 𝜀𝑗𝑘  represents normal strain. Otherwise, it 

represents shear strain. 

Stress-strain constitutive relationships should be developed in order to derive 

stress-displacement constitutive equations. The normal stress-strain relationship in three-

dimensional case is presented in Figure 4.10. 

 

 𝜎𝑗𝑗 = 𝜆 ∙ 𝑡𝑟(𝜀) + 2𝐺 ∙ 𝜀𝑗𝑗  

Figure 4.10. Equation. Normal stress-strain constitutive equation. 

 

In this equation, λ and G are first and second Lamé parameters, respectively, 

noting that the second Lamé parameter is equal to shear modulus (Shames, 1997). 

Furthermore, 𝜎𝑗𝑗 is normal stress in the jth direction, ε is the strain tensor, and tr(.) is the 

trace function. In frequency domain, this equation is presented in Figure 4.11. 

 

 �̃�𝑗𝑗 = 𝜆 ∙ 𝑡𝑟(𝜀̃) + 2𝐺 ∙ 𝜀�̃�𝑗  

Figure 4.11. Equation. Normal stress-strain constitutive equation (frequency 

domain version). 

 

In this equation, the ~ symbol represents the frequency domain equivalent of the 

parameter of interest. The normal stress-displacement constitutive equations are derived 
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by combining normal stress-strain constitutive equations (the equation presented in 

Figure 4.11) and strain-displacement constitutive equations (the equation presented in 

Figure 4.9).  

Shear stress-displacement constitutive equations are derived by combining the 

shear stress-shear strain constitutive equations and shear strain-displacement constitutive 

equations. In this equation, all the parameters are as previously defined. The shear stress-

shear strain constitutive equations are presented in Figure 4.12. The shear strain-

displacement constitutive equations are previously presented in Figure 4.9. 

 

𝜎𝑗𝑘 = 𝐺 (
𝜀𝑗𝑘
2
+
𝜀𝑘𝑗
2
) 

Figure 4.12. Equation. Shear stress-shear strain constitutive equation. 

 

4.2.5 Solution Scheme 

The first step of obtaining the solution of the finite-layer model for a pavement structure 

is employing the equilibrium equation (i.e., Newton’s second law) in differential form for 

an arbitrary element of the pavement. The mathematical representation of this equation is 

presented in Figure 4.13 using index notation. 

 

𝜕𝜎𝑗𝑘
𝜕𝑗

= 𝜌
𝜕2𝑢𝑗
𝜕𝑗2

 

Figure 4.13. Equation. Equilibrium equation in differential form. 



59 

 

 

In this equation, ρ is density and all the other parameters are as previously 

defined. Constitutive equations are employed to rewrite equation presented in Figure 

4.13 in terms of displacements. By replacing equation presented in Figure 4.9 into the 

equation presented in Figure 4.10 the normal stress-displacement constitutive equation is 

derived. Furthermore, by replacing presented in Figure 4.9 in Figure 4.12, the shear 

stress-displacement constitutive equation is obtained. Using these two displacement-

based constitutive equations, one can rewrite Figure 4.13 in terms of displacement only 

without any stress or strain parameters. Solving the system of partial differential 

equations corresponding to Equation (8) leads to the following form for displacement 

function in the jth direction: 

 

�̃�𝑗 = 𝐴1𝑒
𝑛1𝑧 + 𝐴2𝑒

𝑛2𝑧 + 𝐴3𝑒
−𝑛1𝑧 + 𝐴4𝑒

−𝑛2𝑧 + 𝐴5𝑧 ∙ 𝑒
𝑛1𝑧 + 𝐴6𝑧 ∙ 𝑒

𝑛2𝑧 

Figure 4.14. Equation. Displacement function obtained as the solution of finite-layer 

solution for the pavement system. 

 

In this equation, z is the depth of interest and A1 to A6 are unknown coefficients 

specific to each layer and for the specific wave of interest. These unknowns are 

determined by surface, interface and bottom boundary conditions. The first and second 

eigenvalues for the pavement system, n1 and n2, are calculated using the equations 

presented in Figure 4.15 and Figure 4.16, respectively. 
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𝑛1 = √𝜔𝑥
2 + 𝜔𝑦

2 −
𝜌 ∙ 𝜔𝑡

2

𝜆 + 2𝐺
 

Figure 4.15. Equation. First eigenvalue for pavement system. 

 

𝑛2 = √𝜔𝑥2 + 𝜔𝑦2 −
𝜌 ∙ 𝜔𝑡

2

𝐺
 

Figure 4.16. Equation. Second eigenvalue for pavement system. 

 

The equations presented in Figure 4.14, Figure 4.15, and Figure 4.16 are of significant 

importance in the 3D-FAST formulation. These equations represent the finite-layer 

solution for the displacement function. Recall that the displacement function in finite-

layer method acts the same as the shape functions in FEM. However, it should be noted 

that the displacement function is in frequency domain and has to be transformed into 

spatial and time frequencies using an inverse Fourier transformation algorithm. Once 

displacements are derived using the equation presented in Figure 4.14, one can calculate 

other pavement mechanical responses such as stresses, strains, velocities, and 

acceleration using respective constitutive equations. Similar equations to Figure 4.14 can 

be derived for these responses. All these similar equations will have six unknowns (A1 to 

A6) which are determined through boundary conditions as presented next. 
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4.2.6 Boundary Conditions 

The boundary conditions are used to determine the unknowns that appear in the 

displacement function (A1 to A6) for a specific wave. Based on the formulation developed 

for 3D-FAST, there are M × N × K waves in total. Based on the equation presented in 

Figure 4.14, there are six (6) unknowns per layer per wave. Therefore, considering that 

the pavement consists of C layers, the total number of unknowns would be M × N × K × 

C for a specific pavement system. 

The unknowns of the displacement function can be identified by employing 

boundary conditions. Theoretically, the number of boundary conditions should be equal 

to number of unknowns so that the unknowns can be uniquely identified. Waves obtained 

by taking Fourier transform on the load are uniquely distinguished by their frequencies in 

the space and time domains (i.e., by ωx, ωy, and ωt).  

Totally, there are 6C boundary conditions for the layered pavement systems that 

can be applied for every wave out of the total M × N × K waves. There are three (3) 

surface boundary conditions, 6(C-1) layer interface boundary conditions, and three (3) 

bottom boundary conditions. 

In the 3D-FAST formulation, the three (3) surface boundary conditions are 

equality of vertical normal stress (σzz), longitudinal shear stress (σxz), and lateral shear 

stress (σyz) applied on the pavement surface to that of respective pavement responses at 

the surface. The load representation of surface normal stress was already presented in the 

equation presented in Figure 4.4. The same presentation can be made for longitudinal 
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and lateral shear stresses by generalizing the equation presented in Figure 4.4. The 

results would be the equation presented in Figure 4.17, which accounts for shear stresses 

applied on the pavement surface. 

 

𝜎𝑗𝑧(𝑥, 𝑦, 𝑡) = ∑∑∑(𝜎𝑗�̂�)𝑚𝑛𝑘𝑒
𝑖𝜔𝑥𝑥𝑒𝑖𝜔𝑦𝑦𝑒𝑖𝜔𝑡𝑡

𝑀

𝑚=1

𝑁

𝑛=1

𝐾

𝑘=1

 

Figure 4.17. Equation. Representation of vertical and shear surface loads in 3D-

FAST formulation. 

 

In these equations, j may correspond to x-, y-, or z-direction, thus, 𝜎𝑥𝑧(𝑥, 𝑦, 𝑡), 

𝜎𝑦𝑧(𝑥, 𝑦, 𝑡), and 𝜎𝑧𝑧(𝑥, 𝑦, 𝑡) represent applied dynamic surface longitudinal shear stress, 

dynamic surface lateral shear stress, and dynamic surface vertical normal stress, 

respectively. The three-dimensional Fourier coefficient matrix is denoted by (𝜎𝑗�̂�)𝑚𝑛𝑘 

and all the other parameters are as previously defined. Using this notation, the surface 

boundary conditions can be represented by the equation presented in Figure 4.18. 

 

�̃�𝑗𝑧(𝜔𝑥 , 𝜔𝑦 , 𝜔𝑡 , 𝑧 = 0) = �̂�𝑗𝑧(𝜔𝑥 , 𝜔𝑦, 𝜔𝑡 , 𝑧 = 0) 

Figure 4.18. Equation. Surface boundary condition representation for 3D-FAST 

formulation. 
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In these equations, �̃�𝑗𝑧  and  �̂�𝑗𝑧 are frequency domain values of pavement stress 

response and applied stress, respectively, for a wave represented by spatial frequencies of 

ωx and ωy for x- and y-directions, respectively, and time frequency of ωt. 

The interface layer boundary conditions are based on the equilibrium and 

continuity criteria. The equilibrium conditions of stresses acting on the horizontal plane 

(xy plane) lead to three (3) layer interface boundary conditions. On the other hand, the 

continuity conditions lead to another three (3) equations based on the equality of 

displacements in three (3) perpendicular directions. Therefore, there are six (6) boundary 

conditions for each layer interface. These layer interface boundary conditions should be 

satisfied for every wave obtained by the equation presented in Figure 4.17. For a 

pavement structure with C layers, there are C - 1 interfaces, leading to 6 (C - 1) interface 

boundary conditions. 

A mathematical representation should be derived for layer interface boundary 

conditions so that they can be incorporated into the 3D-FAST formulation. The first three 

(3) boundary conditions are based on the equality of stresses (vertical normal stress, 

longitudinal shear stress, and lateral shear stress; or σzz, σxz, and σyz) for the upper and the 

lower layers at the layer interface to ensure that equilibrium is satisfied. The layer 

interface boundary conditions based on the equilibrium criteria is formulated by the 

equation presented in Figure 4.19. 

 

�̃�𝑗𝑧
−(𝜔𝑥 , 𝜔𝑦 , 𝜔𝑡, 𝑧 = 𝐻) = �̃�𝑗𝑧

+(𝜔𝑥 , 𝜔𝑦 , 𝜔𝑡 , 𝑧 = 0) 

Figure 4.19. Equation. Layer interface boundary conditions based on the 

equilibrium criteria. 
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This notation equation basically refers to three (3) equilibrium equations 

(corresponding to σzz, σxz, and σyz) where ),,,(~ Hztyxjz    and )0,,,(~  ztyxjz 

are frequency values of stress at the bottom of the upper layer and at the top of the lower 

layer, respectively, considering H is the thickness of the upper layer. In the finite-layer 

formulation, local coordinates are used for each layer in the z-direction. It worth 

mentioning that as previously mentioned in Chapter 2, each layer is considered as an 

element by itself in the finite-layer method. Therefore, a local coordinate is used to 

identify the depth (z in the equation presented in Figure 4.19). A schematic presentation 

of global and local z coordinates are presented in Figure 4.20 again noting that 3D-FAST 

uses local coordinates. 

 

Figure 4.20. Illustration. Displaying the global and local coordinate for depth of 

interest (vertical or z-direction). 
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For fully bonded conditions at layer interfaces, there are three boundary 

conditions associated with continuity criteria based on the displacement equality of upper 

and lower layers. There are three continuity equations which can be summarized into one 

equation as presented in Figure 4.21 using index notation. 

 

�̃�𝑗
−(𝜔𝑥 , 𝜔𝑦 , 𝜔𝑡, 𝑧 = 𝐻) = �̃�𝑗

+(𝜔𝑥 , 𝜔𝑦, 𝜔𝑡 , 𝑧 = 0) 

Figure 4.21. Equation. Layer interface boundary conditions based on the continuity 

criteria. 

 

In these continuity equations, �̃�𝑗
−(𝜔𝑥 , 𝜔𝑦 , 𝜔𝑡 , 𝑧 = 𝐻) and �̃�𝑗

+(𝜔𝑥 , 𝜔𝑦 , 𝜔𝑡 , 𝑧 = 0) 

are displacements in the jth direction at the bottom of the upper layer and at the top of the 

lower layer, respectively. 

The displacement function presented in Figure 4.14 contains six unknowns per 

layer per wave. Assuming that the pavement is consisted of C layers, a total of 6C 

unknowns per wave exist for this function. For the pavement system to be structurally 

determinate, there should be 6C boundary conditions so that the unknowns can be 

uniquely identified. A pavement system with C layers has C – 1 interfaces, thus there are 

6 (C – 1) layer interface boundary conditions per wave. Considering three (3) surface 

boundary conditions based on the stress equilibrium, the total number of surface and 

layer interface boundary conditions would be 3 + 6 (C – 1) = 6C – 3 for a specific wave. 

Therefore, another three (3) boundary conditions are needed so that the total number of 

boundary conditions per wave are equal to the total number of unknowns in the 
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displacement function. These three (3) additional boundary conditions are derived based 

on the zero displacement at the bottom boundary. 

The bottom boundary conditions are zero displacement in three (3) perpendicular 

directions at a certain depth. If semi-infinite conditions are to be modeled, the thickness 

of the last layer may be considered relatively large. Otherwise, if a stiff layer exists as the 

last layer (e.g., bedrock), the bottom boundary can be considered at the top of that stiff 

layer so that displacements are equal to zero at that interface. The mathematical 

representation of the bottom boundary would be as the equation presented in Figure 4.22 

using the index notation. 

 

�̃�𝑗(𝜔𝑥 , 𝜔𝑦, 𝜔𝑡 , 𝐻𝑁) = 0 

Figure 4.22. Equation. Bottom boundary conditions based on the zero displacement 

criteria. 

 

The equation presented in Figure 4.22 is representative for three (3) bottom 

boundary conditions, where HN is the location of the bottom boundary with respect to the 

last layer interface. To model semi-infinite conditions for the thickness of the last layer, 

HN can be considered a relative large number. Based on these three (3) bottom boundary 

conditions, the total number of surface, layer interface, and bottom boundary conditions 

would be 3 + 6 (C – 1) + 3 = 6C per wave, considering pavement structure contains C 

layers. Thus, the number of boundary conditions will be equal to the number of 

unknowns in the displacement function (equation presented in Figure 4.14) so that all of 
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these 6C unknowns can be determined by solving for all of the boundary conditions at the 

same time represented by a system of equations for each and every M × N × K waves. 

Figure 4.23 schematically presents the surface and bottom boundary conditions, as well 

as interface boundary conditions for one of the pavement layer interfaces. 

 

 

Figure 4.23. Illustration. Representation of surface, layer interface, and bottom 

boundary conditions. 
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CHAPTER 5  3D-FAST UNIQUE COMPUTATIONAL FEATURES 

 

5.1    Introduction 

The formulation of 3D-FAST was presented in detail in Chapter 4. This formulation was 

based on the finite-layer approach and covered different aspects that 3D-FAST considers 

in the modeling of pavement structure. First and foremost, 3D-FAST carries out all the 

associated calculations by taking the Fourier transform of the dynamic load and this 

transformation is made on the two spatial variables defining the horizontal plane (i.e., x- 

and y-directions) and the time dimension (i.e., t) so that these calculations will be 

conducted in the frequency domain. Performing calculations in the frequency domain 

results in a various number of advancements to 3D-FAST, which are the direct 

consequence of using this domain. These advancements are introduced in the following: 

 Viscoelastic material characterization is a significant aspect of using 

frequency domain for 3D-FAST formulation. This property is significantly 

important because asphalt concrete (AC) modulus is substantially a function 

of loading frequency. If a dynamic load is applied on the pavement surface, 

different harmonic components of the load will excite different frequencies 

with different respective amplitudes so that each harmonic has its specific 

modulus depending on the function relating dynamic modulus to the time 

frequency of the loading (e.g., AC dynamic modulus master curve). 

 Inverse fast Fourier transform (IFFT) allows for obtaining the animated 

surface plots at a specific depth. In the original 3D-Move formulation, an 
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iteration scheme was used to transform back the responses from frequency 

domain to spatial domains. In 3D-FAST formulation (as well as 3D-Move 

ENHANCED), inverse Fourier transform was employed as a means to obtain 

responses for the entire loading domain in a substantially short period of time 

(typically less than a second). The application of IFFT not only provides a 

faster means for calculating pavement mechanical responses, but also provides 

responses for all the nodes at a specific depth, rather than only at a limited 

number of response points. In other words, responses are obtained for a larger 

number of nodes (M × N spatial nodes and for all the K time steps; see 

equation presented in Figure 4.4) at a substantially faster computational 

runtime. This approach is significantly faster compared to the original 

iteration scheme used in 3D-Move formulation. Details about using IFFT and 

obtaining surface plots are presented in Section 5.2. 

 The frequency domain calculation feature of 3D-FAST allows for a number of 

enhancements in terms of computational runtime. Furthermore, since 3D-

FAST considers linear viscoelastic (LVE) conditions, then superposition 

principle is applicable to the formulation meaning that different waves can be 

processed independently, and then the results of the process can be superposed 

in order to account for the contribution of waves to a particular response at the 

point (or depth) of interest. Since harmonic components of the load (identified 

by the equation presented in Figure 4.4) can be processed independently, 

parallel processing technique can be used to further speed-up 3D-FAST 
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computational runtime. Depending on the number of available processing 

units, the speed-up factor varies noting that typically higher number of 

processing units leads to a higher speed-up factor. Details about implementing 

parallel processing in 3D-FAST and its effect on the model runtime are 

described in Section 5.3. Measures used to evaluate the efficiency of 

implementing parallel processing technique are also presented in that section. 

 Linear time-Invariant property (LTI) is a property of the pavement system 

which is satisfied based on the 3D-FAST formulation as long as linear 

viscoelastic (LVE) material characteristics is the case. The LTI property of the 

pavement system coupled with the frequency domain calculations allows for 

using the superposition principal. In fact, the superposition principle (as 

defined by the Boltzmann’s equation presented in Figure 4.1) simplifies to a 

multiplication in the frequency domain (see the equation presented in Figure 

4.2). Details about the LTI property of the pavement system and how that 

incorporates into the superposition principle is presented in Section 5.4. 

 Non-uniform Fourier transform is another aspect of 3D-FAST formulation. 

The node spacing should be equal and it should satisfy the criteria presented 

by the Nyquist theorem in order to apply FFT algorithm on the dynamic 

loading. However, for the analysis of the waves comprising the load, only 

certain number of waves can be processed and the contribution of the other 

waves can be estimated based on the contribution of the processed waves 

using an interpolation scheme. Typically, the process is based on the analysis 
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of certain waves considering the unit (Dirac delta function) load. Responses 

are computed for the processed waves in frequency domain, noting that the 

unit load excites all the waves equally (i.e., with the same amplitude) in 

frequency domain. Then, responses for other (not processed) waves are 

obtained by employing an estimation method such as interpolation. Responses 

of interest are obtained using the convolution integral explained in Section 

5.4, which is the direct application of LTI property of the pavement system. 

The use of non-uniform Fourier transform significantly reduces 3D-FAST 

runtime but introduces some approximation into the model. Details about 

implementing the non-uniform Fourier transform is presented in Section 5.5. 

5.2    Inverse Fast Fourier Transform (IFFT) and Surface Plots 

To bring back the responses to the spatial and time domains, an inverse transformation is 

needed. 3D-Move uses a two-dimensional Fourier transform because time, t, and 

longitudinal direction, x, are interconnected due to the assumption that load moves at 

constant speed. Therefore, for a specific response point, summations over response 

contributions of waves corresponding to x-direction (longitudinal direction towards 

which the load moves) and y-direction (horizontal direction perpendicular to the travel 

direction) is performed to obtain the response(s) of interest. In 3D-FAST formulation, 

however, since a general dynamic load is modeled (which does not necessarily have 

constant moving speed) a three-dimensional Fourier transform is applied, so summations 

are made over response contributions of waves corresponding to x-, y-, and t-directions at 

a particular location and time. if a similar 3D-Move iteration scheme is used in 3D-
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FAST, it will be computationally time consuming, and if the response(s) are needed at 

multiple locations within pavement structure, the runtime will be substantially high. 

In the current study, employing the inverse Fourier Transform algorithm was 

proposed to transform the responses from the frequency domain to the corresponding 

spatial and time domains. Inverse Fast Fourier Transform (IFFT) is a time-efficient 

variant of inverse Fourier transform that can be used to carry out this transformation. 

Since a three-dimensional (3-D) Fourier transform was employed in 3D-FAST 

formulation for forward transform to the frequency domain, a 3-D IFFT should be 

employed for backward transform noting that x, y, and t are the Fourier variables. This 

inverse transform can be used to obtain the pavement mechanical responses at a specific 

depth of z = zi. For a specific mechanical responses, say vertical displacement (u3 or 

displacement in z-direction), the three-dimensional matrix of frequency contribution 

values can be generated for each and every wave using the equation presented in Figure 

4.6. The size of the response matrix in frequency domain will be M × N × K where M, N, 

and K are the number of waves representing the load in x-, y-, and t-directions, 

respectively. Then IFFT algorithm must be applied on this frequency response matrix to 

obtain responses in the spatial and time domains as a function of x, y, and t at the depth of 

z = zi. The computed matrix obtained by the application of IFFT algorithm will be again a 

three-dimensional matrix. As a result, a surface plot can be generated for the response of 

interest at each time step. Figure 5.1 presents a sample surface plot of pavement surface 

vertical displacement under a quad axle load at a specific time step. 
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Figure 5.1. Illustration. Sample surface plot of pavement surface vertical 

displacement under a quad axle load obtained using Inverse Fast Fourier 

Transform (IFFT). 

 

5.3    Parallel Processing 

Parallel processing is a mechanism to improve runtime by assigning computational tasks 

to different processing units (Rauber & Rünger, 2013). Since 3D-FAST formulation is 

based on the decomposition of the dynamic load into waves and processing them 

independently, parallel processing can be used effectively to improve the model runtime. 

Therefore, (frequency) values of the response(s) of interest could be determined by 

assigning waves to different processing units. Finally, these responses are collected from 

all the processing units and assembled so that IFFT algorithm can be applied on the 

assembled matrix. 

There are two general schemes associated with parallelization of an algorithm: 

synchronous parallelization and asynchronous parallelization. In a synchronous 
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parallelization, different tasks are assigned to the processors in a way that certain 

computational tasks are attributed to each and every processor. At the end of each 

iteration of the algorithm, the processed computational tasks are collected from all the 

processors, which will be used in the next algorithm iteration. Depending on the 

processing capacity of different processing units and the computational load assigned to 

them, some processors may need to wait for other processors until all processors 

complete their assigned computational tasks. The synchronous parallelization is of 

significant use if the output of the algorithm in one step is the input for the next step. 

Generally speaking, synchronous parallelization is used when the algorithm is seeking 

convergence through iterations but at each iteration, the computational tasks are 

parallelizable. 

In asynchronous parallelization, a portion of overall computational tasks are 

initially assigned to the processing units. Thereafter, once a processing unit is done with 

the assigned computational tasks, additional tasks will be assigned to that processing unit 

regardless of the status of other processing units. The asynchronous parallelization is an 

efficient parallelization scheme if the iteration (or sometimes simulation) steps are 

completely independent. In other words, the results of one iteration is not prerequisite for 

any other iterations, and all the iteration steps are computationally independent. One 

tangible example for efficiently using the asynchronous parallelization is the Monte-

Carlo simulations (D. D. Batioja-Alvarez et al., 2018; Coleri & Harvey, 2011; Hand & 

Epps, 2000). In this simulation technique, all the simulation (iteration) steps are 
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computationally independent so that an asynchronous parallelization can be effectively 

incorporated. 

In 3D-FAST formulation, all the waves can be processed independently since the 

linear viscoelastic conditions are assumed to be the case. This means that it is legitimate 

to apply the superposition principle in the 3D-FAST formulation. It worth mentioning 

that while in the time domain the behavior of a viscoelastic material at a certain time step 

is dependent on its loading history (see equation presented in Figure 4.1) but in 

frequency domain, this dependency is vanished since the convolution integral is replace 

with simple multiplication (see equation presented in Figure 4.2). This is the key to the 

independency of waves in frequency domain from a computational standpoint (as 

described by the equation presented in Figure 4.4). Therefore, asynchronous 

parallelization can be effectively incorporated into 3D-FAST formulation which is the 

direct result of conducting calculations in frequency domain. 

A number of measures can be used to evaluate the efficiency of parallel 

computing. The speed-up factor is a measure which is calculated based on the equation 

presented in Figure 5.2 assuming that n processing units are used to be incorporated in 

3D-FAST implementation using parallel computing. 

 

𝑆(𝑛) =
𝑇(1)

𝑇(𝑛)
 

Figure 5.2. Equation. Speed-up factor of parallel computing. 

 



76 

 

 

In this equation, 𝑇(1) is the runtime using one processing unit (i.e., no parallel 

computing), 𝑇(𝑛) is the runtime considering n processing units are contributing in a 

parallelized algorithm, and S(n) is the speed-up factor. 

The parallel efficiency is the speed-up factor divided by the number of processors 

calculated by the equation presented in Figure 5.3. If an algorithm is theoretically fully 

parallelizable, a parallel efficiency of 100% will be achieved. 

 

𝐸(𝑛) =
𝑆(𝑛)

𝑛
× 100 

Figure 5.3. Equation. Parallel efficiency in parallel computing. 

 

In this equation, 𝐸(𝑛) is the parallel efficiency in percent. While a 100% parallel 

efficiency is not feasible in practice, one can obtain the portion of an algorithm (e.g., 3D-

FAST model algorithm) that is serial (i.e., non-parallelizable) using Amdahl's law 

(Rauber & Rünger, 2013). Based on this law, one can assume that B is the portion of the 

algorithm that is non-parallelizable and does not benefit from using additional 

computational resources in a parallel computing architecture. If B = 0, then the algorithm 

is fully serial, and parallel efficiency (E) would be equal to (100 / n) percent. If B = 1, 

then the algorithm is fully parallelizable and E would be 100%. However, in practice B is 

between 0 and 1 for most of the algorithms. Assuming 𝑇(1) is the runtime of the 

algorithm on one processing unit (i.e., no parallel computing included), the runtime can 

be considered as sum of serial and parallel portions as presented in Figure 5.4. 
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𝑇(1) = 𝐵 × 𝑇(1)⏟      
𝑆𝑒𝑟𝑖𝑎𝑙

+ (1 − 𝐵) × 𝑇(1)⏟          
𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

 

Figure 5.4. Equation. Decomposing the algorithm runtime into serial and parallel 

portions. 

 

All the parameters used in this equation are as previously defined. If n processing 

units are used in a parallel computing architecture, the algorithm runtime can be 

estimated by using the equation presented in Figure 5.5. 

 

𝑇(𝑛) = 𝐵 × 𝑇(1) +
(1 − 𝐵) × 𝑇(1)

𝑛
 

Figure 5.5. Equation. Estimating algorithm runtime using n processing units. 

 

 All the parameters in this equation are as previously defined. This equation is 

basically the mathematical representation of the Amdahl's law and can be used to identify 

the portion of the algorithm that is parallelizable or serial. Furthermore, if additional 

processing units are questioned to be used, the runtime can be estimated by employing 

this equation. 

5.4    Linear Time-Invariant (LTI) Property 

3D-FAST is a linear viscoelastic (LVE) model so that the superposition principal can be 

applied considering the effect of time on pavement mechanical responses. The 

superposition principal for a linear time-invariant (LTI) system is represented by 
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convolution integral (see the equation presented in Figure 4.1). The convolution integral 

simplifies to multiplication in the frequency domain (see the equation presented in 

Figure 4.2). The unit load (Dirac delta function) has the important property of equally 

(i.e., with the same amplitude) exciting all the frequencies. Thus, the pavement 

mechanical response(s) of interest can be obtained for the unit load, and then convolved 

with the desired load to obtain the response of interest under that load. If �̃�∗(𝜔, 𝑧𝑖) is the 

arbitrary response of the pavement system at a depth of z = zi , and )(
~

RH is the 

pavement response under Dirac delta function for the same response type and depth, then 

the pavement response under the actual vehicle load (�̂�𝑗𝑧(𝜔)) can be calculated using the 

equation presented in Figure 5.6. In this equation, ω in parentheses represents the 

frequency and emphasizes that this equation is in the frequency domain. 

 

�̃�∗(𝜔, 𝑧𝑖) = �̃�𝑅(𝜔, 𝑧𝑖) ∙ �̂�𝑗𝑧(𝜔) 

Figure 5.6. Equation. The superposition principle in frequency domain. 

 

The equation presented in Figure 5.6 simply states that the superposition of the 

load in frequency domain is based on the multiplication of the response under unit load 

by the applied surface load. Another important conclusion derived from this equation is 

that if the response of the pavement at a certain depth (say zi) is known for a certain 

dynamic load, the pavement response for the same response type under unit load can be 

obtained using this equation. Thereafter, the pavement response at that specific depth can 

be calculated for the same response type using this equation but for another surface 
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dynamic load in question. It is essential that both dynamic loading cases must have the 

same frequencies for all the Fourier variables (i.e., x, y, and t) so that the sampling rate 

and the number of waves describing the load are the same, which allows for using the 

equation presented in Figure 5.6. It should be noted that since �̃�∗(𝜔) is in frequency 

domain, an inverse transformation is needed to obtain the response in the spatial and time 

domains for the response of interest at a specific depth of zi. As explained in detail in 

Section 5.2, IFFT is a time efficient and practical approach for this objective. 

The superposition principal characterized by the equation presented in Figure 5.6 

is highly effcient since the pavement structure can be analyzed only once under Dirac 

delta (unit) load. This analysis is basically comprised of calculating the unknown 

coefficients of the displacement function (see the equation presented in Figure 4.14) for 

all the harmonics obtained by the decomposition of the unit load, and subsequently 

computing the contribution of those harmonics to the response of interest in frequency 

domain in order to assemble the �̃�𝑅(𝜔, 𝑧𝑖) matrix. Once this matrix is assembled, the 

pavement response under each arbitrary load can be determined in a substantially short 

period of time (typically few seconds) with no need to run the 3D-FAST analysis again. 

5.5    Non-uniform Fourier transform 

Parallel processing was introduced as a means of improving runtime. While parallel 

processing does not influence the obtained results whatsoever (compared to no parallel 

computing architecture) it can substantially decrease 3D-FAST runtime depending on the 

number of processing units used in the analysis procedure. Another method to reduce the 
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runtime is using non-uniform Fourier transform method which may be integrated with 

parallel processing and the LTI property of the pavement system. In this method, the unit 

load (Dirac delta function) is considered as the pavement surface loading. Waves with 

select frequencies are processed meaning that the unknowns of displacement function 

(equation presented in Figure 4.14) are derived for only those select waves instead of the 

entire spectra, and consequently the response(s) of interest are calculated for these 

(processed) waves at the desired depth of z = zi under the unit dynamic load. 

Consequently, responses in frequency domain are estimated for other waves (i.e., waves 

that are not processed). This analysis can be integrated with parallel processing to further 

reduce the runtime. The application of non-uniform Fourier transform introduces some 

approximation to the obtained pavement mechanical responses. 

After pavement structure is analyzed for select frequencies and frequency values 

of the response(s) of the interest are determined, a three-dimensional interpolation 

scheme (e.g., 3-D spline interpolation) could be used to obtain the responses in frequency 

domain for other waves to fill out the �̃�𝑅(𝜔, 𝑧𝑖) matrix in the equation presented in 

Figure 5.6. Then, this equation is used to obtain the responses in frequency domain under 

actual load, and consequently in spatial and time domains using inverse Fourier 

transform. It is crucial to select representative select frequencies upon which the non-

uniform Fourier transform is applied. In the current study, a number of different scenarios 

were examined and eventually it was concluded that if the waves corresponding to wave 

number 1, 2, 4, 8, and so on (i.e., 2n) are selected in all the directions (i.e., for spatial 
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domains and time domain) then the approximation introduced to pavement mechanical 

responses due to non-uniform Fourier transform would be minimal. 

Another forms of improvements can be made to further speed-up the runtime. For 

instance, a neural network can be trained and responses associated to a specific wave can 

be obtained by using the network (Ashtiani, Little, & Rashidi, 2018; Khodabandehlou & 

Fadali, 2017; Khodabandehlou & Fadali, 2018; Khodabandehlou, Pekcan, Fadali, & 

Salem, 2018). Metaheuristic algorithms such as particle swarm optimization (PSO) and 

genetic algorithm (GA) can also be used to obtain the responses for the waves that are not 

processed when using non-uniform Fourier transform (Hasany, Shafahi, & Kazemi, 2013; 

Tousi & Aznavi, 2015).  

In Chapter 6, a number of 3D-FAST runs are presented for verification, 

validation, and application purposes. The unique computational aspects of 3D-FAST are 

investigated for those cases and results are reported in order to show 3D-FAST is time 

efficient, and the model runtime could be further reduced by using the methods presented 

in this chapter. 
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CHAPTER 6  VERIFICATION, VALIDATION, AND APPLICATION OF 

3D-FAST 

 

6.1    Introduction 

In the past two chapters, 3D-FAST formulation was explained along with unique 

computational features associate with this formulation, which are primarily due to the 

frequency domain calculation of the model. 3D-FAST is basically an extension to 3D-

Move with the introduction of time (t) as a separate Fourier variable, which accounts for 

dynamic loading. 3D-Move formulation is based on the two-dimensional Fourier 

transform which was explained in Chapter 3. In 3D-FAST formulation, however, the 

dynamic load, and consequently, pavement mechanical responses are represented as 

three-dimensional matrices in frequency domain. Each element of these matrices 

corresponds to a harmonic with specific spatial and time frequencies. 3D-FAST 

formulation was explained in detail in Chapter 4, and a number of unique computational 

features resulted directly from employing the frequency domain were presented in 

Chapter 5. 

 In the current chapter, 3D-FAST is verified and validated. Furthermore, a sample 

application of 3D-FAST is presented. The verification of 3D-FAST is carried out by 

comparing the results obtained by 3D-FAST with common rheological (mechanical) 

models for which a theoretical closed-form solution can be derived. These rheological 

models are Kelvin’s model, Maxwell’s model, and Burger model. While these models are 

generally used for one-dimensional viscoelastic modeling, appropriate modifications 
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were applied in order to address three-dimensional conditions. Therefore, a comparison 

can be made between the classical solution for these models and 3D-FAST results. The 

verification of 3D-FAST is performed in Section 6.2. 

 For validating 3D-FAST, the results of a full-scale test conducted at the 

University of Nevada Reno were used. The facility is called Box, which was used to 

conduct experiments as part of Federal Highway Administration (FHWA) project 

contract no. DTFH61-13-c-00014, as well as other research projects. That research 

project was entitled Analysis Procedures for Evaluating Superheavy Load Movement on 

Flexible Pavements. Experiment No. 3 carried out in that project was used for 3D-FAST 

validation purposes. 3D-FAST validation process is presented in Section 6.3. 

 The application of 3D-FAST is presented for a roughness-induced dynamic 

loading. Road roughness induces dynamic load depending on the level of road roughness 

(irregularities on the pavement surface), vehicle speed, and vehicle suspension system 

characteristics. A quarter-car simulation was implemented using Simulink® in the 

MATLAB environment to obtain dynamic load. The dynamic load was then converted 

into a three-dimensional matrix consistent with 3D-FAST input. A sample pavement was 

analyzed under the roughness-induced dynamic vehicle load in Section 6.4. 

6.2    3D-FAST Verification: Rheological Models 

The rheological models are used primarily to characterize viscoelastic material 

properties. Typically, these models are used for one-dimensional cases and are a 

combination of spring and dashpots in series and/or parallel. In a spring element, the fully 
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elastic conditions exist and stress-strain relationship is according to Hook’s law. For a 

dashpot element, force is equal to the dashpot constant (η) multiplied by the rate of 

displacement with respect to time. In this section, 3D-FAST results are compared to the 

results obtained from rheological models noting that the spring coefficient and dashpot 

coefficients must be modified for three-dimensional loading conditions according to P-

wave or constrained modulus. The constrained modulus is defined as the ratio of stress to 

strain in the uniaxial strain state. Equation presented in Figure 6.1 shows the stress-strain 

relationship considering constrained conditions for uniaxial loading conditions. 

 

𝜎𝑧𝑧 = 𝑀𝜀𝑧𝑧 

Figure 6.1. Equation. Constrained (P-wave) modulus. 

 

In this equation, 𝜎𝑧𝑧 is the axial stress, 𝜀𝑧𝑧 is the axial strain, and M is the 

constrained modulus. The relationship between M and other fundamental mechanical 

properties of a certain material is presented in Figure 6.2. 

 

𝑀 =
𝐸(1 − 𝜐)

(1 + 𝜐)(1 − 2𝜐)
 

Figure 6.2. Equation. Relationship between constrained modulus, Young’s modulus, 

and Poisson’s ratio. 
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In this equation, E is the Young’s modulus and ν is Poisson’s ratio. While 

Young’s modulus is employed for one-dimensional loading conditions, the constrained 

modulus is used for three-dimensional conditions but uniaxial loading. Therefore, if the 

results of the classical solutions for a rheological model are to be compared with 3D-

FAST results, the spring and dashpot elements of the model should be modified through 

multiplying them by the adjustment factor presented in Figure 6.3, where AF is the 

adjustment factor. 

 

𝐴𝐹 =
𝑀

𝐸
=

(1 − 𝜐)

(1 + 𝜐)(1 − 2𝜐)
 

Figure 6.3. Equation. Adjustment factor for application of rheological models to 

three-dimensional conditions. 

 

In the rest of this section, 3D-FAST results are verified with Kelvin model, 

Maxwell model, and Burger’s model. A mechanical schematic of these models are 

presented in Figure 6.4. In the verification process, a harmonic load with a certain 

angular frequency is applied on the model. A single layer system is assumed with its 

viscoelastic characteristics represented by the corresponding rheological model. 
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(a) (b) (c) 

 

Figure 6.4. Illustration. Schematic of common rheological models: (a) Kelvin, (b) 

Maxwell, and (c) Burger’s. 

 

6.2.1 Kelvin Model 

Kelvin model is comprised of a spring element and a dashpot element in parallel. The 

mechanical schematic of a Kelvin rheological model is presented in Figure 6.4(a). 

Assuming that a load that varies harmonically with time but is uniform in spatial domain, 

one can write the stress equation as presented in Figure 6.5. 

 

𝜎(𝑥, 𝑦, 𝑡) = 𝜎0𝑒
𝑖𝜔𝑡 

Figure 6.5. Equation. Stress equation applied on a single layer characterized by 

Kelvin model. 
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In this equation, 𝜎(𝑥, 𝑦, 𝑡) is the stress function, 𝜎0 is the stress amplitude, and ω 

is the angular frequency of the loading time. Longitudinal and transverse directions are 

denoted by x and y, respectively (see Figure 4.3). Assuming a phase angle of 𝜑, one can 

write the strain equation for the Kelvin model as presented in Figure 6.6. 

 

𝜀(𝑥, 𝑦, 𝑡) = 𝜀0𝑒
𝑖(𝜔𝑡−𝜑) 

Figure 6.6. Equation. Strain equation assumed for a single layer characterized by 

Kelvin model. 

 

In this equation, 𝜀(𝑥, 𝑦, 𝑡) is the strain function and 𝜀0 is the strain amplitude. 

Stress induced by Kelvin model characterization is the sum of stress induced in the spring 

element and dashpot element, which is mathematically presented in Figure 6.7. 

 

𝜎(𝑥, 𝑦, 𝑡) = 𝐸 ∙ 𝜀(𝑥, 𝑦, 𝑡) + 𝜂 ∙ 𝜀̇(𝑥, 𝑦, 𝑡) 

Figure 6.7. Equation. Stress function for Kelvin model as sum of stress induced in 

the spring and dashpot elements. 

 

In this equation, 𝜀̇(𝑥, 𝑦, 𝑡) is the rate of strain change with time. Furthermore, E 

and η are spring constant and dashpot constant, respectively (see Figure 6.4(a)). By 

replacing equation presented in Figure 6.6 in the equation presented in Figure 6.7, the 

equation presented in Figure 6.8 will be derived. 
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𝜎0 ∙ 𝑒
𝑖𝜑 = 𝜂𝜀0(𝑖𝜔) + 𝐸𝜀0 

Figure 6.8. Equation. Relationship between stress and strain amplitude. 

 

If the corresponding real and imaginary parts of the equation presented in this 

figure are put equal, two equalities are derived as presented in Figure 6.9, noting that 

according to the Euler’s formula, 𝑒𝑖𝜑 = 𝑐𝑜𝑠𝜑 + 𝑖 ∙ 𝑠𝑖𝑛𝜑. 

 

{
𝜎0 ∙ 𝑐𝑜𝑠𝜑 = 𝐸𝜀0

𝜎0 ∙ 𝑖 ∙ 𝑠𝑖𝑛𝜑 = 𝜀0(𝑖𝜔)
 

Figure 6.9. Equation. Equalities obtained from equilibrium of real and imaginary 

parts of stress using Kelvin model. 

 

By dividing these two equalities, the phase angle of the Kelvin model under 

harmonic loading can be derived, which is presented in Figure 6.10. Furthermore, if 

these two equalities are squared and then summed, the strain amplitude can be derived, 

which is presented in Figure 6.11. 

 

tan(𝜑) =
𝜂𝜔

𝐸
→ 𝜑 = 𝑡𝑎𝑛−1 (

𝜂𝜔

𝐸
)  

Figure 6.10. Equation. Phase angle for Kelvin model under harmonic loading. 
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𝜎0
2 = 𝐸2𝜀0

2 + 𝜂2𝜀0
2𝜔2 → 𝜀0 =

𝜎0

√𝐸2 + (𝜂𝜔)2
 

Figure 6.11. Equation. Strain amplitude for Kelvin model under harmonic loading. 

 

The equations presented in Figure 6.10 and Figure 6.11 are basically the 

theoretical solutions for phase angle and strain amplitude, respectively, when Kelvin 

model is used for viscoelastic material characterization. These values are compared 

against those obtained from 3D-FAST for verification purposes. In the 3D-FAST run, the 

dynamic modulus associated with Kelvin model is calculated using the equation 

presented in Figure 6.12 noting that adjusted (constrained) values must be used for 

spring constant and dashpot constant in this equation. 

 

𝐸∗(𝜔) = 𝐸 + 𝑖𝜂𝜔 

Figure 6.12. Equation. Strain amplitude for Kelvin model under harmonic loading. 

 

In this equation, 𝐸∗(𝜔) is the dynamic modulus as a function of angular 

frequency of the loading time and all the other parameters are as previously defined. In 

order to verify 3D-FAST with Kelvin model, a single layer was assumed with its material 

characterized by a Kelvin model. The spring constant of the Kelvin model was 

considered to be constant (E = 300 MPa) while the dashpot constant was assigned values 

of decades in the range of η = 106 Pa.s to η = 1013 Pa.s. Table 6.1 summarizes the 
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parameters used in the verification process of 3D-FAST using Kelvin model. The 

verification is conducted for a single wave (i.e., harmonic). However, since any arbitrary 

dynamic loading can be decomposed into a set of harmonics using discrete Fourier 

transform, the verification can be conducted for one wave, and then generalized to the set 

of waves constituting the actual load. The strain amplitude and phase angles are presented 

in Figure 6.13 for both results obtained by 3D-FAST and theoretical solution, using the 

equations presented in Figure 6.10 and Figure 6.11, respectively. This figure 

demonstrates a perfect match between 3D-FAST and theoretical results. Based on this 

figure, as the dashpot constant increases, the phase angle increases as well. The 

adjustment factor for spring and dashpot constants is 4.33 using the equation presented in 

Figure 6.3. Therefore, the constrained values for spring and dashpot constants must be 

used in the equations presented in Figure 6.10 and Figure 6.11 to calculate phase angle 

(φ) and strain amplitude (ε0), respectively. The data used to produce Figure 6.13 is 

presented in Table 6.2. This data also includes a no dashpot scenario for which the 

Kelvin model reduces to a spring element which is representative of a linear elastic layer 

with a phase angle of φ = 0° (fully elastic conditions). The phase angle asymptotically 

reaches to φ = 90° (fully viscous conditions) as the dashpot constant increases towards 

infinity. The strain amplitude decreases by increasing dashpot constant, and this increase 

is substantial for higher values of dashpot constant. Based on the data presented in Table 

6.2 and the graph presented in Figure 6.13, 3D-FAST was successfully verified using 

Kelvin rheological model. 
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Table 6.1. 3D-FAST Parameters for Verification Using Kelvin Model. 

Parameter Symbol Context Value Unit 

Stress Amplitude 𝜎0 Loading 700 kPa 

Load Angular Frequency ω Loading 1.0 rad/s 

Spring Constant E Kelvin Model 300 MPa MPa 

Dashpot Constant η Kelvin Model 106 to 1013 Pa.s 

Poisson’s ratio ν Pavement Structure 0.35 - 

Layer Thickness H Pavement Structure 1.0 m 

Number of waves in x-

direction 

M 3D-FAST modeling 512 - 

Number of waves in y-

direction 

N 3D-FAST modeling 512 - 

Number of waves in t-

direction 

K 3D-FAST modeling 512 - 

 

 

 

Figure 6.13. Graph. 3D-FAST verification with Kelvin model by comparing strain 

amplitude and phase angle under harmonic loading of a single wave. 
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Table 6.2. 3D-FAST Verification Data Using Kelvin Model. 

     3D-FAST 
Theoretical Solution for 

Kelvin Model 

Spring 

Constant, 

E (Pa) 

Dashpot 

Constant, 

η (Pa.s) 

Poisson's 

Ratio, ν 

Constraint 

Spring 

Constant 

(Pa) 

Constraint 

Dashpot 

Constant 

(Pa.s) 

Strain 

Amplitude, 

ε0 

(mm/mm) 

Phase 

Angle, φ 

(˚) 

Strain 

Amplitude, 

ε0 

(mm/mm) 

Phase Angle, 

φ (˚) 

3.00E+08 0.00E+00 0.35 4.81E+08 0.00E+00 1.7030E-03 0.00 1.4538E-03 0.00 

3.00E+08 1.00E+06 0.35 4.81E+08 4.33E+06 1.7409E-03 0.61 1.4537E-03 0.52 

3.00E+08 1.00E+07 0.35 4.81E+08 4.33E+07 1.7438E-03 6.18 1.4479E-03 5.14 

3.00E+08 1.00E+08 0.35 4.81E+08 4.33E+08 1.1698E-03 42.04 1.0806E-03 41.99 

3.00E+08 1.00E+09 0.35 4.81E+08 4.33E+09 1.6014E-04 83.13 1.6055E-04 83.66 

3.00E+08 1.00E+10 0.35 4.81E+08 4.33E+10 1.6501E-05 88.65 1.6152E-05 89.36 

3.00E+08 1.00E+11 0.35 4.81E+08 4.33E+11 1.5989E-06 89.93 1.6153E-06 89.94 

3.00E+08 1.00E+12 0.35 4.81E+08 4.33E+12 1.6134E-07 89.95 1.6153E-07 89.99 

3.00E+08 1.00E+13 0.35 4.81E+08 4.33E+13 1.6365E-08 89.46 1.6153E-08 90.00 

 

 

6.2.2 Maxwell Model 

Maxwell model is comprised of a spring element and a dashpot element in series. A 

mechanical schematic of the Maxwell model is presented in Figure 6.4(b). Assuming a 

load that varies harmonically with time but is uniform in spatial domain, one can write 

the stress equation as previously presented in Figure 6.5. In a similar approach as 

presented in Section 6.2.1 for Kelvin model, the strain equation can be defined in the 

same way as the equation presented in Figure 6.6. While in the Kelvin model, stress 

amplitude is sum of stress induced in the spring and dashpot elements, in the Maxwell 

model, the strain amplitude would be sum of the strains induced in those elements, which 

is mathematically presented in Figure 6.14. 

 

𝜀(𝑥, 𝑦, 𝑡) = 𝜀𝑆(𝑥, 𝑦, 𝑡) + 𝜀𝐷(𝑥, 𝑦, 𝑡) 

Figure 6.14. Equation. Strain amplitude describe as the summation of spring 

element strain and dashpot element strain using Maxwell model. 
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In this equation, 𝜀𝑆 and 𝜀𝐷 are strain induced in the spring element and dashpot 

element, respectively. By differentiating both side of this equation with respect to time 

and employing stress-strain relationship for spring and dashpot elements, the equation 

presented in Figure 6.15 will be derived. 

 

𝜀̇(𝑥, 𝑦, 𝑡) = 𝜀�̇�(𝑥, 𝑦, 𝑡) + 𝜀�̇�(𝑥, 𝑦, 𝑡) =
�̇�(𝑥, 𝑦, 𝑡)

𝐸
+
𝜎(𝑥, 𝑦, 𝑡)

𝜂
 

Figure 6.15. Equation. Strain rate as a function of applied stress and model 

parameters for Maxwell model. 

 

In this equation, the dot symbol presents derivation with respect to time (rate of change) 

and all the other parameters are as previously defined. By replacing the equations 

presented in Figure 6.5 and Figure 6.7 in the equation presented in Figure 6.15, one can 

obtain the stress amplitude. The detailed calculations for deriving strain amplitude of the 

Maxwell model is presented in Figure 6.16. 

 

𝜀0(𝑖𝜔) ∙ 𝑒
𝑖𝜔𝑡 ∙ 𝑒−𝑖𝜑 =

𝜎0(𝑖𝜔) ∙ 𝑒
𝑖𝜔𝑡

𝐸
+
𝜎0 ∙ 𝑒

𝑖𝜔𝑡

𝜂
→ 𝜀0(𝑖𝜔) =

𝜎0(𝑖𝜔)

𝐸
∙ 𝑒𝑖𝜑 +

𝜎0
𝜂
∙ 𝑒𝑖𝜑 

→ 𝜀0(𝑖𝜔) =
𝜎0(𝑖𝜔)

𝐸
(𝑐𝑜𝑠𝜑 + 𝑖 ∙ 𝑠𝑖𝑛𝜑) +

𝜎0
𝜂
(𝑐𝑜𝑠𝜑 + 𝑖 ∙ 𝑠𝑖𝑛𝜑) 

→ 𝜀0(𝑖𝜔) = [
𝜎0(𝑖𝜔)

𝐸
𝑐𝑜𝑠𝜑 +

𝜎0
𝜂
𝑖 ∙ 𝑠𝑖𝑛𝜑]

⏟                  
𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

+ [
−𝜎0𝜔

𝐸
𝑠𝑖𝑛𝜑 +

𝜎0
𝜂
𝑐𝑜𝑠𝜑]

⏟              
𝑅𝑒𝑎𝑙

 

Figure 6.16. Equation. Obtaining the strain amplitude for Maxwell model. 
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If the real and imaginary parts of both sides in the last equation presented in 

Figure 6.16 are put equal, the phase angle and strain amplitude of a Maxwell model 

under harmonic loading can be derived. Noting that the left hand side of this equation 

does not have a real part, the real part of the right hand side of this equation must be 

equal to zero. Thus, the Maxwell model phase angle is as presented in Figure 6.17. The 

cosine and sine values of the phase angle can also be calculated using the equations 

presented in Figure 6.18 and Figure 6.19, respectively. 

 

𝜎0𝜔

𝐸
=
𝜎0
𝜂
→ tan(𝜑) =

𝐸

𝜂𝜔
→ 𝜑 = 𝑡𝑎𝑛−1 (

𝐸

𝜂𝜔
)  

Figure 6.17. Equation. Phase angle for Maxwell model under harmonic loading. 

 

cos(𝜑) =
𝜂𝜔

√𝐸2 + (𝜂𝜔)2
 

Figure 6.18. Equation. Cosine of phase angle for Maxwell model under harmonic 

loading. 

 

sin(𝜑) =
𝐸

√𝐸2 + (𝜂𝜔)2
 

Figure 6.19. Equation. Sine of phase angle for Maxwell model under harmonic 

loading. 
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If the imaginary parts of the sides of the last equation presented in Figure 6.16 are 

put equal, the strain amplitude of Maxwell model can be derived, which is presented in 

Figure 6.20. 

 

𝜀0𝜔 =
𝜎0𝜔

𝐸
𝑐𝑜𝑠𝜑 +

𝜎0
𝜂
𝑠𝑖𝑛𝜑 → 𝜀0 =

𝜎0

√𝐸2 + (𝜂𝜔)2
(
𝜂𝜔

𝐸
+
𝐸

𝜂𝜔
)  

Figure 6.20. Equation. Strain amplitude for Maxwell model under harmonic 

loading. 

 

The equations presented in Figure 6.17 and Figure 6.20 can be used as the 

theoretical solutions for phase angle and strain amplitude, respectively, for Maxwell 

model viscoelastic material characterization under harmonic loading. It should be noted 

that the constrained values for spring constant and dashpot constant must be used when 

using these equations. These constrained values are obtained by applying the adjustment 

factor introduced by the equation presented in Figure 6.3. 

 The stress-strain relationship for a Maxwell model can also be represented by an 

ordinary differential equation (ODE). ODE corresponding to a Maxwell rheological 

model is presented in Figure 6.21 where all the parameters are as previously defined. The 

ODE representation of a Maxwell rheological model is useful if appropriate resources are 

available to solve it. 
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𝜎 +
𝜂

𝐸
�̇� = 𝜂𝜀̇ 

Figure 6.21. Equation. ODE representation of stress and strain for a Maxwell 

model. 

 

 In order to verify 3D-FAST with Maxwell model, the dynamic modulus of 

Maxwell model is as presented in Figure 6.22. In this equation, the elastic (real) part and 

viscous (imaginary) part of the dynamic modulus are demonstrated. 

 

𝐸∗(𝜔) =
𝐸𝜂2𝜔2

𝜂2𝜔2 + 𝐸2⏟      
𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑀𝑜𝑑𝑢𝑙𝑢𝑠

+ 𝑖 ∙
𝜂𝐸2𝜔

𝜂2𝜔2 + 𝐸2⏟      
𝑉𝑖𝑠𝑐𝑜𝑢𝑠 (𝐿𝑜𝑠𝑠) 𝑀𝑜𝑑𝑢𝑙𝑢𝑠

 

Figure 6.22. Equation. Dynamic modulus of a material characterized by Maxwell 

rheological model 

 

 3D-FAST verification with Maxwell model was conducted using the parameters 

presented in Table 6.3. The load was assumed to change harmonically with time, and 

uniform in the spatial domain for a certain time. A single layer was considered for the 

pavement structure with a thickness of 1.0 m. All the other parameters used in the 

verification process are presented in Table 6.3. 
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Table 6.3. 3D-FAST Parameters for Verification Using Maxwell Model. 

Parameter Symbol Context Value Unit 

Stress Amplitude 𝜎0 Loading 700 kPa 

Load Angular Frequency ω Loading 10.0 rad/s 

Spring Constant E Maxwell Model 300 MPa 

Dashpot Constant η Maxwell Model 106 to 1013 Pa.s 

Poisson’s ratio ν Pavement Structure 0.35 - 

Layer Thickness H Pavement Structure 1.0 m 

Number of waves in x-

direction 

M 3D-FAST modeling 512 - 

Number of waves in y-

direction 

N 3D-FAST modeling 512 - 

Number of waves in t-

direction 

K 3D-FAST modeling 512 - 

 

 

 The results of 3D-FAST verification with Maxwell model are presented in Figure 

6.23. In this figure, the theoretical strain amplitude and phase angles are presented, which 

are calculated by using the equation presented in Figure 6.17 and Figure 6.20, 

respectively. In addition, the 3D-FAST results are also presented. The results shows a 

perfect match between 3D-FAST and theoretical solution. Table 6.4 summarizes the data 

used to generate Figure 6.23. Based on the presented results, 3D-FAST was successfully 

verified using Maxwell model under harmonic loading. As can be seen in Figure 6.23, 

the strain amplitude and phase angle decrease by increasing dashpot constant of the 

Maxwell rheological model. 
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Figure 6.23. Graph. 3D-FAST verification with Maxwell model by comparing strain 

amplitude and phase angle under harmonic loading of a single wave. 

 

Table 6.4. 3D-FAST Verification Data Using Maxwell Model. 

     3D-FAST 
Theoretical Solution for 

Maxwell Model 
Spring 

constant 

E (Pa) 

Dashpot 

constant 

η (Pa.s) 

Poisson's 

ratio 

Constraint 

spring 

constant (Pa) 

Constraint 

dashpot 

constant (Pa.s) 

Strain 

Amplitude, ε0 

(mm/mm) 

Phase 

Angle, φ 

(˚) 

Strain 

Amplitude, ε0 

(mm/mm) 

Phase Angle, 

φ (˚) 

300E+08 1.00E+06 0.35 1.30E+09 4.33E+06 0.015777656 87.58 1.616282E-02 88.09 

300E+08 1.00E+07 0.35 1.30E+09 4.33E+07 0.001665049 70.85 1.702765E-03 71.57 

300E+08 1.00E+08 0.35 1.30E+09 4.33E+08 0.000555179 16.79 5.621704E-04 16.70 

300E+08 1.00E+09 0.35 1.30E+09 4.33E+09 0.000532748 1.71 5.387038E-04 1.72 

300E+08 1.00E+10 0.35 1.30E+09 4.33E+10 0.000525427 0.17 5.384640E-04 0.17 

300E+08 1.00E+11 0.35 1.30E+09 4.33E+11 0.000533281 0.00 5.384616E-04 0.02 

300E+08 1.00E+12 0.35 1.30E+09 4.33E+12 0.000530952 0.00 5.384615E-04 0.00 

300E+08 1.00E+13 0.35 1.30E+09 4.33E+13 0.000536199 0.00 5.384615E-04 0.00 
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6.2.3 Burger Model 

Burger model is comprised of a Kelvin model and a Maxwell model, connected in series. 

A mechanical schematic of Burger model is presented in Figure 6.4(c). Burger model has 

been used in the literature for viscoelastic characterization of asphalt mixtures and 

mastics (Abbas, Masad, Papagiannakis, & Harman, 2007). The derivation of strain 

amplitude and phase angle for Burger model needs more effort compared to Kelvin 

model and Maxwell model. The ODE representation of Burger model stress-strain 

relationship is presented in Figure 6.25. 

 

𝜎 + 𝑝1�̇� + 𝑝2�̈� = 𝑞1𝜀̇ + 𝑞2𝜀̈ 

Figure 6.24. Equation. ODE representation of stress and strain for the Burger 

model. 

 

Here, the dot accent represents rate of change with time and the double dot accent 

is the second derivation with respect to time. 𝑝1, 𝑝2, 𝑞1, and 𝑞2 are function of Burger 

model properties, which are calculated using the equations presented in Figure 6.25. 

 

{

𝑝1 =
𝜂𝑀
𝐸𝑀

+
𝜂𝐾
𝐸𝐾
+
𝜂𝑀
𝐸𝐾
, 𝑝2 =

𝜂𝑀 ∙ 𝜂𝐾
𝐸𝑀 ∙ 𝐸𝐾

𝑞1 = 𝜂𝑀 ,                              𝑞2 =
𝜂𝑀 ∙ 𝜂𝐾
𝐸𝐾

 

Figure 6.25. Equation. Calculating Burger model parameters: p1, p2, q1, and q2. 
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In these equations, 𝐸𝑀  and 𝜂𝑀 are spring constant and dashpot constant of the 

Maxwell component of the Burger model, respectively. Furthermore, 𝐸𝐾  and 𝜂𝐾  are 

spring constant and dashpot constant of the Kelvin component of the Burger model, 

respectively. These constants are also presented in Figure 6.4(c). Assuming the general 

harmonic form presented in Figure 6.5 for stress function applied to a single layer 

characterized by Burger model, the associated strain function would be as presented in 

Figure 6.6. Details for calculating the phase angle is as presented in Figure 6.26. 

 

𝜎0 + 𝑝1(𝑖𝜔)𝜎0 + 𝑝2(𝑖𝜔)
2𝜎0 ∙ 𝑒

𝑖𝜔𝑡 =∙ 𝑒−𝑖𝜑𝑞1(𝑖𝜔)𝜀0 +∙ 𝑒
−𝑖𝜑𝑞2(𝑖𝜔)

2𝜀0 

→ 𝑒𝑖𝜑 ∙ 𝜎0(1 + 𝑝1𝑖𝜔 − 𝑝2𝜔
2) = (𝑞1𝑖𝜔 − 𝑞2𝜔

2)𝜀0 

→ 𝜎0(𝑐𝑜𝑠𝜑 + 𝑖 ∙ 𝑠𝑖𝑛𝜑)(1+ 𝑝1𝑖𝜔 − 𝑝2𝜔
2) = (𝑞1𝑖𝜔 − 𝑞2𝜔

2)𝜀0 

→ 𝜎0(𝑐𝑜𝑠𝜑 + 𝑝1𝑖𝜔 ∙ 𝑐𝑜𝑠𝜑 − 𝑝2𝜔
2 ∙ 𝑐𝑜𝑠𝜑 + 𝑖 ∙ 𝑠𝑖𝑛𝜑 − 𝑝1𝜔 ∙ 𝑠𝑖𝑛𝜑 − 𝑝2𝜔

2𝑖 ∙ 𝑠𝑖𝑛𝜑)

= (𝑞1𝑖𝜔 − 𝑞2𝜔
2)𝜀0 

Figure 6.26. Equation. Calculations associated with obtaining the phase angle for 

Burger model. 

 

Based on the last equation presented in Figure 6.26, if the real and imaginary 

parts of either sides of the equation are put equal, the set of equations presented in Figure 

6.27 is derived. 
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{
𝜎0(𝑐𝑜𝑠𝜑 − 𝑝2𝜔

2 ∙ 𝑐𝑜𝑠𝜑 − 𝑝1𝜔 ∙ 𝑠𝑖𝑛𝜑) = −𝑞2𝜔
2𝜀0

𝜎0(𝑝1𝜔 ∙ 𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜑 − 𝑝2𝜔
2 ∙ 𝑠𝑖𝑛𝜑) = 𝑞1𝜔𝜀0

 

Figure 6.27. Equation. Obtaining the phase angle for Burger model. 

 

By dividing these two equations, the stress amplitude and strain amplitude can be 

omitted so that phase angle would be the only unknown. The calculations are followed in 

the equations presented in Figure 6.28. 

 

𝑐𝑜𝑠𝜑 − 𝑝2𝜔
2 ∙ 𝑐𝑜𝑠𝜑 − 𝑝1𝜔 ∙ 𝑠𝑖𝑛𝜑

𝑝1𝜔 ∙ 𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜑 − 𝑝2𝜔2 ∙ 𝑠𝑖𝑛𝜑
=
−𝑞2𝜔

𝑞1
 

→
1 − 𝑝2𝜔

2 − 𝑝1𝜔 ∙ 𝑡𝑎𝑛𝜑

𝑝1𝜔 + 𝑡𝑎𝑛𝜑 − 𝑝2𝜔2 ∙ 𝑡𝑎𝑛𝜑
=
−𝑞2𝜔

𝑞1
 

→ 𝑡𝑎𝑛𝜑 =
𝑝2𝑞1𝜔

2 − 𝑞1 − 𝑝1𝑞2𝜔
2

𝑞2𝜔 + 𝑝2𝑞2𝜔3 − 𝑝1𝑞1𝜔
→ 𝜑 = 𝑡𝑎𝑛−1 (

𝑝2𝑞1𝜔
2 − 𝑞1 − 𝑝1𝑞2𝜔

2

𝑞2𝜔 + 𝑝2𝑞2𝜔3 − 𝑝1𝑞1𝜔
)  

Figure 6.28. Equation. Phase angle for Burger model. 

 

The strain amplitude can be derived by using either of the equations presented in 

Figure 6.27. If the first equation presented in that figure is used, the strain amplitude can 

be derived as a function of Burger model rheological parameters (𝑝1, 𝑝2, 𝑞1, and 𝑞2), 

frequency of loading time, and phase angle. The strain amplitude derivation based on this 

approach is presented in Figure 6.29. 
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𝜎0(1 − 𝑝2𝜔
2 − 𝑝1𝜔 ∙ 𝑡𝑎𝑛𝜑) ∙ 𝑐𝑜𝑠𝜑 = −𝑞2𝜔

2𝜀0 

→ 𝜀0 = 𝜎0. 𝑐𝑜𝑠𝜑 (
𝑝1𝜔 ∙ 𝑡𝑎𝑛𝜑 + 𝑝2𝜔

2 − 1

𝑞2𝜔2
)  

Figure 6.29. Equation. Strain amplitude for Burger model. 

 

Alternatively, the second equation presented in Figure 6.27 could be used to 

obtain strain amplitude. The creep compliance was used in 3D-FAST verification process 

as this parameter is available for Burger model in the literature. The creep compliance is 

the inverse of dynamic modulus in frequency domain. The equation presented in Figure 

6.30 represents the mathematical relationship between creep compliance and dynamic 

modulus. 

 

𝐸∗(𝜔) =
1

𝐽∗(𝜔)
 

Figure 6.30. Equation. Relationship between dynamic modulus and creep 

compliance in frequency domain. 

 

The creep compliance (same as dynamic modulus) has real and imaginary parts, 

which are shown in the equation presented in Figure 6.31. The equations presented in 

Figure 6.31 and Figure 6.32 correspond to the real and imaginary parts of creep 

compliance for Burger model, respectively. 
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𝐽∗(𝜔) = 𝐽1(𝜔)⏟  
𝑅𝑒𝑎𝑙 𝑃𝑎𝑟𝑡

+ 𝑖 ∙ 𝐽2(𝜔)⏟  
𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑃𝑎𝑟𝑡

 

Figure 6.31. Equation. The real and imaginary parts of creep compliance. 

  

𝐽1(𝜔) =
(𝑝1𝑞1 − 𝑞2) + 𝑝2𝑞2𝜔

2

𝑞1
2 + 𝑞2

2𝜔2
 

Figure 6.32. Equation. The real part of creep compliance for Burger model. 

 

𝐽2(𝜔) = −
𝑞1 + (𝑞2𝑝1 − 𝑝2𝑞1)𝜔

2

(𝑞1
2 + 𝑞2

2𝜔2) ∙ 𝜔
 

Figure 6.33. Equation. The imaginary part of creep compliance for Burger model. 

 

 All the parameters used in these equations are as previously defined. To verify 

3D-FAST with Burger model, a set of nine (9) RTFO-aged mastics were used based on a 

past study (Abbas et al., 2007). The Burger model parameters for these mastics are 

presented in Table 6.5. The parameters used for loading, pavement structure, and number 

of waves are presented in Table 6.6. Finally, the results obtained by 3D-FAST and 

theoretical solutions are presented in Table 6.7 for strain amplitude and phase angle. For 

theoretical solution, the strain amplitude and phase angle were calculated based on the 

equation presented in Figure 6.28 and Figure 6.29, respectively. The verification results 

shows a descent match between 3D-FAST and theoretical solutions, thus, 3D-FAST is 

successfully verified using Burger model. 
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Table 6.5. Burger Model Parameters for Nine (9) RTFO-Aged Asphalt Mastics. 

 Mastic Type RM (Pa) ηM (Pa.s) RK (Pa) ηK (Pa.s) 

PG 64-28 (Unmodified) 1354280.5 13408.4 59376.5 21612.9 

PG 70-22 (Unmodified) 2255403.6 27454.6 93244.3 34261.7 

Elvaloy 587236.4 14988.4 22151.1 9344.4 

SBS Linear 764279.5 22813.3 34379.1 12086.5 

SBS Linear Grafted 631716.1 26846.7 28567.1 10842.0 

SBS Radial Grafted 739829.6 21955.4 29356.2 11240.5 

EVA 722214.4 41863.2 33516.7 13479.1 

EVA Grafted 800962.7 49063.4 37851.7 15014.4 

CMCRA 1480667.2 63408.8 72346.2 26576.0 

 

Table 6.6. Parameters Used for 3D-FAST Verification Using Burger Model. 

Parameter Symbol Context Value Unit 

Stress Amplitude 𝜎0 Loading 700 kPa 

Load Angular Frequency ω Loading 6.28 rad/s 

Spring Constant of 

Maxwell Component 

EM Burger Model 

Parameter 

Varies 

based on 

Table 6.5 

Pa 

Spring Constant of 

Maxwell Component 

ηM Burger Model 

Parameter 

Varies 

based on 

Table 6.5 

Pa.s 

Spring Constant of 

Kelvin Component 

EK Burger Model 

Parameter 

Varies 

based on 

Table 6.5 

Pa 

Spring Constant of 

Kelvin Component 

ηK Burger Model 

Parameter 

Varies 

based on 

Table 6.5 

Pa.s 

Poisson’s ratio ν Pavement Structure 0.35 - 

Layer Thickness H Pavement Structure 1.0 m 

Number of waves in x-

direction 

M 3D-FAST modeling 512 - 

Number of waves in y-

direction 

N 3D-FAST modeling 512 - 

Number of waves in t-

direction 

K 3D-FAST modeling 512 - 
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Table 6.7. 3D-FAST Verification Data Using Burger Model. 

 
3D-FAST 

Theoretical Solution for 

Burger Model 

Mastic type 

Strain 

Amplitude, 

ε0 (mm/mm) 

Phase 

Angle, φ (˚) 

Strain 

Amplitude, 

ε0 (mm/mm) 

Phase 

Angle, φ (˚) 

PG 64-28 (Unmodified) 1.0936E-03 66.59 1.12E-03 66.76 

PG 70-22 (Unmodified) 5.6174E-04 66.92 5.75E-04 66.94 

Elvaloy 1.0223E-03 69.70 1.03E-03 69.66 

SBS Linear 6.7615E-04 65.59 6.61E-04 66.03 

SBS Linear Grafted 5.3847E-04 67.94 5.26E-04 67.64 

SBS Radial Grafted 7.3797E-04 67.77 7.24E-04 67.77 

EVA 3.2004E-04 69.07 3.13E-04 68.82 

EVA Grafted 2.6398E-04 68.22 2.66E-04 68.55 

CMCRA 2.1715E-04 66.68 2.12E-04 67.00 

 

6.3    3D-FAST Validation: The Full-Scale Box Experiment (Experiment No. 3) 

As part of the Federal Highway Administration (FHWA) project contract no. DTFH61-

13-c-00014, a comprehensive experimental plan was carried out to verify and calibrate 

the procedures developed for analyzing superheavy load (SHL) vehicle move on flexible 

pavements. The verification and calibration process of that study was conducted through 

a total of five (5) experiments using the full-scale pavement/soil testing facility (called 

Box from now on) at the University of Nevada, Reno (UNR) considering typical 

pavement structures. The details about these experiments are presented in Table 6.8. The 

UNR full-scale test facility is shown in Figure 6.34. A three-dimensional (3-D) 

schematic of this test facility is presented in Figure 6.35 which includes the dimensions 

of the Box, as well as the design of walls. The cross section of the Box is a square with a 

dimension of 124 inch by 124 inch, with a height of 72 inch by default. 
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Table 6.8. Details about Large-Scale Box Experiment. 

Experiment 

No. 

Descriptiona Loading Protocolb 

1  SG only (No AC or CAB). 

 Apply loads on top of SG. 

 Apply dynamic loads of different 
amplitudes simulating the FWD 

loading for low number of cycles. 

 Apply increasing static load until 

failure using 11.9 inch circular steel 
plate. 

2  Unbound materials only (CAB and 

SG) 

 Apply loads on top of the CAB. 

 Apply dynamic loads of different 

amplitudes simulating the FWD 

loading for low number of cycles. 

 Apply increasing static load until 

failure using 11.9 inch circular steel 
plate. 

3  Control section (full pavement 

structure: AC, CAB, and SG). 

 Apply loads on top of the AC layer. 

 Apply dynamic loads of different 

amplitudes simulating the FWD 

loading for low number of cycles. 

 Apply increasing static load until 
failure using 11.9 inch circular steel 

plate. 

4  Impact of sloped shoulder (Full 

pavement structure: AC, CAB and 

SG with 1:1.5 side slope). 

 Apply loads on top of the AC layer. 

 Apply dynamic loads of different 

amplitudes simulating the FWD 

loading at three locations: 12, 24 
and 36 inch from the edge of the 

slope. 

 Apply increasing static load until 

failure using 11.9 inch circular steel 
plate. 

5  Impact of loading on two buried 
utilities (Full pavement structure: 

AC, CAB and SG). 

 Apply loads on top of the AC layer 

at three different locations. 

 Apply dynamic loads of different 
amplitudes simulating the FWD 

loading for low number of cycles. 

 Apply increasing static load until 

failure using 11.9 inch circular steel 
plate. 

a AC, CAB, and SG denotes Asphalt Concrete, Crushed Aggregate Base, and Subgrade, respectively. 
b FWD denotes Falling Weight Deflectometer. 
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Figure 6.34. Photo. The full-scale pavement/soil testing facility at the University of 

Nevada Reno. 

 

 

Figure 6.35. Illustration. Three-dimensional (3-D) schematic of the full-scale 

pavement/soil testing facility at the University of Nevada Reno. 
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In all the five (5) experiments, a dynamic load was applied on the pavement 

surface using a hydraulic ram. The dynamic loading protocol was consisted of 0.1 second 

of loading pulse followed by 0.9 second of resting period, applied on a falling weight 

deflectometer (FWD) plate. The experiments were instrumented by measuring pavement 

surface vertical deflection using linear variable differential transformers (LVDTs) at 

typical FWD measured radial distances. Total Earth Pressure Cells (TEPC) and 

accelerometers (ACC) were also used to record vertical normal stress and acceleration, 

respectively, at certain locations of crushed aggregate base (CAB) and subgrade (SG). 

According to Table 6.8, typical pavement structures were constructed in 

experiment no. 1, 2, and 3, noting that experiment no. 3 included the full set of typical 

layers considered in a flexible pavement design (i.e., asphalt concrete or AC, CAB and 

SG). The objective of conducting experiment no. 4 and no. 5 was to scrutinize the 

influence of sloped-shoulder and buried utilities, respectively, upon the move of SHL. 

Therefore, experiment no. 3 was considered as the control experiment. This experiment 

was used for validation of 3D-FAST. Noting that 3D-FAST is capable of modeling 

layered structures under dynamic loading, experiments no. 4 and no. 5 are not appropriate 

candidates for 3D-FAST validation purposes as experiment no. 4 is not layered (i.e., all 

the interfaces are not horizontal) and experiment no. 5 violates the medium continuity 

criteria dictated by 3D-FAST formulation (due to buried utility). Therefore, experiment 

no. 3 was selected for the purpose of validating 3D-FAST. In the rest of this section, this 

experiment is briefly described, associated instrumentation is presented, and 3D-FAST 

results are compared and validated with the results obtained by the instrumentation. 
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6.3.1 Box Experiment No. 3 

A full pavement structure was fabricated in the Box experiment no. 3 consisted of 5 inch 

of asphalt concrete (AC), on top of 6 inch of CAB, on top of 66 inch of SG soil. Figure 

6.36 provides a close view of this experiment. The loading protocol was 25 cycles of 

dynamic load (0.1 second loading plus followed by 0.9 second rest period), applied on an 

11.9 inch Dynatest FWD loading plate. Details about the loading protocol is presented in 

Table 6.9. The load levels were 9000, 12000, 16000, 21000, and 27000 pound. Table 

6.10 presents pavement structure, material characterization, and parameters needed for 

modeling the experiment in 3D-FAST. A PG64-22 dense graded hot-mix asphalt (HMA) 

was used as the AC layer. The dynamic modulus test was performed on AC layer 

specimen at temperatures of 40, 70, 100, and 130°F, and at frequencies of 0.1, 0.5, 1, 5, 

10, and 25 Hz. The dynamic modulus and phase angle values for this mixture are 

presented in Table 6.11 and Table 6.12, respectively. The dynamic modulus (E*) master 

curve along with its elastic (E') and viscous (E") components are presented in Figure 

6.37. 
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Figure 6.36. Photo. A close view of experiment no. 3 performed at the University of 

Nevada Reno. 

 

Table 6.9. Loading Protocol for Experiment No. 3 (Full Pavement Structure). 

Load Type Target Load 

Amplitude (lb) 

Loading 

Cycles 

Load Plate 

Diameter (inch) 

Rest Period 

Between Load 

Levels 

Dynamic Load (0.1 
second Loading plus 0.9 

second Rest Period) 

9,000 25 Cycles 11.9 (Dynatest FWD 
Loading Plate) 

2 Minutes 

 

Table 6.10. Material Characterization and Parameters Needed for 3D-FAST 

Modeling of Experiment No. 3. 

Layer Thickness, h 

(inch) 

Material 

Characterization 

Poisson’s 

Ratio 

Unit Weight, 

γ (pcf) 

Asphalt Concrete 

(AC) 

5 Viscoelastic 0.30 148 

Crushed Aggregate 

Based (CAB) 

6 Elastic 0.35 138.2 

Subgrade (SG) Soil 66 Elastic 0.40 125.5 
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Table 6.11. Dynamic Modulus Values for a Typical Dense-Grade HMA with PG64-

22 Asphalt Binder. 

Temperature 

(°F) 
Dynamic Modulus, E* (psi) 

0.1 Hz 0.5 Hz 1 Hz 5 Hz 10 Hz 25 Hz 

40 693,889 1,012,294 1,163,463 1,530,813 1,690,524 1,898,005 

70 141,296 262,736 334,941 554,052 670,382 842,418 

100 21,439 45,076 61,705 123,984 164,420 233,925 

130 4,025 7,934 10,801 22,592 31,147 47,465 

 

Table 6.12. Phase Angle Values for a Typical Dense-Grade HMA with PG64-22 

Asphalt Binder. 

Temperature 

(°F) 
Phase Angle (Degrees) 

0.1 Hz 0.5 Hz 1 Hz 5 Hz 10 Hz 25 Hz 

40 22.1 19.0 17.3 15.5 15.9 18.1 

70 31.2 29.8 30.1 27.8 27.4 26.3 

100 28.5 29.9 31.3 35.0 35.5 36.8 

130 23.2 26.8 27.0 33.9 34.1 40.1 

 

 

Figure 6.37. Graph. Dynamic modulus master curve (E*) along with its elastic (E') 

and viscous (E") parts. 
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6.3.2 Instrumentation 

An extensive instrumentation plan was implemented for Box experiment no. 3. 

The details about the instrumentation for this test is graphically presented in Figure 6.38. 

The origin of the Cartesian system was located at the bottom of the Box with the positive 

z-direction heading to the pavement surface (see Figure 6.38). The horizontal directions 

are represented by x and y. Therefore, the coordinates of the center of loading plate is (0 

inch, 0 inch, 77 inch) in the (x, y, z) Cartesian system. The list of instruments used in the 

Box experiment no. 3 is presented in Table 6.13 along with the location of embedment in 

Cartesian and polar systems. The instrumentation of this test included the following: 

 LVDT: At the pavement surface, installed diagonally, to measure surface 

deflections at various radial distances (0, 8, 12, 24, 36, 48, and 60 inch). These 

LVDTs are tagged by L1 to L7 in Figure 6.38. 

 TEPC: The pressure cells were located in the middle of CAB, as well as at a 

depth of 6 inch below subgrade surface. Furthermore, one pressure cell was 

placed at the centerline of the load at a depth of 20 inch below subgrade. Four 

(4) pressure cells were placed at mid-depth CAB at the centerline of the load 

and at radial distances of 0, 12, 24, and 36 inch from the centerline of the load. 

Five (5) pressure cells were placed at the centerline of the load and at a radial 

distance of 12, 24, 48, and 60 inch from the centerline of the load. 
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 ACC: accelerometers were placed at the pavement surface, mid-depth CAB, 

and 6 inch below subgrade surface. The accelerometers were not used in the 

validation process of 3D-FAST. 

 The measured vertical surface displacement (measured by LVDTs) and vertical 

stress (measured by TEPCs) for different load levels are presented in Table 6.14 and 

Table 6.15, respectively. These measurements are later used in the process of 3D-FAST 

validation. The measured pavement surface deflections by LVDTs for different load 

levels and at different radial distances are presented in Figure 6.39. 

 

 

Figure 6.38. Illustration. Side view of experiment no. 3 and associated 

instrumentation. 
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Table 6.13. Instrumentation List of LVDTs, TEPCs, and ACCs Used in the Box 

Experiment No. 3. 

Experiment No. 3 - Instruments List 

No. Tag 
Sensor 

Name 
Brand Capacity Spec. 

Coordinates 

ID / SN 

No. 

of 

Ch. 

Notes r θ Z X Y Z 

in (mm) ° in (mm) in (mm) in (mm) in (mm) 

1 L1 (LAC) 77 - 0 Novotechnik 100 mm TR-0100 0 (0) 228 ° 77 (0) 0 (0) 0 (0) 77 (0)  1 Surface LVDT 

2 L2 (LAC) 77 - 8 Novotechnik 100 mm TR-0100 8 (203) 228 ° 77 (0) -5.3 (-135) -6 (-152) 77 (0)  1 Surface LVDT 

3 L3 (LAC) 77 - 12 Novotechnik 100 mm TR-0100 12 (305) 228 ° 77 (0) -8 (-203) -9 (-229) 77 (0)  1 Surface LVDT 

4 L4 (LAC) 77 - 24 Novotechnik 100 mm TR-0100 24 (610) 228 ° 77 (0) -15.9 (-404) -17.9 (-455) 77 (0)  1 Surface LVDT 

5 L5 (LAC) 77 - 36 Novotechnik 100 mm TR-0100 36 (914) 228 ° 77 (0) -23.9 (-607) -26.9 (-683) 77 (0)  1 Surface LVDT 

6 L6 (LAC) 77 - 48 Novotechnik 100 mm TR-0100 48 (1219) 228 ° 77 (0) -31.9 (-810) -35.9 (-912) 77 (0)  1 Surface LVDT 

7 L7 (LAC) 77 - 60 Novotechnik 100 mm TR-0100 60 (1524) 228 ° 77 (0) -39.9 (-1013) -44.8 (-1138) 77 (0)  1 Surface LVDT 

8 P1 (PSG) 46 - 0 Geokon 600 kPa 4" cell 0 (0) 0 ° 46 (787) 0 (0) 0 (0) 46 (787) 1404682 1 Pressure Cell (Vertical) 

9 P2 (PAB) 69 - 12 Geokon 250 kPa 4" cell 12 (305) 228 ° 69 (203) -8 (-203) -9 (-229) 69 (203) 1330825 1 Pressure Cell (Vertical) 

10 P3 (PAB) 69 - 24 Geokon 250 kPa 4" cell 24 (610) 228 ° 69 (203) -15.9 (-404) -17.9 (-455) 69 (203) 1330822 1 Pressure Cell (Vertical) 

11 P4 (PAB) 69 - 36 Geokon 250 kPa 4" cell 36 (914) 228 ° 69 (203) -23.9 (-607) -26.9 (-683) 69 (203) 1330827 1 Pressure Cell (Vertical) 

12 P5 (PAB) 69 - 0 Geokon 2.5 MPa 4" cell 0 (0) 228 ° 69 (203) 0 (0) 0 (0) 69 (203) 1533652 1 Pressure Cell (Vertical) 

13 P6 (PSG) 60 - 24 Geokon 600 kPa 4" cell 24 (610) 48 ° 60 (432) 15.9 (404) 17.9 (455) 60 (432) 1427206 1 Pressure Cell (Vertical) 

14 P7 (PSG) 60 - 48 Geokon 600 kPa 4" cell 48 (1219) 48 ° 60 (432) 31.9 (810) 35.9 (912) 60 (432) 1427204 1 Pressure Cell (Vertical) 

15 P8 (PSG) 60 - 60 Geokon 600 kPa 4" cell 60 (1524) 48 ° 60 (432) 39.9 (1013) 44.8 (1138) 60 (432) 1427205 1 Pressure Cell (Vertical) 

16 P9 (PSG) 60 - 12 Geokon 600 kPa 4" cell 12 (305) 48 ° 60 (432) 8 (203) 9 (229) 60 (432) 1404681 1 Pressure Cell (Vertical) 

17 A1 (AAB) 66 - 0 Vernier (± 5 g) 3-Axis 0 (0) 228 ° 66 (279) 0 (0) 0 (0) 66 (279)  1 Accelerometer 

18 A2 (AAB) 66 - 6 Vernier (± 5 g) 3-Axis 6 (152) 228 ° 66 (279) -4 (-102) -4.5 (-114) 66 (279)  1 Accelerometer 

19 A3 (AAB) 66 - 12 Vernier (± 5 g) 3-Axis 12 (305) 228 ° 66 (279) -8 (-203) -9 (-229) 66 (279)  1 Accelerometer 

20 A4 (AAB) 69 - 6 Vernier (± 5 g) 3-Axis 6 (152) 228 ° 69 (203) -4 (-102) -4.5 (-114) 69 (203)  1 Accelerometer 

21 A5 (AAB) 69 - 12 Vernier (± 5 g) 3-Axis 12 (305) 228 ° 69 (203) -8 (-203) -9 (-229) 69 (203)  1 Accelerometer 

22 A6  Vernier (± 5 g) 3-Axis        1 Accelerometer 

23 A7 (ASG) 60 - 6 Vernier (± 5 g) 3-Axis 6 (152) 48 ° 60 (432) 4 (102) 4.5 (114) 60 (432)  1 Accelerometer 

24 A8 (ASG) 60 - 12 Vernier (± 5 g) 3-Axis 12 (305) 48 ° 60 (432) 8 (203) 9 (229) 60 (432)  1 Accelerometer 

25 A9 (ASG) 60 - 24 Vernier (± 5 g) 3-Axis 24 (610) 48 ° 60 (432) 15.9 (404) 17.9 (455) 60 (432)  1 Accelerometer 

26 A10 (ASG) 60 - 36 Vernier (± 5 g) 3-Axis 36 (914) 48 ° 60 (432) 23.9 (607) 26.9 (683) 60 (432)  1 Accelerometer 

27 A11 (ASG) 60 - 48 Vernier (± 5 g) 3-Axis 48 (1219) 48 ° 60 (432) 31.9 (810) 35.9 (912) 60 (432)  1 Accelerometer 

28 A12 (ASG) 60 - 60 Vernier (± 5 g) 3-Axis 60 (1524) 48 ° 60 (432) 39.9 (1013) 44.8 (1138) 60 (432)  1 Accelerometer 

29 A13 (AAC) 77 - 6 Vernier (± 5 g) 3-Axis 6 (152) 228 ° 77 (0) -4 (-102) -4.5 (-114) 77 (0)  1 Accelerometer 

30 A14 (AAC) 77 - 12 Vernier (± 5 g) 3-Axis 12 (305) 228 ° 77 (0) -8 (-203) -9 (-229) 77 (0)  1 Accelerometer 

31 A15 (AAC) 77 - 24 Vernier (± 5 g) 3-Axis 24 (610) 228 ° 77 (0) -15.9 (-404) -17.9 (-455) 77 (0)  1 Accelerometer 

32 A16 (ARF) 66+ Vernier (± 5 g) 3-Axis - - - - - -  1 Frame Accelerometer 
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Table 6.14. Vertical Surface Displacement Measurements for Experiment No. 3 at 

Different Load Levels. 

Load Level (lb) Vertical Surface Displacements (inch) 

Target 
Average 

Applied 
LVDT1 LVDT2 LVDT3 LVDT4 LVDT5 LVDT6 LVDT7 

9,000 8,971 0.01811 0.01117 0.00773 0.00475 0.00280 0.00281 0.00140 

12,000 11,857 0.02683 0.01687 0.01179 0.00755 0.00342 0.00349 0.00171 

16,000 15,860 0.04099 0.02729 0.02162 0.01274 0.00536 0.00392 0.00382 

21,000 21,146 0.05772 0.04192 0.03305 0.02048 0.00880 0.00628 0.00458 

27,000 27,087 0.07976 0.05763 0.04482 0.02908 0.01124 0.00697 0.00577 

 

Table 6.15. Vertical Stress Measurements in Experiment No. 3 at Different Load 

Levels. 
Load Level (lb) Vertical Stress (psi) 

Target 
Average 

Applied 
TEPC1 TEPC3 TEPC5 TEPC6 TEPC9 TEPC10 

9,000 8,971 2.9 1.5 11.1 1.9 3.9 6.9 

12,000 11,857 4.0 2.0 15.3 2.5 5.2 9.6 

16,000 15,860 5.6 2.7 22.0 3.4 7.1 13.7 

21,000 21,146 7.7 3.6 32.4 4.6 9.8 19.3 

27,000 27,087 10.4 4.4 46.5 5.7 12.7 26.5 

 

 

 

Figure 6.39. Graph. Vertical surface deflection at different load levels for different 

radial distances. 
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6.3.3 3D-FAST Inputs and Validation Data 

3D-FAST validation was performed at the load level of 9,000 pound as it is typically 

used in pavement design and distress condition evaluation. Appropriate inputs must be 

considered in 3D-FAST including pavement structure, material characteristics, and 

dynamic surface loading. The pressure induced on the FWD plate was measured by the 

instrumentation mounted on the hydraulic ram. The applied dynamic load for load level 

of 9,000 pound is presented in Figure 6.40. The frequency of recording the applied load 

on the FWD plate was 1,024 data points per second. In 3D-FAST, the number of waves 

in the time domain was considered to be K = 128 to ensure that the details of the load are 

sufficiently captured, without a significant influence on the model runtime. Figure 6.41 

presents one loading pulse with a duration of 1.0 second, which consists of 0.1 second 

loading period and 0.9 second rest period. In this figure, the points at which 3D-FAST 

sampling was conducted is also shown. 

 

  
Figure 6.40. Graph. Applied dynamic load for load level of 9,000 pound. 
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Figure 6.41. Graph. Applied dynamic load and sampled load in 3D-FAST for load 

level of 9,000 pound. 

 

 In 3D-FAST, AC layer was characterized as viscoelastic layer based on the 

complex modulus and phase angle data presented in Table 6.11 and Table 6.12, 

respectively. The pavement surface temperature was about 75°F at the test time. The 

same analysis temperature was considered for AC layer, thus AC dynamic modulus 

master curve was shifted for this temperature. Other material properties needed for 3D-

FAST analysis are presented in Table 6.10. CAB and SG were characterized as linear 

elastic with a modulus obtained from backcalculation process. Backcalculated moduli for 

CAB and SG is presented in Table 6.16. The backcalculated moduli presented in this 
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table reveals that CAB modulus was almost independent of load levels with a variation 

between 18,259 and 20,143 psi, while SG exhibited a stress-dependent behavior. For the 

load level of 9,000 pound used in 3D-FAST validation, a modulus of 20,143 psi and 

18,453 psi were considered for CAB and SG, respectively. 

 

Table 6.16. Backcalculated Moduli for CAB and SG at Different Load Levels. 

 
Moduli used in 3D-FAST based on the backcalculation at different load levels, 

ECAB, ESG (psi) 

Layer 9,000 pound 12,000 pound 16,000 pound 21,000 pound 27,000 pound 

CAB 20,143 19,061 18,259 19,531 20,398 

SG 18,453 16,860 13,098 10,000 7,529 

 

 The 3D-FAST runs were performed at three depths so that the results can be 

compared with those of LVDTs and pressure cells: 

1. pavement surface to estimate vertical deflection 

2. mid-depth CAB to estimate vertical normal stress at a depth of eight (8) inch from 

pavement surface 

3. six (6) inch below subgrade surface to estimate vertical normal stress 

 

 For pavement surface deflections, scrutinizing the recorded LVDT data revealed 

that L1, L2, L3, and L4 with a radial distance of 8, 12, 24, and 36 inch, respectively, did 

not show much noise while the other LVDTs did. Therefore, only these LVDTs were 

used for 3D-FAST validation purposes. Figure 6.42 presents the measured vertical 

displacement for these LVDTs corresponding to one (1) loading pulse. 
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Figure 6.42. Graph. Measured vertical displacement by LVDTs for a loading pulse 

at the load level of 9,000 pound. 

 

 For mid-depth CAB, the recorded pressure cell data for P2, P3, P4, and P5 were 

used in the validation process. As previously mentioned, these pressure cells are at a 

depth of eight (8) inch below pavement surface at radial distances of 12, 24, 36, and 0 

inch, respectively (see Figure 6.38 and   
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Table 6.13). Data recorded by these pressure cells are presented in Figure 6.43. 

 

Figure 6.43. Graph. Measured vertical normal stress by pressure cells at mid-depth 

CAB for a loading pulse at the load level of 9,000 pound. 

 

 For six (6) inch below subgrade, the recorded pressure cells data for P6, P7, P9, 

and P10 were used in the validation process, and data recorded from pressure cell P8 was 

ignored because of observed noise. These pressure cells are embedded at a depth of 17 

inch below pavement surface at a radial distance of 24, 48, 12, and 0 inch, respectively 

(see Figure 6.38). Data recorded by these pressure cells are presented in Figure 6.68. 
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Figure 6.44. Graph. Measured vertical normal stress by pressure cells at six (6) inch 

below subgrade surface for a loading pulse at the load level of 9,000 pound. 

 

6.3.4 Validation Results 

The validation processes was performed by comparing responses computed by 3D-FAST 

and that of recorded by LVDTs and pressure cells in term of response pulse shape and 

peak values. Table 6.17 summarizes the peak values for responses based on 3D-FAST, as 

well as data recorded by instrumentation (i.e., LVDTs and pressure cells) at respective 

response points. 
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Table 6.17. Peak Values Obtained by 3D-FAST and Instrumentation. 

Instrumentation 
Response 

Type Tag Unit 

Depth from 
Pavement 
Surface 
(inch) 

Radial Distance from 
Load Centerline, r 

(inch) 

Peak Values 

3D-FAST 
Recorded 

Instrumentation 
Data 

LVDT 
(AC Layer) 

Vertical 
Displacement, 

u3 

L1 mils 0 8 16.31 18.94 

L2 mils 0 12 10.45 10.57 

L3 mils 0 24 8.51 7.93 

L4 mils 0 36 4.09 4.75 

Pressure Cells 

(CAB Layer) 

Vertical 
Normal 

Stress, σzz 

P2 psi 8 12 5.23 0.99 

P3 psi 8 24 1.20 1.51 

P4 psi 8 36 0.42 0.55 

P5 psi 8 0 12.7 11.18 

Pressure Cells 
(SG Layer) 

Vertical 
Normal 

Stress, σzz 

P6 psi 17 24 1.47 1.96 

P7 psi 17 48 0.32 0.44 

P9 psi 17 12 3.93 3.86 

P10 psi 17 0 6.02 6.85 

 

  

 For validation of pavement surface vertical displacement (u3), 3D-FAST results 

were plotted against those measured by LVDTs. Figure 6.45, Figure 6.46, Figure 6.47, 

and Figure 6.48 present this comparison for LVDTs L1, L2, L3, and L4 respectively. 

Furthermore, the surface plot of pavement surface vertical displacement is presented in 

Figure 6.49 at time t = 0.05 second, which is obtained by inverse Fourier transformation. 

The results of predicted pavement surface vertical displacement by 3D-FAST versus that 

of the LVDT-measured are presenetd in Figure 6.50. 
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Figure 6.45. Graph. Validation of vertical displacement by comparing 3D-FAST 

results and measured data by LVDT L1 for one (1) loading pulse at the load level of 

9,000 pound. 

 

Figure 6.46. Graph. Validation of vertical displacement by comparing 3D-FAST 

results and measured data by LVDT L1 for one (1) loading pulse at the load level of 

9,000 pound. 
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Figure 6.47. Graph. Validation of vertical displacement by comparing 3D-FAST 

results and measured data by LVDT L3 for one (1) loading pulse at the load level of 

9,000 pound. 

 

Figure 6.48. Graph. Validation of vertical displacement by comparing 3D-FAST 

results and measured data by LVDT L4 for one (1) loading pulse at the load level of 

9,000 pound. 
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Figure 6.49. Plot. Surface plot for pavement surface vertical displacement at time t = 

0.05 second computed by 3D-FAST at the load level of 9,000 pound. 

 

 

Figure 6.50. Graph. Measured vs. predicted pavement surface displacement at the 

load level of 9,000 pound. 
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 At the mid-depth CAB, the vertical normal stress was measured by pressure cells 

placed at a depth of eight (8) inch below pavement surface. For validating pavement 

responses at mid-depth CAB, vertical normal stress (σzz) computed by 3D-FAST was 

plotted against that of recorded by pressure cells. Figure 6.51, Figure 6.69, Figure 6.53, 

and Figure 6.54 present this comparison for pressure cells P2, P3, P4, and P5, 

respectively. Furthermore, the perspective, top, and side views of the surface plot of 

vertical normal stress is presented in Figure 6.55, Figure 6.56, and Figure 6.57, 

respectively. The results of predicted mid-depth CAB vertical normal stress computed by 

3D-FAST versus that of measured by pressure cells are presented in Figure 6.61. 

 

Figure 6.51. Graph. Validation of vertical normal stress at CAB by comparing 3D-

FAST results and measured data by pressure cell P2 for one (1) loading pulse at the 

load level of 9,000 pound. 
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Figure 6.52. Graph. Validation of vertical normal stress at CAB by comparing 3D-

FAST results and measured data by pressure cell P3 for one (1) loading pulse at the 

load level of 9,000 pound. 

 

Figure 6.53. Graph. Validation of vertical normal stress at CAB by comparing 3D-

FAST results and measured data by pressure cell P4 for one (1) loading pulse at the 

load level of 9,000 pound. 
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Figure 6.54. Graph. Validation of vertical normal stress at CAB by comparing 3D-

FAST results and measured data by pressure cell P5 for one (1) loading pulse at the 

load level of 9,000 pound. 

 

 

Figure 6.55. Plot. Surface plot (perspective view) for vertical normal stress at mid-

depth CAB at time t = 0.05 second computed by 3D-FAST. 
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Figure 6.56. Plot. Surface plot (top view) for vertical normal stress at mid-depth 

CAB at time t = 0.05 second computed by 3D-FAST. 

 

  

Figure 6.57. Plot. Surface plot (top view) for vertical normal stress at mid-depth 

CAB at time t = 0.05 second computed by 3D-FAST. 
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Figure 6.58. Graph. Measured vs. predicted mid-depth CAB vertical normal stress 

at the load level of 9,000 pound. 

 

 At six (6) inch below subgrade surface, again the vertical normal stress measured 

by pressure cells was used for validating pavement responses obtained by 3D-FAST for 

SG. Vertical normal stress (σzz) computed by 3D-FAST was plotted against that of 

recorded by pressure cells. Figure 6.59, Figure 6.60, Figure 6.61, and Figure 6.62 

present this comparison for pressure cells P6, P7, P9, and P10, respectively. Surface plots 

for vertical normal stress at six (6) inch below subgrade surface are presented in Figure 

6.69, Figure 6.70, and Figure 6.71 for perspective, top, and side views, respectively. The 

results of predicted vertical normal stress computed by 3D-FAST at this depth versus that 

of measured by pressure cells are presented in Figure 6.66. 
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Figure 6.59. Graph. Validation of vertical normal stress at SG by comparing 3D-

FAST results and measured data by pressure cell P6 for one (1) loading pulse at the 

load level of 9,000 pound. 

 

Figure 6.60. Graph. Validation of vertical normal stress at SG by comparing 3D-

FAST results and measured data by pressure cell P7 for one (1) loading pulse at the 

load level of 9,000 pound. 
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Figure 6.61. Graph. Validation of vertical normal stress at SG by comparing 3D-

FAST results and measured data by pressure cell P9 for one (1) loading pulse at the 

load level of 9,000 pound. 

 

Figure 6.62. Graph. Validation of vertical normal stress at SG by comparing 3D-

FAST results and measured data by pressure cell P10 for one (1) loading pulse at 

the load level of 9,000 pound. 
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Figure 6.63. Plot. Surface plot (perspective view) for vertical normal stress at six (6) 

inch below subgrade surface at time t = 0.05 second computed by 3D-FAST. 

 

 

 

Figure 6.64. Plot. Surface plot (top view) for vertical normal stress at six (6) inch 

below subgrade surface at time t = 0.05 second computed by 3D-FAST. 
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Figure 6.65. Plot. Surface plot (side view) for vertical normal stress at six (6) inch 

below subgrade surface at time t = 0.05 second computed by 3D-FAST. 

 

 

 

Figure 6.66. Graph. Measured vs. predicted vertical normal stress at six (6) inch 

below subgrade surface at the load level of 9,000 pound. 
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6.3.5 Discussion 

The results presented for validation in the previous section shows a reliable match 

between the results computed by 3D-FAST and the results obtained from the 

instrumentation. LVDTs were placed at the pavement surface at a radial distance of 8, 12, 

24, and 36 inch from the load centerline. The LVDT tags were L1, L2, L3, and L4, 

respectively. The match between 3D-FAST results and recorded instrumentation data was 

descent. The relative error between 3D-FAST results and LVDT measurement is between 

-13.9 and 7.3 percent based on the peak values. The pulse shape shows a good agreement 

between the 3D-FAST results and LVDT measurement. L5, L6, and L7 were not used in 

the validation. 

 Vertical normal stress at mid-depth CAB was used as another response type in the 

validation process. Four (4) pressure cells were placed at a depth of eight (8) inch from 

the pavement surface, tagged as P2. P3, P4, and P5, and at a radial distance of 12, 24, 36, 

and 0 inch, respectively, from the load centerline. There is a high level of agreement 

between 3D-FAST results and instrumentation data for response points at which P3, P4, 

and P5 are placed. However, data recorded by P2 does not seem to be correct, primarily 

because the stress recorded by P2 is less than that of P3, although P2 is closer to the load. 

Thus, it was concluded that P2 should not be considered in the validation process due to 

potential technical issues. Ignoring P2, the relative error between 3D-FAST results and 

pressure cell measurements is between -23.6 and 13.6 percent based on the peak values. 

 At a location of six (6) inch below subgrade surface, which is at a depth of 17 

inch from pavement surface, Five (5) pressure cells were used, tagged as P6, P7, P9, and 
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P5, at radial distances of 24, 48, 12, and 0 inch from centerline of the load, respectively. 

Pressure cell tagged as P8 was not considered in the analysis because recorded data was 

very noisy. The relative error between 3D-FAST results and pressure cell measurements 

is between -27.3 and 1.8 percent based on the peak values noting that there is a phase 

shift between the two sets of predicted and measured data. 

6.3.6 Parallel Processing 

As previously described in 3D-FAST unique computational features (Chapter 5), 

parallel processing is a means of reducing model runtime in order to make it more 

efficient, without losing accuracy whatsoever. Since 3D-FAST was implemented in 

MATLAB, the MATLAB Parallel Computing Toolbox was used for incorporating 

parallel processing into 3D-FAST. The processing units in this toolbox are called 

workers. The 3D-FAST runtime is presented in Table 6.18 using an Intel ® Core i7-4770 

3.40 GHz processor with four (4) local processors (workers). This table presents the 

runtime when one (1), two (2), three (3), or four (4) processors are involved. 

Furthermore, speed-up factor and parallel efficiency are presented in this table, which are 

calculated by using the equations presented in Figure 5.2 and Figure 5.3, respectively. 

 

Table 6.18. 3D-FAST Runtime for Modeling Box Experiment No. 3 Using Parallel 

Processing. 

Number of 

Processors, n Runtime, T(n) (sec) Speed-up Factor, S(n) 

Parallel Efficiency, 

E(n) 

One (1) 10,661 1.000 100.0% 

Two (2) 6,430 1.658 82.9% 

Three (3) 5,107 2.088 69.6% 

Four (4) 4,489 2.375 59.4% 
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 As can be seen in this table, the runtime decreased substantially by adding 

additional processing units, and subsequently the speed-up factor increased. The parallel 

efficiency is less than 100% as parallel processing is used (i.e., n > 1) and decreases with 

increasing number of processing units. Thus, 3D-FAST algorithm in not fully 

parallelizable, which was expected. The portion of algorithm that is serial (B in the 

equation presented in Figure 5.4) and the portion that is parallelizable (i.e., 1 - B) are 

presented in Table 6.19 using the Amdahl’s law (equation presented in Figure 5.5) if 

parallel processing is employed. Based on this figure, on average, the serial portion of 

3D-FAST algorithm is B = 0.218. Amdahl’s law can be used to predict 3D-FAST runtime 

if additional processing units are used. This prediction is conducted for up to ten (10) 

processing units, which is presented in Table 6.20. 3D-FAST runtime as a function of 

number of processing units is presented in Figure 6.67. 

Table 6.19. Serial and Non-Serial Portions of 3D-FAST Modeling Algorithm. 

Number of 
Processors, n 

Serial Portion of Algorithm, 
B 

Non-Serial (Parallelizable) Portion of the 
Algorithm, 1 - B 

Two (2) 0.206 0.794 

Three (3) 0.219 0.781 

Four (4) 0.228 0.772 

 

 

Table 6.20. Prediction of 3D-FAST Runtime Using Additional Processing Units. 

Number of 
Processors, n 

Predicted Runtime, 
T(n) (sec) Speed-up Factor, S(n) 

Parallel Efficiency, 
E(n) 

Five (5)  3,988  2.673 53.5% 

Six (6)  3,710  2.873 47.9% 

Seven (7)  3,512  3.036 43.4% 

Eight (8)  3,363  3.170 39.6% 

Nine (9)  3,247  3.283 36.5% 

Ten (10)  3,154  3.380 33.8% 
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Figure 6.67. Graph. 3D-FAST runtime for different number of involved processing 

units using parallel processing. 

 

6.4    3D-FAST Application: Roughness-Induced Dynamic Loading 

In the previous sections, 3D-FAST verification and validation were carried out through 

using rheological models and measured data from the Box experiment no. 3, respectively. 

In the current section, analysis of a pavement system experiencing roughness-induced 

dynamic vehicle loading is presented as an application of 3D-FAST. After explaining the 

road roughness and surface irregularities, the quarter-car simulation (QCS) technique is 

presented to obtain vehicle dynamic loading. In the next step, the results of the simulation 

is used as the load input for 3D-FAST, and select pavement responses are presented for a 

typical pavement structure. 
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6.4.1 Road Roughness 

In order to estimate pavement responses reliably, the dynamic loads induced by vehicles 

operating on a highway should be realistically identified. In the ideal case of an 

absolutely smooth road with no roughness, the traffic load would be equal to the vehicle 

static load. In reality, however, there is always a certain amount of roughness which 

induces dynamic load (i.e. load that varies with time) (S.-F. Kazemi, Sebaaly, et al., 

2017). Road roughness is the deviation of pavement surface from a reference plate. 

Roughness-induced vehicle dynamic loads, as well as other types of dynamic loads, 

typically leads to higher pavement deformation compared to static loads (Shahin, 1994). 

Therefore, more rutting and damage are anticipated as the level of road roughness 

increases. From a pavement design prospective, variation in traffic load adversely affects 

the pavement service life, and causes noise and vibration (Hesami, Ahmadi, & Ghalesari, 

2016; Lak, Degrande, & Lombaert, 2011).  

International Road Roughness (IRI) is the most common measure for road 

roughness (Yang, Chen, & Li, 2015). To obtain IRI, the longitudinal road profile should 

be surveyed (e.g., by using a profilometer). The wavelengths in pavement longitudinal 

profile corresponding to road roughness is in the range of 10.0 m to 100.0 m while 

wavelengths smaller than 10.0 m and wavelengths larger than 100.0 m correspond to 

texture and topography, respectively (Andren, 2005). One approach to account for 

longitudinal profile is generating a random road profile. A random road profile can be 

generated based on ISO 8608, which considers a power function for Power Spectral 

Density (PSD) of the road profile (ISO, 1995). Details about generating random profile 
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can be found elsewhere (Sun, 2013; Tyan, Hong, Tu, & Jeng, 2009). Furthermore, details 

about generating a two-dimensional road surface is presented by Sun based on Gaussian 

processes (Sun, 2013). In the current section, an actual road profile surveyed by 

profilometer is used to obtain dynamic load and consequently pavement responses, rather 

than an artificial road profile generated randomly. This road profile was obtained from 

the LTPP (Long Term Pavement Program) database. 

The computational capacity has always been a limitation for pavement response 

analysis models, specifically for models accounting for dynamic loads (e.g., 3D-FAST). 

The massive amount of calculations significantly increases the runtime, if not making the 

run impossible due to limitations in the random access memory (RAM). Thus, 

appropriate assumptions should be considered in order to efficiently use the 

computational resources. This means that after obtaining the dynamic load for a road 

section, a window stretch out of the entire section can be selected to be applied in 3D-

FAST. 

6.4.2 Quarter-Car Simulation (QCS) 

Typically, the load applied by a specific vehicle on the pavement depends on the 

vehicle speed, vehicle characteristics (i.e. suspension type, axle loads, tire properties, 

etc.), and road roughness (Sun, 2002). The lumped models are widely used to simulate 

vehicle loading. Some of the well-known lumped models are quarter car model, half car 

model, and full car model (Mastinu & Plöchl, 2014). In the current section a quarter-car 

simulation (QCS) is used to calculate IRI and dynamic vehicle loading. A schematic of 

QCS is illustrated in Figure 6.68. QCS can be conducted at any speed, however, IRI is 
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standardized based on conducting the simulation at 80 km/h (50 mph). A quarter of the 

car is used in QCS, which consists of one (1) tire (unsprung mass) and quarter of the 

body (sprung mass). In Figure 6.68, mass is denoted by m and elevation is denoted by x. 

Additionally, the subscript s and u refer to unsprung mass and sprung mass, respectively. 

Therefore, ms, mu, xs, and xu represent sprung mass, unsprung mass, elevation of sprung 

mass, and elevation of unsprung mass, respectively. The spring constant and dashpot 

constant of the sprung mass are represented by ks and cs, respectively. It is assumed that 

there is no damping associated to unsprung mass, and the spring constant representing the 

tire is denoted by kt. The road surface profile is denoted by u(t), which is basically the 

elevation of the road as a function of time (t) as the vehicle travels the road. u(t) is 

typically obtained by an equipment (e.g., profilometer, accelerometer, etc.) or can be 

generated using random algorithms. Based on the quarter-car model presented in Figure 

6.68, this system has two degrees of freedom (DOF). These DOFs are xs and xu 

corresponding to sprung mass and unsprung mass, respectively. A second-order linear 

system of ordinary differential equations represents QCS as the equation presented in 

Figure 6.69 (Chatti & Zaabar, 2012). In this system of differential equations, all the 

parameters are as previously defined. Furthermore, the dot operator represents derivation 

with respect to time. For instance, �̈�𝑢 is the acceleration of unsprung mass. 

Based on the field measurements of vehicle dynamic loading, there is a descent 

level of agreement between the roughness-induced dynamic load calculated by quarter-

car simulation and field loads (Sun, 2001). There are more sophisticated lumped models 

such as half-car and full-car models to address a more realistic vehicle response to the 
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excitations induced by the road profile. However, quarter vehicle simulation provides an 

acceptable approximation of the full-car model (Mastinu & Plöchl, 2014). 

 

 

Figure 6.68. Illustration. Schematic of quarter-car simulation. 

 

{
𝑚𝑢�̈�𝑢 − 𝑐𝑠(�̇�𝑠 − �̇�𝑢) + 𝑘𝑡(𝑥𝑢 − 𝑢( )) = 0

𝑚𝑠�̈�𝑠 + 𝑐𝑠(�̇�𝑠 − �̇�𝑢) + 𝑘𝑠(𝑥𝑠 − 𝑥𝑢) = 0
 

Figure 6.69. Equation. The system of differential equations corresponding to 

quarter-car simulation. 

 

Based on the system of ODEs presented in Figure 6.69, the quarter-car model 

responds to the excitation caused by the road surface irregularities depending on the 

simulation parameters (i.e. spring and dashpot constants), road roughness, and vehicle 

speed. By solving this system of ODEs, displacement, velocity, and acceleration can be 
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obtained for sprung and unsprung masses. Sayers suggested using QCS at a constant 

speed of 80 km/h (22.22 m/s) to obtain IRI (Sayers, 1995). The procedure was widely 

accepted and has been standardized as ASTM E1926 (ASTM, 2015). IRI is the average 

of the absolute relative velocity between sprung mass and unsprung mass over the length 

of the traversed pavement section, which is obtained by the equation presented in Figure 

6.70. 

 

𝐼𝑅𝐼 =
1

𝐿
∫ (�̇�𝑠 − �̇�𝑢)𝑑𝑡 =

1

𝑉 ∙ 𝑁 ∙ Δ𝑡
∑|�̇�𝑠 − �̇�𝑢|

𝑁

𝑖=0

𝑇

0

Δ𝑡 =
1

𝑉 ∙ 𝑁
∑|�̇�𝑠 − �̇�𝑢|

𝑁

𝑖=0

 

Figure 6.70. Equation. International Roughness Index (IRI) formula. 

 

In this equation, IRI, L, T, N, V, and Δt are International Roughness Index, length 

of traversed pavement section, total time to traverse pavement section at speed V, number 

of surveyed points, survey velocity (80 km/h for the sake of quarter-car simulation), and 

time interval between surveying two consequent points, respectively. Other parameters 

are as previously defined (see Figure 6.68 and Figure 6.69). The common units for IRI 

are m/km or inch/mile (1 m/km = 63.36 inch/mile). The equation presented in Figure 

6.70 yields to no units for IRI. Therefore, one needs to multiply the result of this equation 

by 1,000 in order to obtain the IRI in m/km, or by 63,360 to convert it to inch/mile. 

The mechanical parameters for the quarter-car model used in IRI calculations are 

presented in Table 6.21 (Sayers, 1995). For simplicity, these parameters are normalized 
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with respect to the sprung mass (𝑚𝑠). The quarter-car model associated with these model 

parameters is so-called Golden Car.  

 

Table 6.21. Model Parameters for Quarter-Car Simulation (Golden Car). 

Parameter Value 

𝑐 = 𝑐𝑠/𝑚𝑠 6.0 

𝑘1 = 𝑘𝑡/𝑚𝑠 653 

𝑘2 = 𝑘𝑠/𝑚𝑠 63.3 

𝜇 = 𝑚𝑢/𝑚𝑠 0.15 

  

In order to implement QCS, a Simulink model was developed based on the system 

of ODEs presented in Figure 6.69. This model is graphically demonstrated in Figure 

6.71. This Simulink model basically solves that system of differential corresponding to 

QCS by employing numerical approaches (e.g., Runge-Kutta method). The model is 

integrated with a MATLAB® script to input road profile, vehicle speed, and quarter-car 

mechanical properties (see Table 6.21). The model results can be displayed using the 

Scope element in Simulink. Sample results of using the developed Simulink model are 

presented in Figure 6.72. In this figure, there are three (3) graphs. From top to bottom, 

these graphs show the elevation of road, sprung mass (i.e., quarter of the body), and 

unsprung mass (i.e., the tire) as a function of distance (or time) traveled by the vehicle. 

As can be seen in this figure, while the road surface has a considerable amount of 

irregularities, the vehicle body (unsprung mass) experiences much less vibration due to 

vehicle suspension system. 
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Figure 6.71. Illustration. Simulink model developed for quarter-car simulation. 

 

 

Figure 6.72. Photo. QCS results for a sample road profile using the developed 

Simulink model. 
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6.4.3 Selected Road Profile 

A road profile was retrieved from the LTPP database to be used in estimating the 

pavement responses due to road roughness. This profile belongs to the LTPP section 32-

1020 located in Nevada, Reno area and is shown in Figure 6.73. The solution for QCS is 

presented in Figure 6.74, which is basically the elevation of sprung and unsprung 

masses, as well as the road surface elevation. The simulation was conducted at a vehicle 

speed of 80 km/h. The roughness-induced dynamic load is presented in Figure 6.81. 

Details about the road section and roughness-induced dynamic loading are presented in 

Table 6.22 and Table 6.23, respectively. 

 

 

Figure 6.73. Graph. Road profile for LTPP section 32-1020 located in Nevada. 
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Figure 6.74. Graph. Solution for QCS for the selected road profile located in 

Nevada. 

 

 

Figure 6.75. Graph. Roughness-induced dynamic load for the road section of 

interest. 
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Table 6.22. Details about the Road Profile. 

Parameter Value 

LTPP Section SHRP ID 32-1020 

Location Nevada, Reno Area 

GPS- Latitude, Longitude (Degrees) 38.53352, -118.61907 

Route Direction State-0362, South Bound 

Number of Lanes 1 

Climatic Zone Dry, Non-Freeze 

Section Length (m) 152.4 

Surveying Frequency Interval (m) 0.1524 

Highway Type Rural Principal Arterial 

Pavement Structure 0.175 m AC 

0.120 m Unbound (Granular) Base 

Untreated Subgrade 

 

 

Table 6.23. Details about the Roughness-Induced Dynamic Loading. 

Parameter Value 

Vehicle Speed 80 km/h (22.22 m/s) 

Static Load 2844.9 N 

Maximum Dynamic Load 3105.4 N 

Minimum Dynamic Load 2530.5 N 

Average Dynamic Load 2845.8 N 

IRI (m/km) 0.741 m/km 

Dynamic Load Coefficient (DLC) 3.13 % 

 

 

6.4.4 3D-FAST Inputs 

The inputs used in 3D-FAST runs include pavement surface loading, pavement structure, 

and material characteristics. The pavement surface loading is as presented in Figure 6.75, 

however, since modeling the entire road profile shown in this figure is not 

computationally feasible, a stretch of 4.88 m (between x1 = 0.00 m and x2 = 4.88 m; see 

Figure 6.73) was modeled in 3D-FAST. The dynamic load is presented in Figure 6.76 

along with load sampling considering K = 128 number of waves in the time domain to 
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represent the load. A constant uniform tire pressure of 220.0 kPa was considered. The 

pavement structure and material properties are presented in Table 6.24. A master curve 

was used for AC viscoelastic material characterization according to Figure 6.37. The 

modulus of elasticity for base and subgrade was considered to be 200.0 MPa and 100.0 

MPa, respectively. 

 

 

Figure 6.76. Graph. Roughness-induced dynamic load and associated 3D-FAST 

sampling for a stretch of 19.35 m extracted from the road section. 

 

Table 6.24. Material Characterization and Parameters Needed for 3D-FAST 

Modeling of Roughness-Induced Dynamic Loading. 

Layer Type Thickness, 

h (m) 

Material 

Characterization 

Poisson’s 

Ratio, ν 

Unit 

Weight, 

γ (kg/m
3
) 

Asphalt Concrete 

(AC) 

0.175 m Viscoelastic 0.30 2,400 

Crushed 
Aggregate Based 

(CAB) 

0.120 m Elastic 0.35 2,200 

Subgrade (SG) 

Soil 

Semi-infinite Elastic 0.40 2,000 
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6.4.5 3D-FAST Results 

3D-FAST results presented in this section include the following, for response type of 

interest as a function of time: 

 Displacement in the three directions (u1, u2, and u3) at pavement surface, 

presented in Figure 6.77, Figure 6.78, and Figure 6.79, respectively. 

 Horizontal normal stress in the longitudinal and transverse directions (σxx and 

σyy) at pavement surface, presented in Figure 6.80 and Figure 6.81, 

respectively. 

 Horizontal normal strains in the longitudinal and transversedirections (εxx and 

εyy) at mid-depth of AC layer presented in Figure 6.82 and Figure 6.83, 

respectively. 

 Vertical normal strain (εzz) at the bottom of AC presented in Figure 6.84. 

 Vertical normal stress (σzz) on top of subgrade presented in Figure 6.85. 

 

Both minimum and maximum values of responses at the desired depth is 

presented in Figure 6.77 to Figure 6.85 as a function of time. The minimum and 

maximum values of responses for the entire time of analysis are presented in Table 6.25. 

It worth mentioning that in 3D-FAST formulation, the negative and positive values 

correspond to tension and compression, respectively. 
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Figure 6.77. Graph. Minimum and maximum longitudinal displacement in x-

direction (u1) as a function of time at pavement surface. 

 

 

Figure 6.78. Graph. Minimum and maximum transverse displacement in y-direction 

(u2) as a function of time at pavement surface. 
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Figure 6.79. Graph. Minimum and maximum vertical displacement in z-direction 

(u3) as a function of time at pavement surface. 

 

Figure 6.80. Graph. Minimum and maximum longitudinal normal stress in x-

direction (σxx) at pavement surface. 
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Figure 6.81. Graph. Minimum and maximum transverse normal stress in y-

direction (σyy) at pavement surface. 

 

Figure 6.82. Graph. Minimum and maximum vertical normal strain (εzz) at mid-

depth of AC. 
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Figure 6.83. Graph. Minimum and maximum longitudinal normal strain in x-

direction (εxx) at the bottom of AC. 

 

Figure 6.84. Graph. Minimum and maximum transverse normal strain in y-

direction (εyy) at the bottom of AC. 
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Figure 6.85. Graph. Minimum and maximum vertical normal stress (σzz) on top of 

subgrade. 

 

Table 6.25. Minimum and Maximum Responses for Different Response Types at 

Different Locations for Roughness-Induced Dynamic Load Example. 

Response 

Type 
Symbol Units 

Depth from 

Pavement Surface, z 

(m) 

Layer 
Minimum 

Value 

Maximum 

Value 

Horizontal 
longitudinal 
displacement 

u1 micron 
0 

(Pavement Surface) 
AC -2.16 2.04 

Horizontal 
transverse 

displacement 
u2 micron 

0 
(Pavement Surface) 

AC -2.01 2.01 

Vertical 

displacement 
u3 micron 

0 

(Pavement Surface) 
AC -4.30 26.50 

Horizontal 
longitudinal 
normal stress 

σxx kPa 
0 

(Pavement Surface) 
AC -204.3 205.3 

Horizontal 
transverse 

normal stress 
σyy kPa 

0 
(Pavement Surface) 

AC -204.4 205.3 

Vertical 
normal strain 

εzz microstrain 
0.0875 

(Mid-depth AC) 
AC -32.4 54.7 

Horizontal 
longitudinal 
normal strain 

εxx microstrain 
0.175 

(Bottom of AC) 
AC -14.0 2.1 

Horizontal 

longitudinal 
normal strain 

εyy microstrain 
0.175 

(Bottom of AC) 
AC -16.0 2.3 

Vertical 
normal stress 

σzz kPa 0.295 (Top of SG) SG -0.1 3.7 
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CHAPTER 7  SUMMARY OF FINDINGS, CONCLUSIONS, AND 

RECOMMENDATIONS 

 

7.1    Summary 

In this study, a finite-layer model called 3D-FAST was developed for estimating 

pavement mechanical responses (i.e., stresses, strains, and displacements). 3D-FAST 

stands for 3-Dimensional Fourier Analysis of pavement Structures under Transient 

loading. According to this acronym, 3D-FAST is a model to accurately analyze pavement 

structures under dynamic (transient) loading. The model is mathematically sophisticated 

and uses three-dimensional (3-D) Fourier transform so that all the respective calculations 

are conducted in the frequency domain.  

3D-FAST is a finite-layer model which considers each layer as a separate 

element. The finite-layer has outstanding advantages compared to the common finite-

element model. These advantages were comprehensively described in Chapter 2. For 

instance, with finite-layer method there is no concern with respect to meshing pavement 

structure, while meshing is a critical aspect of finite-layer method. Furthermore, finite-

layer decomposes the load (e.g., stationary, dynamic, etc.) into a number of waves 

traveling in different domains (e.g., spatial and time domains), which incorporates 

considerable flexibility into the model. For instance, parallel processing can be used to 

accelerate the runtime. With finite-element method, most of the solving process is based 

on iteration schemes, thus such a flexibility does not exist. 
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3D-FAST does not have most of the limitations existing in many currently 

available models and software packages for analyzing pavement structures. The surface 

loading can be non-uniform and/or non-circular in 3D-FAST, because it uses Fourier 

transform rather than Hankel or Hankel-Laplace transform. In addition, there is no 

limitation (e.g., symmetry) with the dynamic load in 3D-FAST, and the shape of the load 

(e.g., vehicle tire load) can completely change from one time step to the next. Therefore, 

the load applied at the pavement surface does not have to necessarily operate at constant 

speed. One unique feature associated with 3D-FAST is that shear in both forms of 

longitudinal and transverse can be modeled, which does not have to be necessarily 

symmetric. Furthermore, surface shear loads can be also dynamic (i.e., varying with 

time). Another important aspect of 3D-FAST is that it is capable of viscoelastic material 

characterization by using a dynamic modulus master curve or rheological models. 

Viscoelastic material characterization has become available in 3D-FAST, because waves 

traveling at different velocities in the time domain will excite the viscoelastic material 

with different dynamic moduli values. 

3D-FAST is an extension to its predecessor model: 3D-Move. 3D-Move uses a 

two-dimensional (2-D) Fourier transform to identify the load because it can only handle 

loads operating at constant speed. Therefore, the time domain and spatial domain 

representing the load travel direction are interconnected in 3D-Move. In 3D-FAST, 

however, this interconnectivity was overlooked and time was introduced as a separate 

Fourier variable. Therefore, in 3D-FAST the load has to be represented in spatial 

domains, as well as the domain time, leading to a three-dimensional (3-D) matrix, upon 
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which the Fast Fourier Transform (FFT) algorithm is applied. The mathematical 

formulation for 3D-Move and 3D-FAST was presented in Chapter 3 in Chapter 4, 

respectively. 

7.2    3D-FAST Enhancements 

3D-FAST and 3D-Move/3D-Move ENHACED have substantial similarities in terms of 

modeling primarily because 3D-FAST is an extension to 3D-Move. In this study, a 

number of improvements were made to the original 3D-Move, leading to the genesis of 

3D-Move ENHANCED. These improvements were potentially existing in 3D-Move, but 

were not explored or implemented until recently. Some of these improvements include 

modeling layer interface debonding, parallel processing, superposition principle, non-

uniform Fourier transform, and inverse Fourier transform. 

 Some of the enhancements made to 3D-FAST are remarkable. These 

enhancements are primarily due to the finite-layer method and frequency domain 

calculations. 3D-FAST unique computational features were presented in Chapter 5 in 

detail. These enhancement are both in terms of output visualization and model runtime. 

The inverse fast Fourier transform (IFFT) algorithm was employed to obtain animated 

surface plots at a certain depth for a specific response type. Parallel processing was 

successfully incorporated into 3D-FAST noting that the superposition principal allows for 

this feature. The non-uniform Fourier transform was also introduced as a means of 

reducing runtime, however, it introduces some approximations to the results. 
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7.3    3D-FAST Verification, Validation, and Application 

In Chapter 6, 3D-FAST was verified, validated, and its application was presented 

through an example. Verification was carried out by comparing 3D-FAST results against 

the closed-form solutions for strain amplitude and phase angle of common rheological 

models including Kelvin model, Maxwell model, and Burger model, for a single wave 

that varies harmonically in the time domain. The mathematical solution for strain 

amplitude and phase angle of rheological models were derived and compared to 3D-

FAST results. 3D-FAST was efficiently verified as this comparison revealed a descent 

match between 3D-FAST results and closed-form solutions for strain amplitude and 

phase angle. 

 3D-FAST validation was performed by comparing the computed results to that of 

collected by instrumentation for a full-scale test at the University of Nevada, Reno. The 

instrumented Box experiment no. 3 consisted of a full pavement structure. The recorded 

instrumentation data for this experiment were used to validate 3D-FAST. In this 

experiment, a dynamic load was applied on the FWD plate using a hydraulic ram, 

followed by a rest period. Data measured by LVDTs and pressure cells were used to 

validate 3D-FAST through comparing measured and predicted pavement displacements 

and stresses at different layers, and at different depths and radial distances from the load 

centerline. Same loading was sampled and used in 3D-FAST, and the representative 

dynamic modulus master curve was used for AC layer. CAB and SG were modeled as 

linear elastic. Though the experiment was conducted at different load levels, the 9,000 

pound load level was used in 3D-FAST validation process. 3D-FAST validation was 
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considerably successful as the responses computed by 3D-FAST and that of recorded by 

the LVDTs and pressure cells were matching decently in terms of pulse shape and peak 

value. 

 3D-FAST can be applied to a wide range of problems to estimate pavement 

mechanical responses under dynamic loading, as long as superposition principal is 

applicable (i.e., linear viscoelastic conditions). In order to demonstrate 3D-FAST 

application, a pavement system experiencing roughness-induced dynamic loading was 

structurally analyzed. The pavement surface profile was obtained from LTPP database for 

a road section in Nevada, Reno area. The roughness-induced dynamic loading was 

calculated using a quarter-car solution (QCS) model for this road section. The pavement 

layer and material characteristics were also extracted from LTTP database for the same 

road section, and were considered as 3D-FAST inputs along with the simulated dynamic 

loading. 3D-FAST runs were conducted at different depths and for different response 

types, and the results were presented. 

7.4    Conclusions 

Some of the conclusions drawn from this study are presented in the following: 

 3D-FAST is a robust numerical model to structurally analyze pavement 

structures and obtain mechanical responses. 3D-FAST revealed the 

effectiveness of using finite-layer method for dynamic problems. 3D-FAST is 

capable of handling dynamic loads (i.e., load that varies with time) with no 

limitations. Specifically, the load can be of any shape and stress distributions 
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can be non-uniform and/or non-symmetrical. The surface dynamic shear 

stresses can also be modeled in 3D-FAST with no requirement for symmetry. 

 3D-FAST is computationally efficient in terms of model runtime. The runtime 

was further enhanced by employing parallel processing. 3D-FAST is 

relatively quick compared to its counterpart models. The efficiency of using 

parallel processing technique was demonstrated through the example used for 

validation. 

 3D-FAST is capable of viscoelastic material characterization, which is the 

direct outcome of using frequency domain for associated calculations. Since 

the top layer of flexible pavements are typically identified as viscoelastic, 3D-

FAST can successfully handle the modeling by characterizing this layer 

properly. 

 3D-FAST was successfully verified by the closed-form solutions of 

rheological models (Kelvin model, Maxwell model, and Burger model). This 

verification was performed by comparing 3D-FAST results and closed-form 

solutions. This comparison was successfully carried out for strain amplitude 

and phase angle of a single wave with specific frequency of loading time. 

 3D-FAST was effectively validated using a full-scale laboratory experiment. 

This means that 3D-FAST can be applied to real-world examples including 

pavement analysis and non-destructive testing, and for a versatile range of 

applications and dynamic loading protocols. 
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 The superposition principle represented by Boltzmann’s equation can be 

easily incorporated into 3D-FAST as this equation is in the form of 

convolution integral. Therefore, the superposition integral simplifies to 

multiplication in frequency domain. In that case, for a certain depth of a 

pavement system with the same structure and material characteristics, only 

one (1) run is needed, and the pavement response can be obtained for any 

dynamic loading (other than the unit load) by convolving the waves, rather 

than running 3D-FAST again and again. This feature leads to substantial 

savings in the runtime. 

7.5    Future Enhancements 

A number of improvement could be incorporated into 3D-FAST for the future 

development. First, a stand-alone version of the software can be released for public use. 

Currently, 3D-FAST is implemented in MATLAB® for both parallel and non-parallel 

versions. MATLAB® has the Graphical User Interface Development Environment 

(GUIDE) that allows for developing user-friendly stand-alone applications. GUIDE can 

be used to produce a stand-alone 3D-FAST software. In the next level, a web-based 

version of 3D-FAST can be developed so that users can register and create, edit, and save 

projects. 

 3D-FAST models the dynamic loading in order to lead to a more realistic 

pavement modeling. However, this modeling can be further enhanced by using actual tire 

contact pressure. Since 3D-FAST is capable of handling tire load with non-uniform 
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contact pressure of any shape (i.e., non-circular), a database of tire contact pressure can 

be incorporated into the model. 

 Another potential improvement of 3D-FAST is using it for conducting dynamic 

backcalculation. Since the backcalculation process is typically an iterative process, using 

3D-FAST for this purpose is extremely time-consuming. Therefore, appropriate strategies 

should be considered to reduce the runtime. Undoubtedly, these strategies must include 

parallel processing and non-uniform Fourier transform. Furthermore, only waves that 

significantly contributing to the response of interest (e.g., surface displacement for FWD) 

should be considered in the backcalculation process to reduce the runtime. 
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