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Abstract

The impact of a declining and erratic seasonal mountain snowpack in North

America and most of Eurasia may prove a detrimental hydrological, climatological,

and environmental hazard as well as put a burden on those who rely on snow storage

as their dominant source of water. There is a constant need to refine fractional

snow-covered area (fSCA) and snow grain size calculations as they are a significant

parameter in regional to global hydrological, ecological, and climate models. While

the methods for determining fSCA and grain size are well understood for varying aerial

and satellite multispectral imaging spectrometer (IS) systems, the improvements that

a hyperspectral satellite IS system might bring to fSCA and grain size calculations is

not well understood. As an analog for future IS systems, previously collected Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) data serves the unique purpose of

parameterizing the effects that future hyperspectral satellite IS systems will have on

current fSCA and grain size retrieval algorithms. The following work explores the

development of a fSCA and grain size retrieval model in order to understand how

the differences in future hyperspectral satellite IS systems compare to current snow

products. The open-source model will hopefully expand optimization and use to a

variety of different IS systems and spectral unmixing tasks.
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Life isn't about waiting for the storm to pass..

It's about learning to dance in the rain.

-Vivian Greene
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Chapter 1 Introduction

Seasonal snowpack is a critical water resource in many regions and mountain snow

storage is also a dominant source of water for humans and ecosystems in western North

America. With the highest albedo and greatest spatial extent of any other natural

surface, snow-covered area (SCA) is fundamental to both hydrological, ecological,

and climate models. Mountain snowpack in North America and most of Eurasia is

declining as result of the warming climate and it is predicted to continue (Nolin and

Daly, 2006; Stoelinga et al., 2010; Kunkel et al., 2016). When SCA diminishes as a re-

sult of seasonal changes, accurate and expedient assessment of snowmelt will improve

streamflow forecasts and hydrological model simulations (Clark et al., 2006; McGuire

et al., 2006; Thirel et al., 2011). The hydrological and climatological significance of

this trend is unclear, but as global climate change drives down snowpack an increasing

demand for improved accuracy and increased efficiency of monitoring snow's spatial

extent is vital for improving model calculations.

Remote sensing is the principal and practical means of mapping snow-covered

area. Spectral imaging offers quantitative information of snow in alpine regions as

opposed to field measurements that would otherwise impose increased time, money,

and danger. Satellite imagery and derived data products have been used to map and

monitor Earth's cryosphere since the inception of the Landsat series of satellites (e.g.,

Hall et al., 1989; Williams et al., 1991). Early work using the Airborne Visible / In-

frared Imaging Spectrometer (AVIRIS) established methods to determine both snow

cover area and grain size (e.g. Painter et al. 1998). These studies were then modi-

fied to provide similar results from the coarse spatial resolution and limited spectral

coverage available for more global and regional scales with the Moderate Resolution

Imaging Spectroradiometer (MODIS) instrument (Dozier et al., 2008; Painter et al.,

2009; Painter et al., 2012). The most accurate of these snow-covered area retrievals

is the MODIS Snow-Covered Area and Grain Size (MODSCAG) retrieval algorithm
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which improves upon the estimates of SCA by solving the mixed pixel problem to de-

termine fractional snow-covered area (fSCA) with spectral mixture analysis (Painter

et al., 2009; Rittger et al., 2013). Additionally, 40% of the North American seasonal

snow zone is forested (Klein et al., 1998). Despite improvements in canopy adjust-

ments (Wang et al., 2015) current MODIS canopy adjustments for fSCA indicate that

snow cover is still misrepresented (Raleigh et al., 2013; Rittger et al., 2013).

The current necessities of remotely sensing fSCA are two-fold. Both a high

spatial and high temporal resolution are needed for increasingly detailed hydrological,

ecological, and climate inferences and modeling needs. MODIS provides fSCA, snow

grain size, and other snow data products at a nominal ∼500 m spatial resolution and

high 1-2 day temporal resolution. These products were integrated in a plethora of

hydrologic studies and models [Parajka and Bloschl, 2008; Finger et al. 2011; Franz

and Karsten, 2013; McGuire et al., 2006], but higher spatial resolution is paramount

to hydrological modeling and subpixel snow spatial heterogeneity in improving runoff

predictions (Luce et al., 1999; Lundquist and Dettinger, 2005; Clark et al., 2011).

Snow distribution, snow cover depletion, and snowmelt for distributed hydrological

modeling is often applied at 30 to 100 m resolution, (Cristea et al., 2017). However,

snow cover extent and snow duration are essential to ecological studies [Choler, 2005;

Venn et al., 2011; Ford et al., 2013; CaraDonna et al. 2014] on smaller spatial

scales (m and tens of m) (Cristea et al., 2017). Additionally, high spatial and high

temporal resolution of snow duration is needed for quantifying the effects on alpine

plant habitat (Dedieu et al., 2016). High spatial resolution scanning lidar-derived

snow depth data, or even IKONOS imagery are ideal products in mapping fine-scale

regional snow [Painter et al., 2016; Czyzowska-Wisniewski et al., 2015], but are very

challenging to collect at high temporal resolution compared to satellite imagery.

Modern airborne instrumentation provides both higher spatial and spectral res-

olution than current satellite imaging systems; however, products provided by the

Airborne Snow Observatory (ASO) and AVIRIS are not readily available for every

region or temporal resolution is too low to effectively map the transformation of snow
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cover in time. Consequently, MODIS snow data products remain the best combined

trade off of temporal and spatial resolution that is readily available. There have

been recent efforts to refine the coarse fSCA spatial scale from ∼500 m to 3-30 m

resolution through downscaling (Walters et al, 2014; Li et al., 2015; Cristea et al.,

2017). Multispectral sensors like Landsat and Visible Infrared Imaging Radiometer

Suite (VIIRS) have the potential to refine our spatial resolution further and release

of those products is expected over the next few years (personal communication with

Tom Painter). In addition, hyperspectral remote sensing is capable of resolving more

snowpack properties, such as grain size, that multispectral sensing cannot. It is also

unknown how valuable additional spectral resolution is to resolving forest and snow

fractions in complex topography. Therefore, the advent of a high spatial and high

temporal resolution satellite imaging spectrometer (IS) system would be particularly

useful for snow science. Planned IS systems EnMap [Guanter, et al., 2015], slated to

launch 2018, and HISUI [Matsunaga, et al., 2016], planned for inclusion on the Inter-

national Space Station 2018, may provide data at new benchmark scales. Specifically,

EnMap will have 30 m spatial resolution at 4 day temporal resolution (±30◦ off-nadir

tilt). Both IS systems will also include improvements to spectral resolution (0.4-2.5

µm at ∼10 nm intervals) allowing algorithms developed for airborne instruments to

be applied to satellite systems.

As part of a NASA sponsored EPSCoR Project AVIRIS data were collected along

the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south

of Mt. Whitney during the 2015 and 2016 snow-covered season. These data span a

low snow year (2015) and the melt season of a moderate snow year (2016). AVIRIS

provides an equivalent aerial remote sensing product to planned IS systems on both a

spectral (0.4-2.5 µm at ∼10 nm intervals) and spatial (∼15 m) scale. As an analog for

future IS systems, previously collected AVIRIS data may serve the unique purpose of

parameterizing the effects that future hyperspectral satellite IS systems will have on

current fSCA and grain size retrieval algorithms. The goal of this work is to establish

an open source snow-covered area and grain size summary product for AVIRIS that
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may act as an algorithm framework for future IS systems. Additionally, the work will

compare snow albedo and grain size determined using the full spectral profile from

AVIRIS with the short wavelength coverage of ITRES CASI-1500 (CASI) aboard

ASO, and the limited channels of MODIS.
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Chapter 2 Algorithm Development

2.1 Abstract

This work builds on previous subpixel snow-covered area retrieval algorithms that take

into account varying grain size. We present a model that analyzes multiple endmem-

bers of varying snow grain size, vegetation, rock, and soil in segmented regions along

the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction,

and approximate grain size. The root mean squared error provides a spectrum-wide

assessment of the mixture model's goodness-of-fit. The development of the model is

based on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data that were

collected along the entire Sierra Nevada mountain range during the 2015 and 2016

snow-covered season. The AVIRIS dataset used in this experiment consists of 224

contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-

meter spatial pixel size. However, the model allows input parameters to vary for

different endmembers, spectral or spatial resolutions, and other algorithm thresholds.

Future plans to make the model open-source may allow additional optimization and

applications to other IS systems.

2.2 Introduction

The H2O molecule has a very characteristic spectral shapes in both liquid and solid

forms (e.g. Green et al., 2006; Dozier et al., 2009). Aerial and satellite remote sensing

effectively detect snow cover due to snow’s characteristic spectral shape which is easily

distinguishable from vegetation, soil, rock, water, etc. (Dozier, 1989, see also Figures

2.2 and 2.4). The normalized difference snow index (NDSI) differentiates snow from

other land features (Dozier, 1989). NDSI is calculated by normalizing the difference of

the reflectance in the visible spectrum (RVIS) from the reflectance in the near infrared

(RNIR). When NDSI is greater than 0.4 then the pixel is denoted as a snow-covered
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pixel (Dozier, 1989).

NDSI =
RV IS −RNIR

RV IS +RNIR

However, this unsupervised classification scheme is binary- a pixel is either snow

or not snow. Traditional supervised and unsupervised classifications of snow cover

are problematic for mixed pixel areas composed of snow, rock, vegetation, water,

ice, etc. which makes it difficult to assess what percentage of snow actually covers

the pixel. A fractional snow-covered area (fSCA) product was developed for MODIS

based on an empirical relationship between fSCA and the NDSI (Salomonson and

Appel, 2004; Salomonson and Appel, 2006). The MODIS derived data products,

MOD10AI (Terra) and MYD10A1 (Aqua) are fractional models that utilize bands

centered in the visible and NIR:

MOD10A1:

fSCA = −0.01 + 1.45(NDSI), where NDSI =
R4 −R6

R4 +R6

Where R4 is centered on MODIS band 4 (0.555 µm) and R6 on MODIS band 6

(1.640 µm).

MYD10A1:

fSCA = −0.64 + 1.91(NDSI), where NDSI =
R4 −R7

R4 +R7

Where R4 is centered on MODIS band 4 (0.55 µm) and R6 on MODIS band 6

(2.130 µm).

However, these fSCA products are not significantly better than the binary method

and are also substantially worse than spectral mixture analysis fSCA products when
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validated with fSCA from the Landsat Enhanced Thematic Mapper (ETM+) (Rittger

et al., 2013).

2.2.1 Linear Spectral Mixture Analysis in Snow Science

Linear spectral mixture analysis assumes that each pixel is a collection of constituent

spectra, or chosen endmembers (i.e., snow, vegetation, rock, etc.) and 'unmixes'

their corresponding fractions that compose each pixel. The spectral mixture analysis

was first used to map snow-covered area by Nolin et al. (1993) and is based on the

following equation:

Rc =
N∑
i=1

FiRi,c + Ec (2.1)

Where Rc is the apparent surface reflectance in band c, Fi is the fraction of

endmember i, Ric is the reflectance of endmember i in band c, N is the number of

spectral endmembers, and Ec is the residual error in band c for the fit of the N

endmembers (Gillespie et al., 1990).

Large spectral libraries determine what endmembers to use, and can depend

on the region (Painter et al., 2003). Additionally, multiple snow endmembers are

necessary to accurately determine subpixel snow-covered area (Painter et al., 1998).

Past work has been successful in mapping fractional snow-covered area, evolution of

snow grain size, fraction of liquid water in the surface layer, and contaminants that

decrease the albedo, such as dust, soot and algae (e.g. Nolin et al. 1993; Painter et

al. 1998; Nolin and Dozier 2000; Painter et al. 2003; Green et al. 2006; Dozier et al.

2009; Nolin 2010).

In the MODIS snow product suite the most accurate snow-covered area data is

the MODSCAG algorithm which improves upon the estimates of SCA by solving the

mixed pixel problem to determine fSCA with spectral mixture analysis (Painter et

al., 2009; Rittger et al., 2013). MODSCAG uses a snow endmember library generated

with a radiative transfer model to produce hemispherical-directional reflectance for
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monodispersions of spheres at varying solar zenith angles (Painter et al., 2009). The

algorithm solves equation (2.1) for the error, which provides us with the residuals,

and to measure the spectrum-wide quality of fit we average the root mean squared

error (RMSE):

Ec = Rc −
N∑
i=1

FiRi,c (2.2)

RMSE = [M−1
M∑
c=1

E2
c ]1/2 (2.3)

M is the number of bands in the spectral mixture analysis. Dennison et al. (2003)

have shown that RMSE is best for determining overall goodness of fit in spectral

unmixing. The fraction endmembers are determined and MODSCAG includes the

following constraints: (a) a model is considered valid if fractions are in the range

[-0.01,1.01] (b) overall RMSE < 2.5%, and (c) no three spectrally consecutive residuals

exceed 2.5% (Painter et al., 2009). Pixels outside of these constraints are modeled

more loosely with the following constraints: (a) [-1.01,2.01] (b) overall RMSE < 5% ,

and (c) no three spectrally consecutive residual exceed 5%. The estimation of subpixel

snow-covered area is derived from the shade-normalized snow fraction.

fs =
Fs∑

p∈s,v,r Fp

=
Fs

1 − Fshade

(2.4)

Fs is the snow spectral fraction, Fp are the physical spectral fractions snow,

vegetation, rock, etc. By normalizing the additive complement of the shade fraction

topographic effects of shadowing and illumination are accounted for (Adams et al.,

1993; Painter, 1998; Painter et al., 2003).

Therefore, each pixel is subjected to an n-choose-k problem of varying snow grain

size (snow endmembers), vegetation, rock/soil, and photometric shade. The frac-

tional combinations and associated RMSE of these mixtures are then compared. For
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MODSCAG, models with three or more endmembers constitute an accepted mixture

analysis. MODSCAG attributes the pixel with the fewest endmembers and lowest

RMSE (within the constraint) to the fractional combinations provided. For example,

a single pixel will first be tested by the collection of three-endmember models (this

could be a snow endmember, vegetation, rock, soil etc. plus a photometric shade

endmember). This model may likely not be within the RMSE threshold or other

constraints, and thus the pixel is tested by the collection of four-endmember models,

and so on until the constraints are met. The collection of endmembers and their

associated fractions with the lowest overall RMSE are then chosen to represent that

pixel.

2.2.2 Preliminary Algorithm

Initial attempts at determining fSCA and subsequent grain size were based on spectral

mixture analysis following equation (2.1). However, unlike MODSCAG that uses a

large array of varying physical endmembers, our endmember selection was crudely

chosen in-scene. The entire algorithm process can be summarized in three steps.

Step (1), Dimension reduction of initial hyperspectral flight line into original flight

line width ∼850-1000 pixels by a length of 1000 pixels. This step was necessary to

reduce the ∼30 GB flight lines to smaller sizes that are more rapidly processed. Step

(2), Automated endmember determination. If the pixel NDSI value is greater than

0.4 and its original reflectance at ∼695 nm is greater than 0.11 the pixel is defined

as clear snow. This is common practice for binary snow metrics (Dozier, 1989). Two

vegetation and two rock endmembers were determined by an algorithm based on

NDVI and reflectance values (at 860-1101 and 404-647 nm). In addition, multiple

snow endmembers of varying grain sizes based on a band feature area at ∼1030 nm

(Nolin 2000) were chosen. For all endmembers, since they were chosen in the scene,

atmospheric correction artifacts were masked. Step (3), Inversion. Assuming a flat

spectrum for our shade endmember, a linear spectral mixture analysis determines the

RMSE and subpixel percent at each pixel for each snow endmember. The grain size
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with the lowest RMSE and corresponding subpixel percent is chosen in final RMSE

and subpixel percentage plots. Steps 1-3 are then repeated for each subsequent subset

of the total flight line.

This process was a good platform for getting familiar with the spectral mixture

analysis method, but was inadequate to provide consistent characterization of snow

across flightlines, years, and seasons. The algorithm did not include pure endmembers

or an RMSE threshold, and limiting the model to three endmembers did not allow

choosing the most parsimonious solution.

2.3 Model Description

Our model and algorithm is based on MEMSCAG (multiple endmember snow-covered

area and grain size) that was derived from MESMA (multiple endmember spectral

mixture analysis) (Painter et al., 2003; Robert et al., 1998). Our model simultaneously

derives fSCA and snow grain size from a constrained linear spectral mixture analysis.

We provide detail to the input parameters, model specifications, and improvements to

optimization that has evolved and led to our current model. Figure 2.1 describes the

workflow for our analysis. Unlike MEMSCAG, which is coupled with its own radiative

transfer model and in situ measurements, we have produced our own endmember

library.

2.3.1 Development of Endmembers

As discussed previously, spectral mixture analysis assumes that each pixel's reflectance

is a linear combination of a set of selected endmembers. It is very important that

each endmember (i.e., snow, vegetation, rock, etc.) is as spectrally pure as possible

(Painter et al., 2003). Previous methods either masked out snow cover fractions that

were less than 90% due to anomalously high grain size values that were the result of

mixtures of snow, vegetation, and rock or looked at small spatial areas and assumed

only or one or two additional vegetation and rock endmembers (Painter et al. 1998;
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Figure 2.1: Workflow describing the necessary procedures that leads to different IS
comparisons. It should be noted, while not included for our comparison, that this
model can easily include other multispectral satellites such as Landsat or Sentinel-2.

Nolin and Dozier, 2000). MEMSCAG incorporated 60 spectral endmembers for vege-

tation, rock, soil, and lake ice in the Sierra Nevada taken with an Analytical Spectral

Devices FieldSpec FR field spectroradiometer for use in an AVIRIS snow-covered area

retrieval algorithm (Painter et al., 2003).

We interpolate snow endmembers from the Snow, Ice, and Aerosol Radiation

(SNICAR) model available online at the University of Michigan Figure 2.2 (Flanner

et al. 2007; 2009).

Among many other parameters, the SNICAR model allows for snow grain sizes

ranging from 30-1500 microns. Since MODSCAG makes use of a snow endmember
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Figure 2.2: SNICAR model ranging from 305-5000 nm at 10 nm intervals for 100
µm snow grain size (red dots) with the 224 AVIRIS bands weighted to the SNICAR
model albedo values (green dots).

library from 10-1100 microns at 10 micrometer intervals we too develop a snow end-

member library of similar caliber for each of our AVIRIS scenes. The AVIRIS flights

provide the solar elevation angle. From solar elevation angle we input a solar zenith

angle as a parameter into the SNICAR model and produce varying snow grain sizes

from 30 to 1100 micrometers at 10 micrometer intervals. Figure 2.3 is an example

of a 108 snow endmember library interpolated to AVIRIS bands.

Vegetation, rock, soil, etc. endmembers were measured in situ in the region of
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Figure 2.3: An example of our snow endmember library for a single flight line. The
SNICAR model of 108 snow endmembers varying from 30-1100 micrometers interpo-
lated to AVIRIS channels.

Sage Hen. However, we opted to not use these measurements as the local vegeta-

tion species and mineralogy changes throughout the entire Sierra Nevada region. We

therefore decided to produce a generalized endmember library for typical vegetation

and minerals/soils found in the Sierra Nevada. We interpolated and convolved vegeta-

tion, rock, soil, etc. endmembers from the USGS Spectral Library Version 7 [Kokaly

et al., 2017] and from the ASTER Spectral Library Version 2.0 [Baldridge et al.,

2009] to AVIRIS channels Figure 2.4 and Figure 2.5. Spectra that were sampled
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at a spectral resolution finer than AVIRIS were convolved to the AVIRIS channels

with a Gaussian bandpass filter (Painter et al., 2003). We masked spectral channels

where there were high atmospheric correction artifacts present in our data (around

1400 and 1900 nm). This model does not attempt to identify vegetation species or

rock/soil mineralogy, so attention to specific bidirectional reflectance is not necessary

and assumed nadir (Painter et al., 2003).

Figure 2.4: Six vegetation endmembers common to the Sierra Nevada taken from the
USGS Spectral Library Version 7. Original names provided in index.

Of the endmembers chosen, preliminary spectral mixture analysis of the Sage

Hen study site indicated that over 90% of mixed pixels were attributed to vegetation
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Figure 2.5: Rock, soil, ice, and asphalt common to the Sierra Nevada taken from the
ASTER Spectral Library Version 2.0. Original names provided in the index.

endmembers, and 100% of mixed pixels were attributed to only 10 endmembers (of

a 26 total) outside of our snow endmembers. Therefore, to improve on computation

times, we reduced the non-snow library to these 10 endmembers (Figure 3.2). It will

be necessary to to do full library inversions at spatially random intervals throughout

an entire flight line in the future to decide how valid this reduction is.
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2.3.2 Development of Spectral Mixture Analysis

The brunt of the computational effort that goes towards solving equation (2.1) is the

Matlab R2016a function available in the Optimization toolbox called lsqlin (R2016a,

The MathWorks, 2016). The function allows us to optimally solve the constrained

linear least-squares problem. Earlier versions of our model replicated the constraints

of previous work to varying degrees (Nolin and Dozier 2000; Painter et al., 2003;

Painter et al., 2009). We include the constraints that since we are only interested in

fSCA and grain size to ignore pixels that have an NDSI < 0.0, the spectral fractions

must sum-to-unity, spectral fractions are in the range [-0.01, 1.01], overall RMSE< 5%

(Compared to MEMSCAG and MODSCAG which is 2.5%), and unlike MEMSCAG or

MODSCAG we ignore spectrally consecutive residuals exceeding our RMSE threshold

of 5%. The NDSI threshold improves computation times instead of looking at each

pixel, and since spectral mixture analysis is only accurate down to 15% snow cover

the NDSI threshold includes this region in all endmember combination cases (Rittger

et al., 2013). The 5% RMSE threshold, while computationally less expensive than

2.5% resulted in erroneous fSCA and grain size calculations as discussed later.

Since spectral mixture analysis assumes that the reflectance spectrum of a single

pixel is a combination of varying endmembers, it is mathematically possible to have

that spectrum be accurately represented by different n-endmember combinations.

However, the solutions with a larger number of endmembers are mathematically trivial

solutions and also likely unrealistic. It is easier to model a vector with an increasing

number of basis vectors that are not degenerate (Painter et al., 2009). Thus, the

chosen fSCA and grain size must first pass the constraints of the spectral mixture

analysis and also have the fewest endmembers- i.e. the parsimonious solution. To

save on computation times we implement the parsimonious solution by wrapping

the spectral mixture analysis with an RMSE threshold check. While this reduces

computation times instead of checking a pixel for varying n-endmember combinations,

it also resulted in erroneous fSCA and grain size calculations.

The results of the early implementations and how errors were manifested is shown
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in Figure 2.6. Here the approximate true color image compared to the shade nor-

malized subpixel snow fraction (derived from equation 2.4). The true color image

depicts the snow cover as significantly more varied than pure snow. However, our

early model results indicate that there is nearly 100% snow cover (maroon pixels)

over the vast majority of the scene. In order to understand why our model was

erroneously overestimating fSCA we performed a sensitivity analysis.

Figure 2.6: Depicts the erroneous fSCA from earlier algorithm results. The red pixels
on the right represent 100% snow cover, but when we view the true color on the left
snow cover is much more variable. The sensitivity analysis would provide insight to
understand why this was happening.

2.4 Sensitivity Analysis

We performed a synthetic study to understand the sensitivity of our model's ability to

determine fSCA and grain size for varying snow grain sizes and different endmembers

[Painter et al., 2003]. The simulated pixel is a linear combination of a single snow

grain size endmember and another endmember (vegetation) varying from 0 to 100%,

incremented by 10% mixtures Figure 2.7. In our earlier model, which uses a 5%

RMSE threshold, modelled fSCA is accurate only to ∼70% true snow cover area

and overestimates snow cover by ∼30%, improving with larger snow grain sizes as
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shown in Figure 2.8. Ideally, our shade normalized fSCA (circles on graph) should

follow the 1:1 line, but consistently overestimates fSCA above ∼70% snow cover. The

shade not-normalized fSCA (asterisks in Figure 2.8) is consistently closer to the

true fSCA, but for entirely wrong reasons. That is is to say the shade not-normalized

fSCA is closer to the true value, but only because the model chooses the wrong

grain size for these snow and shade only combinations. Similarly, discrepancies in

modelled grain size parallel discrepancies in fSCA. In all erroneous instances, grain

size is underestimated. We find that these results are due to the model choosing

the most parsimonious solution first. Since shade is an endmember always present,

our model will determine a pixel is purely snow (combined with a shade endmember-

equation (2.4)) if that combination is below the 5% RMSE threshold, as opposed to

a combination of snow and another endmember first. Therefore the model will prefer

a single snow endmember that is of a lower grain size combined with shade over the

correct snow endmember combined with vegetation or comparatively whatever true

endmember is present. The quick solution was to simply set a lower RMSE threshold,

but this increased computation times drastically. We have adjusted the algorithm to

minimize these errors and maintain relatively efficient computation times.

2.5 Final Improvements

To increase the accuracy for large snow covered pixels while maintaining realistic com-

putation times two adjustments to the workflow were implemented. The first adjust-

ment was to set an NDVI threshold check before the parsimonious solution spectral

mixture analysis. A pixel that has an NDVI greater than 0.2 is immediately assumed

to be more than a combination of snow and shade and the computation thereby avoids

the first iteration of the of 2-endmember solutions (i.e. snow and shade). Instead the

algorithm will proceed with combinations of 3-endmember solutions or more. We

do not limit the solution matrix to only vegetation endmembers, but in the future

this might be an improvement to computation times to do so. The second adjust-

ment was to set a lower RMSE threshold for 2-endmember solutions as opposed to
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Figure 2.7: Example of synthetic spectral mixtures from the sensitivity study. Mix-
tures vary from 100% snow 0% vegetation to 0% snow 100% vegetation in 10% in-
crements. Snow endmember shown is 700 µm grain size and vegetation endmember
shown is juniper.

3-endmember solutions or more. Since the main source of error in overestimation of

fSCA and consequent underestimation of grain size was due to the algorithm choosing

a lower grain size combined with shade over the true grain size and true endmember

combination, we set a lower 2% RMSE threshold for all 2-endmember solutions (i.e.

snow and shade will only be a chosen combination for a pixel if the RMSE is < 2%).

This increases computation times, but significantly improves accuracy. Figure 2.9

depicts the improvements in the refined model with a sensitivity analysis and Figure
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Figure 2.8: Synthetic sensitivity modeling results for 700 µm grain size at 5% RMSE
threshold. The left graph shows that the shade-normalized unmixing begins to over
predict snow at 70% true snow cover. The right graph shows that the modeled grain
size underestimates true grain size and parallels these errors.

2.10 shows the examples of a true color and subsequent fSCA calculations. In imple-

menting these adjustments, fSCA is only overestimated at ∼85-99% true snow cover

area, but only overestimating by <15%. Similarly, grain size is only underestimated

at the highest snow cover fractions.

Figure 2.9: Synthetic sensitivity modeling results for 700 µm grain size for optimized
model.
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Finally, a new method to improve computation times was implemented that

divides the spectral mixture analysis into two runs. Since the number of snow end-

members is 108 (30-1100 at 10 µm intervals) each n-choose-k problem is on the order

of 108 endmembers plus 10 non-snow endmembers. Instead, we divide the snow end-

members into a preliminary grouping and then a final grouping based on the results

of the first spectral mixture analysis run. The first spectral mixture analysis will look

at a smaller subset of snow endmembers (100-1100 at 100 µm intervals) for a total of

11 snow and 10 non-snow endmembers. From this first run, the selection is narrowed

further in the second run to snow endmembers that vary from the 10 µm intervals

before and after the chosen endmember. For example, a pixel will first look at the 11

snow and 10 non-snow endmembers, and might choose an n-endmember combination

that uses the 200 µm grain size snow endmember. Then, on the second run, the

snow endmembers that are the new input parameters to the spectral mixture analy-

sis range from 110-290 µm at 10 µm intervals. This method improves computation

times drastically and appears to not have any limiting effects on accuracy. These

combined adjustments to the spectral mixture analysis algorithm is what our current

and best model incorporates. The details of the workflow for the single 'Spectral

Mixture Analysis' box in Figure 2.1 is summarized in Figure 2.11. We plan to

share the project on the Matlab File Exchange to allow for future optimization and

community improvements using an open license.
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Figure 2.10: Depicts an approximate true color subsection of one of our flight lines
on the left, and on the right the fSCA from our optimized algorithm.
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Figure 2.11: Workflow of the finalized spectral mixture analysis section from Figure
2.1. Orange boxes are recorded in the final output for each pixel.
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Chapter 3 Manuscript for submission to Remote Sensing of

Environment; Title: Next Generation Snow Cover Mapping: How Future

Hyperspectral Satellite Spectrometer Systems Can Improve Subpixel

Snow-covered Area and Grain Size

3.1 Abstract

Mountain snow storage is the dominant source of water for humans and ecosystems

in semiarid western North America. Consequently, the spatial distribution of snow-

covered area is fundamental to both hydrological, ecological, and climate models.

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along

the entire Sierra Nevada mountain range extending from north of Lake Tahoe to

south of Mt. Whitney during the 2015 and 2016 snow-covered season. Data from the

Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16

near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation

and snow loss. This study focuses on the Sagehen Creek Field Station (39◦25'54.7''

N 120◦14'26.67'' W) and the surrounding watershed for an approximate 20 km x

1.5 km area. Building on previous retrieval of subpixel snow-covered area algorithms

that take into account varying grain size we present a model that analyzes multiple

endmembers of varying snow grain size, vegetation, rock, and soil to determine snow-

cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition,

varying simulated models of the data compare and contrast the retrieval of current

snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and

the ITRES CASI-1500 (CASI) aboard the Airborne Snow Observatory (ASO), and

future hyperspectral satellite spectrometer systems. Specifically, does lower spatial

resolution (MODIS), fewer spectral channels (MODIS), and limited spectral resolu-

tion (CASI) affect snow-cover area and grain size approximations? The implications of

our findings will help refine snow mapping products for planned hyperspectral satellite

spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for



25

inclusion on the International Space Station in 2018), and HyspIRI (currently under

consideration).

Keywords: Snow, Imaging Spectroscopy, AVIRIS, Spectral mixture analysis

3.2 Introduction

Seasonal snowpack is a critical water resource in many regions with mountain snow

storage as the dominant source for humans and ecosystems in western North America.

With the highest albedo and greatest spatial extent of any other natural surface,

snow-covered area (SCA) is fundamental to both hydrological, ecological, and climate

models. Mountain snowpack in North America and most of Eurasia is declining

as result of the warming climate and it is predicted to continue (Nolin and Daly,

2006; Stoelinga et al., 2010; Kunkel et al., 2016). When SCA diminishes as a result

of seasonal changes, accurate and expedient assessment of snowmelt will improve

streamflow forecasts and hydrological model simulations (Clark et al., 2006; McGuire

et al., 2006; Thirel et al., 2011). The hydrological and climatological significance

of decreasing SCA is unclear, but as global climate change drives down snowpack

an increasing demand for improved accuracy and increased efficiency of monitoring

snow's spatial extent is vital for improving model calculations.

Early work using the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS)

established methods to determine both snow cover area and grain size (e.g. Painter

et al., 1998; Painter et al., 2003). These studies were then modified to provide similar

results from the coarse spatial resolution and limited spectral coverage available for

more global and regional scales with the Moderate Resolution Imaging Spectrora-

diometer (MODIS) instrument (Dozier et al., 2008; Painter et al., 2009; Painter et

al., 2012). Despite the need for higher fidelity snow information (e.g. fractional snow-

covered area (fSCA) and albedo), we are still challenged by unmixing pixels that are

a combination of several land use classes. The most accurate of these snow-covered

area retrievals is the MODIS Snow-Covered Area and Grain Size (MODSCAG) re-

trieval algorithm which improves upon the estimates of SCA by solving the mixed
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pixel problem to determine fSCA with spectral mixture analysis (Painter et al., 2009;

Rittger et al., 2013).

Modern airborne instrumentation provides both higher spatial and spectral reso-

lution than current satellite imaging systems; however, products provided by ASO and

AVIRIS are not readily available for every region or temporal resolution is too low to

effectively map the transformation of snow cover in time. Consequently, MODSCAG

remains the best combined trade off of temporal and spatial resolution that is readily

available. There have been recent efforts to refine the coarse fSCA spatial scale from

∼500 m to 3-30 m resolution through downscaling (Walters et al, 2014; Li et al., 2015;

Cristea et al., 2017). Multispectral sensors like Landsat and Visible Infrared Imaging

Radiometer Suite (VIIRS) have the potential to refine our spatial resolution further

and release of those products is expected over the next few years (Justice et al., 2013).

In addition, hyperspectral remote sensing is capable of resolving additional snowpack

properties, such as grain size, that multispectral sensing cannot. It is also unknown

how valuable additional spectral resolution is to separating forest and snow fractions

in complex topography. Therefore, the advent of a high spatial and high temporal

resolution satellite imaging spectrometer (IS) system would be particularly useful for

snow science. Planned IS systems EnMap [Guanter, et al., 2015], slated to launch

2018, and HISUI [Matsunaga, et al., 2016], planned for inclusion on the International

Space Station 2018, may provide data at new benchmark scales. Specifically, EnMap

will have 30 m spatial resolution at 4 day temporal resolution (±30◦ off-nadir tilt).

Both IS systems will also include improvements to spectral resolution ((0.4-2.5 µm

at ∼10 nm intervals) allowing algorithms developed for airborne instruments to be

applied to satellite systems. As an analog for future IS systems, previously collected

AVIRIS data serve to parameterize the effects that future hyperspectral satellite IS

systems will have on current fSCA and grain size retrieval algorithms.
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3.3 Background

3.3.1 Snow Covered Area

Of the MODIS snow products, the most accurate snow-covered area product is MOD-

SCAG which simultaneously determines fSCA and snow grain size with linear spectral

mixture analysis (Painter et al., 2009; Rittger et al., 2013). Linear spectral mixture

analysis assumes that each pixel is a collection of constituent spectra, or chosen

endmembers (i.e., snow, vegetation, rock, etc.) and 'unmixes' their corresponding

fractions that comprise each pixel. The spectral mixture analysis was first used to

map snow-covered area by Nolin et al. (1993) and Painter et al. (1998) and is based

on the following equation:

Rc =
N∑
i=1

FiRi,c + Ec (3.1)

Where Rc is the apparent surface reflectance in band c, Fi is the fraction of

endmember i, Ric is the reflectance of endmember i in band c, N is the number of

spectral endmembers, and Ec is the residual error in band c for the fit of the N

endmembers (Gillespie et al., 1990).

Large spectral libraries determine what endmembers to use, and can depend on

the region (Painter et al. 2003). Past work has been successful in mapping fractional

snow cover area, evolution of snow grain size, fraction of liquid water in the surface

layer, and contaminants that decrease the albedo, such as dust, soot and algae (e.g.

Nolin et al. 1993; Painter et al. 1998; Nolin and Dozier 2000; Painter et al. 2003;

Green et al. 2006; Dozier et al. 2009; Nolin 2010).

3.3.2 Snow Grain Size

Snow grain size is what determines the spectral albedo in the near-infrared wave-

lengths (Wiscombe & Warren, 1980). When impurities in the snowpack are not

present snow surface grain size is an important indicator of snow metamorphism and
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also provides a foundation from which to determine radiative forcing (Painter et al.,

2016). The wavelength range of 1000-1300 nm is where snow's spectral reflectance is

most sensitive to grain size, and therefore instruments with high spectral resolution

in this range can provide the most robust measures of grain size (Painter et al., 2003).

Nolin and Dozier (1993; 2000), developed and then improved upon a method for re-

motely sensing snow grain size by integrating across an entire 1030 nm absorption

feature and then scaling by its continuum. Their model has a grain diameter uncer-

tainty of ±20-50 µm across the grain radius range of 50-900 µm. Additionally, these

early methods were constrained to pixels that were entirely snow-covered (Nolin &

Dozier, 1993; Nolin & Dozier, 2000; Green et al., 2002). Despite this sensitivity to

pure snow pixels, similar approaches to this absorption feature method are still used

in determining snow grain size (Painter et al., 2013; Painter et al., 2016). Because

examples of this method are under the assumption that a pixel is pure snow they

assume that a pixel is clear snow if the NDSI > 0.9 (Painter et al., 2013), or since the

spatial resolution is high (ASO ∼3 m) then a pixel is classified as snow or not snow

and not a mixed pixel (Painter et al., 2016).

Another method for determining snow grain size is entirely based on the spectral

mixture analysis. The spectral mixture analysis assumes multiple combinations of

two or more endmembers of the spectral library, while maintaining only one snow

endmember (Painter et al., 1998; Painter et al., 2003; Painter et al., 2009). Therefore,

since the snow endmember library is based entirely on snow at varying grain sizes

the mixture of a certain pixel with the lowest RMSE, and additional constraints, will

be attributed to a specific snow grain size. This method is especially susceptible to

increases in vegetation fraction due to liquid water in vegetation that pulls the 1030

nm ice absorption feature toward shorter wavelengths (Painter et al., 2003). In the

MEMSCAG (multiple endmember snow-covered area and grain size) model grain size

retrievals were accurate for snow fractions greater than 50% for 50-µm grain sizes and

only greater than 90% for 1000-µm grain size (Painter et al., 2003). The susceptibility

to accurately measure grain size is is therefore dependent on both the amount of snow
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cover in the pixel and the snow grain size (inaccuracies increasing for larger grains).

3.4 Data and Simulated Data

3.4.1 AVIRIS Flights

As part of a Nevada EPSCoR Project, AVIRIS data were collected along the entire

Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt.

Whitney during the 2015 and 2016 snow-covered season (AVIRIS Data Portal, 2016).

Data were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near

maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and

snow loss. The AVIRIS dataset used in this experiment consists of 224 contiguous

spectral channels with wavelengths ranging 400-2500 nm and spectral bandwidth

of approximately 10 nm at a nominal 15 m spatial pixel resolution. The HyspIRI

Campaign's Level 2 processing pipeline transformed calibrated AVIRIS radiance data

into surface reflectance using the Atmosphere Removal Algorithm developed by Gao

et al. (1993) by modeling the absorption due to water vapor, carbon dioxide, ozone,

nitrous oxide, carbon monoxide, methane, and oxygen as described in Thompson et

al. (2015). Several channels were masked due to atmospheric correction artifacts

[99-111 (1273-1393 nm); 150-177 (1782-2028 nm)] for a total of 183 channels used in

this study.

3.4.2 Current Snow Mapping Products

The MODIS instrument contains 20 optical channels and is comprised of seven land

reflectance bands with bandwidth and spatial resolution shown in Table 3.1 (Barnes

et al., 1998). The grain size retrieval algorithm for MODSCAG uses libraries of snow

endmembers that were generated with model calculations of snow reflectance spectra

for monodispersions of spheres of radii 10-1100 µm (10 µm intervals) and solar zenith

angles ranging from 0◦ to 85◦ (Painter et al., 2009). The MODSCAG algorithm has

a spatial resolution of 500 m (Painter et al., 2009).
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Band Bandwidth(µm) Spatial Resolution (m)

1 0.620-0.670 250
2 0.841-0.876 250
3 0.459-0.479 500
4 0.545-0.565 500
5 1.230-1.250 500
6 1.628-1.652 500
7 2.105-2.155 500

Table 3.1: Spectral bandwidths and spatial resolution of the seven land reflectance
bands for MODIS. In order to incorporate all bands the MODSCAG snow cover data
product is only available at 500 m.

The Airborne Snow Observatory collects data with an ITRES CASI-1500 imaging

spectrometer with a range from 365 to 1050 nm with ∼10 nm resolution for a total of

72 spectral bands (Painter et al., 2016). The grain size retrieval algorithm for ASO is

modelled after the method of Nolin and Dozier (2000). However, this does not cover

the entire 1030 nm absorption feature used in snow grain size estimates (Painter

et al., 2013). Modeling broadband snow albedo past this feature where absorption

depends on grain size must be extrapolated (Bair et al., 2016). The spatial resolution

for CASI products is very fine at 3 m spatial pixel resolution (Painter et al., 2016).

An even smaller spatial pixel resolution of 1.5 m is available, but the uncertainty in

location for CASI snow depth is 1.5 m (Painter et al., 2016). ASO does not make

use of NDSI to calculate snow-covered area, but instead uses lidar and snow-off vs

snow-on gridded surfaces to determine snow depth and snow cover extent (Painter et

al., 2016).

We explore the differences of AVIRIS, CASI, and MODIS in regards to fSCA

and grain size approximations. EnMAP and HISUI will both have a satellite-based

hyperspectral imager similar to AVIRIS (Guanter, et al., 2015; Matsunaga, et al.,

2016). We provide a short summary of the spatial, spectral, and temporal resolutions

of AVIRIS, CASI, MODIS, and the planned EnMAP, HISUI, and HyspIRI IS systems

Table 3.2. To help visualize the differences in spectral resolution, Figure 3.1 depicts

three sample spectra from our masked AVIRIS flight line data overlayed with the
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MODIS bandpasses and limited spectral range of CASI.

Figure 3.1: Clean snow, mixed snow, and vegetation of our true AVIRIS data plotted
with MODIS band passes (1-7) with the limited spectral range of CASI-1500.

3.4.3 Simulated MODSCAG, CASI, EnMAP, and beyond

As described in Chapter 2, the algorithm and methods we have produced is based

on previous work (MEMSCAG and MODSCAG) (Painter et al., 2003; Painter et al.,

2009). Since the computational framework is nearly the same, in order to simulate

the MODIS satellite, or any other satellite, we can take the much finer spectral

resolution as well as the finer spatial resolution of AVIRIS to produce simulated
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IS System Spatial Spectral Temporal

224 Bands
AVIRIS 15 m 400-2500 nm Range *

(Green et al., 1998) ∼10 nm Resolution
72 Bands

CASI-1500 3 m 380-1050 nm Range *
(Painter et al., 2016) ∼10 nm Resolution

MODIS (MODSCAG) 500 m Table 3.1 ∼daily
(Painter et al., 2009)

185 Bands
EnMAP 30 m 420-1000 nm Range ∼4 days

(Guanter et al., 2015) 900-2450 nm Range
6.5-10 nm Resolution

212 Bands
HyspIRI 30 m 380-2500 nm Range 16 days

(Lee et al., 2015) 10 nm Resolution
185 Bands

HISUI 30 m 400-2500 nm Range ∼3-4 times a month
(Matsunaga et al., 2016) 10-12.5 nm Resolution

Table 3.2: Summary is based on the current spatial, spectral, and temporal resolutions
for snow mapping products available.

products based on varying spectral or spatial scales. In the example of MODIS,

we take the relative spectral response functions of the MODIS bands (see Table

3.1) and using the AVIRIS channels that cover the MODIS bandpasses, convolve the

bandpasses to the channels for each endmember in our library. We then aggregate

the reflectances to varying spatial resolutions, and then perform our spectral mixture

analysis across our sample selection that is now at lower MODIS spectral resolution.

As long as the spectral resolution and spatial resolution of the satellite are known,

the potential to simulate any satellite that is lower spectral or lower spatial resolution

than AVIRIS is possible. While the specifics of EnMAP's spectral channels is not

entirely known, it will certainly be similar to AVIRIS (see Table 3.2). We can simply

aggregate pixel reflectances to 30 m resolution before performing spectral mixture

analysis. In the example of CASI, which is at a higher spatial resolution, we may

only compare the spectral resolution from our AVIRIS data interpolated to CASI
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channels. CASI grain size calculations do not cover the entire 1030 nm absorption

feature (Painter et al., 2013). However at ∼15 m resolution AVIRIS may not readily

determine clear snow. In order to make a valid comparison of grain size we set a high

NDSI > 0.9 threshold and look at pixel grain size based on the method provided by

CASI compared to AVIRIS spectral channels (Painter et al, 2013). The workflow to

produce our different snow product comparisons was described in detail in Chapter 2

(Figure 2.1).

Validation with true MODSCAG data is still an important future step, but our

use of a self consistent data set provides an estimate of where the MODSCAG algo-

rithm may not be performing well. We assume that a comparison between a simulated

MODSCAG product and our AVIRIS data is valid for a multitude of reasons: (1)

There is no difference in instrument noise and reflectance correction parameters, and

thus by using normalized reflectance values across our AVIRIS model and simulated

MODSCAG we eliminate any adverse effects of varying reflectances (2) Since the

pixel aggregate is based on the nearly nadir viewing geometries of the same AVIRIS

scene we eliminate any differences of off-nadir tilt, and due to the ephemeral nature

of snow we assure that each scene comparison is using the same snow cover, a proxy

for analysis on the same day. (3) Endmember selection and algorithm procedure is

the same, and only spectrally different based on the spectral sampling of MODIS.

This validation is applicable to any variation in simulated satellite selection of lower

spectral and spatial resolution than AVIRIS.

We derive snow cover and grain size using a multiple endmember unmixing model

that first tests for snow abundance and vegetation using NDSI and NDVI metrics

at the full AVIRIS spatial and spectral resolution. Next, we present comparisons

of simulated fSCA and grain size retrieval products (MODSCAG, CASI, EnMAP)

containing the Sagehen Creek watershed with validation datasets from AVIRIS. While

our methodology differs from the true MODSCAG or CASI products, consistency

between our model and simulated products ensures that we are truly testing the

influence of varying spectral and spatial resolutions on derived fSCA and grain size.
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The following snow products were explored:

1. Simulated MODSCAG by aggregating AVIRIS reflectance data to 500 m. Then

convolving pixels and endmembers to MODIS band centers from the MODIS

(Aqua) relative spectral response (RSR). Followed by spectral mixture analysis.

2. Simulated EnMAP by aggregating AVIRIS reflectance data to 30 m, keeping

the full spectral resolution. Followed by spectral mixture analysis.

3. Hypothetical grain size retrievals similar to CASI for pixels at NDSI > 0.9

(Painter et al., 2013).

3.5 Model Description

Our model and algorithm is based on MEMSCAG (multiple endmember snow-covered

area and grain size) that was derived from MESMA (Painter et al., 2003; Robert

et al., 1998). Our model simultaneously derives fSCA and snow grain size from a

constrained linear spectral mixture analysis and is described in detail in Chapter 2.

Unlike MEMSCAG which is coupled with its own radiative transfer model and in situ

measurements, we have produced our own endmember library.

3.5.1 Library Endmembers

We interpolate snow endmembers from the Snow, Ice, and Aerosol Radiation (SNICAR)

model available online at the University of Michigan (Figure 2.2 ; Flanner et al.

2007; 2009).

Among many other parameters, the SNICAR model allows for snow grain sizes

ranging from 30-1500 microns. Since MODSCAG makes use of a snow endmember

library from 10-1100 microns at 10 micrometer intervals we too develop a snow end-

member library of similar caliber for each of our AVIRIS scenes. The AVIRIS flights

provide the solar elevation angle. From solar elevation angle we input a solar zenith

angle as a parameter into the SNICAR model and produce varying snow grain sizes

from 30 to 1100 micrometers at 10 micrometer intervals (Figure 2.3).
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Vegetation, rock, soil, etc. endmembers were measured in situ in the region of

Sage Hen. However, we opted to not use these measurements as the local vegeta-

tion species and mineralogy changes throughout the entire Sierra Nevada region. We

therefore produced a generalized endmember library for typical vegetation and miner-

als/soils found in the Sierra Nevada. We interpolated and convolved vegetation, rock,

soil, etc. endmembers from the USGS Spectral Library Version 7 [Kokaly et al., 2017]

and from the ASTER Spectral Library Version 2.0 [Baldridge et al., 2009] to AVIRIS

channels (Figure 2.4 and Figure 2.5). Spectra that were sampled at a spectral res-

olution finer than AVIRIS were convolved to the AVIRIS channels with a Gaussian

bandpass filter (Painter et al., 2003). As noted in section 3.4.1, spectral channels

were masked where there were high atmospheric correction artifacts present in our

data (around 1400 and 1900 nm). This model does not attempt to identify vegetation

species or rock/soil mineralogy, so attention to specific bidirectional reflectance is not

necessary and assumed nadir (Painter et al., 2003).

Of the endmembers chosen, preliminary spectral mixture analysis of the Sage

Hen study site indicated that over 90% of mixed pixels were attributed to vegetation

endmembers, and 100% of mixed pixels were attributed to only 10 endmembers (of

a 26 total) outside of our snow endmembers. Therefore, to improve on computation

times, we reduced the non-snow library to these 10 endmembers. It will be necessary

to to do full library inversions at spatially random intervals throughout an entire flight

line in the future to decide how valid this reduction is. Figure 3.2 describes the

vegetation, rock, soil, etc. endmembers used in spectral mixture analysis (excluding

the 108 snow endmembers, which are shown in Figure 2.3).

3.5.2 Spectral Mixture Analysis

Our spectral mixture analysis is primarily based on previous work (Painter et al.,

1998; Nolin and Dozier 2000; Painter et al., 2003; Painter et al., 2009). The spectral

mixture analysis is based on equation (3.1), above. Solving this equation for the error

provides us with the residuals, and to measure the spectrum-wide quality of fit we
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Figure 3.2: Vegetation, rock, soil, etc. endmembers convolved / interpolated to
AVIRIS channels. These are the final ten endmembers used in our spectral mixture
analysis emerging from preliminary analysis of the Sage Hen. Gaps in the spectra
represent areas where atmospheric effects in original AVIRIS data exist and are sub-
sequently masked.

average the root mean squared error (RMSE):

RMSE = [M−1
M∑
c=1

E2
c ]1/2 (3.2)

M is the number of AVIRIS bands in the spectral mixture analysis. The fraction

endmembers are determined in the overdetermined case. The estimation of subpixel

snow-covered area is derived from the shade-normalized snow fraction.
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fs =
Fs∑

p∈s,v,r Fp

=
Fs

1 − Fshade

(3.3)

Fs is the snow spectral fraction, Fp are the physical spectral fractions snow,

vegetation, rock, etc. By normalizing the additive complement of the shade fraction

topographic effects of shadowing and illumination are accounted for (Adams et al.,

1993; Painter, 1998; Painter et al., 2003).

MODSCAG includes the following constraints: (a) a model is considered valid

if fractions are in the range [-0.01,1.01] (b) overall RMSE < 2.5%, and (c) no three

spectrally consecutive residuals exceed 2.5%. Pixels outside of these constraints are

modeled more loosely with the following constraints: (a) [-1.01,2.01] (b) overall RMSE

< 5% , and (c) no three spectrally consecutive residual exceed 5%. The estimation

of subpixel snow-covered area is derived from the shade-normalized snow fraction

(Painter et al., 2009).

We attempted to replicate the MODSCAG model, and through optimization

and sensitivity studies our model includes the following constraints: (a) a model is

considered valid if fractions are in the range [-0.01,1.01] and sum to 1.0 (b) overall

RMSE is <2% for 2-endmember solutions (i.e. snow and shade only) but overall

RMSE is <5% for all other combinations, and (c) we ignore spectrally consecutive

residual constraints.

Additionally, we only perform spectral mixture analysis on any pixel whose NDSI

> 0.0. The NDSI threshold improves computation times instead of looking at each

pixel, and since spectral mixture analysis is only accurate down to 15% snow cover the

given NDSI threshold threshold includes this region in all endmember combination

cases (Rittger et al., 2013). Additionally, we include a NDVI > 0.2 threshold check

to ignore 2-endmember solutions and immediately move on to 3 or more endmember

solutions to improve computation time since snow has a low ∼0.1 NDVI value. The

model also reduces computation times by dividing the spectral mixture analysis into

two runs. Since the number of snow endmembers is 108 (30-1100 at 10 µm inter-

vals) each n-choose-k problem is on the order of 108 endmembers plus 10 non-snow
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endmembers. Instead, we divide the snow endmembers into a preliminary grouping

using a coarse grain size step and then a final grouping using a finer snow grain size

step based on the results of the first spectral mixture analysis run. The first spectral

mixture analysis looks at a smaller subset of snow endmembers (100-1100 at 100 µm

intervals) for a total of 11 snow and 10 non-snow endmembers. From this first run,

the selection is narrowed further in the second run to snow endmembers that vary

from the 10 µm intervals before and after the chosen endmember. For example, a

pixel will first look at the 11 snow and 10 non-snow endmembers, and might choose an

n-endmember combination that uses the 200 µm grain size snow endmember. Then,

on the second run, the snow endmembers that are the new input parameters to the

spectral mixture analysis range from 110-290 µm at 10 µm intervals. Since our pre-

liminary results have shown reasonably low scene-wide RMSE, we currently set the

model to a maximum of 4-endmember combinations. The workflow of our spectral

mixture analysis is summarized in Chapter 2 (Figure 2.11).

3.6 Sensitivity Study

We performed a synthetic study to understand the sensitivity of our model's ability

to determine fSCA and grain size for varying snow grain sizes at different endmem-

bers [Painter et al., 2003]. While we generated synthetic hyperspectral scenes for

all endmembers, Figures 3.2 and 3.3 show the sensitivity analysis for one common

endmember that was also the largest source of error, vegetation (juniper) with a snow

grain size of 700 µm. All other synthetic endmember scenes had a lower error. The

simulated scene is a linear combination summing to 100% of a single snow grain size

endmember and the vegetation endmember varying from 0 to 100%, incremented by

1% mixtures. Figure 3.3 depicts this combination for 10% increments.

Figure 3.4 shows that our model is accurate at determining fSCA percentage

and true grain size for nearly all true snow cover percents and for varying snow grain

sizes. It is important to note that for fSCA, we overestimate true snow cover percent

between ∼85-99%, but only by <15%. We highlight the discrepancy between shade-
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Figure 3.3: Example of synthetic spectral mixtures from the sensitivity study. Mix-
tures vary from 100% snow 0% vegetation to 0% snow 100% vegetation in 10% in-
crements. Snow endmember shown is 700 µm grain size and vegetation endmember
shown is juniper.

not-normalized '*' and shade-normalized 'O' (final product). Similarly, discrepancies

in modelled grain size parallel discrepancies in fSCA. In all erroneous instances, grain

size is underestimated. We find that these results are due to the model choosing

the most parsimonious solution first. Since shade is an endmember always present,

our model will determine a pixel is purely snow (combined with a shade endmember-

equation 3) if that combination is below our 2% RMSE threshold, as opposed to a

combination of snow and another endmember first. Therefore the model will prefer
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a single snow endmember that is of a lower grain size combined with shade over

the correct snow endmember combined with vegetation or comparatively whatever

true endmember is present. This discrepancy is most exaggerated with vegetation

endmembers. This is likely due to the liquid water in the vegetation that brings the

characteristic 1030 nm ice absorption feature toward shorter wavelengths (Painter et

al., 2003).

Figure 3.4: Synthetic sensitivity modeling results for 700 µm grain size for the opti-
mized model.

3.7 Comparisons

We use AVIRIS data to compare fSCA and grain size retrievals to simulated MOD-

SCAG and EnMAP products, and grain size retrievals similar to CASI (Painter et

al., 2013; Painter et al., 2016). The details of simulated MODSCAG, EnMAP, and

CASI retrieval methods are found within Section 3.4.3. The workflow that leads to

these comparison products is summarized in Chapter 2 (Figure 2.1). As is common

practice, we omit pixels with fSCA < 0.15 due to the erroneous spectral mixture of

snow with other land covers at these percentages (Painter et al., 2009; Rittger et al.,

2013).
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3.7.1 Comparison Metrics

Three fractional metrics provide difference in per-pixel fSCA and grain size values:

mean difference, median difference, and RMSE (Rittger et al., 2013). The RMSE is

defined as:

RMSE =

√
1

N

∑
N

(fSimulatedProduct
SCA − fAV IRIS

SCA )2 (3.4)

Where N is the number of pixels in the image that the simulated product (MOD-

SCAG or EnMAP) or where aggregated AVIRIS pixels depict as snow. Similarly, these

metrics are applied to grain size values in place of fSCA (equation 3.4). We avoid

areas where both do not see snow, as including those pixels would give erroneously

good RMSE values (Rittger et al., 2013). We also provide a scene-wide SCA compar-

ison differencing the total SCA of the AVIRIS aggregates compared to our simulated

products.

3.7.2 Comparison Statistics

Figure 3.5 depicts one of our validation AVIRIS 3/24/16 flight lines near maximum

snow accumulation. Mean fSCA, RMSE, vegetation fraction, and grain size for the

full scene are 0.4679, 0.0208, 0.2714, and 829.2 µm respectively. Due to the omission

of pixels where fSCA is < 0.15 we also omit those pixels in the full scene. There are

large patches of small grain sizes that are likely false (northwest corner and east).

These features are classified as snow due to our low NDSI threshold of 0.0. If we set

an NDSI threshold of 3.0, these densely vegetated regions are eliminated along with

their erroneous grain sizes. Future work will address this issue with a higher NDSI

threshold before all subsequent comparisons. Another discrepancy that is visible is

the presence of a small (∼10% or less) vegetation fraction in areas of pure snow (i.e.

lakes). The source of this error is due to the snow in these areas containing con-

taminents that reduce the overall reflectance by ∼20%. With the overall reflectence

reduced, the algorithm will not associate our endmembers that are pure snow to these
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pixels without inclusion of lower reflectance endmembers. To fix this error we might

include a dirty snow endmember at varying grain sizes in future analysis. Addition-

ally, we provide visual fSCA and grain size comparisons of the same AVIRIS flight

line aggregates with the simulated products in Figure 3.6 for simulated MODSCAG

and Figure 3.7 for simulated EnMAP.

Figure 3.5: Validation AVIRIS flight line from 3/24/16. This flight line is the most
abundant snow scene used in our comparison. Mean fSCA, RMSE, vegetation frac-
tion, and grain size for the full scene are 0.4679, 0.0208, 0.2714, and 829.2 µm respec-
tively. Additional flight lines available in the Appendix.
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Figure 3.6: AVIRIS aggregate to 500 m resolution with associated fSCA and grain
size compared with simulated MODSCAG with associated fSCA and grain size from
3/24/16. The third plots in each row represent the difference with masked pixels
being exactly equivalent in value. Statistical differences between these two images
are provided in Table 3.3 and Table 3.4.
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Figure 3.7: AVIRIS aggregate to 30 m resolution with associated fSCA and grain size
compared with simulated EnMAP with associated fSCA and grain size from 3/24/16.
The third plots in each row represent the difference with masked pixels being exactly
equivalent in value. Statistical differences between these two images are provided in
Table 3.3 and Table 3.4.
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Table 3.3 summarizes error matrix results for classification of snow pixels and

total SCA results for our simulated MODSCAG and simulated EnMAP products.

The table depicts how well our simulated products determine snow pixels compared

to our true AVIRIS aggregates. As expected, commission (False Positive, FP) results,

pixels where the simulated product determined snow and AVIRIS does not, are zero or

less than ∼0.4%. Omission (False Negative, FN) results, pixels where the simulated

product does not determine snow and AVIRIS does, is strikingly different between

both products. In low snow (2/24/15 and 5/18/16) simulated MODSCAG produced

high omission, 46% and 21% respectively, compared to <4% for all dates with sim-

ulated EnMAP. However, in abundant snow (3/24/16) MODSCAG FN results were

∼5%, compared to ∼1% with simulated EnMAP. Two binary statistics, sensitivity

and accuracy, are included to elaborate on hit rate for snow pixels and the total scene

(formulas in table). Accuracy results were all >95% for simulated EnMAP while

accuracy results suffered significantly in low snow (2/24/15 and 5/18/16), 54% and

79% respectively, for simulated MODSCAG. We also include the percent difference in

total SCA between the simulated product and the true AVIRIS scene. The percent

difference describes the sum of the fSCA to emphasize total SCA of a scene as op-

posed to just binary snow/not snow. For low snow (2/24/15 and 5/18/16) simulated

MODSCAG performs very poorly underestimating total SCA by -78% and -86% re-

spectively compared to simulated EnMAP with -22% for both days. For abundant

snow, the percent difference is notably different with both simulated MODSCAG and

simulated EnMAP within 1% of total SCA.

The three fractional statistics for simulated MODSCAG and simulated EnMAP

for the different study days are summarized in Table 3.4. As expected, over all the

images, the RMSE for simulated MODSCAG fSCA is 0.2155 with a range of 0.1425-

0.2566 and standard deviation of 0.0634, while the values are much lower for simulated

EnMAP with an RMSE of 0.1599 a range of 0.1862-0.2072 and standard deviation

of 0.0645. The median difference for simulated MODSCAG fSCA is -0.1561 with a

range of -0.2418-0.0125 and standard deviation of 0.1460. Again, these values are
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Date Variable Simulated Simulated
MODSCAG EnMAP

2/24/15 True Positive (TP) % 11.7 7.8
(low snow) False Positive (FP) % 0.0 0.9

False Negative (FN) % 45.9 4.0
True Negative (TN) % 42.4 87.3

Sensitivity %
TP/(TP+FN) 20.3 65.9
Accuracy %

(TP+TN)/(TP+FP+FN+TN) 54.1 95.1
Total SCA

(Percent Error) -77.6 -21.9

3/24/16 True Positive (TP) % 87.0 86.1
(abundant snow) False Positive (FP) % 0.2 0.4

False Negative (FN) % 5.0 0.9
True Negative (TN) % 7.7 12.6

Sensitivity %
TP/(TP+FN) 94.6 99.0
Accuracy %

(TP+TN)/(TP+FP+FN+TN) 94.7 98.7
Total SCA

(Percent Error) 0.7 -0.2

5/18/16 True Positive (TP) % 2.6 2.3
(low snow) False Positive (FP) % 0.0 0.3

False Negative (FN) % 21.0 1.2
True Negative (TN) % 76.3 96.2

Sensitivity %
TP/(TP+FN) 10.9 65.2
Accuracy %

(TP+TN)/(TP+FP+FN+TN) 78.9 98.5
Total SCA

(Percent Error) -86.5 -22.3

Table 3.3: Summary of error matrix results and total SCA percent difference for
simulated snow products.

much lower for simulated EnMAP fSCA at -0.0412 with a range of -0.0623-(-0.0006)

and standard deviation of 0.0352. Synonymous mean values are also summarized in

Table 3.4. For the three flight lines, simulated MODSCAG underestimates fSCA in
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low snow (2/24/15 and 5/18/16) and does quite well in abundant snow (3/24/16).

EnMAP also underestimates fSCA in low snow, but to a much lesser extent than

MODSCAG, is also more accurate in abundant snow.

Date Variable Statistic Simulated Simulated
MODSCAG EnMAP

02/24/15 fSCA RMSE 0.2566 0.2072
(low snow) Mean Difference -0.2271 -0.0695

Median Difference -0.2391 -0.0608

Grain Size RMSE 233.8 293.8
(Overlap Only) Mean Difference 167.9 4.025

Median Difference 145.5 0

03/24/16 fSCA RMSE 0.1425 0.0864
(abundant snow) Mean Difference -0.0106 -0.0011

Median Difference -0.0125 -0.0006

Grain Size RMSE 269.8 216.0
(Overlap Only) Mean Difference -9.1 16.6

Median Difference -91.7 0

05/18/16 fSCA RMSE 0.2474 0.1862
(low snow) Mean Difference -0.2291 -0.0685

Median Difference -0.2418 -0.0623

Grain Size RMSE 261.0 322.4
(Overlap Only) Mean Difference 147.7 5.534

Median Difference 188.2 7.5

Average fSCA RMSE 0.2155 0.1599
(all 3 days) Mean Difference -0.1556 -0.0464

Median Difference -0.1561 -0.0412

Grain Size RMSE 254.9 277.4
(Overlap Only) Mean Difference 102.2 8.7

Median Difference 80.7 2.5

Table 3.4: Summary of fractional statistics for simulated scenes.

For grain size we focus on only the pixels where both the simulated product and
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AVIRIS aggregates share snow cover. This ensures that our grain size comparison

statistics are not skewed by pixels with missing snow as we are more interested in how

grain size differs between our validation AVIRIS datasets. For simulated MODSCAG

overall grain size RMSE is 254.9 with a range of 233.8-269.8 and standard deviation of

18.8. The mean difference for simulated MODSCAG grain size is 102.2 with a range

of -9.1-167.9 and standard deviation of 96.9. The median difference for simulated

MODSCAG grain size is 80.7 with a range of -91.7-188.2. For simulated EnMAP the

overall grain size RMSE is 277.4, with a range of 216.0-322.4 and standard deviation of

55.1. The mean difference for simulated EnMAP grain size is 8.7 with a range of 4.0-

16.6 and standard deviation of 6.9. The median difference for simulated EnMAP grain

size is 2.5 with range 0-7.5 and standard deviation of 4.3. For the three flight lines,

simulated MODSCAG over estimates grain size in low snow (2/24/15 and 5/18/16)

and only slightly underestimates grain size in abundant snow (3/24/16). Despite very

narrow normal distributions about 0 for mean/median differences and low overall

mean and median differences EnMAP maintains a high overall RMSE for grain size.

Figures 3.8-3.10 are histogram plots for each flightline date that help visualize these

fSCA and grain size comparison statistics. Due to the normality of the fSCA and grain

size retrievals about the mean difference, presented in the histogram plots, we justify

a simulated model comparison using the RMSE and mean difference parameters. We

plot RMSE vs mean difference to visualize the improvements of the models based

on simulation type (EnMAP or MODSCAG) and date Figure 3.11. Models closer

to the origin are more accurate. The results indicate EnMAP is consistently more

accurate at fSCA and grain size retrievals, especially in low snow.

Table 3.5 summarizes grain size retrieval methods and simulated CASI products

similarly. We omit discussion of comparison statistics for the table, as the results for

these grain size retrieval methods are inconsistent, and therefore we leave interpreta-

tions of these inconsistencies to the discussion section. Figure 3.12 are histogram

plots of Table 3.5 similar to the histogram plots for our simulated products for the

varying grain size retrieval methods as discussed in section 3.4.
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Figure 3.8: Histogram plots of comparison statistics for simulated MODSCAG (left)
and simulated EnMAP (right) for 2/24/16 (low snow year).
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Figure 3.9: Histogram plots of comparison statistics for simulated MODSCAG (left)
and simulated EnMAP (right) for 3/24/16 (maximum snow accumulation).
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Figure 3.10: Histogram plots of comparison statistics for simulated MODSCAG (left)
and simulated EnMAP (right) for 5/18/16 (snow ablation and snow loss).
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Figure 3.11: Simulated model comparisons for both fSCA and grain size retrievals.
Models closer to the origin are more accurate. The results indicate EnMAP is con-
sistently more accurate at fSCA and grain size retrievals, especially in low snow
(02/24/15 and 05/18/16).

3.8 Discussion

Our study highlights the significant effects of not only the spatial resolution, but also

the spectral resolution on fSCA and grain size retrievals. Recall that fSCA values

should range from 0 to 1, with a RMSE or mean/median difference of 0 meaning

the model provides 100% accurate fit to true snow cover. For simulated MODSCAG,

the average of both low snow scenes (2/24/15 and 5/18/16) fSCA RMSE is 0.2520

with a -0.2281 mean and -0.2405 median difference. Additionally, omission (FN)

was 33.5% and average accuracy was 66.5%. Our simulated EnMAP product for the

same low snow scene show significant improvement over the simulated MODSCAG

result. Average fSCA RMSE was 0.1967 with a -0.0690 mean and -0.0612 median

difference. Additionally, omission (FN) was 2.6% and average accuracy was 96.8%.

These drastic differences were also noticeable in the total SCA percent error. Taking
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Date Variable Statistic (AVIRIS channels)* Simulated CASI AVIRIS - CASI

02/24/15 Grain Size RMSE 185.6 192.0 25.5
(low snow) (Overlap Only) Mean Difference 61.8 56.8 -5.00

Median Difference 0 0 0

03/24/16 Grain Size RMSE 224.4 96.6 156.8
(abundant snow) (Overlap Only) Mean Difference -195.7 -53.3 142.3

Median Difference -170.0 -40.0 140.0

05/18/16 Grain Size RMSE 229.0 237.1 115.4
(low snow) (Overlap Only) Mean Difference 110.6 181.4 70.8

Median Difference 140.0 190.0 0

All Grain Size RMSE 213.0 175.2 99.2
(Overlap Only) Mean Difference -7.8 61.6 69.4

Median Difference -10 50 46.7

Table 3.5: Summary of comparison statistics for AVIRIS and CASI grain size retrieval
methods. * Denotes the Reflectance Band Feature Method used for pixels where NDSI
> 0.9 explained in section 3.4 (Painter et al., 2013).

the average of both low snow scenes (2/24/15 and 5/18/16) we find simulated MOD-

SCAG produced a -82% error from the true total AVIRIS SCA as opposed to -22%

for simulated EnMAP. That is a 73% improvement in total true SCA. In contrast,

simulated MODSCAG fSCA retrievals worked well in abundant snow (3/24/16). The

fSCA RMSE was only 0.1425 with a mean and median difference of ∼0.01. Addition-

ally, FN was only 5% and total accuracy was 94.7% Simulated EnMAP fSCA RMSE

was 0.0864 and total accuracy was 98.7%. This is nearly a 65% increase in fSCA

RMSE, but both products do an excellent job of discriminating snow. In total, Sim-

ulated EnMAP products showed an improvement in RMSE fSCA calculations over

our simulated MODSCAG product by ∼35%. These improvements are likely related

to the enhanced spatial resolution, but also higher spectral resolution as well. We

should expect to see such additional improvements when using actual EnMAP data

to model snow properties.

Both simulated EnMAP and simulated MODSCAG share large grain size RMSE

values between 200-300 µm. However, simulated EnMAP improves at getting to

the correct grain size, as the mean/median difference values for simulated EnMAP
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Figure 3.12: Histogram plots of comparison statistics for grain size retrieval methods.
Grain Size retrieval methods explained in Section 3.4.

are consistently near zero, meaning a very good fit to the actual grain size. The

simulated EnMAP increased grain size precision is likely related to the improvement

in spectral resolution. Multispectral and hyperspectral satellite systems that solve

the constrained least squares problem to determine fSCA and grain size (equation 3.1)

rely on a system of equations equivalent to the number of bands/channels used. The

additional spectral resolution provides a solution that takes advantage of finer spectral

detail. Improved spectral detail across a wide range of wavelengths should have the
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effect of improving unmixing algorithms. However, the more alike endmembers are

in certain regions and specifically if the regions chosen are similar input parameters

for the spectral mixture analysis, like the liquid water in vegetation that brings the

characteristic 1030 nm ice absorption feature toward shorter wavelengths, may lead

to inabilities to provide enough discrepancy between endmembers if they are similar

throughout the channels used. Vegetation also has a large decrease in reflectance

beyond ∼1000 nm, similar to snow, so the water in vegetation may masquerade as

a larger grain size. We note that this difficulty to accurately replicate the grain

size at each pixel for EnMAP compared to the AVIRIS aggregate is likely due to

this effect and is probably the source of the strong outliers that drive the RMSE

in grain size higher, but we also suggest others. Our selected flight lines for this

study cover the Sage Hen watershed and are well within the subalpine zone. This

densely vegetated region is considerably different than previous fSCA and grain size

retrievals of the Sierra Nevada that predominantly fly in alpine regions (Nolin and

Dozier 2000; Painter et al., 2003; Painter et al., 2013). For the most abundant snow

scene the average AVIRIS fSCA is 0.4673 which emphasizes that our region of study is

densely vegetated which will make the discrimination of snow and its grain size more

difficult (Painter et al., 2003). We must also concede that our endmember library,

specifically snow, is based on a theoretical derivation of clean snow with only solar

zenith angle as the varying input parameter. These theoretical endmembers therefore

do not account for varying azimuthal angles, topography, or dirty snow. It is also

unknown how valuable additional spectral resolution is to resolving forest and snow

fractions in complex topography. Current vegetation corrections involve assuming the

fSCA is similar in sub-canopy as it is for snow in the open and have been shown to still

be misrepresented (Rittger et al., 2013; Raleigh et al., 2013). Lidar and other sub-

canopy distributed temperature sensing (DTS) measurements may provide solutions

to accurate fSCA retrievals in vegetation.

Our varying grain size retrieval methods for pixels where NDSI > 0.9 produced

substantially varied results. In the 2/24/15 scene both AVIRIS and CASI grain size
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retrieval methods produced excellent results. However, in a similar low snow scene

(5/18/16) we see a substantially higher mean/median differences from both methods,

and both overestimating grain size (CASI overpredicting slightly more often than

AVIRIS). However, in the abundant snow scene (3/24/16) we find that both AVIRIS

and CASI underestimating grain size, with CASI getting closer to the true grain size.

Similar to our previous discussion on varying grain size for the simulated MODSCAG

and simulated EnMAP products, our densely vegetated scene may contribute to such

varied results. Further analysis in alpine regions, ground validated areas, and snowier

scenes will improve these comparisons. We suggest that the low snow scene (2/24/15)

produced excellent results due to the majority of snow grain size retrievals reaching

the upper limit of our endmember library (1100 µm) for both the spectral mixture

analysis and varied grain size retrieval methods. Therefore the difference was nearly

zero in all comparisons.

3.9 Conclusion

In order to remotely sense fSCA, both high spatial and high temporal resolution are

needed for increasingly detailed hydrological, ecological, and climate inferences and

modeling. That is why MODSCAG remains one of the best global and regional snow

data products available due to the high 1-2 day temporal resolution. Yet, future

satellite systems with improvements in spatial and spectral resolution will help re-

fine snow properties. This work presents comparisons of simulated MODSCAG and

simulated EnMAP fSCA and grain size retrieval products which shows significant

improvements to fSCA retrievals especially in low snow. For low snow and densely

vegetated study regions, we should expect EnMAP to improve total SCA calcula-

tions by ∼75%. MODSCAG appears to lose accuracy in low snow. We conclude

that MODSCAG, in low snow, can not discriminate snow as well as EnMAP due to

a limited spatial and spectral resolution and leads to underestimates of fSCA, par-

ticularly in a densely vegetated region. The current model, MODSCAG, even in a

densely vegetated region, works well in abundant snow. Regardless of snow content,
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EnMAP should improve accuracy of fSCA (RMSE) calculations by at least ∼25%

over MODSCAG. Despite both simulated products maintaining high RMSE grain

size values, likely related to dense vegetation discussed in Section 3.8, the very low

median/mean difference of simulated EnMAP is substantially closer to the real grain

size value than MODSCAG. MODSCAG appears to overestimate in low snow scenes

and underestimate in abundant snow scenes while EnMAP remains normally dis-

tributed about the true grain size. When compared to the the full spectral resolution

of the reflectance band feature that AVIRIS offers, the grain size produced by CASI

wavelengths is only marginally different, even though the CASI method is spectrally

limited in the 1030 nm ice absorption feature. Both methods are likely inadequate

in densely vegetated scenes in combination with low spatial resolution, and we assert

that grain size calculations made using the 1.03-1.06 µm ice absorption feature for

limited CASI channels is reasonable in clean snow and likely within the ±25µm range

if the scene is not densely vegetated (2/24/15 as the only case) (Painter et al., 2013;

Painter et al., 2016). Further studies in alpine regions and ground validations are

needed to confirm this.

The improvements that we should expect from EnMAP for fSCA and grain size

retrievals in a subalpine regions are substantial, but it is also reassuring and impres-

sive that a snow data product at a nominal ∼500 m spatial resolution and 7 bands

spectral resolution is doing a good job when snow cover is high. Additional work

might involve comparisons with concurrent true MODSCAG retrievals for validation

of the simulated model. Additional field validation methods, especially in areas of

concern (i.e. dirty snow and shaded regions) and subsequent adjustments to the

model will improve robustness. It will also prove insightful to conduct these compar-

isons for the rest of the regions of the flight lines where snow is more homogeneous

like alpine regions, and other regions besides the Sierra Nevada. We plan to release

the model under an open source license on Matlab's File Exchange. Improvements

to the algorithm and development will help enable varying unmixing applications.
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Figure A.1: AVIRIS flight line like Figure 3.5. Validation AVIRIS flight line from
2/24/15. This flight line is a low snow year.
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Figure A.2: AVIRIS flight line like Figure 3.5. Validation AVIRIS flight line from
5/18/16. This flight line represents snow ablation and snow loss.
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