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ABSTRACT 

  

 

Prehistoric use of the Pah Rah Range in western Nevada has resulted in a diverse 

record of hunting, processing, and residential sites, many of which contain artifacts 

manufactured from fine-grained volcanic (FGV) toolstones.  Using data from the X-ray 

fluorescence analysis of 303 FGV artifacts from 18 sites in the Pah Rah Range and 

surrounding areas, this thesis assesses whether prehistoric groups in the Pah Rah Range 

utilized primarily local or exotic FGV sources and how their procurement and use of 

FGV toolstone fits within regional models of toolstone conveyance and settlement.  

Results indicate that during the Middle to Late Archaic (5,000-700 cal BP) local FGV 

sources were overwhelmingly preferred.  Compared to obsidian data from the same 

region, FGV toolstone reflects shorter-distance conveyance and east-west rather than 

north-south movement, suggesting that groups in the Pah Rah Range likely combined 

residential and logistical patterns of mobility with a variety of toolstone procurement 

strategies.  
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CHAPTER 1 – INTRODUCTION 

 

In this thesis I examine FGV toolstone use in the Pah Rah Range uplands as the 

means for exploring patterns of mobility and settlement in the western Great Basin.  

Specifically, I assess (1) whether prehistoric groups utilized primarily local or exotic 

FGV sources; (2) if there are patterns of toolstone source use that correspond to certain 

tools classes; (3) whether lithic technological organization differed substantially between 

sites in the Pah Rah Range and those on the nearby valley floor; and (4) if Pah Rah Range 

sites reflect broader conveyance zones developed using data from other sites in the 

western Great Basin.   

Technological advances in methods of sourcing archaeological materials over the 

past 20 years have allowed for a rapid expansion of our understanding of Great Basin 

toolstone distribution, and with it, an expanded ability to investigate overarching research 

questions regarding mobility, settlement, and technological organization.  Though 

sourcing is now a regular facet of both academic and cultural resource management 

(CRM) projects, there is still much work that can be done to locate and characterize 

toolstone sources throughout the Great Basin.  From a geologic standpoint, the western 

Great Basin is particularly well-suited for further obsidian and fine-grained volcanic 

(FGV) source provenance studies.  The mountain ranges on the western edge of the Great 

Basin are predominantly the product of intrusive and extrusive geological processes 

(Fiero 1986:16), providing a rich supply of volcanic toolstone such as obsidian and 

basalt.  Obsidian has received widespread attention in many locations, but for certain 



2 

 

 

 

areas of the Great Basin, and for certain time periods in its history, obsidian artifacts are 

rare.  Instead, basalt, andesite, dacite, and other FGV toolstones dominate assemblages.  

Such is the case in the Pah Rah Range of western Nevada (Figure 1.1).  

Prehistoric use of the Pah Rah Range has resulted in a diverse record of hunting, 

processing, and residential sites complete with rock art, hunting blinds, rock rings, and 

numerous flaked and ground stone tools, many of which were manufactured from basalt 

and other FGV toolstones.  Previous work in the Pah Rah Range has primarily been 

concentrated on the rock art and rock rings present in the Dry Lakes Basin area and 

nearby Spanish Springs Canyon (McLane 1980, 1999; Pendegraft 2007; Rusco 1969a, 

1969b, 1981; Stephenson 1968), with more recent work resulting from transmission and 

pipeline projects (Delacorte 1997a, 1997b; Delacorte et al. 1995a, 1995b; McGuire 2002; 

Young and McGuire 2003).  The earliest known sites in the Dry Lakes Basin area date to 

the Late Martis Phase of the Middle Archaic Period (5,000-1,300 cal BP) and appear to 

reflect systematic logistical hunting forays with a likely shift towards more residential use 

of the area during the Early Kings Beach Phase of the Late Archaic Period (1,300-700 cal 

BP) (Zeanah 2009:15).  



3 

 

 

 

Figure 1.1. Location of the Pah Rah Range. 
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The underlying stratigraphy of the Pah Rah Range is almost entirely volcanic, and 

many artifacts from sites in the Pah Rah Range are made from basalt and other FGV 

toolstones, making it an excellent choice for a FGV sourcing study.  This geologic 

potential, combined with the range of documented obsidian and FGV sources in the 

region, provides an opportunity to re-examine and geochemically characterize artifact 

assemblages at sites in and around the Pah Rah Range and refine mobility and settlement 

models developed by previous researchers (e.g., Delacorte 1997a, 1997b; Delacorte et al. 

1995a, 1995b; McGuire 2002; Rusco 1969a, 1969b, 1981; Stephenson 1968; Young and 

McGuire 2003; Zeanah 2009; Zeier and Elston 1986).  The Middle to Late Archaic age of 

many Pah Rah Range sites provides an opportunity to examine important regional shifts 

in mobility and technology.  Sourcing studies in particular can be helpful in providing 

important spatial data (e.g., quarry to site distance) that may inform our understanding of 

how mobility changes and technological shifts (e.g., from the atlatl to bow-and-arrow) 

may be related, particularly as changes in raw material selection (such as that from basalt 

to chert) often accompany such shifts (Zeanah 2009:11-13). 

  

Research Background 

 

Toolstone Provenance Studies 

 

Source provenance studies link lithic artifacts discarded at sites to the locations on 

the landscape from which the raw material used to make them originated.  The success of 

lithic source provenance research is predicated on the physical and geochemical 
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characteristics of the lithic material, an understanding of the geologic distribution of 

those materials, prior sourcing work conducted in the region, and the method(s) used to 

characterize materials (Tykot 2003:63).  Lithic materials that are “desirable” as toolstone 

tend to be homogenous, brittle, and elastic (Whittaker 1994:12-14).  It is the first of these 

characteristics that makes chemical sourcing efforts possible.  Toolstone sources need to 

be relatively homogeneous with regard to the trace element composition within each 

source, while still having enough inter-source variability to distinguish one source from 

another. 

Lithic materials commonly used to produce stone tools include obsidian, chert and 

other cryptocrystalline silicates (CCS), basalt, rhyolite, and other FGV rocks.  The unique 

geological origins of these materials are central to the relative success of sourcing efforts 

for each.  Igneous rocks like basalt and obsidian, produced when magma cools and 

solidifies, are classified based on texture and chemical composition (Andrefsky 2005:47-

50).  The texture of igneous rocks is controlled by the rate at which the magma cooled.  

Igneous rocks that cool faster tend to have a more uniform, homogenous, and fine-

grained texture, with obsidian (a natural glass) at the extreme end of the spectrum.  

Chemically, igneous rocks are primarily composed of potassium feldspar, plagioclase 

feldspar, quartz, biotite, amphibole, pyroxene, and olivine.  The homogenous texture and 

variable chemical composition of FGV toolstones make them well-suited for source 

provenance studies. 

According to Glascock et al. (1997:19), for a chemical sourcing process to be 

useful, it “must be quantitative, capable of simultaneously measuring several elements, 

sensitive to the elements of interest, independent of sample matrix, and independent of 
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artifact size and shape.”  Of the several methods capable of characterizing lithic materials 

(e.g., optical emission spectroscopy, atomic adsorption spectroscopy, proton-induced x-

ray emission-proton-induced gamma ray emission, neutron activation analysis, x-ray 

fluorescence spectrometry), x-ray fluorescence spectrometry (XRF) is one of the most 

commonly used (Glascock et al. 1997; Shackley 1998).  

X-ray fluorescence spectrometry takes advantage of fluorescence to identify the 

elemental chemical composition of a sample.  Samples are irradiated with x-rays of a 

particular known wavelength, causing electrons to be ejected from the inner shells of the 

atoms in the sample.  When an outer shell electron fills the void that has been produced, 

an x-ray is emitted from the atom at unique, characteristic energies which can be 

measured to determine the concentrations of elements within the sample.  These can then 

be compared to known samples, allowing for the probabilistic characterization of 

geochemical source groups (Latham et al. 1992; Shackley 1998).  X-ray fluorescence 

spectrometry can use either wavelength-dispersive or energy-dispersive detectors to 

measure the energy of photons emitted as a result of x-ray fluorescence.  Provided the 

sample is of sufficient size, both methods can produce valid and comparable results 

(Shackley 1998:268).  Additionally, XRF is relatively affordable, does not result in 

radioactive samples, and can even be performed in the field through the use of a portable 

handheld x-ray spectrometer (Thomsen and Schatzlein 2002). 

Traditionally, XRF has been a destructive process whereby samples were often 

crushed to a micron-sized powder prior to analysis to reduce inconsistencies that could 

result from an uneven sample surface (Latham et al. 1992:83).  Latham et al. (1992) were 

the first to show that non-destructive XRF characterization of volcanic (or igneous) rocks 
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for the sourcing of FGV toolstone sources was possible.  They proposed that by 

examining the relationship between heavy trace elements with similar atomic numbers 

with a given sample, such as Zr (Z=40) and Sr (Z=38), the errors produced by not having 

a smooth surface would essentially be the same for each element, and would be negated 

by using the ratio of the two elements (Latham et al. 1992:83).  This method allows for 

rapid, non-destructive, and relatively inexpensive characterization of lithic materials.  

Building on that work, Jones et al. (1997) examined andesite and dacite cobbles and 

flakes from eastern Nevada to determine what the effects of surface topography and lack 

of homogeneity of samples might be in XRF analysis.  They found that the geological 

sources could be adequately and effectively discriminated based on both chemical 

composition and x-ray spectral lines without destroying the samples (Jones et al. 

1997:938). 

The development of non-destructive methods of XRF spectrometry-based 

sourcing has resulted in a much better understanding of toolstone sources throughout the 

Great Basin.  The majority of toolstone sourcing efforts thus far in the region have 

focused on obsidian (e.g., Amick 1997; Basgall 1989; Beck and Jones 1990; Harbottle 

1982; Hughes 1983, 1984, 1985, 1986, 1989, 1990) and it is only within the last 20 years 

that XRF has been used to characterize FGV sources (e.g., Day 2002; Day et al. 1996; 

Jones and Beck 1999; Jones et al. 1997; Latham et al. 1992; Page 2008).  As a result of 

such studies, the known source catalog for the Great Basin and California now contains 

more than 150 known obsidian and FGV chemical source groups. 

Though these sourcing efforts continue to expand the range of known lithic 

sources in the Great Basin, sourcing FGV materials still presents challenges.  Because the 
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amount of comparative data available for an area of study factors heavily in the success 

of a sourcing effort (Glascock et al. 1997:19), FGV is still at a comparative disadvantage 

to obsidian with respect to the range of known sources.  Though sourcing efforts are now 

a regular component of many projects, many FGV sources remain unknown.  Groups of 

artifacts can still be shown to be chemically similar and thus likely from the same source, 

but without the connection to the landscape, the actual source of the toolstone is still 

unknown.  Further, basalt flows and other FGV formations are often geographically 

extensive, potentially reducing researchers’ ability to isolate a particular quarry location 

within larger formations. 

  

Applications of Sourcing Studies 

 

Source provenance studies alone can ultimately only indicate the straight line 

distance that a toolstone or artifact traveled from a quarry and the final direction that it 

traveled (Kelly 1992).  Even these seemingly simple measures are complicated by 

difficulties in determining if artifacts were manufactured from toolstone collected from 

primary sources or secondary contexts (e.g., streambeds, alluvial fans) that could move 

materials many miles from the actual source, obscuring the “actual” direction and 

distance of travel between the source and the discard location for an artifact.  Despite 

this, how far and in which direction toolstone traveled can provide vital information with 

which to reconstruct prehistoric land-use patterns (Waechter 2002:105).  Researchers in 

the Great Basin have used source provenance studies to examine a wide range of 

prehistoric topics including mobility and settlement systems, trade and exchange, and 
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occupation span (e.g., Duke and Young 2007; Eerkens et al. 2007, 2008; Hughes 1994; 

2001a; Jackson and Ericson 1994; Jones et al. 2003, 2012; Kelly 2011; Smith 2010, 

2011). 

Mobility. Source provenance studies are vital to our ability to investigate 

prehistoric mobility and settlement, especially in places like the Great Basin where 

stratified sites are few, palimpsest surface sites are many, and direct evidence of 

settlement patterns such as house structures, storage features, and middens is generally 

lacking.  Jones et al. (2003:5) describe mobility as “the manner in which humans move 

across the landscape in relation to properties of the environment, particularly the 

distribution of subsistence resources.”  Various schemes have been used to describe 

hunter-gatherer mobility, but most recent researchers focus on the concepts of residential 

mobility and logistical mobility (sensu Binford 1980).  Residential mobility is focused on 

moving the entire band or group to resource patches, while logistical mobility involves 

small task-specific groups or individuals traveling back and forth from a residential camp 

to various resource procurement locations.  These two concepts are not meant to be 

mutually exclusive settlement types, but are instead points along a continuum (Binford 

1980).  Bundled with the notion of residential vs. logistical mobility is the differential 

mobility of individuals and groups, allowing for discussions of gender-differentiation of 

labor and possible group size constraints. 

Applying optimal foraging theory to mobility (primarily in an attempt to explain 

the mechanisms of Numic expansion), Bettinger and Baumhoff (1982) developed the idea 

of “travelers” and “processors.”  They describe a traveler strategy as one that is low cost 

but dependent on higher ranked resources (Bettinger and Baumhoff 1982:487).  A 
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processor strategy is one that is high cost and dependent on lower ranked resources.  As 

the names suggest, the main cost of each strategy is either in traveling to a resource or in 

processing the resource.  The authors predict that in competitive situations, such as 

during an ethnic spread, the processor strategy will be more likely to prevail.  They 

reason that in situations of higher population density, travel and search times increase, 

placing greater stress on groups employing a traveler strategy.  Because processors utilize 

the same resources as travelers, but only face competition from travelers for a portion of 

these resources, travelers are at a competitive disadvantage (Bettinger and Baumhoff 

1982:488; but see Grayson 2011:325-326). 

Kelly (2007:120) points out that such schemes are not concerned so much with 

the movement through the landscape as with “the organization of camp movement to 

food-getting activities.”  To better describe mobility, Kelly (2007:120-121) delineates 

five variables to measure dimensions of mobility and better describe the various ways in 

which people move across the landscape.  These variables include the number of 

residential moves per year, the average distance traversed during each move, the total 

distance moved each year, the total area a group uses over the course of a year, and the 

average length of a logistical foray.  Not all variables are visible in the archaeological 

record and source provenance studies alone cannot adequately address each one. 

Jones et al. (2003:5) suggest that sourcing efforts may be able to address the range 

of territory through which a group might have moved; however, Kelly (1992:55) argues 

that this is only a rough indication.   Source provenance studies alone cannot determine 

whether toolstone moved as a result of residential or logistical mobility or whether the 

material was obtained through trade or direct procurement (see Hughes 2011a for a recent 
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compilation of studies addressing this problem). 

Instead, source provenance studies should be combined with other methods of 

archaeological inquiry.  Numerous researchers (e.g., Beck et al. 2002; Bright et al. 2002; 

Jones et al. 2003; Kuhn 1994; Parry and Kelly 1987; Shott 1986) have suggested that 

patterns and shifts in mobility may be evident in lithic assemblages; however, Andrefsky 

(1994a) challenges the idea that there is a predictable link between mobility and tool 

technology unless raw material availability (both abundance and quality) is also taken 

into account.  To this end, Smith and Kielhofer (2011:3568) suggest that technological 

data and multi-site comparisons, when combined with source provenance data, may 

provide a productive route to understanding prehistoric mobility.  

Jones et al. (2003) used source provenance studies for both obsidian and FGV 

toolstone and lithic technological analyses to reconstruct the scale of terminal 

Pleistocene-early Holocene mobility in the Great Basin.  They noted that prior studies of 

human adaptation during that period centered on information derived from climatic and 

environmental studies, with settlement patterns described in terms of differential use of 

landforms through time and how those landforms controlled the distribution of food 

resources (Jones et al. 2003:6-7).  By examining patterns of distance and direction 

between sources and artifact assemblages, Jones et al. (2003:31) delineated five distinct 

lithic “conveyance zones” within the Great Basin, interpreted to be  coterminous with 

terminal Pleistocene-early Holocene hunter-gatherer foraging territories (Jones et al. 

2003:32).  They also noted that toolstone moved generally north-south within each zone 

and only rarely east-west between zones.  The authors inferred that the limited amounts 

of toolstone moving between conveyance zones may have been indicative of similarly 
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limited communication between groups in each of these foraging territories (Jones et al. 

2003:32). 

Smith (2010) tested the conveyance zone model developed by Jones et al. (2003) 

with a sourcing study of Paleoindian and Archaic projectile points in northwest Nevada.  

Smith (2010:867) set out to answer whether Paleoindian mobility patterns were as 

extensive as Jones et al.’s (2013) model suggested.  An extensive XRF sourcing effort of 

obsidian and FGV artifacts did not support the presence of a single Paleoindian foraging 

territory in the western Great Basin.  Instead, sourcing data indicated that during the 

terminal Pleistocene-early Holocene, there may have been a northern territory that 

encompassed portions of northwest Nevada, northeast California, and southeast Oregon, 

and a southern territory that covered central-eastern California and a portion of western 

Nevada, with a boundary somewhere in the vicinity of the Carson Desert (Smith 

2010:879).  Smith’s sourcing study indicates that while Paleoindian foraging territories 

were larger than those for later groups, they were probably not as large as the conveyance 

zones originally modeled by Jones et al. (2003).  Further, in comparing early- middle- 

and late-period projectile point samples, Smith (2010) determined that the smaller, 

northern foraging territory contracted during the transition from Paleoindian to Archaic 

periods, and was the most expansive earlier in time. 

In light of such analyses, Jones et al. (2012) reexamined their eastern conveyance 

zone with particular focus on its southern end.  They hypothesized that if the eastern 

conveyance zone represented a single foraging territory, then artifacts from northern and 

southern sources should be found throughout the zone.  This proved not to be the case, 

prompting Jones et al. (2012) to revise the eastern conveyance zone into two smaller 
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zones overlapping near the Sunshine Locality (Beck and Jones 2009). 

 Based on the basalt XRF sourcing study completed for the Alturas Intertie 

Electric Transmission Line Project, Waechter (2002) re-evaluated a model of Middle 

Archaic mobility for the western edge of the Great Basin.  This model posited that the 

distribution of basalt artifacts in the Tahoe region reflected at least two procurement 

patterns suggesting distinct interaction spheres (Waechter 2002:110).  This model also 

delineated an east-west pattern of movement west of the Tahoe Basin and north-south 

movement along the eastern Sierra Front.  The results of Waechter’s (2002) sourcing 

effort indicate that for some Tahoe Basin sources, there was much more movement north 

and south than had been previously predicted.  For the Steamboat and Lagomarsino 

sources, there was less movement north-south; instead, these sources had a strong east-

west trend that matched ethnographic Washoe patterns (Waechter 2002:112).  The 

movements of North Dry Valley and Siegfried Canyon Ridge basalt sources seemed to 

match the north-south pattern predicted for the eastern flanks of the Sierras.  Though 

Waechter (2002) focused more on the overall distribution of basalt in the region and only 

touched tangentially on mobility, her study provides a good example of how a better 

understanding of the overall lithic landscape allows researchers to refine existing 

mobility and settlement models. 

Eerkens et al. (2007) explored the importance of including multiple artifact types 

(e.g., both formal tools and debitage) in sourcing studies to best model mobility.  Based 

on a model for small, residentially mobile populations, they predicted that formal tools 

and small flakes should have the greatest source diversity and that these sources would be 

overall more distant from the sites.  Conversely, local sources should be represented in all 
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stages of artifact manufacture (Eerkens et al. 2007:586).  Results from three sites on the 

western margin of the Great Basin support their prediction, which has implications for 

mobility studies.  In particular, the similarity in diversity and average source-to-site 

distance between formal tools and late stage debitage may provide a means for gaining 

insight into original source diversity for sites where formal tools have been removed 

through curation or looting (Eerkens et al. 2007:593).  This is not always the case, as 

further work in Owens Valley has suggested that different artifact classes might reflect 

procurement and mobility patterns in different ways (Eerkens et al. 2008:674). 

 Eerkens et al. (2008) further confirm the importance of including different sizes 

of debitage in sourcing studies with an examination of Newberry and Marana occupations 

at CA-INY-30 in Owens Valley, California.  Previous models of mobility for the region 

show a transition from high residential mobility during the Late Newberry Period (ca. 

2,000-1,500 cal BP) to semi-sedentary settlement during the Marana Period (600 cal BP 

to present) (Eerkens et al. 2008:671).  Based on a simplified model of settlement patterns 

and toolstone acquisition, they predicted that assemblages resulting from more mobile 

Newberry occupations should show greater distance to source for flakes, that flakes from 

more distant sources would be larger and more diverse within mobile contexts and 

smaller within residential contexts, and that Newberry assemblages would have a higher 

diversity of sources.  Obsidian flakes at CA-INY-30 supported their first two predictions 

but surprisingly, the Marana Period assemblages were just as diverse as those from the 

Newberry Period.  They suggest that the Newberry assemblages reflect a residentially 

mobile society that traveled with specific locations and resources in mind, rather than 

stopping to exploit resources as they were encountered.  Eerkens et al. (2008) point out 
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that these patterns could also reflect a system in which portions of the group were 

residentially stable, with smaller sub-groups traveling more.  In contrast, Marana 

assemblages indicated overall reduced residential mobility, with the higher than expected 

diversity of sources possibly reflecting trade or exchange (Eerkens et al. 2008:677). 

Occupation Span. An aspect of mobility that is less obvious in archaeological 

assemblages is occupation span.  Drawing from technological organization and toolstone 

sourcing, Duke and Young (2007) examined the duration of occupation of mobile 

Paleoindian groups in the Wild Island Dune Field in the Bonneville Basin.  They noted 

that obsidian artifacts were made on materials from sources 85-500 km away, with some 

expedient points made from small blanks of Topaz Mountain obsidian.  These artifacts 

were often reworked and resharpened.  Basalt artifacts reflected less raw material 

conservation, with limited flaking and differential reduction strategies.  Thinness grading, 

in which flake blanks were chosen for their initial thickness, allows for faster reduction to 

a bifacial tool, but results in bifaces that appear more “crude” (Duke and Young 

2007:133).  They concluded that basalt and obsidian played very different roles within 

the artifact assemblage at Wild Island, with obsidian reflecting a more residentially 

mobile aspect of the settlement strategy and basalt reflecting logistical mobility during 

basin occupations (Duke and Young 2007:132-133).  Duke and Young concluded that 

while Paleoindians ranged farther than later groups, the amount of time spent in 

individual basins could be considerable. 

   Occupation span was also the focus of a study conducted in the northwestern 

Great Basin (Smith 2011).  The crux of this study is the notion that short-term 

occupations should be reflected in assemblages with more non-local than local toolstone 
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(Smith 2011:463).  As occupation spans increased, local toolstone in an assemblage 

should also increase as tools from more distant sources acquired prior to arrival at the site 

were discarded and replaced.  Smith examined projectile points from early-period (pre 

7,500 
14

C BP), middle-period (7,000-1,300 
14

C BP), and late-period (post 1,300 
14

C BP) 

occupations to determine whether this approach could be used to determine if relative 

occupation spans changed through time.  Smith found that early-period sites had a higher 

proportion of non-local toolstone, middle-period sites showed more local toolstone, and 

late-period sites evidenced increased non-local toolstone.  When taken with the 

supposition linking toolstone ratios with mobility and occupation span, Smith (2011:466-

467) concluded that early-period sites reflect high residential mobility and short 

occupations that shifted to longer occupations in the middle-period.  The increased 

sedentism during the middle period corresponds to sites from other locations in the region 

that evidence greater sedentism during this period (e.g., O’Connell 1975).  The increase 

in non-local toolstone during the late period could either reflect a return to higher degrees 

of residential mobility or an overall change in toolstone procurement strategies that could 

mimic a pattern of higher residential mobility.  Overall, Smith (2011) showed that 

changes in toolstone source use could be used to infer relative occupation span and 

examine how Paleoindian and Archaic mobility patterns in the western Great Basin 

shifted through time. 

Complications of Trade and Exchange. Eerkens et al.’s (2008:677) supposition 

that the diversity of obsidian sources used during the Marana period at CA-INY-30 may 

reflect wide-ranging trade networks raises an important issue in source provenance 

studies.  Such studies can only indicate overland distance and straight line direction 



17 

 

 

 

between a site and source.  This relationship obscures the actual path that raw materials 

may have been transported between source and final point of discard, and essentially 

cannot address means of transport at all.  Furthermore, sourcing data present researchers 

with an issue of equifinality in which different interpretations of the same data set are 

equally plausible or equally supported by that data set.  This is the case for comparisons 

of trade and direct procurement to describe the presence of exotic toolstone sources in an 

assemblage.  Researchers often choose one or the other interpretation without empirical 

evidence to support their position, or default to the idea that long distances are 

automatically indicative of trade (Hughes 2011b:xvii; Meltzer 1989:37). 

 Researchers who focus on Paleoindian sites often fall back on the idea that 

Paleoindians were highly mobile and see exotic toolstone as reflecting that mobility 

(sensu Jackson and Ericson 1994).  Jones et al. (2003:9) note that coordinating trade or 

exchange during times of lower population in the Great Basin would have been too risky 

for such procurement strategies to have been used to obtain a critical resource like 

toolstone.  Though they do not completely discount the role that trade played in 

conveyance of non-local toolstone, Jones et al. (2003) argue that direct acquisition can be 

assumed for most of their assemblages.  This position has been echoed by other 

researchers (e.g., Eerkens et al. 2007; Smith 2010). 

Disentangling the respective archaeological signatures of indirect and direct 

procurement in source provenance studies and the subsequent implications for research 

into patterns of prehistoric trade and mobility is not straightforward.  Using examples 

from central-eastern California, Basgall (1989:124) argues that “exchange-related 

acquisition will be marked by the regularized occurrence of source types, and by their 
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equitable representation in both tool and waste classes.”  However, Kelly (2011) points to 

the use of obsidian in the Carson Desert and suggests that assemblages in which a 

particular toolstone type is limited to certain artifact classes (e.g., complete bifaces) with 

little accompanying debitage are more reflective of trade than direct procurement.  To 

complicate matters further, both researchers may be correct.  The sites on which Basgall 

(1989) based his conclusions occur within a rich lithic landscape, with both immediate 

and more distant toolstone sources available within what may be considered reasonable 

lifetime foraging territories.  This is not the case for the Carson Desert, where there are 

no known obsidian sources within either ethnographic or presumed prehistoric lifetime 

ranges (Kelly 2011). 

Kelly (2011) and others have depended on ethnographic analogy to predict which 

cases may reflect trade and which may reflect direct procurement, but this too is 

problematic.  Just because ethnographic research (e.g., Steward 1938) indicates that trade 

relations existed in the Great Basin, it does not automatically follow that such 

relationships existed in the same configuration or to the same extent prior to contact.  

Kelly (2007:Table 4-1) has noted that there is considerable variation in measurements of 

the different aspects of mobility among hunter-gatherer populations.  Taking such 

variability into account, it is problematic to resort to ethnographic analogy to describe 

Paleoindian or later hunter-gatherer populations; we simply do not know how much more 

or less mobile such populations were. 

Most researchers currently focused on the trade vs. direct procurement issue 

indicate that ultimately, arguments for how non-local lithic materials were obtained are 

best made in conjunction with other lines of evidence.  Waechter (2002:116) suggests 
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that certain combinations of obsidian and basalt might move together as “packages” and 

their presence together at sites within the same region could be indicative of trade.  

Hughes (1994:371) notes that patterns of raw material use in an assemblage could 

indicate not only trade, but also some level of socio-ceremonial connection.  He points to 

the Gunther Island site in northwestern California and the Gold Hill site in southwestern 

Oregon.  At both sites, large ceremonial bifaces were manufactured on distant obsidian 

types while utilitarian tools were made almost exclusively from local obsidian, which he 

suggests supports the idea that the sites were part of the same socio-ceremonial system 

connecting southwestern Oregon and northwestern California.  Groups at both sites 

depended on direct and indirect procurement of obsidian, with toolstone use decisions 

tied to the cultural importance of the tools to be manufactured. 

 

Toolstone Sourcing Studies in the Western Great Basin 

 

Much source provenance work in the Great Basin has focused on the northern, 

eastern, and western parts of the region (e.g., Day 2002; Delacorte 1997a, 1997b; Jones 

and Beck 1999; Jones et al. 2003; Latham et al. 1992; Page 2008).  Obsidian sources 

within the Great Basin are relatively well-described, but FGV sourcing studies are still in 

their infancy.  Recent work in the western Great Basin, and the interface between the 

Great Basin and California in particular, has further illuminated the range of lithic 

sources available and utilized, but sourcing efforts often return unknowns (e.g., Neidig 

and Clay 2009; Waechter 2002).  Much of the work in the region has been in the form of 

linear CRM surveys for roads, pipelines, and powerlines (e.g., Delacorte 1997a, 1997b; 
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Delacorte et al. 1995a, 1995b; Matranga and DeBunch 1968; Miller and Elston 1979; 

Neidig and Clay 2009; Stoner et al. 2006; Zeier and Elston 1986), which have provided 

valuable insights into regional prehistory, but have been limited in areal scope and have 

not always included comprehensive sourcing efforts. 

From a geologic standpoint, this portion of the Great Basin is well-suited for 

further source provenance studies, particularly with respect to possible FGV sources.  

The intrusive and extrusive geological processes that helped form the mountain ranges at 

the western edge of the Great Basin, including the Sierra Nevada and Pah Rah ranges, are 

the same processes that produced basalt, andesite, rhyolite, and other FGV rocks used as 

prehistoric toolstone.  Many of the best-documented FGV sources in the western Great 

Basin are in and around the Tahoe Basin.  As a result of focused work in the last two 

decades by archaeologists from the Tahoe and Eldorado National Forests and Northwest 

Research Obsidian Studies Laboratory, nearly 20 geochemical groups have been 

identified within the Tahoe Basin and surrounding areas (Day 2002; Day et al. 1996).  Of 

these, Steamboat Hills/Lagomarsino is closest to the Pah Rah Range.  This chemical 

group includes Steamboat Hills and Lagomarsino; two chemically similar basalt source 

localities south and southeast of Reno (Waechter 2002:107).  Elston et al. (1994:74) 

speculated that these quarries were of paramount importance to people in the Steamboat 

and Huffaker localities. 

 As part of the Alturas Intertie Electric Transmission Line Project between Reno, 

Nevada and Alturas, California, 181 basalt artifacts and two stream cobbles were 

submitted to Northwest Research Obsidian Studies Laboratory for XRF analysis 

(Waechter 2002).  Though nearly half of the samples could not be assigned to a known 
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source at that time, artifacts manufactured from known sources were split between 

Siegfried Canyon Ridge, Gold Lake, and North Dry Valley.  The Steamboat Hills and 

Alder Hill source groups were also represented but in much smaller quantities (Waechter 

2002:111).  The unknown samples represented 49 potentially distinct basalt sources, 

three of which could possibly be major or local sources. 

     

Potential Research Issues in the Pah Rah Range 

   

  The geologic and cultural history of the Pah Rah Range, combined with the range 

of known toolstone sources, provide a significant opportunity to re-examine previously 

described sites and assemblages with a focus towards completing XRF sourcing for 

artifacts from those sites.  In this thesis, I provide a detailed description of FGV toolstone 

sources utilized in the area.  A primary focus on the Middle to Late Archaic periods is 

particularly productive, as this time span covers the technological shift from the atlatl (as 

represented by Elko and Martis projectile points) to the bow-and-arrow (as represented 

by Rosegate projectile points), as well as changes in raw material preferences from basalt 

to chert (Zeanah 2009:11-13). 

The source provenance study reported here also helps refine current models of 

toolstone conveyance in this portion of the Great Basin.  This part of Nevada lies within 

Jones et al.’s (2003) western conveyance zone.  Smith’s (2010) work in northwestern 

Nevada has indicated that the western conveyance zone may actually be two zones, with 

the boundary near the Carson Desert.  The Pah Rah Range is situated near the 

convergence of Smith’s (2010) proposed northern and southern conveyance zones, 
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allowing for the possibility that groups utilizing this area may have foraged within either 

of these territories, or both, at different times (McGuire 2002:102).  Previously sourced 

artifacts from the Pah Rah Range and along the Truckee River indicate that obsidian was 

obtained from sources up to 200 km to the north and south (Delacorte 1997a, 1997b; 

McGuire 2002; Sibley 2013; Stoner et al. 2006), suggesting that “both” is a distinct 

likelihood, as is the possibility of trade and exchange.  With an expanded examination of 

toolstone use in this region, it is also possible to further test Delacorte’s (1997b) and 

Smith’s (2010) models and see how interactions between California and the western 

Great Basin may have influenced these toolstone conveyance zones.  

Source provenance studies in the region may also shed light on cultural 

interactions in the area.  The Pah Rah Range is along the boundary between three 

historically identified ethnic groups: the Tasiget Tuviwarai and Kuyuidokado Northern 

Paiute bands and the Wel mel ti Washoe.  As such, interpretations of sites in the area may 

be complicated by the need to distinguish technological/settlement shifts from ethnic 

shifts.  Recognizing patterns in toolstone use that could reflect differential access to 

toolstone sources in the immediate region and beyond may allow for research into 

whether ethnicity can be identified in lithic assemblages.  If this is the case, then it may 

also be possible to discern culturally determined differences in toolstone source use 

between assemblages along the eastern Sierran Front as compared to the Pah Rah Range 

and farther east into the Great Basin. 
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Research Goals 

 

The primary goal of this research is to determine the FGV sources present at 

archaeological sites within the Pah Rah Range as a means for examining prehistoric land 

use and lithic technological organization in the western Great Basin.  Through XRF 

sourcing of FGV artifacts, I will be able to determine the geochemical source groups that 

were utilized at sites in the Pah Rah Range, and the straight-line distances between the 

sources and sites.  By combining this sourcing data with simple lithic analysis, I expect to 

be able to determine whether there are correlations between different geochemical 

sources and certain artifact types.  Finally, by comparing these data to that from other 

sites in the region, I will be able to determine how the Pah Rah Range fits into regional 

patterns of FGV toolstone use.   To this end, I consider the following research questions 

and testable hypotheses: 

 

1. What is the range of FGV sources used by prehistoric peoples within 

the Pah Rah Range? 

a. Hypothesis: Groups in the Pah Rah Range primarily utilized local 

FGV toolstone.  

 

2. Are there identifiable and significant patterns of source use that are 

unique to sites within the Pah Rah Range? 

a. Hypothesis: Certain FGV sources were preferred for certain tools, 

whether due to toolstone quality or proximity to source; and  
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b. Hypothesis: Lithic technological organization differed 

substantially between sites in the Pah Rah Range and those on the 

nearby valley floor. 

 

3. Based on this source information, how does FGV use in the Pah Rah 

Range fit with current models of toolstone conveyance in the western 

Great Basin? 

a. Hypothesis: Pah Rah Range sites reflect similar conveyance zones 

developed using data from other sites in the western Great Basin. 
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CHAPTER 2 – ENVIRONMENTAL AND CULTURAL OVERVIEW 

 

The Great Basin is an environment of extremes.  The topographic relief of the 

region cartwheels between high mountain ranges and wide valley basins, with shifting 

ecological boundaries controlled by a complex interaction of climate, elevation, and 

latitude.  The Great Basin encompasses approximately 200,000 sq mi of the western 

United States, stretching across nearly all of Nevada and portions of California, Utah, 

Idaho, and Oregon (Grayson 2011:11).  The Pah Rah Range lies at the western edge of 

the Great Basin, east of the Sierra Nevada Range and immediately northeast of Reno and 

Sparks, Nevada.  The range is roughly crescent-shaped, opening to Spanish Springs 

Valley and Warm Springs Valley to the west and overlooking the Truckee River 

floodplain and Pyramid Lake to the east and northeast, respectively (Figure 2.1).  At its 

southern end, the Pah Rah Range is separated from the Virginia Range by the Truckee 

River, while Mullen Pass separates the Pah Rahs from the Virginia Mountains to the 

north.  The highest point within the Pah Rah Range is Virginia Peak at 8,367 ft above sea 

level (ASL).  Other peaks include Spanish Springs Peak (7,404 ft ASL), Pond Peak 

(8,035 ft ASL) and Pah Rah Peak (8,249 ft ASL).  The eastern front of the range is 

relatively steep with short canyons that drain into the Truckee River and Pyramid Lake.  

By contrast, the western slopes are relatively gentle, with numerous hills, canyons, and 

drainages resulting in a more complex topography.
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Figure 2.1. Overview of the Pah Rah Range.  



27 

 

 

 

   

This thesis focuses primarily on the Dry Lakes area in the southwestern Pah Rah 

Range.  This series of upland basins is located just northeast of Spanish Springs Canyon 

and is situated between parallel, northeast trending ridges.  The basins form a horseshoe 

shape with two remnant lakebeds (from which the area gets its name) within the eastern 

arm.  The upper lakebed is 5,110 ft ASL.  The second lakebed, at 5,040 ft ASL, is 

southwest of the first and a narrow pass separates the two.  The Pah Rah Range and 

surrounding environment is arid, with most moisture falling during the winter.  During 

the last 50 years, this area has averaged less than 20.32 cm (8 in) of precipitation per 

year, with most months averaging well below an inch (WRCC 2012).  Though these 

lakebeds are not fed by permanent water sources and regional precipitation is limited, 

during wet years they are still capable of holding shallow, ephemeral lakes that support 

limited fauna, such as fairy shrimp (Pendegraft 2007:44).   

 

Geologic Setting 

 

The underlying stratigraphy of the Pah Rah Range is comprised primarily of 

Tertiary volcanic and sedimentary rocks with an aggregate thickness of over 12,000 ft 

(Bonham 1969:51) (Figure 2.2).  The southern half of the range is dominated by Pliocene 

basalt and basaltic andesite and pyroxene andesite flows overlying and interfingered with 

fluviatile and lacustrine sedimentary rocks of the upper portion of the Pliocene Coal
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Figure 2.2. Geologic map of the Pah Rah Range and surrounding region (after Bonham 1969). 
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Valley Formation (Bonham 1969:Plate 1).  These basalts are mostly medium to dark 

gray, weathering to dark gray brown and brownish black (Bonham 1969:39).  Many 

contain small (<1 mm) olivine and plagioclase phenocrysts, with textures ranging from 

intergranular to trachytic.  The southern end of the Pah Rah Range also contains 

exposures of Mio-Pliocene Kate Peak Formation and Pliocene rhyolite (Bonham 

1969:Plate 1).  The Kate Peak Formation is a thick sequence of andesite to rhyolite flows 

and flow breccias, with dacite flows most common (Bonham 1969:33).  The Kate Peak 

Formation is also present in the central portion of the Pah Rah Range.  

The geology of the northern half of the Pah Rah Range is more varied.  It is 

dominated by Hartford Hill Rhyolite and the Pyramid Sequence, both of which are 

Miocene in age (Bonham 1969:Plate 1).  Hartford Hill Rhyolite is predominantly 

composed of ash-flow tuffs, while the Pyramid Sequence is composed of basalt, andesite, 

and dacite flows with breccias, mudflow breccias, agglomerates, tuffs, and associated 

intrusives (Bonham 1969:Plate 1).  Smaller areas of Mesozoic metavolcanic and 

metasedimentary rocks and intrusive Mesozoic granitic rocks are also present.  These 

Mesozoic basement rocks are exposed at elevations roughly 4,000 ft lower than Mesozoic 

basement elevations in the ranges to the west, indicating that the Pah Rah block is overall 

structurally depressed with respect to the Sierra Nevada (Bonham 1969:51). 

The Pah Rah Range is at the southeastern end of the Pyramid Lake domain of the 

Walker Lane; a transitional zone between the Cascade-Sierra Mountains and the Basin 

and Range physiographic provinces (Bonham 1969:43; Stewart 1988).  The Walker Lane 

is a zone of predominantly Cenozoic-age right-lateral strike-slip faulting that separates 

the Sierra Nevada from the extensive normal faulting that has produced the basin-range 

http://en.wikipedia.org/wiki/Sierra_Mountains
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topography that characterizes much of the Great Basin (Bonham 1969:43; Stewart 1988).  

Stretching approximately 700 km from northeastern California to southwestern Nevada 

and east-central California, the Walker Lane is tectonically significant, as it 

accommodates the portion of right lateral motion between the Pacific and North 

American tectonic plates that is not taken up by the San Andreas fault systems (Delwiche 

2007:1).  The northern portion of the Walker Lane has been deformed by multiple 

northwest-striking right-lateral faults, north- to north-northeast-striking normal faults, 

east-northeast-striking left-lateral faults, east-striking normal faults, and belts of east-

trending folds and reverse faults, resulting in a diverse topography that is in contrast to 

the more regular, linear mountain ranges that typify the rest of the Great Basin (Delwiche 

2007:10).  The Pyramid Lake domain, which is dominated by northwest-striking right-

lateral faults, falls within this northern portion. 

The Pah Rah Range is a complexly faulted, northwest-trending block that 

“occupies a left-step between the Pyramid Lake fault to the east and the Warm Springs 

Valley fault to the west” (Delwiche 2007:47).  Southwest-tilted strata along the western 

flank and northeast-dipping strata along the eastern flank indicate that the interior of the 

Pah Rah Range forms a broad, discontinuous west-to-northwest-trending anticline 

(Delwiche 2007:47, 66).  These structural characteristics, combined with the underlying 

stratigraphy, have resulted in a varied landscape of broad upland valleys and plains, 

major and minor drainages, steep ridges, and gentle hills. 

The geologic history of the Pah Rah Range follows that of much of the western 

Great Basin, in which mountain building has been the result of repeated intrusive and 

extrusive volcanic events interspersed with periods of complex tectonic activity.  As 
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such, the mountain ranges along the western periphery of the Great Basin are composed 

primarily of granite, diorite, basalt, rhyolite, and other volcanic rocks.  Though igneous 

rocks are also present throughout much of the Great Basin, the ranges in the central 

portion and at the eastern edge are predominantly composed of uplifted sedimentary 

sequences of limestone, sandstone, and other marine sediments (Fiero 1986:18; NBMG 

1999).  These contrasting geologic histories also strongly influence the presence and 

availability of various lithic raw materials, which has been acknowledged by many 

researchers (e.g., Andrefsky 1994a, 1994b; Bamforth 1986; Gould 1980; O’Connell 

1977) as a key factor influencing lithic technological organization. 

Recognizing the influence that these differing geologic frameworks can have on 

long-term raw material procurement patterns and archaeological assemblages, Thomas 

(2012:256-258) examined projectile points from 151 sites within the Great Basin with 

respect to raw material type.  By plotting the percentage of obsidian utilized at each site 

with variations in shading to depict the percent utilization, Thomas illustrates that 

assemblages at the edges of the Great Basin are dominated by obsidian while 

assemblages in the central portion of the Great Basin are nearly devoid of obsidian.  In 

describing this pattern, Thomas (2012:258) uses the terms “Obsidian Rim” and “Chert 

Core.”  The Pah Rah Range falls within the western edge of the “Obsidian Rim”; 

however, this portion of the Great Basin is not as dominated by obsidian use as regions 

immediately to the north (i.e., northwest Nevada, northeast California, and southeast 

Oregon) or south (i.e., southeastern California) (McGuire 2002). 

The geologic history of the Pah Rah Range likely influenced prehistoric raw 

material utilization.  Obsidian can be produced within most volcanic environments, but 
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toolstone quality obsidian is relatively rare (Shackley 2005:10-15).  Obsidian forms when 

high temperature (ca. 1,000°C) rhyolitic or silicic liquids (or lava) rapidly cool.  As 

Shackley (2005:14) points out, many volcanic glass-forming liquids are rich in water or 

volatiles that result in the formation of pumice, tuff, and other non-toolstone quality 

glasses.  Because obsidian hydrates, obsidian formed during older (generally >10 mya) 

volcanic events may no longer be suitable for tool production.  Within the Pah Rah 

Range, much of the volcanism is Pliocene to Miocene in age (ca. 2.6 to 23.0 mya) and 

dominated by ash flow tuffs and basalt, andesite, rhyolite, and dacite flows.  As such, 

though obsidian occurs close to the Pah Rah Range (e.g., the C.B. Concrete, Patrick, and 

Sutro sources), it is not nearly as available as elsewhere in the Great Basin. 

 

Lithic Terrane of Pah Rah Range Sites 

 

Elston (1990:155, 165-174; 1992) uses the concept of lithic terranes to describe 

the occurrence, abundance, distribution, and quality of lithic raw materials.  Borrowing 

from the geologic definition of a terrane as “the area or surface over which a particular 

rock or group of rocks is prevalent” or “an area or region considered in relation to its 

fitness or suitability for some specific purpose” (AGI 1976:429), a lithic terrane 

encompasses the absolute availability of lithic raw material within a particular landscape.  

Elston notes that lithic terranes can vary in quality depending on geology and 

physiography, as well as the scale of the region examined with respect to the site.  In 

particular, he explains that the lithic terrane of a site close to a single high quality lithic 

source may be thought of as rich with respect to a daily foraging radius, but poor with 
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respect to larger logistical radii. 

The lithic terrane for archaeological sites in the Pah Rah Range varies by scale in 

a similar manner.  For the purposes of this research, the lithic terrane for the Pah Rah 

Range is examined at three scales: local, extra-local, and regional.  Additionally, only 

toolstone sources that can be geochemically characterized are examined in any detail.  

Though several cryptocrystalline sources are known throughout the Great Basin (e.g., 

Tosawihi chert, Steamboat Sinter), it is still not possible to definitively identify them in 

archaeological contexts beyond the source locations.  The local scale includes all 

available known sources <15 km from the Pah Rah Range (Figure 2.3).  This distance is 

at the far end of what is generally considered to be a single-day’s round-trip journey, or a 

daily foraging radius (Kelly 2007:133).  The extra-local scale includes all sources within 

100 km of the Pah Rah Range (Figure 2.4).  The regional scale includes sources >100 km 

away and encompasses sources that may be within lifetime ranges for a particular group 

or that could be accessed through exchange (Figure 2.5).  Jones et al. (2003:32) noted that 

toolstone within the Great Basin tended to move more generally north-south, and only 

rarely extensively east-west.  As such, the lithic terrane described here does not extend as 

far east-west as it does north-south.  A summary of the known source lithic terrane for the 

Pah Rah Range is presented in Table 2.1.  
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Figure 2.3. Local (<15 km) lithic terrane for the Pah Rah Range. 
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Figure 2.4. Extra-Local (<100 km) lithic terrane for the Pah Rah Range. 
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Figure 2.5. Regional (>100 km) lithic terrane for the Pah Rah Range. 
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Table 2.1. Known Toolstone Sources within the Lithic Terrane of the 

Pah Rah Range. 

Source Name Material Type Distance (km) 

Local (<15 km) 

Patrick Obsidian 7 

Lagomarsino FGV 15 

Extra-Local (<100 km) 

C.B. Concrete Obsidian 17 

Steamboat Sinter CCS 20 

Steamboat Hills FGV 22 

Sutro Springs Obsidian 27 

Incline Ridge FGV 39 

Independence Lake FGV 42 

Martis Creek FGV 48 

Alder Hill FGV 49 

Watson Creek FGV 52 

Sawtooth Ridge FGV 54 

Meathouse Meadow FGV 58 

Gold Lake FGV 82 

Coleman FGV 87 

Siegfried Canyon Ridge FGV 89 

North Dry Valley FGV 92 

Regional (>100 km) 

Bodie Hills Obsidian 116 

Buffalo Hills Obsidian 140 

Garfield Hills Obsidian 151 

Fox Mountain Obsidian 161 

Mt. Hicks Obsidian 164 

South Warners Obsidian 165 

Humbug FGV 168 

Bordwell Springs Obsidian 172 

Pinto Peak Obsidian 182 

Mono Craters Obsidian 189 

Mono Glass Mountain Obsidian 208 

Queen Obsidian 208 

Casa Diablo Obsidian 211 

Massacre Lake/Guano Valley Obsidian 222 

Coyote Spring FGV 224 

Double H Mountains Obsidian 272 

 

At the local scale, the lithic terrane for the Pah Rah Range is limited.  Only two 

known sources – Patrick obsidian and Lagomarsino FGV – fall within the local range 

(see Figure 2.3).  At the extra-local scale, the lithic terrane is richer with two additional 
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obsidian sources (CB Concrete and Sutro Springs), a known chert source (Steamboat 

Sinter), and 11 additional FGV sources occurring.  Among these are all of the major 

Sierran FGV sources. 

It is only at the regional scale that obsidian becomes available in any quantity (see 

Figure 2.4).  In contrast to the extra-local radius, the regional scale terrane is dominated 

by obsidian, with only two additional FGV sources included.  This distribution reflects 

Thomas’ (2012) “obsidian rim.”  The two closest obsidian sources at the regional scale, 

Buffalo Hills to the north and Bodie Hills to the south, are separated by ca. 300 km, 

leaving the Pah Rah Range in an area with only a handful of known obsidian sources, but 

numerous FGV sources. 

Of the known FGV sources within the local and extra-local lithic terrane, a 

handful that includes Alder Hill/Watson Creek, Gold Lake, Siegfried Canyon Ridge, and 

Steamboat/Lagomarsino are among the most significant FGV toolstone sources used 

prehistorically in the western Great Basin and Sierras (Day 2002; Day et al. 1996; Elston 

et al. 1994; Waechter 2002).  The Alder Hill/Watson Creek source is comprised of two 

quarries.  Alder Hill is located near Truckee, California and Watson Creek is located near 

the northwest shore of Lake Tahoe (Waechter 2002:107).  Basalt from these quarries is 

gray-black in color and has a “sugary” crystalline texture and small elongate plagioclase 

feldspar microlites (Duke 1998:14).  The Watson Creek chemical group is known from at 

least 17 different quarry sites, and may have been transported farther than the Alder Hill 

component during the Middle Archaic Period (5,000-1,300 cal BP) (Waechter 2002:107). 

Gold Lake is comprised of four individual quarries (Gold Lake, Mohawk Valley, 

Church Meadows, and Oakland Pond) that may be distinct exposures of the same basalt 
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flow (Waechter 2002:105).  Gold Lake is recognized as the finest-quality basalt toolstone 

source in the north-central Sierra (Edwards 2000).  It ranges in texture from aphanitic to 

microcrystalline and is distinctly black in color with small “vugs” that are often filled 

with quartz and other fine-grained silica minerals (Duke 1998:16).  These vugs do not 

seem to hinder reduction, and it seems to be more workable than other FGV toolstone 

sources in the Tahoe region (Waechter 2002:107).  The Siegfried Canyon Ridge chemical 

group includes both Siegfried Canyon Ridge and Squaw Valley Drainage quarries located 

just west of Sierra Valley (Waechter 2002:107). 

Steamboat/Lagomarsino is a geochemical group that includes two FGV source 

localities: Steamboat Hills at the southern end of Reno and Lagomarsino in the Virginia 

Range.  The Steamboat Hills locality is an extensive complex of quarries, lithic 

processing sites, and short-term base camps (Elston 1994:65).  Steamboat Hills FGV is 

highly vitreous black andesite to andesitic basalt with colorless to white quartz 

phenocrysts and appears on the surface as cobbles up to 30 cm in diameter (Elston 

1994:65).  Lagomarsino is chemically similar, but can sometimes be distinguished from 

Steamboat Hills based on its trace element composition (Waechter 2002:107).        

Other documented FGV sources in the western Great Basin include North Dry 

Valley and the Coleman Locality.  North Dry Valley is a toolstone quarry near the Smoke 

Creek Desert (Waechter 2002:107).  It is a rhyodacite source with at least seven different 

localities, all with the same geochemical fingerprint.  The Coleman Locality, near Falcon 

Hill at the north end of Winnemucca Lake, was described by Tuohy (1970); the artifact 

assemblage was later analyzed by Graf (2001).  The site consists of basalt “workshops,” a 

possible camp site, and a basalt quarry.  Basalt from the site is very fine grained with a 
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glassy grey matrix that is quarried from a high quality basalt flow <1 km from the site 

(Graf 2001:131).  Tuohy (1970:148) suggested that it may be visually distinct from other 

basalts used in the Lower Truckee and Winnemucca Basins.  

 

Cultural Setting 

 

The Sierran Front chronology, as revised by Elston et al. (1994), has been 

developed to address cultural change along the east slope of the Sierra Nevada and 

adjacent western Great Basin.  This chronology splits five adaptive periods – Pre-Archaic 

(>10,000-8,000 cal BP), Early Archaic (8,000-5,000 cal BP), Middle Archaic (5,000-

1,300 cal BP), Late Archaic (1,300-700 cal BP), and Terminal Prehistoric (700 cal BP to 

Contact) – into six phases.  These six phases are: Tahoe Reach (11,500-8000 cal BP), 

Spooner (8,000-5,000 cal BP), Early Martis (5,000-3,000 cal BP), Late Martis (3,000-

1,300 cal BP), Early Kings Beach (1,300-700 cal BP), and Late Kings Beach (700-150 

cal BP) (Table 2.2).  These periods are briefly described below. 

 

Table 2.2. Chronology for the Sierran Front (from Elston et al. 1994). 

Adaptive Period Phase Date Range (cal BP) Representative Diagnostic Artifacts 

Pre-Archaic Tahoe Reach 11,500-8,000 Great Basin Stemmed 

Concave-base lanceolate points 

Fluted points 

Early Archaic Spooner 8,000-5,000 Northern Side-notched
a
  

Middle Archaic Early Martis 5,000-3,000 Martis Contracting Stem 

Martis Split Stem 

Steamboat Point 
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Table 2.2. Chronology for the Sierran Front (from Elston et al. 1994). 

Adaptive Period Phase Date Range (cal BP) Representative Diagnostic Artifacts 

 Late Martis 3,000-1,300 Martis Corner-notched 

Elko Series 

Late Archaic Early Kings Beach 1,300-700 Rose Spring 

Eastgate 

Small stemmed points 

M1a shell beads 

Terminal 

Prehistoric 

Late Kings Beach 700-150 Desert Side-notched 

Cottonwood Triangular 

a
 data from McGuire (2002) 

 

Pre-Archaic Period (>10,000- 8,000 cal BP) 

 

Diagnostic artifacts from Pre-Archaic (>10,000-8,000 cal BP) sites include 

concave-base lanceolate and fluted projectile points (similar to Clovis and Folsom), Great 

Basin Stemmed series projectile points, and crescents (Delacorte 1997b:13; Zeanah 

2009:10).  Other artifacts common in Pre-Archaic toolkits include blades, large bifacial 

knives, heavy choppers, and formalized flake tools.  Sites from this period tend to be 

scattered along relict Pleistocene lake shorelines and are distinctive for their lack of 

evidence for long-term occupation (e.g., midden accumulations, residential and/or storage 

features), suggesting small, territorially-expansive mobile populations (Delacorte 

1997b:13; Zeanah 2009:10-11).  However, based on recent investigations at the Dietz site 

in the northern Great Basin, Pinson (2011:308-309) has argued that Far Western Clovis 

foragers may have been “estate settlers” who focused on effective utilization of smaller 

territories rather than being highly residentially mobile, transient foragers.  Pinson 

(2011:307) suggests that the relatively lower abundance of Pleistocene megafauna in the 
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Great Basin during this period may have allowed Clovis foragers there to develop a more 

regionally specific adaptation focused on locally abundant artiodactyls and small game.  

The geographic diversity of toolstone source locations utilized by Pre-Archaic foragers 

seems to imply wide ranging foraging territories, many of which are several orders of 

magnitude larger than those known ethnographically (Jones et al. 2003; Smith 2010).  

Smith’s (2010) examination of lithic sources of Pre-Archaic projectile points suggests 

that early foragers in the northwestern Great Basin traveled through much larger 

territories and utilized a higher diversity of sources than later populations; however, those 

territories may not have been nearly as expansive as those proposed by other researchers 

or for other regions in North America (e.g., Amick 1996; Jones et al. 2003).  

Locally, the Pre-Archaic Period is represented by the Tahoe Reach Phase (Elston 

et al. 1994).  Defined based on excavations at Squaw Valley, California (Elston et al. 

1977), Tahoe Reach components have been noted in Martis Valley (Heizer and Elsasser 

1953), the Truckee Meadows (Elston and Turner 1968), Pyramid Lake (Tuohy 1988), 

Spanish Springs Valley (Delacorte et al. 1995a; McGuire et al. 2008), and at a number of 

sites in the Sierras (e.g., Bloomer et al. 1997; Davis and Shutler 1969; Elston 1979; 

Martin 1998).  Other local finds include isolated concave base points collected in the 

early 1950s near Peavine Mountain and Washoe Lake (Pendelton et al. 1982:76).  

      

Early Archaic Period (8,000-5,000 cal BP) 

 

Temporal markers for the Early Archaic Period (8,000-5,000 cal BP) include 

Northern Side-notched and Gatecliff projectile points (Elston 1986; Thomas 1981).  
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Northern Side-notched projectile points are typically recovered from sites in the 

northwestern Great Basin and are only very rarely found near the Pah Rah Range (Zeanah 

2009:11).  Shifts in settlement and subsistence strategies during this time period were 

likely related to climatic warming in the Middle Holocene, though Early Archaic 

components are generally more similar to earlier occupations than later ones (Delacorte 

1997b:14; Zeanah 2009:11).  The large pluvial lakes that had characterized the 

Pleistocene had dried up and pinyon-juniper woodlands began expanding into central 

Nevada by ca. 5,400 cal BP (Grayson 2011:255).  Elston (1986:138) has noted that large, 

Early Archaic sites tend to be associated with permanent streams and springs in valley 

bottoms; however, upland resources were also exploited.  There is an increase in the 

types and abundance of groundstone during this period.  In the vicinity of the Pah Rah 

Range, Gatecliff series points are often found at upland sites (Delacorte 1997b:14). 

The Early Archaic Period is represented along the eastern Sierra Front by the 

Spooner Phase.  Originally conceived by Elston (1971, 1982) as a placeholder between 

the better described Tahoe Reach and Early Martis phases, Spooner Phase components 

are still poorly understood and lack locally temporally diagnostic projectile points or 

other typological markers (Zeanah 2009:11).  Though well-known at sites such as those 

in Surprise Valley (O’Connell 1975), the Madeline Plains, and near Honey Lake, the 

Spooner Phase is not well represented along the eastern front of the Sierra Nevada and no 

securely dated components are known from around the Pah Rah Range (Zeanah 

2009:11). 
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Middle Archaic Period (5,000-1,300 cal BP) 

 

Within the Middle Archaic Period (5,000-1,300 cal BP), both material culture and 

settlement patterns shifted markedly.  Increasing cultural complexity is evidenced by a 

variety of textiles and other perishable artifacts, increased rock art, and a rise in trade 

goods such as marine shell ornaments and other exotic items (Delacorte 1997b:15).  

Temporally diagnostic projectile points for the Middle Archaic Period include Gatecliff 

and Elko series projectile points.  Groundstone and other processing tools are common 

and caches of specialized gear dated to this period have been found throughout the 

western Great Basin (Delacorte 1997b:15; Elston 1986).  Lithic diversity appears to have 

decreased, though foraging ranges may have remained extensive (Delacorte 1997b:15-

16). 

The focus on valley bottom settlements near permanent water sources shifted to 

residential camps along the pinyon ecotone (Elston et al. 1994); however, pinyon did not 

reach the Carson Desert until ca. 1,500 cal BP and the Virginia Range until ca. 1,000 cal 

BP (Grayson 2011:Table 8-4; Kelly 1997:13).  Seasonal shifts in habitation types are also 

apparent: both summer and winter camps can be defined and appear to have been 

occupied on a recurrent basis (Clay 1996; Elston 1986).  Winter sites contain storage pits, 

house pits with internal hearths, and burials, while summer habitation sites are smaller 

and less substantial (Elston 1986).  Middle Archaic subsistence strategies appear to have 

increased in variety.  Upland resources were more intensively exploited, as were small 

mammals, but large mammals remained a significant portion of the diet (Elston 1986; 

Zeanah et al. 1995). 
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Recent environmental studies and archaeological evidence indicate a noticeable 

increase in the exploitation and abundance of artiodactyls populations during this period 

(Broughton et al. 2008; Byers and Broughton 2004; Hildebrandt and McGuire 2002; 

McGuire et al. 2004; McGuire and Hildebrandt 2005).  McGuire and Hildebrandt (2005) 

focus on a shift from big game hunting for calories to hunting for prestige as a way for 

men to increase their reproductive success.  They also hypothesize that during the Middle 

Archaic Period, gender-differentiated subsistence strategies led to a split in settlement 

patterns, with male adults focused on long-distance, logistically-based, large-game 

hunting and hunting-related activities and women, children, and older males focused on a 

“trend toward residential stability” at locations taking “advantage of a wide range of 

generally lower-ranked but abundant resources” (McGuire and Hildebrandt 2005:705). 

In the western Great Basin and along the eastern Sierran Front, the Middle 

Archaic Period is split into the Early Martis (5,000-3,000 cal BP) and Late Martis (3,000-

1,300 cal BP) phases.  Early Martis projectile points include Martis Contracting Stem, 

Martis Split Stem, and Steamboat points, while the Late Martis Phase is defined by 

Martis Corner-notched points (Elston et al. 1994:16).  Occurrences of Martis Series 

points are viewed as the eastward expansion of ‘Martis Peoples’ onto the eastern slope of 

the Sierra Nevada.  The distinguishing attribute of Martis appears to be the intensive use 

of basalt (Kowta 1988; Moore and Burke 1992); however, Delacorte (1997b:16) suggests 

that the use of basalt from prominent local sources may be less of a distinct “Martis” 

signature and more a function of resupply of toolkits as part of a regularized Middle 

Archaic settlement pattern.  Evidence from habitation sites in the region include 

excavated pit houses with supporting structures and shallow dish-shaped areas of staining 
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(Archaeological Research Services 1997; Elston and Davis 1972; McGuire 2000).  

Assemblage density and variability within habitation sites suggest more egalitarian use of 

space over longer spans of time.  Recent researchers (e.g., McGuire et al. 2008; Zeanah 

2009:12) have suggested that the Martis pattern may have been residentially stable but 

logistically mobile. 

 

Late Archaic Period (1,300-700 cal BP) 

 

Late Archaic (1,300-700 cal BP) settlement patterns remained logistically 

oriented, though mobility patterns became more geographically constricted (Delacorte 

1997b:16-17).  Though settlement became more centralized, house structures decreased 

in size and substance.  Other shifts included resource intensification, increased 

dependence on locally available subsistence resources, and increased use of local 

toolstone including lower quality sources that may have been ignored earlier, all of which 

suggest decreased mobility among Late Archaic peoples (Delacorte 1997b; Elston and 

Budy 1990; McGuire et al. 2004; Spencer et al. 1987).  Carpenter’s (2002) analysis of 

artiodactyl abundance during this period suggests that after dipping to their lowest levels 

near the Middle and Late Archaic transition, remains increased at Late Archaic 

archaeological sites.  Temporal indicators include Rose Spring and Eastgate projectile 

points, which are indicative of the technological shift to the bow-and-arrow (Yohe 1998).  

Bifaces became smaller, less abundant, and less formal, while flake tools and more 

expedient technologies expanded (Delacorte 1997b:17). 

The Late Archaic Period is recognized locally as the Early Kings Beach Phase 
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(Elston 1986; Elston et al. 1994).  The Early Kings Beach Phase is believed to represent 

the archaeological manifestation of the ethnographic Washoe.  Early Kings Beach sites 

are characterized by Rosegate and Gunther Series projectile points, seed hullers, and 

bedrock mortars (Elston 1986; Elston et al. 1994).  In the Pah Rah Range, the Early 

Kings Beach Phase is accompanied by the first recognized habitation sites as well as 

abundant rock art, talus pits, and hunting blinds (Delacorte 1997b:16-17; Zeanah 

2009:13).  

 

Terminal Prehistoric (700-150 cal BP) 

 

Terminal Prehistoric (700-150 cal BP) occupations in the western Great Basin 

show a distinct break from earlier periods.  Occupations appear to have been sparser, with 

many villages, hunting camps, and other sites that had been occupied on a repeated basis 

or for long periods abandoned (Delacorte 1997b:18).  Houses decreased in size and 

lacked internal features (Zeanah 2009:14).  Settlement patterns reflect a more dispersed, 

decreased residential group size similar to those described ethnographically by Steward 

(1938).  Several researchers (e.g., Delacorte 1997b; Delacorte and Basgall 2012; 

McGuire et al. 2007) see the shift in the archaeological record at the beginning of the 

Terminal Prehistoric as an indicator of population replacement by the Numa.  

The Terminal Prehistoric Period is manifested locally by the Late Kings Beach 

Phase.  Temporally diagnostic include Desert Series projectile points (Delacorte 

1997b:18).  Near the Pah Rah Range, the Late Kings Beach Phase is accompanied by 

shifts from thin to thick milling stones, from FGV to local chert and obsidian, and away 
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from “Martis-style” bifaces (Elston et al. 1994; Zeanah 2009:14).  At the Vista site 

(26Wa3017) in the foothills at the southern end of Pah Rah Range, Zeier and Elston 

(1986:379) indicate that population pressure may have resulted in a shift to a “processor” 

system as described by Bettinger and Baumhoff (1982).  

 

Previous Archaeological Work in the Pah Rah Range 

 

Most previous archaeological investigations in the Pah Rah Range have taken 

place in its southern portion.  Many were centered on the upland basins of the Dry Lakes 

area.  Among the earliest was a series of surveys and excavations conducted by the 

Amateur Archaeologists of Nevada (Am-Arcs) under the guidance of the Nevada 

Archaeological Survey (NAS).  Between 1968 and 1970, 11 rock enclosures at four sites 

were partially or completely excavated, and test excavations were conducted at a fifth site 

(Rusco 1969a, 1969b, 1981; Stephenson 1968).  Rusco interpreted these sites to be 

seasonal camps with intermittent Early to Late Kings Beach occupations, as reflected by 

the predominance of Rose Spring, Desert Side-notched, and Cottonwood Triangular 

points (Rusco 1981:9).  One of these sites was recently tested to evaluate impacts from 

fire suppression efforts resulting from the Belmar Fire (Bowers 2006), resulting in the 

identification of three hearths radiocarbon dated to between 2980±40 
14

C BP (3,324-

3,004 cal BP) and 3140±40 
14

C BP (3,449-3,247 cal BP) (both calibrated at 2 σ with 

CALIB Version 7.0 [Stuiver et al. 2013]).   

Little additional work was conducted in the Dry Lakes area until the mid-1990s 

when data recovery for the Tuscarora Pipeline Project was completed (Delacorte 1997a, 
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1997b).  That effort consisted of data recovery at four sites and testing at nine others.  

Along with data recovery at two sites for the Tracy to Silver Lake 120kV Transmission 

Line (McGuire et al. 2008), these investigations indicate that prehistoric use of Pah Rah 

Range uplands likely took the form of systematic logistical hunting forays during the 

Early and Late Martis phases, with more intensive logistical use of plant and animals 

resources on a seasonal basis during the Early Kings Beach Phase (Zeanah 2009:15).  

During the Late Kings Beach Phase, occupation in the Dry Lakes area shifted towards 

residential occupation and an intensification of plant resource exploitation. 

Other work in the Pah Rah Range has been the result of field schools and thesis 

research.  In 1985, the University of Nevada, Reno (UNR) conducted a field school at the 

Frear site at the mouth of Spanish Springs Canyon; however, results from the surface 

collection and excavations have not been published (Gary Haynes, personal 

communication, 2012).  In 2005, California State University Sacramento (CSUS) 

conducted a systematic sample survey of approximately 740 acres in the High Basins 

area, and in 2005 and 2006, CSUS field school classes retuned to conduct test 

excavations at two sites near the head of Spanish Springs Canyon (Zeanah 2009).  The 

results of these excavations echoed the findings of Delacorte (1997b) and McGuire et al. 

(2008), with Martis to Early Kings Beach occupations centered on short-term camps and 

plant processing locales, and more intensive, long-term habitation during the Late Kings 

Beach Phase (Zeanah 2009).  Pendegraft’s (2007) thesis research focused on the rock art 

of the Pah Rah Range uplands, and provides an alternative interpretation for the function 

and timing of the petroglyph panels, suggesting that they were integrated into household 

activities of later periods.  This interpretation contrasts with Delacorte (1997b), who 
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indicates that they likely date to Martis Phases and may represent a form of hunting 

magic. 

Though additional work has been conducted in the Pah Rah Range (e.g., Brewer 

1984; Johnson 1981; McLane 1999), it is the artifact assemblages collected during the 

Am-Arcs, Tuscarora Pipeline, Tracy to Silver Lake, and Belmar Fire Rehabilitation data 

recovery and testing projects that provide the primary data set for my research.  As such, 

the sites excavated during these efforts are examined in more detail in the following 

chapter. 
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CHAPTER 3 – METHODS AND MATERIALS 

 

The principal goals of my thesis are to assess whether prehistoric groups in the 

Pah Rah Range utilized primarily local or exotic FGV sources and how their procurement 

and use of FGV toolstone fits within regional models of toolstone conveyance and lithic 

technological organization in the western Great Basin (e.g., Delacorte 1997b; McGuire 

2002; Smith 2010).  To this end, I use XRF sourcing results to determine which FGV 

sources are present at Pah Rah sites and in which form(s) they are represented.  I then 

compare FGV use at Pah Rah sites to FGV use at sites on the adjacent valley floor.  

Because I examine FGV source use in archaeological contexts, I requested a data 

cut from the Nevada State Historic Preservation Office Nevada Cultural Resource 

Information System (NVCRIS) and conducted a records search at the Carson City Field 

Office of the Bureau of Land Management (BLM) to determine the nature and location of 

sites that have been recorded, tested, and/or excavated within the Pah Rah Range.  In 

consultation with James Carter, then the BLM archaeologist for the Carson District, we 

determined that no additional collection of artifacts from Pah Rah Range sites was 

necessary.  At UNR and the Nevada State Museum (NSM), I identified collections from 

nine sites excavated within the Pah Rah Range which contained FGV artifacts.  Vickie 

Clay at Far Western Anthropological Research Group provided me with the report and 

XRF data from a site they tested in the Pah Rah Range.  I identified six sites on the valley 

floor to use as a comparative data set.  Dr. Gary Haynes at UNR graciously provided me 

access to a seventh.  Ed Stoner at Western Cultural Resources Management, Inc. 
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(WCRM) provided me with data from a winter village that WCRM excavated on the 

valley floor.  Altogether, this allowed me to include artifacts from 10 sites in my Pah Rah 

data set and eight sites in my comparative valley data set.  These sites are described later 

in this chapter; here, I outline how I sampled artifacts from them for additional 

technological and geochemical analysis. 

 

Artifact Selection Criteria 

 

A non-random sample of artifacts from each collection was selected for XRF 

analysis.  The first consideration for selection was artifact size.  While Davis et al. (1998) 

note that the relative element proportions of small samples (e.g., 8 mm in diameter and 

0.5 mm thick) can remain intact enough to accurately characterize the chemical source of 

a sample, it is generally recommended that samples be at least 10 mm in diameter and 1 

mm thick (and preferably larger than 15 mm diameter and 2 mm thick) for reliable 

sourcing (Lundblad et al. 2011; Northwest Research 2013).  The second consideration for 

selection was artifact type.  As noted in Chapter 1, researchers have noted the importance 

in XRF sourcing studies of analyzing all artifact types within an assemblage, as well as 

including a range of sizes for artifact classes such as debitage.  As such, I included both 

formal and informal tools.  Formal tools are those that have had effort expended towards 

their design, manufacture, and final form (e.g., projectile points, bifaces, drills).  Informal 

(or expedient) tools are those that required little or no effort in their manufacture (e.g., 

informal flake tools, cobble hammerstones) (Andrefsky 2005:31).  The final and overall 

less important consideration was the physical characteristics of the material.  Qualities 
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considered here include presence or absence of phenocrysts, fineness of crystallization, 

and to a lesser extent, color.  Though it is not possible to reliably identify the chemical 

source of an artifact based on the visual characteristics, I made an effort to include as 

many visually distinct FGV types as possible. 

With these considerations in mind, I applied the following selection criteria: (1) 

all projectile points and projectile point fragments that met the size limit were selected; 

(2) bifaces were selected with an effort to include as full a range of stages as possible; (3) 

any additional formed tools (e.g., drills, awls, scrapers) were also selected; (4) for larger 

tools such as cores, hammerstones, and choppers, selection was geared towards including 

both a diverse range of forms (e.g., unidirectional, bifacial, and multidirectional cores) 

and a variety of visually distinctive material types; and (5) an effort was made to select 

debitage both with and without cortex, and to include a range of sizes and technological 

forms and as many visually distinctive materials as possible.  

            

Lithic Analysis 

 

For all artifacts, I recorded artifact type, maximum length (mm), width (mm), 

thickness (mm), and completeness.  I also examined and recorded additional variables 

that could be used to address specific characteristics of each artifact class, as described 

below.  The artifact types examined included bifaces, projectile points, flake tools, drills 

and awls, cores, percussion tools, and debitage.  
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Bifaces 

 

Bifaces are lithic pieces that have had flakes removed from two opposing faces, 

with the two worked faces meeting to form a single edge that circumscribes the artifact 

(Andrefsky 2005:177; Crabtree 1972:38).  For the purposes of my analysis, bifaces that 

were modified into a more specific tool type (e.g., projectile points, knives, drills, etc.) 

were classified as such.  Specifically, if hafting elements were identifiable, I classified 

such tools as projectile points.  I classified bifaces with an end that had been narrowed or 

tapered to create an elongated tip as drills or awls. 

The blank type for each biface (as determined by the presence or absence of a 

ventral detachment scar) was recorded as either a flake blank or other.  Fragment type 

was recorded to describe both overall completeness and the portion of the original biface 

present at the point of discard.  The fragment types described include proximal, distal, 

medial, lateral, interior, and indeterminate.  Biface fragments that could not be 

determined to be proximal or distal fragments, but were clearly end fragments, were 

described as such. 

The process of biface reduction is often divided by lithic analysts into a sequence 

of reduction “stages” (Callahan 1979; Muto 1971) that describe the changes in thickness 

and shape that a biface undergoes as flakes are removed.  Though there is still discussion 

as to whether such stages are actual sequential steps during the biface reduction process 

(e.g., Callahan 1979; Whittaker 1994) or arbitrary divisions of a continuum (e.g., Muto 

1971; Shott 1994), biface reduction sequences are useful in examining biface reduction 

trajectories and overall patterns of tool production, use, and discard.  For this analysis, I 
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used a modified version Callahan’s (1979) reduction sequence, omitting the application 

of the width to thickness ratio.  The ratio of width to thickness can be expected to 

increase as the biface is thinned and shaped into its intended tool form; however, basalt 

bifaces do not always conform to the expected ratios predicted by Callahan (1979) 

(Bloomer et al 1997; Duke 1998; Duke and Young 2007; Elston et al. 1977; but c.f. Beck 

et al. 2002). 

The reduction sequence used here is more descriptive and geared towards 

evaluating the degree of shaping and effort invested in tool production (Table 3.1).  Stage 

1 bifaces include flake and cobble blanks and represent the initial shaping of the raw 

material.  Stage 2 bifaces have been edged with minimal to no flaking crossing the 

centerline.  The edges are sinuous and flake scars are widely spaced.  Stage 3 bifaces 

have undergone initial thinning but do not exhibit patterned flaking.  Most cortex has 

been removed, their edges are less sinuous, and most flake scars cross the centerline of 

the biface.  Stage 4 bifaces have been thinned further and are moderately flat in cross-

section.  Their margins are only minimally sinuous and patterned flaking is often present.  

Stage 5 bifaces have straight edges with more refined and patterned retouch present along 

the margins. 

  

Table 3.1. Biface Staging System (after Callahan 1979). 

Biface Stage Description 

Stage 1 Flake or cobble blanks; few flake scars along edges  

Stage 2 Edged biface with no (or minimal) flake scars crossing the center line; edges are 

sinuous; flake scars are widely spaced 
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Table 3.1. Biface Staging System (after Callahan 1979). 

Biface Stage Description 

Stage 3 Biface is thinned, but flaking is not patterned; most cortex has been removed; flake 

scars cross the center line 

Stage 4 Biface is moderately thin in cross section; margins are minimally sinuous; patterned 

flaking often present  

Stage 5 Biface is refined; edges are straight; patterned retouch present along edges; hafting 

elements may be present 

 

 

 

Projectile Points 

   

Projectile points are bifaces that have been modified to be hafted through 

notching or grinding for use as arrows, darts, or spear tips (Andrefsky 2005:22-23).  

Projectile point attributes were measured following methods described by Thomas (1981) 

(Figure 3.1) and were typed using an adaptation of the Levanthal (1977) and Stornetta 

(1982) keys proposed by Drews (1986) in his analysis of projectile points from the Vista 

site (26Wa3017) (Appendix A).  Projectile point series and types expected to occur in the 

Pah Rah Range and the Truckee Meadows are summarized in Table 3.2 and described 

below. 
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Figure 3.1. Projectile point attributes (adapted from Thomas 1981). 

 

Table 3.2. Projectile Point Age Ranges. 

Projectile 

Point Series Subtypes 

Approximate 

Date Range  

(cal BP) References 

Great Basin 

Stemmed 

- >9,000-6,000 Delacorte 1997b; Willig and 

Aikens 1988 

Humboldt Concave A; Concave B; Basal Notched ca. 5,000- 

ca.1,250* 

Bettinger 1975, 1978; Bettinger 

and Taylor 1974; Layton and 

Thomas 1979; Thomas 1981 

Pinto Shouldered; Shoulderless 5,000-1,200 Hester 1973; Heizer and Hester 

1978 
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Table 3.2. Projectile Point Age Ranges. 

Projectile 

Point Series Subtypes 

Approximate 

Date Range  

(cal BP) References 

Martis Martis Corner-notched; Contracting 

Stem; Side-notched; Triangular; Leaf-

shaped; Stemmed Leaf; Steamboat 

5,000-1,300 Elston et al. 1977; 1994 

Elko Elko Eared; Elko Corner-notched; Elko 

Contracting Stem  

3,500-1,300 Bettinger and Taylor 1974; 

Milliken and Hildebrandt 1997; 

Thomas 1981 

Rosegate Rose Springs; Eastgate 1,300-600 Bettinger and Taylor 1974; 

Thomas 1981 

Gunther Gunther Short-barbed; Gunther Abrupt-

shoulder; Gunther Round-shouldered  

1,450-700 Pippin et al. 1979; Clewlow et al. 

1984 

Desert Desert Side-notched; Cottonwood 

Triangular; Cottonwood Leaf-shaped 

600-contact Bettinger 1991; Bettinger and 

Taylor 1974; Thomas 1981 

*not considered a reliable time marker for Pah Rah Range (Delacorte 1997b) 

 

Great Basin Stemmed Series. Though not discussed in the classification keys 

mentioned above, Great Basin Stemmed points are still known from along the Sierran 

Front.  A number of morphological forms are recognized, but as a group they are 

generally large, weakly-shouldered with relatively long contracting stems, and possess 

rounded bases (Delacorte 1997a:71). 

Humboldt Series. The Humboldt Series (Heizer and Clewlow 1968) comprises 

points that are unshouldered, unnotched, lanceolate, and concave-based (Thomas 1981).  

The series consists of three types: Concave Base A; Concave Base B; and Basal Notched.  

Concave Base A and Concave Base B Humboldt points both have shallow basal notches 

and are similar in overall shape, the difference being that Concave Base B points are 

smaller.  Basal Notched Humboldt points are larger than either Concave Base types and 
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have slightly more triangular outlines and deep, broad, basal notches. 

Pinto Series. The Pinto series, as defined for the Sierra region and western Great 

Basin, includes two variants: Shouldered and Shoulderless (Elston 1971; Elston et al. 

1977).  Elston (1971:23-26) notes that Pinto points are typically lanceolate, but broad 

with respect to their length.  Shoulderless Pinto points often exhibit a slight basal flaring 

due to indentations just above the base.  The Shouldered variety has a slight notch rather 

than an indentation, though the shoulders are usually poorly developed.      

Martis Series. Martis points were initially described by Heizer and Elsasser 

(1953).  Elston (1971) condensed their 11 morphological types into three, before later 

expanding it again to seven (Elston et al. 1977:64-65): Martis Corner-notched; 

Contracting Stem; Side-notched; Triangular; Leaf-shaped; Stemmed Leaf; and 

Steamboat.  Martis Corner-notched points are similar to Elko Corner-notched points but 

are lighter and have greater Notch Opening Index (NOI) values and Distal Shoulder 

Angles (DSA).  The Contracting Stem type has a triangular body with a short, broad 

stem.  Shoulders on Martis Contracting Stem points are usually straight but may be 

somewhat barbed.  Martis Side-notched points have straight to slightly convex edges and 

basal indentations.  Side notches are parabolic and are usually located about one-third the 

distance from base to tip.  Martis Triangular points are medium sized with convex to 

straight bases.  These are distinguished from Martis Leaf-shaped points, which have a 

Wb/Wm of less than 0.90.  Stemmed Leaf points are nearly diamond shaped in outline.  

The Steamboat variant is leaf-shaped with convex edges.  The majority have pointed, 

round, or flat bases.         

Elko Series. Elko points are large corner-notched points with basal widths >10 
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mm (Thomas 1981).  Within this series, three types are commonly recognized.  Elko 

Eared points have a basal indentation ratios (BIRs) ≤0.93, while Elko Corner-notched 

points have BIRs >0.93.  Elko Contracting Stem points have BIRs >0.89 and Wb/Wm 

ratios <0.35.  Though Thomas (1981) proposed collapsing Elko Contracting Stem into 

the Gatecliff Series, it is retained within the Elko Series in Drews’ (1986) key and is 

classified as such here. 

Rosegate Series. The Rosegate series combines the Rose Spring (Lanning 1963) 

and Eastgate (Heizer and Baumhoff 1961) point types (Thomas 1981).  In combining the 

two point types, Thomas (1981) indicated that they grade into each other 

morphologically.  Rose Spring points tend to fall on the corner-notched side of the 

spectrum, while the notches on Eastgate points are more basal and the barbs are slightly 

squared.  As a whole, Rosegate series points are small, triangular points with stems that 

expand slightly.  The bases vary from straight to moderately convex.  A third variation 

resembles miniature Gatecliff Split-stem points.  These “split-stem Rosegates” are similar 

to O’Connell’s (1971) Surprise Valley Split-stem points and are known from along the 

Sierra Front (Delacorte 1997b:87).   

Gunther Series. Gunther (alternately Gunther Barbed) projectile points (Loud 

1918; Treganza 1959) are broadly triangular points with small contracting stems, slightly 

curved lateral margins, and long, pointed barbs.  Gunther Short-barbed points (Pippin et 

al. 1979; Pippin and Hattori 1980) have small corner notches, asymmetrical stems, and 

short tangs.  Gunther Abrupt-shoulder points (Pippin and Hattori 1980) are as the name 

describes.  Gunther Round-shouldered points (Clewlow et al. 1984) have straight to 

contracting stems and an obtuse shoulder angle. 
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Desert Series. The Desert Series includes Desert Side-notched, Cottonwood Leaf-

shaped, and Cottonwood Triangular points (Thomas 1981).  Desert Side-notched points 

are small points with triangular blades and side notches (Baumhoff and Byrne 1959).  

Four sub-types have been distinguished, based primarily on variations of the basal 

configuration.  The General subtype has a concave to slightly convex base. It may also 

have a wide, V-shaped appearance.  The Sierra subtype is similar, but has a central basal 

notch which gives the point diamond-shaped ears.  The Delta subtype has a deep V-

shaped base.  The Redding subtype has a bell-shaped base with comma-shaped notches.  

Cottonwood Triangular points are small, thin, triangular points that lack notches (Thomas 

1981).  The base ranges from moderately convex to deeply concave.  Cottonwood Leaf-

shaped points can be distinguished from Cottonwood triangular points by their rounded 

bases and maximum width position (Thomas 1981:16). 

For projectile points that could not be typed, I attempted to distinguish between 

dart- and arrow-sized points.  A weight of 3.0 g has variously been put forth as a 

threshold between arrows and darts, with darts weighing >3.0 g and arrows weighing 

<3.0 g (Delacorte 1997b; Hughes 1998; Lyman et al. 2009).  Shott (1997) and Rosenthal 

(2002) proposed neck width thresholds of 10 mm and 9.3 mm, respectively.  More 

recently, Hildebrandt and King (2012) proposed a dart-arrow index that adds neck width 

to maximum thickness, with a threshold value of 11.8 mm.  I used a combination of these 

methods depending on the degree of fragmentation of each indeterminate point. 

 

 

 



62 

 

 

 

Flake Tools 

   

Flake tools are detached lithic pieces that have been modified by intentional 

retouch or deliberate use (Andrefsky 2005:79).  For this analysis, I recorded the flake 

type (if it could be discerned) and degree of formality (i.e., formal or informal) of each 

flake tool as indicated by the type and degree of retouch along the working edge.  

Informal flake tools are those with simple retouch or other evidence of use along the 

working edge.  Tools with simple retouch typically have working edges that have been 

modified with a continuous row of retouch flakes.  Other indications of use include the 

development of polish, striations, or crushing along the working edge.  A 14x hand lens 

was used to examine worked edges for use wear.  Formal flake tools are those that have 

been deliberately shaped or show more investment in forming or rejuvenating the tool’s 

working surface.  Formal flake tools include the sub-category of scrapers.  Scrapers are 

unifacial flake tools with a steep retouched edge between 60 and 90° (Andrefsky 

2005:261).  End scrapers have a retouched edge on the distal or proximal end and may 

show evidence of hafting.  Side scrapers are retouched along one of the lateral margins. 

 

Cores 

 

Cores are masses of lithic material from which one or more flakes have been 

removed with the intention to supply flakes that can be used to produce other tools or can 

be used as tools themselves (Andrefsky 2005:14; Odell 2003:45).  Following Andrefsky 

(2005:145), two main sub-types of cores were classified based on platform and flaking 
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orientation: unidirectional cores and multidirectional cores.  Unidirectional cores have 

had flakes detached in a single direction from a single platform.  From this single 

platform, flakes could be removed from the same edge of the platform or around the 

platform periphery.  Multidirectional cores have had multiple flake removals from more 

than one platform and in more than one direction. 

  

Percussion Tools 

 

The category of percussion tools is a somewhat broad grouping that encompasses 

all tools that exhibit battering from use, including hammerstones and choppers.  

Hammerstones have been battered on one or more surfaces as a result of being “used with 

forceful strokes against other surfaces” (Adams 2002:151).  Hammerstones often begin as 

rounded cobbles or angular chunks of rock and can be purposefully shaped to allow for 

easier handling or used expediently with no further modification beyond what occurs 

from use.  The category of hammerstones also includes multifunctional tools and tools 

that were reworked or reused for percussive purposes (e.g., hammer-choppers or 

hammer-cores).  Choppers have been deliberately flaked to produce a working edge.  As 

the name suggests, these tools would have been used for chopping and are robust with 

battering along the flaked edge.  Choppers can be modified with finger grips to make 

them more comfortable to hold and resharpened by removing additional flakes (Adams 

2002:153).  For percussion tools, I recorded the types and number of worked 

surfaces/edges.  I also noted indications of use wear including battering, crushing, 

smoothing, development of polish and rejuvenation of flaked edges. 
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Debitage 

 

Stone tool manufacture and maintenance is a reductive process whereby material 

is removed from objective pieces.  Detached pieces that are the byproducts of reduction 

are referred to as flakes or debitage.  If a flake exhibited either use wear or additional 

flaking along a use-edge, they were classified as flake tools.  I recorded the length, width, 

and thickness of each flake, as well as the presence and absence of cortex. 

Individual flakes were classified into five technological categories based on 

platform morphology, number of flake scars on the dorsal surface, and degree of 

completeness.  Core reduction flakes have simple (i.e., flat) platforms and generally 

simple dorsal surfaces with few or no additional flake removals.  The bulbs of percussion 

are often (though not always) pronounced.  Biface thinning flakes have complex (i.e., 

faceted) platforms and are often slightly curved along the long axis.  Platforms are 

generally narrow with pronounced lips, the bulbs of percussion are diffuse, and the 

terminations are often feathered (Andrefsky 2005:123).  Biface thinning flakes are further 

distinguished here as early or late based on dorsal surface complexity.  Pressure flakes 

are generally smaller with angled platforms and little dorsal surface complexity.  The 

platforms may also be crushed.  Because of their generally small size, few pressure flakes 

were selected for chemical sourcing.  Flakes with missing platforms were identified as 

flake fragments (if additional identifiable flake attributes were present) or shatter (if no 

additional flake attributes could be identified). 
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 X-Ray Fluorescence Analysis 

 

As discussed in Chapter 1, XRF analyses can help elucidate research issues 

concerning mobility, occupation span, and trade/exchange, as well as provide insight into 

lithic technological organization.  I use X-ray fluorescence analysis to address questions 

about intra-assemblage and intra-site variation, as well as how the use of FGV in the Pah 

Rah Range fits into regional patterns of toolstone use and transport.  Artifacts selected for 

XRF analysis were submitted to the Northwest Research Obsidian Studies Laboratory in 

Corvallis, Oregon.  Northwest Research conducts nondestructive trace element analysis 

using a Spectrace 5000 energy dispersive X-ray fluorescence spectrometer (Skinner and 

Thatcher 2009).  The diagnostic trace element values for Zn, Rb, Sr, Y, Zr, Nb, and Pb 

for each sample are then compared against known FGV sources that have been reported 

in the literature and with unpublished data from geologic source samples.  According to 

Skinner and Thatcher (2009:1), artifacts are correlated to a source or geochemical source 

group “if diagnostic trace elements fall within about two standard deviations of the 

analytical uncertainty of the known upper and lower limits of chemical variability 

recorded for the source.” 

    

Statistical Methods 

 

Chi-square tests were generally used to determine whether FGV source profiles 

within each data set and between the Pah Rah and valley data sets were significantly 

different.  When sample sizes were too small to use chi-square tests (i.e., more than 20% 
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of the cells had expected frequencies of ≤5 or a cell has an expected frequency <1.0), 

Fishers exact tests were utilized.  I also compared FGV source diversity between various 

tool classes within each data set and between the same tool class across both data sets.  

Direct comparisons of FGV source diversity between individual tool classes and data sets 

can be influenced by uneven sample sizes and the correlation of diversity with sample 

size (Grayson 1984; Kintigh 1984; Rhode 1988).  To account for differing sample sizes, I 

followed Eerkens et al. (2007) in bootstrapping larger samples to produce diversity 

measurements that were adjusted for sample size.  Bootstrapping draws a set number of 

random samples (in this case 1,000) equal in size to the smaller of the two samples being 

compared from the larger and presumably more diverse sample, counts the sources within 

the generated random samples, and averages those totals to produce the sample-size-

adjusted measure of diversity.  Bootstrapping was also used to determine whether these 

diversity comparisons were statistically significant. 

Conversions of previously reported radiocarbon dates were done with Calib 

Version 7.0 (Stuiver et al. 2013) using the IntCal13 data set.  Calendar ages provided 

encompass the entirety of the 2 sigma range. 

  

Materials 

 

The main data set for my research includes artifacts from sites within the Pah Rah 

Range.  A second data set comprised of artifacts from sites located in the surrounding 

valleys was compiled to determine whether patterns discerned within the Pah Rah data 

set are unique to that location or are representative of a broader region. 
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The Pah Rah Data Set 

 

The Pah Rah data set is comprised of 10 sites from the southern Pah Rah Range.  

One hundred and eighty-five artifacts from these sites were submitted for XRF analysis 

(Table 3.3).  Seven sites (26Wa1604, 26Wa1608, 26Wa1609, 26Wa1612, 26Wa5610, 

26Wa5611, and 26Wa5612) make up the main cluster of upland basin sites, while sites 

26Wa1606, 26Wa5638, and 26Wa8451 are south of this cluster.  All sites fall within a 14 

km
2
 area.  Sites 26Wa1604, 26Wa1606, 26Wa1608, 26Wa1609, and 26Wa1612 were 

first described and excavated between 1968 and 1970 by members of Am-Arcs of 

Nevada under the direction of the Nevada Archaeological Survey (Rusco 1969a, 1969b, 

1981; Stephenson 1968).  Site 26Wa1609 was revisited and excavated as part of data 

recovery efforts accompanying the Tuscarora Gas Pipeline Project (Delacorte 1997a, 

1997b; Delacorte et al. 1995a, 1995b).  26Wa5610, 26Wa5611, 26Wa5612 and 

26Wa5638 were also excavated for the Tuscarora project.  26Wa1606 was revisited and 

tested in 2006 after fire suppression efforts during the Belmar Fire disturbed a portion of 

the site and exposed two subsurface charcoal stains (Bowers 2006).  26Wa8451 was 

originally recorded in 2003 as part of the Sierra Pacific Tracy to Silverlake 120-kV 

Transmission Line Project and tested during NV Energy’s 105 Transmission Line rebuild 

and upgrade project in 2009 (Neidig and Clay 2009).                
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Table 3.3. The Pah Rah Data Set. 

Site Number P
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26Wa1604 6 7 3 3 - 15 2 36 

26Wa1606 1 1 1 2 1 9 1 16 

26Wa1608 13 14 2 1 2 15 8 55 

26Wa1609 4 5 13 1 - 9 - 32 

26Wa1612 2 - - - - 3 - 5 

26Wa5610 1 4 1 1 - 3 - 10 

26Wa5611 - 1 1 1 - 3 - 6 

26Wa5612 1 3 1 1 - 3 - 9 

26Wa5638 2 2 1 1 - 1 1 8 

26Wa8451 1 - - 2 - 4 1 8 

Total 31 37 23 13 3 65 13 185 

 

 

Sites within the upland basin are primarily habitation and resource 

procurement/processing sites (Delacorte 1997b; Rusco 1969a, 1969b, 1981; Stephenson 

1968, Zeanah 2009).  Most sites are on prominent ridges with volcanic outcrops.  Nearly 

all include rock ring features, extensive petroglyphs, a wide variety of portable and non-

portable milling gear, and extensive lithic scatters of tools and debitage.  All but one site 

(26Wa5612) in the upland basin has rock rings.  The other sites have between two and 12 

rings, each composed of local rocks piled and stacked up to nine courses, creating walls 

0.5-1.5 m high.  The rock rings are 2-4 m in diameter and many abut natural outcrops 

which are used as part of the wall.  Openings interpreted as entrances have been noted in 

the southeast or east walls of at least two rock rings (Stephenson 1968).  In several 

instances, petroglyphs or milling equipment were incorporated into the rock ring walls.  
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Much of the cultural material collected during excavations came from inside the rock 

rings; these include projectile points, bifaces, flake tools, cores and core tools, ground 

stone, bone, bone tools, beads, shell, modified stones, and debitage.  Delacorte (1997b) 

points out that this is consistent with the notion that entire families or household units 

may have conducted a wide range of subsistence tasks within these house structures.  

All but one upland basin site (26Wa5612) contain petroglyph panels.  Petroglyphs 

are predominantly Great Basin curvilinear with circles, concentric circles, wavy lines, 

zigzags, and various anthropomorphic and zoomorphic representations, including bighorn 

sheep at 26Wa1604, 26Wa1608 and 26Wa1612, and archers and a turtle at 26Wa1612  

(McLane 1999; Stephenson 1968).  Several curvilinear panels at 26Wa1612 appear to 

have later pecking superimposed over them (McLane 1999).  At 26Wa1609, a deeply 

grooved rectilinear design is present on the west face of a 1.7 m-high boulder at the east 

edge of the site.  The boulder itself lines up with Spanish Springs Peak.  Delacorte 

(1997b) noted that the degree of weathering and repatination evident on some petroglyph 

panels at 26Wa1609 was not uniform throughout the site and did not appear to be a 

function of environmental factors, suggesting again that cultural materials accumulated 

over a considerable amount of time, and possibly longer than at most of the other rock 

ring and petroglyph sites within the Dry Lakes area.  

The three southern sites share some elements with the upland basin sites but are 

distinct in both function and location.  26Wa1606 contains rock rings similar to those in 

the upland basin, as well as stacked rock features that may be hunting blinds (Bowers 

2006; Rusco 1969b).  The site is also distinct in that it is situated within a relatively 

constricted location (Spanish Springs Canyon).  Both 26Wa5638 and 26Wa8451 are 
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located within more open plains with no constructed features and mostly surficial 

deposits (Bloomer 1995; Neidig and Clay 2009).  26Wa8451 has a locus of non-portable 

milling features and several rock art panels (Neidig and Clay 2009) but not as extensive 

as the upland basin group of sites 26Wa5638. 

Based on the artifact assemblages, obsidian hydration data, and radiocarbon 

dating, sites within the Pah Rah Range data set were occupied from the Early Archaic 

(8,000-5,000 cal BP) through the Terminal Prehistoric (700-150 cal BP) periods.  Three 

hearths at 26Wa1606 produced conventional radiocarbon dates of 2980±40 
14

C BP 

(3,324-3,004 cal BP), 3070±40 
14

C BP (3,370-3,175 cal BP), and 3140±40 
14

C BP 

(3,449-3,247 cal BP) (Bowers 2006) (calibrated at 2σ with CALIB Version 7.0 [Stuiver et 

al. 2013]).  A rock ring at 26Wa1609 yielded a radiocarbon date of 1380±100 
14

C BP 

(1,521-1,068 cal BP), while a later date of 500±90 
14

C BP (662-318 cal BP) was obtained 

from charcoal at the bottom of one of the rock rings at 26Wa5610 (Delacorte 1997b) 

(calibrated at 2σ with CALIB Version 7.0 [Stuiver et al. 2013]).  Overall, there appears to 

have been intensifications in use during the Early to Late Martis phases (5,000-1300 cal 

BP) and again during the Late Kings Beach Phase (700-150 cal BP) (Delacorte 1997b, 

Zeanah 2009). 

While most sites within the Pah Rah Range had occupations spanning the entire 

Archaic Period, two sites may have had more limited occupations.  Based on diagnostic 

projectile point types and obsidian hydration data, 26Wa5612 appears to have only been 

occupied during the Late Archaic Period (1,350-700 cal BP) (Delacorte 1997b).  Based 

on limited obsidian hydration data, the presence of a dart-sized point, and the character of 

the milling assemblage, Neidig and Clay (2009) cautiously suggest a Middle Archaic 
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(3,500-1,300 cal BP) age for 26Wa8451.  At least three sites may have also had 

occupations into the historic period.  The artifact assemblage at 26Wa1608 included a 

metal awl tip cached in one of the feature walls, a second piece of metal, and a button 

(Rusco 1981).  Bone tools, metal, and a glass bead were recovered from 26Wa1609 

(Delacorte 1997b).  Finally, McLane (1994:4) notes that along with the prehistoric 

artifacts, cut nails and pre-1900s glass fragments were also present at 26Wa1612.  

                   

The Valley Data Set 

 

The valley data set includes 118 artifacts from eight sites in the valleys below the 

Pah Rah Range (Table 3.4).  This data set combines data from previously published 

works (Skinner and Davis 1996; Stoner et al. 2006) and artifacts submitted for XRF 

analysis specifically for this thesis.  Four of the eight sites (26Wa1416, 26Wa2065, 

26Wa3017, and 26Wa7522) have been interpreted as winter villages (Miller and Elston 

1979; Stoner et al. 2006; Townsend and Elston 1975; Zeier and Elston 1986).  The 

remaining four sites (26Wa2201, 26Wa5604, 26Wa5606 and the Frear site) are lithic 

scatters.  The valley sites provide a diversity of site types, allowing for investigations into 

the roles that site type, location, and occupation intensity played in the selection, use, and 

discard of FGV toolstone and tools.  Location is particularly noteworthy for two of the 

valley sites.  26Wa1416 is situated closest to a known raw material source (Steamboat 

Hills), providing an opportunity to examine the role that proximity to toolstone played in 

raw material procurement choices.  The Vista site (26Wa3017) is also important because 

while it shares many characteristics with the other valley sites, it is technically within the 
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Pah Rah Range, albeit at a much lower elevation.  As such, it may provide an interpretive 

link between two areas.   

 

Table 3.4. The Valley Data Set. 
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26Wa1416  2 2 - - - 2 - 6 

26Wa2065(Glendale) 9 11 2 1 2 10 1 36 

26Wa2201 3 1 - - - - - 4 

26Wa3017 (Vista) 16 19 5 - - 3 - 43 

26Wa5604 2 - - - - - - 2 

26Wa5606 1 2 - - - 1 - 4 

26Wa7522 (Daylight Site) 6 7 - - - - - 13 

Frear Site 4 3 1 1 - 1 - 10 

Total 43 45 8 2 2 17 1 118 

 

 

The four sites identified as winter villages are all located near major streams and 

rivers in the Truckee Meadows.  26Wa1416 is located along Steamboat Creek in south 

Reno.  The Daylight, Glendale, and Vista sites are located along the Truckee River at 

even intervals across the valley.  Like the larger sites in the Pah Rah Range, specialized 

features and artifact types at these village sites reflect a variety of procurement and 

processing tasks.  All four sites have storage and cache pits (Miller and Elston 1979; 

Stoner et al. 2006; Townsend and Elston 1975; Zeier and Elston 1986).  Burials are 

present at 26Wa1416 and the Vista and Daylight sites (Stoner et al. 2006; Townsend and 

Elston 1975; Zeier and Elston 1986).  Vista also has the first intact dog burial recovered 
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in Nevada (Dansie and Schmitt 1986:241).  The three sites along the Truckee – Vista, 

Glendale, and Daylight – each have house pits and hearths. 

With the exception of 26Wa1416, these winter villages were occupied from at 

least the Early Archaic (8,000-5,000 cal BP) through the Terminal Prehistoric (700-150 

cal BP) periods.  Occupations at 26Wa1416 date to the latter end of this range, with the 

oldest deposits dating to the Late Martis Phase (3,000-1,300 cal BP) and continuing 

through historic contact (Townsend and Elston 1975:18).  Glendale was occupied at least 

intermittently from the Spooner Phase (8,000-5,000 cal BP) through the historic period, 

with relatively high occupation during the Late Martis Phase (3,000-1,300 cal BP) and 

highest occupation during the Early Kings Beach Phase (1,300-700 cal BP) (Miller and 

Elston 1979).  A date of 5,310-4,980 cal BP from a hearth in the lowest level of the 

Daylight site places its initial occupation at the end of the Spooner Phase (8,000-5,000 

BP) (Ringhoff and Stoner 2011:32).  The site was occupied intermittently throughout the 

Archaic Period, with intensive use during the Early Kings Beach Phase (1,300-700 cal 

BP) (Stoner et al. 2006).  Analysis of temporally diagnostic projectile points indicated 

that the Vista site was likely only intermittently occupied prior to 3,250 cal BP (Zeier and 

Elston 1986).  Radiocarbon dates from house pits at the Vista site range from 1320±230 

14
C BP (1,705-767 cal BP) to 770±70 

14
C BP (903-560 cal BP), supporting a primary 

occupation concomitant with the Early Kings Beach Phase (1,300-700 cal BP) (Zeier and 

Elston 1986).  

Stoner et al. (2006) suggest that the location of hearths inside Early Kings Beach 

Phase house pits at the Daylight site reflects winter occupations while the large amount of 

flaked and ground stone artifacts reflects a stable residential pattern.  An overall decrease 
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in mobility was also noted at the Vista site.  Zeier and Elston (1986:379) suggest that the 

overall assemblage and site settlement strategy there, especially during the Early Kings 

Beach Phase, best approximates Bettinger and Baumhoff’s (1982) “processor” strategy in 

which low ranked, high cost resources are targeted; however, they stop short of 

suggesting that it was a shift from a “traveler” to a “processor” strategy that allowed the 

Washoe, whose territory still includes the Truckee Meadows today, to be the only group 

in the Great Basin not replaced during the proposed Numic expansion (Zeier and Elston 

1986:379). 

The remaining four sites in the valley data set are lithic scatters.  26Wa2201, 

26Wa5604, and 26Wa5606 are within Spanish Springs Valley and are all generally 

sparse and surficial (Bloomer 1994; McGuire 1997; Price et al. 1994).  26Wa5604 is 

notable in that it provided the oldest projectile points in either data set (two Great Basin 

Stemmed points).  The Frear site is a more extensive lithic scatter located at the mouth of 

Spanish Springs Canyon on the west front of the Pah Rah Range (Gary Haynes, personal 

communication, 2012).  Like the Vista site, its proximity to the Pah Rah Range should 

provide a good comparison to the upland sites.  Together, these four lithic scatters cover 

reflect a range of human occupation spanning from the Pre-Archaic (>10,000-8,000 cal 

BP) to the Late Archaic (1,300-700 cal BP) periods. 
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 Summary 

 

 Human use of the Pah Rah Range dates from to at least the Middle Archaic 

(3,500-1,300 cal BP) to the Terminal Prehistoric (700-150 cal BP) periods, with both 

logistical and residential patterns of mobility within the upland areas somewhat distinct 

from the surrounding valleys (Delacorte 1997b).  Delacorte (1997b) describes shifts in 

use of the Pah Rah Range from logistical hunting forays during the Middle Archaic 

Period to logistical exploitation of both plants and animals during the Late Archaic 

Period, and finally an intensification of use and increased residential occupations during 

the Terminal Prehistoric Period.  The 10 sites selected for my thesis exemplify this range 

of use and include habitation sites with substantial rock rings and extensive petroglyphs 

as well as more task-specific resource procurement and processing sites.  The sites are 

also situated within a series of distinct lithic terranes.  There are only two toolstone 

sources within 15 km of the most southern site, and only three obsidian sources within 

100 km of the sites.  Of the other 13 known sources within 100 km of the Pah Rah Range, 

12 are FGV.  Of a sample of 16 regional sources that may have been used in the area, all 

but two are obsidian.  In effect, the Pah Rah Range is situated in an almost exclusively 

FGV source area between two fairly well known obsidian source areas: one to the north 

that includes South Warners, Massacre Lake/Guano Valley, and Buffalo Hills and one to 

the south that includes Bodie Hills, Mt. Hicks, Mono and Casa Diablo.  Based on this 

information, the research questions and hypotheses presented in Chapter 1 can be further 

developed with the following expectations (Table 3.5).   
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Table 3.5. Summary of Research Questions, Hypotheses, and Expectations. 

Research Question Hypothesis Expectation(s) 

What is the range of FGV sources 

used by prehistoric peoples 

within the Pah Rah Range?   

Groups in the Pah Rah Range 

primarily utilized local FGV 

toolstone 

Steamboat/Lagomarsino should 

dominate Pah Rah assemblages 

Are there identifiable and 

significant patterns of source use 

that are unique to sites within the 

Pah Rah Range? 

Certain FGV sources were 

preferred for certain tools, 

whether due to toolstone quality 

or proximity to source 

The proportions of sources used 

for different tool classes should 

be significantly different, with 

higher quality FGV toolstone 

preferred for formal tools and 

both high and lower quality FGV 

toolstone used for informal tools 

 

Lithic technological organization 

differed substantially between 

sites in the Pah Rah Range and 

those on the nearby valley floor 

The toolstone source profile for 

Pah Rah sites should differ 

significantly from the valley floor 

source profile 

Based on this source information, 

how does FGV use in the Pah 

Rah Range fit with current 

models of toolstone conveyance 

in the western Great Basin? 

Pah Rah Range sites reflect 

similar conveyance zones to 

those described for other sites in 

the western Great Basin. 

FGV toolstone comes from 

sources in the same distances and 

directions as those used at other 

nearby sites,  reflecting 

predominantly north-south long 

distance toolstone movement 
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CHAPTER 4 – RESULTS OF X-RAY FLUORESCENCE ANALYSIS 

 

This chapter presents the results of XRF analysis of 303 artifacts from 18 sites in 

northern Nevada.  The primary data set is comprised of 10 sites within the Pah Rah 

Range, the majority of which are habitation and complex resource procurement and 

processing sites.  These sites share a similar environment and have many features in 

common including stacked rock rings and extensive petroglyph panels.  They evidence a 

persistent, though varied, investment in place and provide a rich archaeological record 

from which to draw.  Though prior research has been conducted in the Pah Rah Range 

(e.g., Delacorte 1997a, 1997b; Delacorte et al. 1995a, 1995b; Rusco 1969a, 1981; 

Stephenson 1968; Zeanah 2009), few efforts have included XRF sourcing of FGV 

artifacts.  My research fills that gap and permits the hypotheses outlined in Chapter 3 to 

be tested.  

The valley data set is comprised of eight sites from the valleys west and southwest 

of the Pah Rah Range.  These sites are somewhat more diverse in function and 

environment and include several intensively occupied winter villages located along the 

Truckee River as well as smaller lithic scatters and resource procurement locations.  The 

valley data set will help situate the patterns of FGV use in the Pah Rah Range data set 

within a broader regional context. 
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Pah Rah Data Set Results 

 

The Pah Rah data set includes 185 artifacts collected from 10 sites (Table 4.1). 

   

Table 4.1. XRF Source Results for the Pah Rah Data Set by Site. 
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Alder Hill 3 1 3 1 1 1 - - - - 10 

Gold Lake 3 - 3 - - 1 - - - - 7 

Siegfried Canyon Ridge - - 1 - - - - - - - 1 

Steamboat/Lagomarsino 9 4 33 17 2 3 - 3 4 1 76 

Unknown A 6 3 7 7 - 2 3 3 1 - 32 

Unknown B 1 - 2 - - 2 1 1 1 3 11 

Unknown C 2 - 1 - - 1 - - - - 4 

Unknown D 2 1 - - - - - - - - 3 

Unknown F - 1 - - - - - - - - 1 

Unknown G - 1 - 1 - - - - - - 2 

Unknown 9 5 4 6 2 - 2 2 2 4 36 

Not FGV 1 - 1 - - - - - - - 2 

Total 36 16 55 32 5 10 6 9 8 8 185 

 

 

 

Roughly half (n=94) of the artifacts are manufactured from four known chemical 

groups: Alder Hill, Gold Lake, Siegfried Canyon Ridge, and Steamboat/Lagomarsino.  

Steamboat/Lagomarsino is the most well-represented with 80% (n=76) of the artifacts 

belonging to this chemical group.  In addition to the four known sources, six 

geochemically distinct but geographically unknown sources were identified by Northwest 

Research.  These six unknown groups represent 28.6% (n=53) of the sample.  Thirty-six 

artifacts could not be associated with either a known or distinct unknown chemical group 
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and two were determined not to be FGV.  Of the previously known chemical groups, 

Steamboat/Lagomarsino is the most common in the Pah Rah data set, showing up at all 

but one of the sites.  Alder Hill is present at just over half the sites but in much lower 

frequencies.  Of the chemically distinct unknown sources, Unknown A is the most 

common, both in terms of artifact number (n=32) and the number of sites at which it 

occurs (n=8).  Unknown B is the next most common (n=11); it is present at seven sites.  

When artifact type is considered, several patterns are evident (Table 4.2).  Formal 

tools (e.g., projectile points, bifaces, drills) are predominantly manufactured on the four 

previously known chemical source groups.  Informal tools and debitage are 

predominantly made on unknown sources and/or Steamboat/Lagomarsino.  Only three 

chemically distinct unknowns are present as both cores and debitage.       

 

Table 4.2. XRF Source Results for the Pah Rah Data Set by Artifact Type. 
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Alder Hill 5 2 - - - 1 2 - 10 

Gold Lake 3 3 - - - 1 - - 7 

Siegfried Canyon Ridge 1 - - - - - - - 1 

Steamboat/Lagomarsino 20 30 8 - - 6 12 - 76 

Unknown A - - 8 8 2 - 14 - 32 

Unknown B - - - 2 - - 9 - 11 

Unknown C - - - 1 - - 3 - 4 

Unknown D - - - - 1 - 2 - 3 

Unknown F - - - - - - 1 - 1 

Unknown G - - - - - - 2 - 2 

Unknown 2 2 7 2 - 2 19 2 36 

Not FGV - - - - - - 1 1 2 

Total 31 37 23 13 3 10 65 3 185 
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Nearly all of the projectile points within the Pah Rah range data set are made on 

known sources (Table 4.3).  These include Pinto, Elko, Martis, and Rosegate points, as 

well as several indeterminate dart- and arrow-sized points (Figure 4.1).  

 

Table 4.3. XRF Source Results for Pah Rah Projectile Points. 
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Alder Hill 1 - - 3 1 - 5 

Gold Lake - - 1 1 1 - 3 

Siegfried Canyon Ridge - - 1 - - - 1 

Steamboat/Lagomarsino - 7 4 1 7 1 20 

Unknown - 2 - - - - 2 

Total 1 9 6 5 9 1 31 

  

 

Figure 4.1. Representative projectile points from the Pah Rah Range data set. 
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Steamboat/Lagomarsino is the dominant chemical source group represented 

among projectile points; however, when point type is taken into consideration, it appears 

that Steamboat/Lagomarsino may not have been used consistently through time.  Of the 

25 dart points in the data set, 72% (n=18) were manufactured from Steamboat/ 

Lagomarsino FGV.  Of the six arrow points in the data set, only 33.3% were identified as 

Steamboat/Lagomarsino, while 50% were identified as Alder Hill.  A two-tailed Fisher’s 

exact test comparing the known sources for dart and arrow points indicates that there may 

be a slight decrease in the use of Steamboat/Lagomarsino as opposed to more distant 

sources later in time, although this difference is not statistically significant when α = .05 

(p=.056).  The only two projectile points made from unknown sources within the Pah 

Rah Range data set are both Elkos (an Elko Corner-notched point from 26Wa1608 and an 

Elko Eared point from 26Wa1609).  The remaining seven Elko points are all made from 

Steamboat/Lagomarsino FGV.  If these two unknown points are included in the two-

tailed Fisher’s exact test, this possible shift away from Steamboat/Lagomarsino is still not 

statistically significant (p=.151). 

The two Elko points made on unknown sources are particularly relevant because 

whether they are made from local sources or not affects the results of comparisons of 

local toolstone use across time.  For instance, if both unknowns are distant sources, or if 

one is local and one is distant, then there is no significant difference in the use of local vs. 

distant sources across time (p=.151 and p=.067, respectively).  However, if both 

unknowns are local sources, then a two-tailed Fisher’s exact test indicates that there is a 

statistically significant decrease in local FGV source use for projectile point production 
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across time (p=.043).  Unfortunately, it is not possible to determine which of these 

possibilities is the case at this time. 

Based on these results, Steamboat/Lagomarsino and Gold Lake FGV appear to 

have been used in the Pah Rah Range from at least the Early Martis Phase (5,000-3,000 

cal BP) through the Early Kings Beach Phase (1,300-700 cal BP).  Alder Hill was used 

from the Late Martis Phase (3,000-1,300 cal BP) to the Early Kings Beach Phase.  Only 

one projectile point, a Martis Corner-notched point from 26Wa1608, was manufactured 

from Siegfried Canyon Ridge FGV.  This artifact is notable in that it was broken and 

extensively reworked to produce a drill-like tip (Figure 4.2).  Based on this single artifact, 

Siegfried Canyon Ridge FGV can be inferred to have been used in the Pah Rah Range at 

least during the Late Martis Phase.       

 

 

Figure 4.2. Martis Corner-notched point reworked into drill, manufactured on Siegfried Canyon 

Ridge FGV (Artifact 1608-270). 

 

 

The sample of bifaces within the Pah Rah data set is similarly dominated by 

Steamboat/Lagomarsino FGV (Table 4.4).  Of the 37 bifaces, 81.1% (n=30) were 
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manufactured from this chemical source group.  Of the three more distant known sources, 

only Alder Hill and Gold Lake FGV are represented in the sample.  Only two bifaces are 

made from unknown sources.  The bifaces within the data set are predominantly mid- to 

late-stage, with 62.2% (n=23) classified as Stage 4 and Stage 5.   

 

Table 4.4. XRF Source Results for Pah Rah Bifaces. 
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Alder Hill - - - 2 - 2 

Gold Lake - 1 1 - 1 3 

Steamboat/Lagomarsino - 3 7 10 10 30 

Unknown - 1 1 - - 2 

Total 0 5 9 12 11 37 

 

 

Steamboat/Lagomarsino is also well represented for the other formal tool types 

within the Pah Rah data set (Table 4.5).  The three awls have the greatest range of 

sources represented, with one specimen each made on Alder Hill, Gold Lake, and 

Steamboat/Lagomarsino FGV.  Three of the five scrapers and both drills were 

manufactured on Steamboat/Lagomarsino FGV.  The remaining two scrapers were made 

on material from unknown sources. 

 

 
Table 4.5. XRF Source Results for Other Pah Rah Formal Tools. 

Chemical Source Group Awls Scrapers Drills Total 

Alder Hill 1 - - 1 

Gold Lake 1 - - 1 

Steamboat/Lagomarsino 1 3 2 6 

Unknown - 2 - 2 

Total 3 5 2 10 
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The source profile of informal flake tools in the Pah Rah data set differs 

somewhat from that of formal tools. Whereas Steamboat/Lagomarsino FGV dominates 

the projectile point and biface samples, most (68.1%; n=15) informal flake tools were 

manufactured from unknown sources, with slightly more than half (53.3%; n=8) 

classified as Unknown A FGV (Table 4.6). 

 

Table 4.6. XRF Source Results for Pah Rah 

Flake Tools. 

Chemical Source Group F
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Steamboat/Lagomarsino 1 7 8 

Unknown A - 8 8 

Unknown - 7 7 

Total 1 22 23 

 

Among bulkier artifacts such as cores, hammerstones, and choppers, the 

difference in lithic raw material choice is even more striking (Table 4.7).  No known 

geochemical sources are represented in these tool classes.  Instead, 87.5% (n=14) are 

grouped within four of the eight chemically distinct but geographically unknown FGV 

sources identified by Northwest Research during this study.  Of these, Unknown A FGV 

is dominant, representing 62.5% (n=10) of the sample and 66.7% (n=8) of the cores. 

 

 



85 

 

 

 

Table 4.7. XRF Source Results for Pah Rah Cores, Hammerstones, and Choppers. 
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Unknown A 1 2 5 2 - 10 

Unknown B 1 1 - - - 2 

Unknown C 1 - - - - 1 

Unknown D - - - 1 - 1 

Unknown 1 - - - 1 2 

Total 4 3 5 3 1 16 

 

Sixty-five pieces of debitage were included in the data set to determine which raw 

materials were reduced at the Pah Rah sites and what degree of reduction (e.g., initial 

cobble reduction vs. tool finishing) was completed before artifacts were transported to the 

study area (Table 4.8).  

 

Table 4.8. XRF Source Results for Pah Rah Debitage. 
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Alder Hill - 1 - 1 - - - 2 

Steamboat/Lagomarsino - 1 5 3 1 2 - 12 

Unknown A 2 6 2 1 3 - - 14 

Unknown B 2 5 - - - - 2 9 

Unknown C - 3 - - - - - 3 

Unknown D - 2 - - - - - 2 

Unknown F - - 1 - - - - 1 

Unknown G - - 1 - - 1 - 2 

Unknown 3 4 6 4 - - 2 19 

Not FGV - 1 - - - - - 1 

Total 7 23 15 9 4 3 4 65 
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Most flakes sampled (76.9%; n=50) are from unknown sources.  Among these, 31 

are assigned to six of the eight chemically distinct unknowns, almost half of which 

(45.2%; n=14) are classified as Unknown A FGV.  An additional 29.0% (n=9) were 

classified as Unknown B FGV.  A two-tailed Fisher’s exact test comparing the three 

chemically distinct unknowns common to both cores and debitage (Unknowns A, B, and 

C) indicates no significant difference (p=.667), which may indicate that the cores were 

manufactured, used, and discarded at the sites rather than being transported to the sites in 

already reduced form.  The general lack of debitage from known sources suggests that 

tools such as projectile points and bifaces were brought to the sites primarily in finished 

or nearly finished form.  

Both core reduction and biface thinning are present at Pah Rah sites.  Of the 29 

FGV core reduction flakes sampled, only 7.4% (n=2) are from known sources.  Of the 24 

FGV biface thinning flakes, 60% (n=9) are from known sources.  These data correspond 

with patterns in the tool sample, with projectiles, bifaces, and other formal tools 

predominantly manufactured from the four known source groups and more expedient 

tools and cores produced primarily from unknown FGV sources.  Interestingly, the 

presence of biface thinning flakes from Unknown A suggests that even though no bifaces 

in the Pah Rah data set were identified from that source, it may still have been used to 

produce bifacial tools that were ultimately transported offsite (sensu Eerkens et al. 2007). 

The “other” category includes a charmstone from 26Wa1606, a uniface from 

26Wa1604, and a geologic sample from an outcrop at 26Wa8451.  Of these, the uniface 

proved not to be FGV, and the charmstone and geologic sample could not be assigned to 
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any known or distinct unknown chemical source groups.  The geologic sample is of 

particular interest as it may be used to help identify, or rule out, the locations of the 

chemically distinct unknowns that were identified during this research.  

 

Valley Data Set Results 

 

The valley data set includes 118 artifacts from eight sites (Table 4.9). 

  

Table 4.9. XRF Source Results for Valley Data Set by Site. 
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Alder Hill 1 4 - 6 - - 5 - 16 

Gold Lake - 3 1 4 1 1 4 1 15 

Siegfried Canyon Ridge - - 1 3 1 - - - 5 

Steamboat/Lagomarsino 4 16 2 16 - 2 2 6 48 

Unknown A - - - - - - - 2 2 

Unknown B - - - 1 - - - - 1 

Unknown C - - - 3 - - - - 3 

Unknown E - - - 3 - - - - 3 

Unknown F - - - 1 - - - - 1 

Unknown H - 1 - 2 - - - - 3 

Unknown 1 11 - 4 - 1 - 1 18 

Not FGV - 1 - - - - 2 - 3 

Total 6 36 4 43 2 4 13 10 118 

 

 As with the Pah Rah data set, most of the valley data set artifacts (71.2%; n=84) 

are made on the same four known chemical source groups: Alder Hill; Gold Lake; 

Siegfried Canyon Ridge; and Steamboat/Lagomarsino.  Steamboat/Lagomarsino is again 
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dominant, representing 57% of the artifacts from known chemical source groups and 

40.7% of the entire data set.  Six of the eight chemically distinct unknowns are present in 

the valley data set; however, the distribution of these is not uniform.  Artifacts from only 

three sites (26Wa2065, 26Wa3017, and the Frear site) are made on those six unknowns, 

with the majority (83.3%; n=10) coming from 26Wa3017.  This trend is undoubtedly 

partly a result of sampling bias.  Many sites within the valley data set have smaller 

samples, and one, 26Wa7522, which has been included from previous research (Stoner et 

al. 2006), includes only projectile points and bifaces. 

The effect of this sampling bias is even more apparent when the XRF results are 

sorted by artifact type (Table 4.10).  Of the 88 projectile points and bifaces in the valley 

data set, 89.8% (n=79) are made on Alder Hill, Gold Lake, Siegfried Canyon Ridge, and 

Steamboat/Lagomarsino FGV.   

 

Table 4.10. XRF Source Results for Valley Data Set by Artifact Type. 
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Alder Hill 7 8 - - - 1 - 16 

Gold Lake 12 3 - - - - - 15 

Siegfried Canyon Ridge 2 3 - - - - - 5 

Steamboat/Lagomarsino 22 22 1 - - - 3 48 

Unknown A - - - 1 - - 1 2 

Unknown B - - 1 - - - - 1 

Unknown C - - 1 - - - 2 3 

Unknown E - 2 1 - - - - 3 

Unknown F - - 1 - - - - 1 

Unknown H - 3 - - - - - 3 
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Table 4.10. XRF Source Results for Valley Data Set by Artifact Type. 
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Unknown - 2 3 1 2 - 10 18 

Not FGV - 2 - - - - 1 3 

Total 43 45 8 2 2 1 17 118 

 

 

As is the case with the Pah Rah Range data set, Steamboat/Lagomarsino is the 

most well-represented FGV source in the valley data set, comprising exactly half of the 

sample.  In contrast to the Pah Rah Range data set, however, the proportions of the other 

three known source groups with respect to projectile points and bifaces appear more 

balanced.  Alder Hill and Gold Lake FGV each represent 17.0% (n=15) of the sample and 

Siegfried Canyon Ridge FGV represents 5.7% (n=5); however, a two-tailed Fisher’s 

exact test indicates that there is no significant difference in source distribution between 

the two data sets (p=.910).  Only a handful of other artifacts within the valley data set are 

made from known chemical source groups.  These include a drill manufactured from 

Alder Hill FGV (Figure 4.3), a flake tool, and three pieces of debitage made from 

Steamboat Hills/Lagomarsino FGV. 
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Figure 4.3. Formal drill manufactured on Alder Hill FGV (Artifact 2065-10). 

 

Though the valley data set is smaller than the Pah Rah Range data set, it 

nevertheless contains both a larger number and wider range of projectile points (Table 

4.11) including two Great Basin Stemmed points (Figure 4.4) and Humboldt, Pinto, Elko, 

Martis, Rosegate, and Gunther series points (Figure 4.5). 

 

 Table 4.11. XRF Source Results for Valley Projectile Points. 
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Alder Hill - - - 3 2 2 - - - 7 

Gold Lake 1 1 - 2 5 1 1 1 - 12 

Siegfried Canyon Ridge 1 - - - - - - 1 - 2 
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 Table 4.11. XRF Source Results for Valley Projectile Points. 
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Steamboat/Lagomarsino - 4 3 4 4 4 - 2 1 22 

Total 2 5 3 9 11 7 1 4 1 43 

 

 

 

Figure 4.4. Great Basin Stemmed points; 5604-3, manufactured from Siegfried Canyon Ridge FGV 

and 5604-6, manufactured from Gold Lake FGV. 
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Figure 4.5. Representative projectile points from the valley data set.  

 

 

Steamboat/Lagomarsino FGV is represented in all point types except Great Basin 

Stemmed and Gunther and comprises 51.2% (n=22) of all points in the valley sample.  

Gold Lake FGV is also represented among most point types with the exception of Pinto, 

and was used to make 27.9% (n=12) of the valley data set.  Alder Hill FGV is the next 

most common chemical source group at 16.3% (n=7) of the data set.  It is only 

represented among Elko, Martis, and Rosegate series points.  Only two points (a Great 

Basin Stemmed and an indeterminate dart-size point) are manufactured from Siegfried 

Canyon Ridge FGV.  

With respect to FGV use through time, Gold Lake was used at valley sites from at 



93 

 

 

 

least the Tahoe Reach Phase (11,500-8,000 cal BP) to the Early Kings Beach Phase (1,300-

700 cal BP).  Based on the two points made from Siegfried Canyon Ridge FGV in the 

data set, it was likely in use during the early portion of that range.  

Steamboat/Lagomarsino and Alder Hill FGV were used since at least the Early Martis 

Phase (5,000-3,000 cal BP) through the Early Kings Beach Phase.  Unlike the Pah Rah 

Range sites, where a shift in FGV source use for projectile point manufacture may have 

occurred over time (though not significant at the α = .05 level), a Fisher’s exact test 

comparing darts and arrows from the four known FGV sources represented in the valley 

sample indicates that there was no significant change across time (p=.928).  

   The 45 bifaces within the valley data set reflect a wider range of chemical source 

groups than the Pah Rah Range data set and include a different distribution of biface 

stages as well (Table 4.12).  All four previously known chemical source groups are 

represented in addition to two chemically distinct unknown FGV types (Unknowns E and 

H). 

 

Table 4.12. XRF Source Results for Valley Bifaces. 
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Alder Hill - 1 - 1 3 3 8 

Gold Lake - - - - 2 1 3 

Siegfried Canyon Ridge - - - - 3 - 3 

Steamboat/Lagomarsino - 1 4 5 11 1 22 

Unknown E 1 - 1 - - - 2 

Unknown H - - - - 3 - 3 

Unknown 2 - - - - - 2 

Not FGV - - - - - 2 2 

Total 3 2 5 6 22 7 45 
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Bifaces manufactured from Gold Lake FGV have similar frequencies in both data 

sets (8.1% for the Pah Rah Range vs. 6.7% for the valley data set) but this is not the case 

for other materials.  Whereas Steamboat/Lagomarsino FGV comprises 81.1% of the Pah 

Rah Range data set, it comprises only 48.9% (n=22) of the valley data set.  Alder Hill 

FGV is more common in the valley sample (17.8% vs. 5.4% in the Pah Rah Range 

sample) and Siegfried Canyon Ridge FGV is present in the valley sample whereas it is 

absent in the Pah Rah Range sample.  Unknown E and Unknown H FGV appear only in 

the valley data set and nearly exclusively as bifaces.  Bootstrapping the valley data set 

bifaces (only known and chemically distinct unknown sources) produced a sample-size-

adjusted diversity of 5.97, which is significantly more diverse than the three sources 

represented the Pah Rah Range biface sample (two-tailed test, p=.006). 

The distribution of biface stages within the valley sample differs somewhat from 

the Pah Rah sample in that it is heavily weighted towards finished bifaces, but otherwise 

with a more even distribution of other biface stages.  Interestingly, Gold Lake and 

Siegfried Canyon Ridge FGV are present only as Stage 5 bifaces (no information was 

available for the biface from 26Wa7255).  Multiple stages of bifaces are made on Alder 

Hill and Steamboat/Lagomarsino FGV.   

The sample of flake tools from the valley data set is substantially smaller than that 

from the Pah Rah sites, but it nevertheless has a wider range of sources (Table 4.13).  All 

but one flake tool are informal, and the only previously known chemical source group 

represented is Steamboat/Lagomarsino FGV.  All other flake tools are made from 

unknown sources, including one each from four of the chemically distinct unknown 
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source groups (Unknown B, C, E, and F). 

 

Table 4.13. XRF Source Results for Valley Flake Tools. 

Chemical Source Group Formal Informal Total 

Steamboat/Lagomarsino - 1 1 

Unknown B - 1 1 

Unknown C 1 - 1 

Unknown E - 1 1 

Unknown F - 1 1 

Unknown - 3 3 

Total 1 7 8 

 

 

Of the two multidirectional cores and two hammerstones in the valley data set, 

only one core could be assigned to a chemically distinct source group (Table 4.14).  It is 

also one of only two artifacts from the valley data set assigned to the Unknown A 

chemical group, which occurs at all but one Pah Rah Range site.  Both of those artifacts – 

a core and an interior core reduction flake – are from the Frear site located at the mouth 

of Spanish Springs Canyon, which provides one of the main access routes into the 

southern Pah Rah Range. 

 

Table 4.14. XRF Source Results for Valley Cores and Hammerstones. 

 Chemical Source Group 

Multidirectional 

Cores Hammerstones Total 

Unknown A 1 - 1 

Unknown 1 2 3 

Total 2 2 4 

 

 

The sample of debitage from the valley data set is small (n=17) but it generally 
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conforms to the patterns seen among other artifact types (Table 4.15).  Of the four 

previously known chemical source groups within the data set, only 

Steamboat/Lagomarsino FGV is present and only as late biface thinning flakes.  Two 

chemically distinct unknowns are present (Unknown A and C), but the majority (58.8%; 

n=10) of debitage is from unknown sources.  When combined with the other artifacts in 

the data set, it is again apparent that though a fairly wide range of distinct FGV sources 

were used at the valley sites, groups depended on a handful of regionally important FGV 

sources to manufacture formal tools. 

   

Table 4.15. XRF Source Results for Valley Debitage. 
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Steamboat/Lagomarsino - - - 3 - - - 3 

Unknown A - 1 - - - - - 1 

Unknown C - 1 - - - 1 - 2 

Unknown 3 4 - 1 - 2 - 10 

Not FGV - - 1 - - - - 1 

Total 3 6 1 4 0 3 0 17 

          

 

 Summary  

  

Overall, the XRF data from both Pah Rah Range and valley sites are robust 

enough to address the research questions posed in this thesis and test the hypotheses 

outlined in Chapter 3 and revisited in the next chapter.  Though only just over half 

(58.7%) of the artifacts could be assigned to a previously known source group, 80.5% of 
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them could nevertheless be assigned to a chemically distinct, if still geographically 

unknown, source group.  When only tools are considered, this number rises to 88.5% of 

artifacts submitted for geochemical characterization.  For projectile points, 97% are made 

from previously known source groups. 

Among the 178 artifacts from the combined Pah Rah Range and valley data sets 

made on previously known FGV chemical source groups, Steamboat/Lagomarsino FGV 

is the most dominant by far, representing 69.7% of artifacts from known chemical source 

groups and 40.9% of all artifacts.  Alder Hill FGV is the next most common, representing 

8.6% of all artifacts.  Gold Lake FGV comprises 7.3% of the collection while Siegfried 

Canyon Ridge FGV represents only 2.0%.  An additional eight geochemically distinct but 

geographically unknown source groups were identified.  These unknown groups have not 

been described fully and their physical locations have yet to be identified; however, with 

66 artifacts made on them, they represent a substantial proportion (21.8%) of the 

combined data set. 

These 12 chemical source groups are not distributed evenly within or across the 

two data sets.  Table 4.16 summarizes the distribution of these source groups within each 

site in the two data sets.  A couple patterns are immediately evident.  First, in addition to 

being the most common FGV type, Steamboat/Lagomarsino is the most ubiquitous 

source group and is present at all but two sites.  Second, although more frequent in the 

valley data set, Alder Hill FGV is present at more Pah Rah sites (six vs. four sites).  

Third, Gold Lake FGV is present at all but one valley site and at twice the frequency as in 

the Pah Rah sites.  Finally, Siegfried Canyon Ridge FGV is the least common of the four 

known chemical source groups, represented by only six artifacts at four sites.    
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Table 4.16. Chemical Source Group Distribution by Site. 
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Alder Hill + + + + + + - - - - + + - + - - + - 

Gold Lake + - + - - + - - - - - + + + + + + + 

Siegfried Canyon Ridge - - + - - - - - - - - - + + + - - - 

Steamboat/Lagomarsino + + + + + + - + + + + + + + - + + + 

Unknown A + + + + - + + + + - - - - - - - - + 

Unknown B + - + - - + + + + + - - - + - - - - 

Unknown C + - + - - + - - - - - - - + - - - - 

Unknown D + + - - - - - - - - - - - - - - - - 

Unknown E - - - - - - - - - - - - - + - - - - 

Unknown F - + - - - - - - - - - - - + - - - - 

Unknown G - + - + - - - - - - - - - - - - - - 

Unknown H - - - - - - - - - - - + - + - - - - 

Unknown + + + + + - + + + + + + - + - + - + 

 

 

A chi-square test comparing all tools from all the known FGV sources is not valid 

because two cells have expected values less than 5.  A two-tailed Fisher’s exact test 

comparing just Alder Hill, Gold Lake, and Siegfried Canyon Ridge (the three extra-local 

FGV sources) indicates that there is no significant difference in the distribution of those 

sources between Pah Rah Range and valley sites (p=.717).  A chi-square test combining 

all extra-local FGV sources to compare them with the distributions of 

Steamboat/Lagomarsino FGV indicates that Steamboat/Lagomarsino is overrepresented 

in the Pah Rah Range data set and underrepresented in the valley data set (χ
2
=10.06, 

df=1, p=.002).  This result is particularly interesting as the valley sites are as a whole 
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closer to Steamboat/Lagomarsino quarries than the Pah Rah Range sites. 

Within both data sets, Steamboat/Lagomarsino FGV is the dominant chemical 

source group for projectile points and bifaces; however, as noted the overall proportion 

and diversity of sources used differs between the two data sets (Figures 4.6 and 4.7). 

   

  

Figure 4.6. Proportional distribution of FGV chemical source groups within Pah Rah data set. 
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Figure 4.7. Proportional distribution of chemical source groups within valley data set. 

 

In the Pah Rah Range data set, Steamboat/Lagomarsino FGV makes up nearly 

75% of the toolstone used to make projectile points and bifaces, while Alder Hill and 

Gold Lake FGV make up approximately 10% each.  Siegfried Canyon Ridge FGV and 

the category of general unknown FGV round out the distribution.  For the valley data set, 

Steamboat/Lagomarsino FGV makes up just over half of the toolstone represented.  As is 

the case with the Pah Rah Range sites, Alder Hill and Gold Lake FGV are present in 

similar numbers but at nearly double the proportion than that in the Pah Rah data set.  

Interpreting the chemically distinct unknowns (Unknown A-H) is less 

straightforward.  At first glance, it appears that the Pah Rah data set reflects greater 

overall use of these unknowns, but this may in part reflect sampling biases within the 

valley data set, which depended partially on existing information and collection 

availability.  A two-tailed Fisher’s exact test comparing all artifacts from the distinct 
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unknown sources represented in both data sets (Unknowns A, B, C, and F) indicates that 

there is a significant difference in those distributions (p=.026).  

Within the Pah Rah Range data set, formal tools are nearly exclusively 

manufactured from the four previously known chemical source groups, whereas informal 

and expedient tools are predominantly manufactured from unknown sources.  Previous 

sourcing efforts (e.g., Skinner and Davis 1997; Stoner et al. 2006) disproportionately 

targeted projectile points and bifaces, and several of the available valley site collections 

from were smaller in size and variety of FGV artifacts.  As such, the sample of informal 

and expedient tools from valley sites is smaller than that from Pah Rah Range sites.   

The exception to this trend is the selection of artifacts from 26Wa3017.  

20Wa3017 exhibits a pattern much more like the Pah Rah Range sites, where formal 

tools are predominantly made from the four previously known FGV source groups while 

expedient and informal tools are predominantly made from a range of currently unknown 

FGV sources many of which are also represented at Pah Rah Range sites.  The location of 

26Wa3017 in the foothills of the southern Pah Rah Range and overall similarity in 

general artifact distribution suggests that it may represent part of the same settlement and 

lithic procurement system; however, the lack of comparative material in the valley data 

set makes it difficult to determine if the pattern is a regional manifestation. 

Of the chemically distinct unknown FGVs, Unknown A is the most common 

(10.9% of the combined data set), occurring at all but two Pah Rah sites as well as one 

valley site.  Though it is only represented among informal and expedient tools, its 

abundant and concentrated distribution suggest that it may be a local source within the 

Pah Rah Range.  Unknowns B, C, and D are also likely local FGV sources, but without a 



102 

 

 

 

better sample of valley sites, it is less clear whether they might be located within, or at 

least more local to, the Pah Rah Range.  Unknown E and Unknown H were identified 

only in the valley data set.  Interestingly, Unknown H is represented only as Stage 5 

bifaces at 26Wa2065 and 26Wa3017.  With both data sets following a pattern of 

preferential use of certain sources for formal tools, it is easy to speculate that Unknown H 

may represent a preferred, likely extra-local or regional, FGV source.  
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CHAPTER 5 – DISCUSSION 

 

The goal of my research has been to determine the range of FGV sources present 

at archaeological sites in the Pah Rah Range as a means of examining overall patterns of 

toolstone use and, in turn, mobility in the western Great Basin.  Specifically, I have 

focused on identifying FGV sources used at sites in the Pah Rah Range, determining 

whether there are trends of source use unique to sites within the Pah Rah Range, and 

comparing the distribution of FGV sources utilized at these sites against current models 

of toolstone conveyance in the western Great Basin.  To this end, I developed four 

hypotheses and corresponding expectations addressing my research questions: 

   

1. Groups in the Pah Rah Range primarily utilized local FGV toolstone sources; 

 

2. Particular FGV sources were preferred for certain tool types, whether due to 

toolstone quality or location; 

 

3. Lithic technological organization differed substantially between sites in the 

Pah Rah Range and those on the nearby valley floor; and 

 

4. Pah Rah Range sites reflect similar conveyance zones to those described for 

other sites in the western Great Basin. 
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Using the XRF data presented in Chapter 4, I evaluate these hypotheses below. 

 

FGV Source Representation at Pah Rah Range Sites 

 

My first research question concerns the range of FGV sources used at Pah Rah 

Range sites.  The Pah Rah Range is in a region nearly devoid of obsidian sources but 

relatively rich in FGV sources.  The local lithic terrane (<15 km) for the Pah Rah Range 

is sparse and includes a single FGV source (Lagomarsino) and a single obsidian source 

(Patrick).  Within the extra-local terrane (<100 km), there are an additional 15 known 

toolstone sources which could have been accessible through multi-day foraging trips.  Of 

these, two are obsidian (Sutro and CB Concrete), one is CCS (Steamboat Sinter), and 12 

are FGV.  The closest FGV source is Steamboat Hills (which is chemically 

indistinguishable from Lagomarsino), located just southwest of Reno.  Though it is ~22 

km from most Pah Rah Range sites, the most direct route follows the valley floor making 

for relatively easy travel.  Most of the remaining FGV sources are within the Sierra-

Tahoe region, though only a handful that include Alder Hill, Gold Lake, Siegfried 

Canyon Ridge regularly appear at sites along the eastern front of the Sierra (Waechter 

2002).  Alder Hill, Gold Lake, Siegfried Canyon Ridge (49 km, 82 km, and 89 km from 

the Pah Rah Range, respectively) are well within the extra-local range that I defined but 

involve elevation gains of up to and above 1,000 m to reach.  Considering the distances 

and ease of travel between the closest (Steamboat/Lagomarsino) and next closest sources 

(e.g. Tahoe Basin sources), I expected that primarily local (and close extra-local) FGV 
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sources would have been utilized in the Pah Rah Range.  

This expectation was met: Steamboat/Lagomarsino was the dominant source 

identified at sites within the Pah Rah Range.  Of the 185 artifacts within the Pah Rah 

Range data set, 147 were assigned to a chemically distinct source group (including both 

previously known and unknown sources).  Of these, 41.2% (n=76) were identified as 

Steamboat/Lagomarsino FGV.  The next most common source groups identified were 

Unknowns A and B, representing 17.3% (n=32) and 5.9% (n=11) of the sample, 

respectively.  These two unknown FGV sources are present at nearly all Pah Rah Range 

sites sampled, but only two valley sites (26Wa3017 and the Frear site), both of which are 

at the base of the Pah Rah Range.  As such, I believe these two unknowns represent local 

FGV sources that are either within, or proximal to, the Pah Rah Range.  Unknowns C and 

D may also be located near the Pah Rah Range.  Unknown D only shows up at two Pah 

Rah sites while Unknown C is represented at three Pah Rah sites and at 26Wa3017, again 

suggesting that those sources are located near or within the Pah Rah Range.  Together, 

Steamboat/Lagomarsino and the four presumably local unknown sources account for 

68.1% (n=126) of the total artifacts in the Pah Rah Range data set. 

The remaining known chemical source groups within the data set (Alder Hill, 

Gold Lake and Siegfried Canyon Ridge) are all located within the extra-local lithic 

terrane.  Alder Hill and Gold Lake FGV make up 5.4% (n=10) and 3.7% (n=7) of the 

data set, respectively.  A single projectile point made on Siegfried Canyon Ridge was 

identified.  Together, these three sources comprise only 9.7% (n=18) of the data set.  No 

additional previously known chemical source groups were identified within the data set 

and none of the chemically distinct unknowns represented at Pah Rah Range sites could 
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be definitively linked to other artifacts in Northwest Research’s database (Craig Skinner, 

personal communication, 2013). 

An important aspect of determining the range of FGV sources utilized in the Pah 

Rah Range is delineating the time range over which sources were utilized.  Based on the 

XRF data reported in Chapter 4, Steamboat/Lagomarsino, Alder Hill, and Gold Lake 

FGV were used by groups visiting the Pah Rah Range from at least the Early Martis 

Phase (5,000-3,000 cal BP) to the Early Kings Beach Phase (1,300-700 cal BP).  Of 

these, Steamboat/Lagomarsino FGV was the source group used most persistently through 

time.  Siegfried Canyon Ridge FGV was used in the Pah Rah Range at least during the 

Late Martis Phase but because that source is only represented by a single artifact, the full 

extent of its use cannot be established at this time. 

Although a diachronic shift in local and non-local FGV source use (as measured 

by comparing FGV types represented in dart and arrow points) is not statistically 

significant when α = .05, there do appear to be trends in individual FGV source use 

(Figure 5.1).  For example, following the introduction of the bow-and-arrow there 

appears to have been an accompanying decreased reliance on local 

Steamboat/Lagomarsino FGV and increased reliance on the more distant Alder Hill FGV.   

Although my sample of artifacts made on that geochemical type is small, there do not 

appear to be any substantial changes with respect to Gold Lake FGV.  
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Figure 5.1. Pah Rah Range projectile points by FGV source. 

  

Because they could not be firmly assigned to particular time periods, Figure 5.1 

does not include the nine indeterminate dart points and one indeterminate arrow point in 

the Pah Rah data set; however, the sources of these indeterminate points fall within the 

pattern seen in the typeable points: indeterminate dart points include seven specimens 

made on Steamboat/Lagomarsino FGV and one each made on Gold Lake and Alder Hills 

FGV.  The lone indeterminate arrow point is made on Steamboat Hills/Lagomarsino 

FGV.  Including these indeterminate points would make the shift away from 

Steamboat/Lagomarsino FGV at the end of the Late Martis Phase even more evident 

(Figure 5.2). 
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Figure 5.2. Pah Rah Range dart and arrow projectile points by FGV source. 

 

The apparent shift away from local FGV source use between the Late Martis and 

Early Kings Beach phases is particularly interesting when obsidian data for the Pah Rah 

Range are also considered.  The Tuscarora project obsidian data (Delacorte 1997a, 

1997b) complement the FGV sourcing data compiled for my study, particularly as 

sourced obsidian artifacts come from several of the same sites including 26Wa1609, 

26Wa5610, 26Wa5611, and 26Wa5612 (Table 5.1).  Of the 113 obsidian artifacts (32 

tools and 81 flakes) from Pah Rah Range sites geochemically characterized during the 

Tuscarora project, roughly one-third (35.3%, n=36) are made on sources located up to 

222 km away (Delacorte 1997b).  As with my FGV sourcing results, two local obsidian 

sources (Sutro and Patrick) account for over half (54.0%, n=61) of all characterized 

artifacts.  Together, 11 known and two chemically distinct unknown obsidian sources 

were identified in the Tuscarora sample.  Projectile points were made on five known 

sources (Sutro, Bodie Hills, Bordwell Spring, Buffalo Hills, and Mt. Hicks) and one 
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unknown source.  Interestingly, the majority of both FGV and obsidian Elko points are 

made on the most local sources (Steamboat/Lagomarsino FGV and Sutro obsidian). 

 

Table 5.1. Tuscarora Obsidian Data (from Delacorte 1997b).  
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26Wa1609                 

Elko - - - - - - - - - - 2 - - - 2 

Rose Spring - - - - - - - - - - 2 1 - - 3 

Biface 2 - - - - - - - - - 4 - - - 6 

Core - - - - - - 3 - - - - - - - 3 

Drill - - - - - - 1 - - - - - - - 1 

Flake 1 8 - - - 4 2 - - 2 9 - 2 - 28 

26Wa1609 Total 3 8 - - - 4 6 - - 2 17 1 2 - 43 

26Wa5610                

Dart - - - - - 1 - - - - - - - - 1 

Rose Spring 1 - 1 - - 1 - - - - 2 1 - - 6 

Biface - - - - - - - 1 - - - - - - 1 

Flake Tool - - - - - - - - - - - - 1 - 1 

Flake 5 2 - - - 1 1 - 1 - 14 - 5 2 31 

26Wa5610Total 6 2 1 - - 3 1 1 1 - 16 1 6 2 40 

26Wa5611                

Dart - - 1 - - - - - - - - - - - 1 

Rose Spring - - 2 - - - - - - - - - - - 2 

Desert Side-notched - 1 - - - - - - - - - - - - 1 

Flake Tool - - - - 1 - - - - - - - - - 1 

Flake - 1 - 1 - - 2 - - - 1 - - - 5 

26Wa5611Total - 2 3 1 1 - 2 - - - 1 - - - 10 

26Wa5612                 

Elko - - - - - - - - - - 2 - - - 2 
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Table 5.1. Tuscarora Obsidian Data (from Delacorte 1997b).  
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Dart 1 - - - - - - - - - - - - - 1 

Flake 1 - - - - - - - - - 16 - - - 17 

26Wa5612 Total 2 - - - - - - - - - 18 - - - 20 

Total of all Sites 11 12 4 1 1 7 9 1 1 2 52 2 8 2 113 

     

 

 

By comparing obsidian hydration measurements with chronometric data from 

other regional sites, Delacorte (1997b:79-84) split the Tuscarora sample into Early and 

Late components, with the Early component further divided into older and younger 

artifacts (Delacorte 1997b:79-84) (Table 5.2).  The Early component is primarily 

associated with Elko and Rose Spring points and dates to the Middle to Late Archaic 

periods (5,000-700 cal BP) and earlier.  The Late component is primarily associated with 

Rose Spring and Desert series points and dates to the Terminal Prehistoric Period (700 

cal BP to contact). 

As with the FGV data, there is a pointed increase in local source use at the end of 

the Middle Archaic Period and continuing into the Late Archaic Period (Figure 5.3).  

There also appears to be fluctuations in the utilization of more distant sources to the north 

and south, with northern sources important both during the Middle Archaic and Terminal 

Prehistoric and southern sources utilized more during the Late Archaic Period. 
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Table 5.2. Tuscarora Obsidian Source Data by Hydration Dated Component 

(from Delacorte 1997b).  

 Late 

Component 

Early Component 

Source Young Old 

Bodie Hills - 10 1 

Bordwell Spring 8 1 4 

Buffalo Hills 2 1 1 

Massacre Lake/Guano Valley 1 - 1 

Mono Craters 1 - - 

Mt. Hicks 2 1 4 

Patrick 6 3 - 

Pinto Peak 1 - - 

Queen - 1 - 

South Warners - - 2 

Sutro Springs 5 45 1 

Unknown - 1 - 

Unknown C 1 2 - 

Unknown D 1 1 - 

Totals 28 66 14 

 

 

Figure 5.3. Pah Rah Range obsidian data from the Tuscarora project (data from Delacorte 1997b). 
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Together, FGV and obsidian data from the Pah Rah Range indicate that although 

local sources dominate the assemblages, this may not have been the case consistently 

through time.  Specifically, the heaviest local source use in the Pah Rah Range appears to 

have occurred during the Middle Archaic Period, with continued lesser utilization into the 

Late Archaic and Terminal Prehistoric periods. 

 

Patterns of FGV Source Use in the Pah Rah Range 

 

Regarding the identification of patterns of FGV source use unique to sites within 

the Pah Rah Range, I developed two associated hypotheses.  The first is that particular 

FGV sources were preferred for certain tool classes.  The second is that lithic 

technological organization should substantially differ between the Pah Rah Range sites 

and those on the nearby valley floor. 

 

Toolstone Source Preference 

 

 

A number of factors including proximity to toolstone sources, toolstone 

abundance, and raw-material quality affected toolstone choice and toolkit production 

(Andrefsky 1994, 2005; Kelly 1988, 1992; Kuhn 1994; Parry and Kelly 1987).  Though 

generally more durable, FGV types like basalt and rhyolite are more difficult to work 

than more cryptocrystalline or glassy materials like chert and obsidian.  Some FGV 

sources are more aphanitic than others, allowing for greater predictability in flaking and 
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easier production of formal tools such as projectile points.  Among the FGV sources 

available in the western Great Basin, Gold Lake is considered to be higher quality than 

other regional FGV sources (Duke 1998; Edwards 2000).  The proximity of Steamboat 

Hills/Lagomarsino FGV would also have made it an attractive choice.  As such, I 

expected that the proportions of FGV sources used for different tool classes should differ, 

with formal tools manufactured from higher quality materials like Gold Lake or more 

local sources like Steamboat Hills/Lagomarsino, and informal tools manufactured from a 

mix of regionally dominant FGV sources and presumably local unknowns. 

My first expectation is borne out in the XRF data.  Of 79 formal tools, only six 

(two Elko points, two bifaces, and two scrapers) are made from unknown sources.  The 

remaining 75 were manufactured (in descending order) from Steamboat/Lagomarsino, 

Alder Hill, Gold Lake, and Siegfried Canyon Ridge FGV.  Less expected was the near 

complete absence of those FGV chemical source groups among informal tools.  Of the 29 

informal tools in the Pah Rah data set, only seven are manufactured from a previously 

known source group: Steamboat/Lagomarsino FGV.  The remaining informal tools were 

manufactured from four chemically distinct unknown sources (Unknowns A, B, C, and 

D) and undifferentiated unknown FGV sources.  

Of the previously known FGV chemical source groups, only 

Steamboat/Lagomarsino appears as debitage in any substantial amount at the Pah Rah 

Range sites.  The debitage reflects predominantly biface thinning/finishing for known 

sources and both core reduction and biface thinning for unknown sources.  The 

implication of this difference is that Steamboat/Lagomarsino FGV was likely brought to 

the sites both as finished and partially reduced tools (i.e., early to mid-stage bifaces) 



114 

 

 

 

while raw material from unknown sources may have been acquired closer to the sites 

and/or was not substantially reduced prior to transport.  The lack of Alder Hill, Gold 

Lake, and Siegfried Canyon Ridge FGV debitage suggests that tools made from those 

sources were brought to the sites in complete or nearly complete form.  Beck et al. (2002) 

have argued that source to site distance was likely a primary influence on the degree to 

which raw materials were reduced prior to transport.  The Pah Rah Range FGV artifacts 

may reflect similar decision-making processes. 

The range of sources represented in the Pah Rah debitage sample, most of which 

are unknown (including six of eight chemically distinct unknowns identified during my 

research) is greater than that exhibited by formal tools, suggesting that not all tools 

manufactured from them were discarded at the Pah Rah Range sites.  This pattern has 

been identified elsewhere at sites associated with mobile groups (Eerkens et al. 200:586).  

Interestingly, beyond the core made on Unknown A FGV at the Frear site, no tools from 

these sources have been identified at sites in the surrounding region (Craig Skinner, 

personal communication, 2013), suggesting that they did not play a significant role in 

regional toolstone conveyance systems. 

 

Differences in Lithic Technological Organization 

 

Based on the overall differences between the Pah Rah Range sites and nearby 

valley sites with respect to site function and location, I also hypothesized that lithic 

technological organization should have differed substantially between the two areas.  

Sites in the Pah Rah Range predominantly reflect resource procurement and processing 
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activities with increased habitation during the Late Archaic Period (Delacorte 1997b; 

Rusco 1969a, 1969b, 1981; Stephenson 1968, Zeanah 2009).  Middle Archaic 

occupations appear to have been temporary and seasonal, with small logistical groups 

exploiting resources such as ungulates and waterwort seeds (Delacorte 1997b:152).  

Conversely, sites in the valley  are predominantly habitation loci and though they were 

part of the same settlement system, differences in site function, occupation span, and 

location suggest that assemblages in both areas should differ.  Primarily, I expected that 

the source profile for the Pah Rah sites would differ significantly from the valley floor 

source profile.  I also expected that the patterns of source use with respect to individual 

artifact classes seen in the Pah Rah Range would differ from those on the valley floor. 

Though both the Pah Rah and valley data sets contain many of the same sources, 

their distribution within the Pah Rah Range sites differs in several key respects.  Because 

the samples of bifaces and projectile points were the most similar with respect to count 

and artifact types selected, comparisons of those artifact classes should be those least 

likely to be affected by sampling bias.  A chi-square test comparing the three extra-local 

sources (Alder Hill, Gold Lake, and Siegfried Canyon Ridge FGV) to the local source 

(Steamboat/Lagomarsino FGV) for projectile points and bifaces (see Table 4.2) shows 

that there is a significant difference in source representation between the Pah Rah Range 

and valley data sets (χ
2
=6.93, df=1, p=.009).  Steamboat/Lagomarsino FGV is 

overrepresented at Pah Rah sites and underrepresented at valley sites.  A significant 

difference also exists when all tools are included in the comparison (χ
2
=10.06, df=1, 

p=.002).   

The overrepresentation of Steamboat/Lagomarsino FGV at Pah Rah sites is 
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remarkable as one of the two known quarries for this geochemical type is actually closer 

to the valley sites. As such, Steamboat/Lagomarsino FGV should be more common on 

the valley floors than it is.  One possible explanation for the overrepresentation of 

Steamboat/Lagomarsino FGV at Pah Rah sites may lie in the concept of “gearing up” 

(sensu Binford 1977, 1978, 1979) wherein prehistoric groups anticipating a logistical or 

residential move to a region deficient in high quality toolstone (e.g., the Pah Rah Range) 

bring more tools or toolstone than they would normally anticipate using.  A similar 

provisioning technique is described by Thomas (2012) for Alta Toquima, where high 

quality tools and toolstone were brought up to the site and left there between visits.  

Though Alta Toquima is a more extreme example of such behavior, this approach would 

minimize the need to travel back and forth to the next closest FGV source (which is just 

at the edge of the local lithic terrane) and allow prehistoric groups to more intensively 

focus on the subsistence activities that drew them to the areas like the upland basins of 

the Pah Rah Range in the first place.   

There is one additional difference between bifaces in the Pah Rah and valley data 

sets: valley site bifaces reflect a wider range of chemical source groups than Pah Rah 

bifaces.  Valley bifaces are made on all four previously known chemical source groups, 

but Siegfried Canyon Ridge FGV is not represented in Pah Rah biface sample.  Valley 

bifaces also include examples made on two chemically distinct unknowns (Unknowns E 

and H) that are not represented in the sample of Pah Rah Range artifacts.  A Fisher’s 

exact test indicates that the two samples have significantly different frequencies of Alder 

Hill, Gold Lake, Siegfried Canyon Ridge, and Steamboat/Lagomarsino FGV (p=.044).  

To ensure that these differences were not simply a function of sample size, following 
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Eerkens et al. (2007) I bootstrapped the valley biface sample (using only known and 

chemically distinct unknown sources), which resulted in a sample-size-adjusted diversity 

of 5.97, which is significantly more diverse than the three sources represented in the Pah 

Rah range biface sample (p=.006).  The more diverse biface assemblage in the valley data 

set may reflect more regularized “gradual replacement” lithic procurement activities than 

occurred in the neighboring uplands (Thomas 2012:263). 

An examination of the changes in FGV source utilization for valley projectile 

points provides another contrast to the Pah Rah Range sites (Figure 5.4).  A Fisher’s 

exact test comparing dart and arrow points made from the four known sources in the 

valley sample indicates that there is no significant change across time (p=.928); however, 

as with the Pah Rah Range sample there do appear to be more subtle shifts when the data 

are examined at a finer scale. 

Though Steamboat/Lagomarsino FGV is significantly underrepresented in the 

valley data set relative to the Pah Rah Range data set, it appears to have been used more 

consistently across time.  Whereas use of Steamboat/Lagomarsino FGV in the Pah Rah 

Range peaked during the Middle Archaic Period and dropped in the Late Archaic Period, 

its utilization at valley sites persisted into the Late Archaic Period.  Further, both Alder 

Hill and Gold Lake FGV are represented throughout the Middle to Late Archaic periods 

and seem to have substantially different signatures at valley sites than Pah Rah sites.  In 

the valley, Gold Lake use peaks during the Early to Late Martis phases, while Alder Hill 

use peaks during the Late Martis Phase.  Both FGV sources are nearly absent during that 

time at Pah Rah sites (see Figure 5.1). 
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Figure 5.4. Valley projectile points by FGV source. 

 

Toolstone Conveyance in the Pah Rah Range 

 

My final hypothesis was related to FGV toolstone use and conveyance.  Recent 

models of toolstone conveyance in the western Great Basin (e.g., Delacorte 1997b; Jones 

et al. 2003; Smith 2010) indicate that toolstone moved predominantly within a north-

south zone along the Sierran Front.  The extent, both temporally and geographically, of 

that zone continues to be refined through additional source provenance studies (e.g., 

Delacorte 1997b; Jones et al. 2003; McGuire 2002; Sibley 2013; Smith 2010; Stoner et 

al. 2006).  Smith’s (2010) work in northwestern Nevada suggested that Jones et al.’s 

(2003) western conveyance zone is actually two zones, with the boundary situated 

somewhere near the Carson Desert.  The Pah Rah Range is situated near the convergence 

of Smith’s (2010) proposed northern and southern conveyance zones, and similar 
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sourcing work in the Truckee Meadows and Pah Rah Range (e.g., Delacorte 1997b; 

McGuire 2002; Sibley 2013; Stoner et al. 2006) has indicated that groups in that area 

foraged within both zones, obtaining obsidian from sources up to 200 km to the north and 

south.  The timing of use and the sources included in those zones varies based on the 

region studied, but there appears to be general agreement that obsidian in the region 

overall moved in north-south oriented zones, with fall-offs that generally conform to 

what would be expected from direct procurement (Delacorte 1997b; McGuire 2002; 

Sibley 2013).  This has led most researchers to equate these zones with foraging 

territories of prehistoric groups (sensu Jones et al. 2003).  If FGV source use in the Pah 

Rah Range conformed to these models, then FGV should have originated from sources in 

the same directions and distances as the obsidians on which such models are based (e.g., 

Smith 2010, Delacorte 1997b, McGuire 2002, Sibley 2013).  In other words, FGV data 

should also reflect predominantly north-south long distance movements. 

 This does not appear to be the case.  In contrast to obsidian conveyance patterns 

identified along the Sierra Front, the suite of FGV sources utilized in the Pah Rah Range 

reflects pronounced east-west conveyance (Figure 5.5).  The three extra-local FGV 

sources are all located to the west and northwest of the Pah Rah Range, suggesting some 

affinity between the Pah Rah Range and eastern Sierra Nevada.  Sites in the Pah Rah 

Range contain obsidian from long distances to the north and the south, as well as two 

more local sources, Sutro and Patrick.  The zones delineated in Figure 5.5 are atemporal, 

and only indicate the patterns of overall toolstone movement, not when the toolstone was 

moved.   
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Figure 5.5. Toolstone conveyance in the Pah Rah Range. 
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Using obsidian sourcing and hydration data from the Tuscarora project and other 

Truckee Meadows assemblages, Delacorte (1997b) reconstructed settlement systems for 

the Pah Rah Range (Figure 5.6).  He argued that the three periods delineated using 

hydration data (younger and older Early component and Late component) were marked 

by substantially different settlement systems.  During the older Early component, 

toolstone use was highly variable with artifacts made from obsidian originating great 

distances (150+ km) to the north and south.  Noting that regularized fall-off curves in 

obsidian source representation based on distance between quarries and sites reflect direct 

acquisition, he suggested that early populations utilizing the Pah Rah Range were highly 

mobile within expansive foraging territories (Delacorte 1997b:141).  Subsequently, 

younger Early foraging territories contracted, a trend reflected by reduced use of northern 

obsidian sources and increased focus on southern and local sources (Figure 5.6). 

Delacorte (1997b) argued that a further contraction in foraging territories marked 

the Late component.  Specifically, he cited increased use of the lower quality Patrick 

obsidian source during the Late component as reflecting a more localized settlement 

subsistence system (Delacorte 1997b:112).  Though sources to the north and south 

continued to appear in Pah Rah assemblages, Delacorte (1997b:112) suggested that much 

of this it was scavenged from earlier sites, as evidenced by obsidian artifacts with double 

hydration bands.  This model of reduced territory fits well with the intensification and 

investment in residential structures (i.e., numerous rock rings) beginning during the Late 

Archaic Period and continuing into the Terminal Prehistoric (1,300-150 cal BP) Period in 

the Pah Rah Range (Bowers 2006; Delacorte 1997b; Rusco 1969a, 1969b, 1981; 

Stephenson 1968). 
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Figure 5.6. Reconstructed Pah Rah Range settlement systems (from Delacorte 1997b:141). 
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FGV sourcing data from the Pah Rah Range sites presented here has definite 

implications for Delacorte’s settlement system reconstructions.  Delacorte (1997b:142) 

stated that many Early component bifaces are made from non-local basalt, which he 

interpreted as reflecting a “logistically well-organized and highly mobile adaptation.”  

This view is not supported by my data, which indicate that most (81.1%) Pah Rah bifaces 

are made on Steamboat/Lagomarsino FGV; only 13.5% are made on more distant Alder 

Hill and Gold Lake FGV.  The latter two sources occur within the extra-local lithic 

terrane at distances of 42 km and 89 km from the Pah Rah Range, which is far closer than 

most obsidian sources identified at Pah Rah sites.  

By combining the Pah Rah Range and valley data sets, a more complete picture of 

FGV toolstone use in the region emerges, which permits a better understanding of how 

including FGV data affects Delacorte’s (1997b) settlement systems model (Figure 5.7).  

When combined, three trends are evident.  First, local Steamboat/Lagomarsino FGV was 

utilized throughout the Middle to Late Archaic periods with a likely peak during the Late 

Martis Phase (3,000-1,300 cal BP).  Second, Gold Lake FGV was the most persistently 

utilized FGV type but also reached a peak in use during the early Late Martis Phase 

before decreasing later.  Third, Alder Hill FGV use increased through time, finally 

peaking during the Early Kings Beach Phase (1,300-700 cal BP).  No FGV sources were 

identified in projectile points dating to the Terminal Prehistoric Period. 
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Figure 5.7. Combined Pah Rah Range and valley projectile point sources. 

 

 

Including FGV data from the Pah Rah Range also expands Delacorte’s (1997b) 

settlement zones to include the Alder Hill, Gold Lake, and Siegfried Canyon Ridge 

quarries to the west (Figure 5.8).          
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Figure 5.8. Reconstructed settlement systems for the Pah Rah Range (after Delacorte 1997b). 



126 

 

 

 

For the Early component settlement system reconstructions, this is not a 

substantial change.  The Steamboat/Lagomarsino FGV quarries are located within the 

boundaries both the older and younger Early component systems, and Alder Hill was 

already within the proposed boundary of the younger Early component system.  During 

the Late component, however, including the FGV data nearly doubles the size of 

Delacorte’s proposed settlement system.  This final reconstruction best illustrates the 

overall east-west conveyance of FGV toolstone to the Pah Rah Range. 

This brings up an interesting point.  For both the Pah Rah Range and the valley 

sites, there is no significant difference between the use of local and non-local FGV 

sources across time, although individual source use does appear to fluctuate.  As such, the 

manner in which the settlement system and foraging territories functioned becomes 

important.  Is the local FGV toolstone at Pah Rah and valley floor sites more prevalent 

because it was picked up at the end of long foraging trips that extended to the ends of the 

ranges, or does FGV conveyance closer resemble a group residential settlement system 

while obsidian reflects longer-distance logistical forays? 

Combining regional data for the main four FGV types, Waechter (2002) 

reconstructed FGV conveyance in the Western Great Basin and into California (Figure 

5.9).  Based on my results, the spatial conveyance of Siegfried Canyon Ridge can be 

expanded to the southeast.  Of particular interest is that, based on current sourcing data, 

the Pah Rah Range sits at the central-eastern edge of the overlapping distribution zones 

for these four sources. 
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Figure 5.9. Combined FGV source distribution (after Waechter 2002). 
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Though these zones are shifted to the west and are centered more in the Sierras, 

the overall impression is still one of a north-south zone of FGV conveyance along the 

eastern Sierra interface.  Waechter (2002:111) argued that there may have been a 

boundary of sorts between the Madeline Plains and Pit River Uplands of northeastern 

California.  North of this boundary, most XRF data from the Alturas Intertie Project 

yielded predominantly unknowns.  South of this boundary, many of the same sources 

utilized in the Pah Rah Range and surrounding valleys dominate assemblages.  With this 

in mind, reconstructed settlement systems may not reflect overall group mobility but 

rather a combination of residential and logistical systems wherein the people using the 

Pah Rah Range and the Truckee Meadows mainly foraged in the zone extending just 

north of Honey Lake, to Pyramid Lake in the east, and Lake Tahoe to the southwest.  

Logistical forays could extend these ranges to the north and south to procure obsidian 

and/or other important resources as needed. 

In any case, it is clear that including FGV sourcing data from Pah Rah Range and 

Truckee Meadows sites extends models of settlement and toolstone conveyance to the 

west and informs our understanding of what might be considered “local toolstone” in this 

region.  Further, it helps clarify how different toolstone types moved through the region, 

allowing for a better understanding of how prehistoric peoples utilized this region. 
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CHAPTER 6 – CONCLUSION 

 

The primary goal of my research has been to identify FGV sources present at 

archaeological sites within the Pah Rah Range of western Nevada as a means to better 

understand prehistoric land use and lithic technological organization in the region.  I 

assessed whether prehistoric groups utilized primarily local or exotic FGV toolstone and 

how their procurement and use of FGV toolstone fits within regional models of toolstone 

conveyance and site settlement (e.g., Delacorte 1997b; Smith 2010).  I used XRF data 

derived from the geochemical characterization of FGV artifacts from the Pah Rah Range 

and surrounding area to address the following research questions: 

 

1. What is the range of FGV sources used by prehistoric peoples within 

the Pah Rah Range?; 

 

2. Are there identifiable and significant patterns of source use unique to 

sites within the Pah Rah Range?; and 

 

3. Based on source provenance data, how does FGV use in the Pah Rah 

Range fit with current models of toolstone conveyance in the western 

Great Basin? 
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To this end, I identified 10 habitation and resource procurement/processing sites 

within the Pah Rah Range and eight sites from the valley floors to the west and southwest 

of the Pah Rah Range for which I could obtain FGV sourcing data.  By combining 

previous XRF data with 271 FGV artifacts sourced for this research, I compiled a total of 

303 artifacts.  Using these data, I tested the following hypotheses concerning FGV 

toolstone use in the Pah Rah Range:   

 

1. Groups in the Pah Rah Range primarily utilized local FGV toolstone; 

 

2. Certain FGV sources were preferred for certain tools, whether due to toolstone 

quality or proximity to source; 

 

3. Lithic technological organization differed substantially between sites in the 

Pah Rah Range and those on the nearby valley floor; and 

 

4. Pah Rah Range sites reflect similar conveyance zones developed using data 

from other sites in the western Great Basin.    

 

Summary of Results  

 

My primary data set was comprised of 10 sites within the Pah Rah Range, most of 

which are in an upland basin at the southern end of the range; these include habitation 

and complex resource procurement/processing sites (Delacorte 1997a, 1997b; Delacorte 
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et al. 1995a, 1995b; Neidig and Clay 2009; Rusco 1969a, 1969b, 1981; Stephenson 1968; 

Zeanah 2009).  Most of these sites are on prominent ridges with volcanic outcrops and 

nearly all include rock ring features, extensive petroglyphs, a wide variety of portable and 

non-portable milling gear, and extensive lithic scatters of flaked tools and debitage.  

Based on the artifact assemblages, obsidian hydration data, and radiocarbon dates, these 

sites were occupied from the Early Archaic through the Terminal Prehistoric periods, 

with intensified use during the Early to Late Martis phases (5,000-1300 cal BP) and again 

during the Late Kings Beach Phase (700-150 cal BP) (Bowers 2006; Delacorte 1997b; 

Neidig and Clay 2009; Rusco 1969a, 1969b, 1981; Stephenson 1968; Zeanah 2009).  The 

eight valley sites are more diverse in function and setting and include several intensively 

occupied winter villages along the Truckee River as well as smaller lithic scatters and 

resource procurement locations.  These sites range in age from the Pre-Archaic (>10,000-

8,000 cal BP) to the Terminal Prehistoric (700-150 cal BP) periods (McGuire 1995, 

1997; Miller and Elston 1979; Stoner et al. 2006; Townsend and Elston 1975; Zeier and 

Elston 1986). 

 

Local Toolstone Use 

 

Steamboat/Lagomarsino is the dominant FGV type identified at sites within the 

Pah Rah Range, comprising 76 of the 185 artifacts (41.2%).  Steamboat/Lagomarsino 

FGV was used to make 54.2% of all sampled tools and 64.5% of all sampled projectile 

points.  The two known quarries for Steamboat/Lagomarsino FGV are 15-22 km from 

most of the Pah Rah Range sites making it the most local known FGV type.  Based on 
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their distribution within the two data sets, I suspect that Unknowns A-D are also local to 

the Pah Rah Range.  Representing 17.3%, 5.9%, 2.2%, and 1.6% of the data set, 

respectively, these sources occur primarily as informal tools and debitage.  Together, 

Steamboat/Lagomarsino and these four presumably local but unknown FGV sources 

account for 68.1% (n=126) of all artifacts in the Pah Rah Range data set.  Three 

additional known chemical source groups are also represented in the data set: Alder Hill, 

Gold Lake and Siegfried Canyon Ridge.  These sources are at an intermediate (49-89 km) 

distance from the Pah Rah Range and together comprise only 9.7% (n=18) of the data set.   

Of the 303 artifacts from both Pah Rah and valley floor sites included in my 

analysis, 40.9% are made on Steamboat/Lagomarsino FGV, while only 17.8% are made 

on other more distant known sources.  The apparent focus on local FGV toolstone fits 

well the pattern of residential stability with high logistic mobility that has been suggested 

for this region during the Middle Archaic Period (e.g., Delacorte 1997b:150-152; 

McGuire et al. 2008; Zeanah 2009:12). 

 

Preferential Toolstone Use 

 

FGV selection in the Pah Rah Range is sharply divided between formal and 

informal tools.  Of the 79 formal tools in the Pah Rah data set, only six are made on 

unknown sources.  By contrast, only seven of the 29 informal tools in the Pah Rah data 

set are manufactured on previously known sources.  These correlations between known 

sources and formal tools and unknown sources and informal tools suggest that a 

combination of toolstone quality and distance to source influenced decisions about raw 
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material use.  Specifically, Gold Lake is considered to be among the highest quality 

regional FGV sources (Duke 1998; Edwards 2000).  Steamboat/Lagomarsino, Alder 

Hills, and Siegfried Canyon Ridge FGV all have fairly widespread distributions 

(Waechter 2002), indicating that those materials were known to prehistoric peoples and 

were of sufficient quality to warrant transporting them in the form of formal tools.  For 

tools in which the final form was functionally important (e.g., projectile points, drills), 

flaking predictability would have been important.  Conversely, for tools in which the 

production of a workable edge was more important than achieving a specific design (e.g., 

choppers, informal flake tools), a wider range of FGV raw materials may have been 

considered suitable; this may be reflected in the use of presumably local unknown 

sources for such tools.  

Further highlighting the importance of proximity to source, my debitage analysis 

suggests that Steamboat/Lagomarsino FGV was brought to sites both as finished and 

partially reduced forms (i.e., early to mid-stage bifaces), while tools made on more 

distant Alder Hill, Gold Lake, and Siegfried Canyon Ridge FGV were likely brought to 

sites in complete or nearly complete form.  Combined with evidence for the more 

expedient use of unknown and presumably local sources at these sites, it is clear that a 

variety of toolstone procurement strategies were employed and decisions about which 

strategy to employ were influenced by  the complex relationships between tool form, raw 

material quality, and distance to the quarry. 
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Lithic Technological Organization 

 

Pah Rah Range and nearby valley sites differ with respect to function, occupation 

span, and location on the landscape; however, the overall systems of lithic technological 

organization between the two areas are ultimately quite similar.  The main differences lie 

in the distribution of sources and changes in source use through time – these differences 

are manifested in several ways.  First, Steamboat/Lagomarsino FGV is significantly 

overrepresented at Pah Rah sites and underrepresented at valley sites among projectile 

points and bifaces.  This difference may reflect different raw material procurement 

strategies, with groups in the Pah Rah Range employing a “gearing up” strategy (sensu 

Binford 1977, 1978, 1979).  Such a strategy would have alleviated the need to travel back 

and forth to the next closest higher quality FGV source (in this case Steamboat/ 

Lagomarsino) while in the uplands. 

Second, bifaces in the valley data set reflect a more diverse range of chemical 

source groups than those in the Pah Rah Range.  In addition to the four previously known 

chemical source groups, valley bifaces include those manufactured from Unknown E and 

Unknown H FGV.  Conversely, only three of the four known sources are represented in 

the Pah Rah Range biface sample.  This greater diversity of sources in the valley data set 

may reflect more regularized “gradual replacement” lithic procurement activities than 

occurred in the neighboring uplands (Thomas 2012:263). 

Third, although neither Pah Rah Range nor valley sites show significant changes 

through time with respect to FGV source use, due to sample size issues my analysis and 

corresponding results were based on a comparison of darts and arrows rather than more 



135 

 

 

 

time-sensitive point types.  This appears to obscure some subtle shifts in individual 

source use.  Among Pah Rah Range sites, use of Steamboat/Lagomarsino FGV appears to 

have peaked during the Middle Archaic Period and dropped during the Late Archaic 

Period.  In the valley sites, Steamboat/Lagomarsino FGV appears to have been used more 

consistently through time and persisted into the Late Archaic Period.  Further, while both 

Alder Hill and Gold Lake FGV are nearly absent in the Pah Rah Range projectile point 

sample during the Early to Late Martis phases, Gold Lake and Alder Hill FGV are 

present at valley sites during this interval, with use of Gold Lake peaking during the 

Early to Late Martis phases and Alder Hill peaking during the Late Martis Phase. 

 

Toolstone Conveyance and Site Settlement 

 

Using FGV provenance data, I reexamined toolstone conveyance models for the 

western Great Basin and reevaluated settlement models for the Pah Rah Range.  In 

contrast to the predominantly long-distance, north-south toolstone movement exhibited 

by obsidian artifacts (Delacorte 1997b; McGuire 2002), FGV artifacts reflect shorter-

distance, east-west directionality.  The three extra-local FGV sources represented in both 

Pah Rah and valley data sets (Alder Hill, Gold Lake, and Siegfried Canyon Ridge) are 

located west/northwest of the Pah Rah Range, suggesting some affinity between this 

region and the eastern Sierra Nevada.  Though Steamboat/Lagomarsino quarries are 

southwest/southeast of the Pah Rah Range, the overall pattern of FGV conveyance for the 

area is strongly east-west.  Even more striking are differences in the distances that 

obsidian and FGV were conveyed.  While the most distant FGV source represented in the 
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Pah Rah Range sample (Siegfried Canyon Ridge) is 89 km away, the most distant 

obsidian source (Massacre Lake/Guano Valley) is 222 km north of the Pah Rah Range.  

The average straight-line distance from source to site for FGV sources represented in the 

Pah Rah Range sample is 51.4 km while the average for obsidian sources is 144.7 km. 

Including FGV source data in regional models of toolstone conveyance and site 

settlement produces two main results.  First, it is clear that future toolstone-sourcing 

based models for the area should include western FGV sources.  Based on my further 

refinement of the regional distributions of Alder Hill, Gold Lake, Siegfried Canyon 

Ridge, and Steamboat/Lagomarsino FGV, using only obsidian data clearly does not tell 

the whole story.  Second, for more regionally specific models such as those proposed by 

Delacorte (1997b) for the Pah Rah Range, FGV data both expand and clarify diachronic 

shifts that may have occurred.  Though the addition of FGV data results in subtle shifts 

for the earlier periods modeled by Delacorte (1997b), including FGV data nearly doubles 

the size of his Late component settlement system.  

Based on my results, I believe that such models may oversimplify patterns of 

toolstone conveyance in the western Great Basin.  For both Pah Rah Range and valley 

sites, there is no significant difference between local and non-local FGV source use 

across time until the Terminal Prehistoric Period, when FGV use plummets.  For at least 

some periods, the FGV toolstone conveyance zone that included the Pah Rah Range and 

Truckee Meadows at its eastern edge may be more reflective of residential settlement 

patterns.  If this is the case, then obsidian may have been procured through longer-

distance logistical forays while travelling to/from the northern and southern ends a central 

FGV zone.  In either case, FGV sourcing data add another dimension to models of lithic 
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conveyance and, in turn, socioeconomic networks in the western Great Basin.  

 

Limitations and Further Research         

     

Though the XRF data compiled for this thesis have generally been robust enough 

to assess my hypotheses, there are nevertheless some limitations.  One of the main issues 

is a lack of temporal control over sourced artifacts.  Though I was able to use projectile 

points as index fossils to define broad time ranges, and several sites have radiocarbon 

dates, many FGV artifacts in my sample cannot confidently be assigned to particular time 

periods.  They come from a combination of undated and/or mixed assemblages that may 

span many several thousands of years.  Though this low temporal resolution is not 

incompatible with my research questions, the overall lack of temporal control over 

artifacts other than projectile points is limiting.  Further, because I focused much of my 

sourcing effort on Pah Rah Range sites, I was unable to include the same number and 

types of artifacts in the valley data set.  While including sourcing data from previous 

projects allowed me to expand the number of sites I examined, those data were biased 

heavily towards formal tools.  As such, direct comparisons between the Pah Rah Range 

and valley sites were somewhat difficult.  Finally, although most (80.5%) artifacts 

submitted for geochemical characterization were assigned to either known or chemically 

distinct unknown sources, this high success rate is atypical for projects elsewhere in the 

western Great Basin.  For instance, Waechter (2002) reported that north of the Madeline 

Plains in northeastern California, most XRF sourcing yielded predominantly unknowns.  

It is important to note, however, that additional attention has been devoted to sourcing 
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FGV artifacts and improving our understanding of FGV source locations in the decade 

since Waechter’s work and as such, studies like mine will continue to improve our 

collective understanding of regional FGV source distribution and use. 

My success rate in assigning FGV artifacts to particular geochemical types may 

indicate that that the Pah Rah Range and Truckee Meadows are in a “sweet spot” with 

respect to FGV sourcing studies.  For example, all but two of 74 projectile points were 

assigned to previously known chemical source groups – an impressive 97.3% success 

rate.  While the success rate was substantially lower for other artifact types (from 0% for 

cores and hammerstones to 29% for flake tools), my study and other similar sourcing 

efforts (e.g., Eerkens et al. 2007; Eerkens et al. 2008; Smith 2009) have demonstrated 

that selecting only formal tools (e.g., projectile points) has the potential to obscure lesser 

used sources in assemblages, producing skewed interpretations of land use patterns.  

Although submitting other artifact types may continue to return high rates of unknown 

sources, doing so will ultimately help analysts identify probable source locations based 

on frequencies of artifacts made on those sources.  My thesis provides a case in point: 

high frequencies of Unknown A and B FGV at Pah Rah sites, represented primarily as 

informal tools and debitage, strongly suggest that those sources are situated somewhere 

within or very near that area.  Further, the distribution of Unknown H FGV suggests that 

it may be another regional source.  Though we have yet to refine our understanding of the 

geographic locations and distributions of such sources, identifying their presence and 

mode of use in lithic assemblages is a requisite first step towards that goal 

Additional research into lithic conveyance and toolstone use in the area should 

also include sites east of the Pah Rah Range.  Both archaeological (e.g., Delacorte 1997b; 
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Waechter 2002) and ethnographic (e.g., Lerch et al. 2010) data suggests that the Pah Rah 

Range may represent part of a boundary zone between groups utilizing the Truckee 

Meadows and lands to the east.  The results presented here show that sites in the Pah Rah 

Range have a fairly strong affinity to both sites and FGV sources to the west.  

Conducting more complete sourcing studies for sites to the east and along the Truckee 

River corridor will help us better understand how long the Pah Rah Range has served as a 

boundary zone and how permeable this boundary has been through time.  
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APPENDIX A – PROJECTILE POINT KEY 

 

 
Key to Great Basin and Sierran Projectile Point Types (after Drews 1986) 

1. Point is unshouldered. (DSA and PSA not applicable to both sides)………………………………....2 

1a. Point is shouldered…………………………………………………………………………………….6 

 

2. Basal width/maximum width ratio (Wb/Wm) exceeds .90; weight > 2.5 grams 

 2a. Basal Indentation Ratio (BIR) < .96………………………………….Humboldt Basal Notched 

 2b. BIR > .96; Maximum Width Position (MaxWPos) < 25%...................Martis Triangular 

 

3. Basal width/maximum width ratio exceeds .90; weight < 2.5g 

 3a. MaxWPos < 25%...................................................................................Cottonwood Triangular  

 3b. MaxWPos > 25%...................................................................................Cottonwood Bipointed 

 

4. Wb/Wm < .90; weight > 2.5g 

 4a. BIR < .98…………………………………………………………Humboldt Concave Base A 

 4b. BIR > .98; MaxWPos < 25%..........................................................Martis Leaf Shaped 

 4c. 25% < MaxWPos < 40%.................................................................Steamboat 

 4d. MaxWPos > 40%.............................................................................Martis Stemmed 

 

5. Wb/Wm < .90; weight < 2.5g 

 5a. BIR < .98………………………………………………………….Concave Base B 

 5b. BIR > .98; .50 < Wb/Wm < .98 ...………………………………..Cottonwood Leaf Shaped 

 

6. Point is shouldered. (DSA and PSA measurable on both sides) 

 

7. Notch Opening Index (NOI) > 60, BIR < .97; weight > 2.0g……………Pinto Series 

 

8. PSA > 120; Wb/Wm > .90; weight < 2.0g 

 8a. .90 < BIR < .98……………………………………………………Desert Side-notched 

  a. Concave shape……………………………………………..General Subtype 
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Key to Great Basin and Sierran Projectile Point Types (after Drews 1986) 

  b. Basally notched…………………………………………….Sierran Subtype 

 

9. PSA > 120; Wb/Wm > .90; weight > 2.0g 

 9a. NOI < 20; BIR < .99………………………………………………Northern Side-notched 

 9b. NOI > 20  

  a. BIR > .98…………………………………………………...Elko Side-notched 

  b. .90 < BIR < .98……………………………………………..Martis Side-notched 

  

10. PSA < 95; Wb < 10 or Wb/Wm < .90 

 10a. Weight > 2.5 grams  

  a. BIR > .89; Wb/Wm < .35…………………………………..Elko Contracting Stem 

  b. BIR > .89; Wb/Wm > .35…………………………………..Martis Contracting Stem 

  c. other  

 10b. Weight < 2.5 grams  

  a. BIR < .96; DSA < 160; Wb/Wm < .20 or Wb < 4.5………..Gunther Barbed 

  b. BIR > .96; DSA < 160; Wb/Wm < .20 or Wb < 4.5………..Gunther Short Barbed 

  c. BIR > .96; 160 < DSA < 185; .20 < Wb/Wm < .45………...Gunther Abrupt Shoulder 

  d. BIR > .96; DSA > 185; .20 < Wb/Wm < .45………………..Gunther Round Shoulder 

 

11. 95 < PSA < 130; DSA < 195; Wb < 10.0 

 11a. BIR > .96……………………………………………………………Rosegate Series 

 11b. BIR < .96……………………………………………………………Surprise Valley Split Stem 

 

12. 110 < PSA < 150; DSA < 195; Wb > 10.0 or Wb/Wm < .90 

 12a. BIR < .93…………………………………………………………….Elko Eared 

 12b. BIR > .93…………………………………………………………….Elko Corner-notched 

 

13. 100 < PSA < 150; DSA > 195; Wb > 10.0; Wb/Wm < .90…………………Martis Corner-notched 
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APPENDIX B – XRF RESULTS 

  

 
X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

26Wa1416 1416-1 Biface Steam/Lago  1894 790 2.40 55 89 549 18 242 9 1117 26 24.8 40.5 

    ± 102 33 0.14 17 4 9 4 7 2 25 6   

26Wa1416 1416-2 Biface Steam/Lago  1714 745 2.62 111 91 609 23 255 9 1160 25 28.7 48.7 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1416 1416-3 Debitage Steam/Lago  2010 711 2.62 91 89 593 24 245 8 1181 35 29.9 41.5 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1416 1416-4 Debitage Unknown  3719 687 4.80 97 73 383 23 187 10 436 14 55.6 40.6 

    ± 105 33 0.14 16 4 9 4 7 2 24 6   

26Wa1416 1416-5 Projectile Point Alder Hill  3944 503 3.63 79 67 754 20 230 14 1252 18 57.7 29.2 

    ± 107 33 0.14 17 4 10 4 7 2 25 6   

26Wa1416 1416-6 Projectile Point Steam/Lago  1973 998 2.76 99 95 603 25 255 11 1437 33 22.6 44.6 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1604 1604-01 Projectile Point Alder Hill  3973 404 3.56 89 61 725 17 229 18 1197 17 70.0 28.4 

    ± 106 33 0.14 17 4 10 4 7 2 26 6   

26Wa1604 1604-02 Awl Gold Lake  2445 623 3.31 91 44 474 13 56 6 826 23 42.7 42.9 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1604 1604-03 Core Unknown A  4465 727 4.77 123 36 802 22 184 8 1267 19 52.3 33.7 

    ± 106 33 0.14 17 4 10 4 7 2 25 6   

26Wa1604 1604-04 Projectile Point Steam/Lago  2033 681 2.73 96 94 587 21 256 9 1182 17 32.5 42.7 

    ± 102 33 0.14 16 4 9 4 7 2 26 6   

26Wa1604 1604-05 Uniface Not  2277 435 7.37 104 0 643 6 72 2 0 ND 132.7 100.4 

    ± 102 33 0.14 16 4 9 4 7 3 23 ND   

26Wa1604 1604-06 Core Unknown A  4450 891 4.82 87 36 794 21 181 10 1342 25 43.2 34.1 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 108 33 0.14 17 4 10 4 7 2 25 6   

26Wa1604 1604-07 Projectile Point Steam/Lago  1982 641 2.60 104 91 632 21 244 12 1258 20 33.0 41.9 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1604 1604-08 Projectile Point Alder Hill  3513 404 3.37 62 63 727 21 230 15 1333 25 66.4 30.5 

    ± 105 33 0.14 17 4 10 4 7 2 25 6   

26Wa1604 1604-09 Projectile Point Gold Lake  2492 840 3.75 89 43 489 11 54 6 941 24 35.9 47.5 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1604 1604-10 Projectile Point Steam/Lago  2344 930 3.48 81 90 569 22 227 11 1219 29 30.2 46.9 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1604 1604-11 Biface Alder Hill  3336 413 3.39 67 59 671 19 214 15 1307 22 65.5 32.3 

    ± 104 33 0.14 16 4 9 4 7 2 26 6   

26Wa1604 1604-12 Biface Steam/Lago  1914 627 2.38 86 91 546 20 239 9 1289 23 30.9 39.7 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1604 1604-13 Biface Steam/Lago  2313 820 3.22 80 83 582 23 226 7 1228 9 31.8 44.2 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa1604 1604-14 Biface Steam/Lago  2119 882 2.78 68 88 583 22 238 9 1236 26 25.7 41.8 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1604 1604-15 Biface Steam/Lago  2074 744 2.91 80 89 563 21 239 9 1221 28 31.7 44.6 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1604 1604-16 Flake Tool Unknown A  4555 673 4.19 95 38 841 19 191 10 1205 14 49.7 29.1 

    ± 108 33 0.14 16 4 10 4 7 2 25 6   

26Wa1604 1604-17 Debitage Unknown A  3875 521 3.90 68 41 818 21 182 8 1170 21 59.7 31.9 

    ± 106 33 0.14 17 4 10 4 7 2 25 6   

26Wa1604 1604-18 Flake Tool Unknown  3111 775 4.97 92 3 1332 21 62 3 143 15 51.1 50.2 

    ± 103 33 0.14 18 4 11 4 7 2 25 7   

26Wa1604 1604-19 Flake Tool Unknown  3861 921 5.38 111 15 760 18 126 6 664 10 46.6 43.7 

    ± 105 33 0.14 17 4 10 4 7 2 25 7   

26Wa1604 1604-20 Core Unknown C  2879 606 3.90 43 59 529 16 156 10 779 12 51.4 42.7 

    ± 104 33 0.14 17 4 9 4 7 2 25 6   

26Wa1604 1604-21 Debitage Unknown  2353 825 3.27 187 221 655 19 158 7 845 17 32.0 44.1 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 103 33 0.14 17 5 9 4 7 2 25 6   

26Wa1604 1604-22 Debitage Unknown D  3636 1268 5.86 112 38 968 24 144 5 876 6 36.9 50.5 

    ± 105 34 0.14 17 4 10 4 7 2 25 7   

26Wa1604 1604-23 Biface Gold Lake  2204 804 3.35 88 49 491 10 59 8 963 20 33.6 48.1 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1604 1604-24 Debitage Unknown  2416 737 2.96 79 167 589 19 144 7 811 16 32.5 38.9 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1604 1604-25 Biface Steam/Lago  2207 904 2.86 80 88 595 20 238 8 1190 13 25.7 41.2 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1604 1604-26 Debitage Unknown  4342 560 4.22 82 27 783 19 147 7 985 4 60.0 30.7 

    ± 107 33 0.14 16 4 10 4 7 2 25 7   

26Wa1604 1604-27 Debitage Unknown A  3865 580 3.99 105 35 864 24 174 10 1212 29 54.9 32.6 

    ± 106 33 0.14 16 4 10 4 7 2 25 5   

26Wa1604 1604-28 Debitage Unknown  3917 856 5.69 97 50 684 24 150 12 1012 16 52.9 45.5 

    ± 106 33 0.14 16 4 10 4 7 2 25 6   

26Wa1604 1604-29 Debitage Unknown  5739 718 5.55 105 34 615 37 240 20 1037 3 61.4 30.4 

    ± 109 33 0.14 17 4 10 4 7 2 25 8   

26Wa1604 1604-30 Debitage Unknown  2450 705 2.87 88 134 596 21 130 8 790 19 33.0 37.3 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa1604 1604-31 Debitage Unknown B  3673 897 4.89 93 19 678 18 105 4 663 15 43.6 41.9 

    ± 105 33 0.14 16 4 9 4 7 2 25 6   

26Wa1604 1604-32 Debitage Unknown  4355 787 5.13 59 29 671 22 160 9 955 15 51.9 37.1 

    ± 107 33 0.14 18 4 10 4 7 2 25 6   

26Wa1604 1604-33 Debitage Unknown A  3659 698 3.76 97 41 828 19 186 10 1136 11 43.2 32.5 

    ± 105 33 0.14 16 4 10 4 7 2 25 6   

26Wa1604 1604-34 Debitage Steam/Lago  2210 769 2.96 108 92 603 22 248 11 1167 31 31.1 42.5 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1604 1604-35 Debitage Unknown D  4373 713 4.39 110 28 947 21 146 10 1072 19 49.2 31.7 

    ± 107 33 0.14 17 4 10 4 7 2 25 7   

26Wa1604 1604-36 Debitage Unknown C  3465 490 4.15 58 68 551 20 148 9 854 21 67.4 37.8 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 105 33 0.14 16 4 9 4 7 2 25 5   

26Wa1606 1606-01 Chopper Unknown  NM NM NM 108 24 724 18 135 8 1228 28 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa1606 1606-02 Debitage Unknown F  2072 690 2.66 93 92 616 19 136 10 758 22 31.3 40.9 

    ± 102 33 0.14 16 4 9 4 7 2 24 6   

26Wa1606 1606-03 Debitage Unknown  3598 672 4.45 170 15 828 21 145 10 1061 17 52.8 39.0 

    ± 105 33 0.14 17 4 10 4 7 2 25 6   

26Wa1606 1606-04 Biface Steam/Lago  1914 697 2.57 87 91 607 21 257 12 1229 19 30.0 42.9 

    ± 102 33 0.14 17 4 9 4 7 2 25 6   

26Wa1606 1606-05 Debitage Unknown  3512 938 4.79 114 29 762 23 154 8 1072 11 40.9 42.9 

    ± 105 33 0.14 16 4 10 4 7 2 25 6   

26Wa1606 1606-06 Debitage Unknown A  4053 898 4.17 97 39 845 21 177 9 1296 20 37.2 32.5 

    ± 107 33 0.14 17 4 10 4 7 2 25 6   

26Wa1606 1606-07 Hammerstone Unknown D  3251 537 3.65 113 29 996 22 143 7 993 19 54.4 35.6 

    ± 104 33 0.14 16 4 10 4 7 2 25 6   

26Wa1606 1606-8 Debitage Steam/Lago *  NM NM NM 78 86 588 21 253 8 NM 17 NM NM 

    ± NM NM NM 17 4 9 4 7 2 NM 6   

26Wa1606 1606-9 Debitage Steam/Lago *  NM NM NM 86 84 592 24 241 8 NM 27 NM NM 

    ± NM NM NM 16 4 9 4 7 2 NM 5   

26Wa1606 1606-10 Debitage Unknown G  3992 1044 5.48 97 18 747 19 127 3 846 ND 41.9 43.1 

    ± 107 34 0.14 17 4 10 4 7 2 25 ND   

26Wa1606 1606-11 Debitage Unknown *  2445 610 4.22 77 6 2072 20 106 8 97 13 55.2 54.3 

    ± 102 33 0.14 17 4 12 4 7 2 25 6   

26Wa1606 1606-12 Debitage Steam/Lago *  NM NM NM 119 89 622 26 274 7 NM 27 NM NM 

    ± NM NM NM 16 4 9 4 7 2 NM 6   

26Wa1606 1606-13 Charmstone Unknown  2889 13432 4.09 96 50 601 22 165 9 1724 38 2.5 44.6 

    ± 111 49 0.14 17 4 10 4 7 2 26 6   

26Wa1606 1606-14 Flake Tool Unknown A  3369 867 4.31 86 28 674 23 183 7 922 26 39.8 40.3 

    ± 106 33 0.14 17 4 10 4 7 2 25 6   

26Wa1606 1606-15 Projectile Point Alder Hill  NM NM NM 90 67 721 21 242 19 NM 13 NM NM 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± NM NM NM 16 4 10 4 7 2 NM 6   

26Wa1606 1606-16 Core Unknown A  3735 625 3.97 104 40 811 20 208 11 1131 20 50.8 33.6 

    ± 107 33 0.14 17 4 10 4 7 2 25 6   

26Wa1608 1608-1 Projectile Point Steam/Lago  1982 767 2.47 138 90 581 19 241 9 1231 29 26.3 39.8 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-1001 Flake Tool Steam/Lago  NM NM NM 146 71 524 38 222 16 866 30 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa1608 1608-13 Projectile Point Steam/Lago  2002 686 2.68 96 92 620 22 249 11 1251 31 31.7 42.6 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-14 Biface Steam/Lago  2114 710 2.79 119 90 620 23 251 12 1247 20 31.9 42.0 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-140 Hammerstone Unknown A  3771 688 3.57 62 33 753 21 190 10 1185 21 41.7 30.1 

    ± 107 33 0.14 18 4 10 4 7 2 25 7   

26Wa1608 1608-155a Debitage Unknown C  3368 492 4.43 50 65 535 17 141 9 828 12 71.5 41.5 

    ± 105 33 0.14 17 4 9 4 7 2 25 6   

26Wa1608 1608-155b Debitage Steam/Lago  1735 668 2.17 72 83 530 24 225 4 1203 27 26.6 40.2 

    ± 101 33 0.14 16 4 9 4 7 2 26 6   

26Wa1608 1608-155c Debitage Unknown B  3973 991 4.97 233 21 721 18 108 4 681 16 40.1 39.3 

    ± 105 33 0.14 17 4 10 4 7 2 25 6   

26Wa1608 1608-16 Drill Steam/Lago  2294 732 2.86 100 87 596 20 238 8 1225 24 31.6 39.6 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-162 Hammerstone Unknown A  NM NM NM 103 36 818 23 193 9 NM 24 NM NM 

    ± NM NM NM 17 4 10 4 7 2 NM 6   

26Wa1608 1608-170 Debitage Steam/Lago  2158 749 2.98 181 90 588 21 238 9 1216 33 32.2 43.8 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-174 Biface Steam/Lago  2103 707 2.87 121 92 580 23 238 11 1225 31 32.9 43.4 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-187 Debitage Steam/Lago  2051 721 2.61 114 87 576 21 237 6 1186 27 29.4 40.6 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-188 Projectile Point Gold Lake  2613 878 3.53 84 44 470 15 56 4 943 19 32.4 42.7 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-19 Core Unknown A  NM NM NM 90 37 782 22 200 8 1056 22 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa1608 1608-194 Projectile Point Steam/Lago  2124 875 2.86 120 91 600 22 253 7 1246 26 26.6 42.9 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-2 Biface Steam/Lago  2015 625 2.46 119 92 590 21 256 6 1182 29 32.0 39.1 

    ± 102 33 0.14 18 4 9 4 7 2 25 6   

26Wa1608 1608-20 Projectile Point Unknown  2642 896 3.00 96 46 489 23 267 10 1107 22 27.1 36.1 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-203 Biface Steam/Lago  1955 766 2.69 105 96 590 22 241 8 1269 23 28.5 43.8 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-228 Projectile Point Steam/Lago  2539 933 3.21 125 92 601 20 242 6 1285 24 27.8 40.1 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-231 Biface Steam/Lago  2549 770 3.03 161 84 550 21 231 7 1193 27 31.8 37.7 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-233 Flake Tool Steam/Lago  2354 656 2.86 101 88 584 24 243 12 1160 31 35.3 38.7 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-256 Flake Tool Steam/Lago  2318 771 3.09 76 83 626 20 222 9 1233 26 32.4 42.3 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-262a Biface Gold Lake  2388 698 3.47 101 42 455 15 56 7 954 27 40.0 46.0 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-262b Debitage Unknown B  3848 725 5.17 101 17 686 20 102 9 674 8 56.7 42.2 

    ± 105 33 0.14 17 4 10 4 7 2 25 7   

26Wa1608 1608-268 Projectile Point Steam/Lago  2107 827 2.74 142 88 567 19 229 7 1201 26 27.0 41.5 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-269 Biface Steam/Lago  2088 683 2.68 129 89 560 19 241 9 1281 23 31.8 40.9 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-270 Projectile Point Siegfried CR  2636 988 3.83 135 23 1256 18 87 6 947 29 31.2 45.8 

    ± 103 33 0.14 17 4 10 4 7 2 25 6   

26Wa1608 1608-274 Biface Steam/Lago  2042 753 2.69 233 92 593 21 245 10 1215 35 29.0 41.9 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-291a Debitage Unknown A  5293 740 5.00 171 36 848 21 193 12 1709 25 53.9 29.8 

    ± 109 33 0.14 17 4 10 4 7 2 26 6   

26Wa1608 1608-291b Debitage Unknown  3696 902 6.56 282 44 353 20 119 8 957 17 57.7 55.4 

    ± 105 34 0.14 18 4 9 4 7 2 25 6   

26Wa1608 1608-291c Debitage Steam/Lago  2518 871 3.55 83 91 613 24 250 6 1259 17 32.9 44.6 

    ± 104 33 0.14 17 4 9 4 7 2 25 6   

26Wa1608 1608-291d Debitage Unknown  2473 754 3.14 110 172 638 22 137 7 967 21 33.6 40.3 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-310 Scraper Unknown  3513 195 4.00 105 114 351 21 136 6 2446 21 158.0 36.0 

    ± 108 32 0.14 16 4 9 4 7 2 26 6   

26Wa1608 1608-314 Biface Steam/Lago  1936 714 2.65 97 93 572 21 239 12 1125 22 30.2 43.6 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-319 Flake Tool Alder Hill  4828 1002 4.49 78 54 700 21 209 15 1304 31 36.0 29.4 

    ± 108 34 0.14 17 4 10 4 7 2 25 6   

26Wa1608 1608-335 Debitage Unknown A  4078 1076 4.16 111 32 762 19 178 8 1304 24 31.1 32.2 

    ± 107 34 0.14 17 4 10 4 7 2 25 6   

26Wa1608 1608-340 Scraper Steam/Lago  2132 735 2.77 104 95 616 22 241 8 1190 29 30.6 41.4 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-341 Projectile Point Steam/Lago  2095 673 2.65 115 95 582 25 254 9 1218 26 32.0 40.3 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-344 Flake Tool Steam/Lago  1861 706 2.62 149 98 621 25 255 8 1194 24 30.2 44.8 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-370 Biface Gold Lake  2347 691 3.20 84 44 453 13 54 8 1007 23 37.3 43.3 

    ± 102 33 0.14 17 4 9 4 7 2 25 6   

26Wa1608 1608-412 Debitage Not  704 1292 2.11 48 ND 12 16 20 1 53 80 13.5 94.4 

    ± 98 34 0.14 15 ND 9 4 7 3 25 4   

26Wa1608 1608-426 Projectile Point Alder Hill  3880 500 3.83 131 64 670 17 212 16 1272 23 61.0 31.2 

    ± 106 33 0.14 17 4 9 4 7 2 25 6   

26Wa1608 1608-428 Flake Tool Steam/Lago  2064 916 2.70 99 87 577 20 242 10 1173 33 24.0 41.6 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-430 Debitage Alder Hill  6151 862 6.08 109 37 702 29 205 13 1245 23 56.1 31.0 

    ± 110 33 0.14 17 4 10 4 7 2 25 6   

26Wa1608 1608-47 Biface Steam/Lago  2317 863 3.08 121 84 551 20 230 8 1220 24 28.9 42.2 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-52 Biface Steam/Lago  2398 780 3.12 92 87 582 21 242 12 1199 28 32.3 41.3 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-58 Projectile Point Steam/Lago  2219 704 2.89 89 92 611 22 249 7 1213 29 33.3 41.5 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-59 Biface Steam/Lago  2820 724 3.42 99 96 611 23 255 9 1306 25 38.0 38.4 

    ± 104 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-60 Biface Steam/Lago  2614 644 3.15 126 93 625 24 249 9 1244 28 39.4 38.2 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-67 Projectile Point Steam/Lago  1989 579 2.30 128 100 599 23 257 6 1198 25 32.4 37.2 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1608 1608-68 Biface Steam/Lago  2193 685 2.81 101 98 614 21 252 9 1166 25 33.3 40.8 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-69 Projectile Point Steam/Lago  2135 654 2.77 115 87 645 19 245 11 1240 25 34.4 41.4 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1608 1608-80 Debitage Unknown A  4303 872 4.12 99 42 771 19 176 9 1462 16 37.9 30.3 

    ± 107 33 0.14 17 4 10 4 7 2 25 6   

26Wa1608 1608-83 Debitage Unknown A  4210 726 4.24 108 37 831 23 184 10 1582 35 46.7 31.8 

    ± 107 33 0.14 17 4 10 4 7 2 26 6   

26Wa1609 1609-1000 Core Unknown A  4068 1043 5.25 100 24 684 23 191 11 1071 11 40.2 40.5 

    ± 108 34 0.14 17 4 10 4 7 2 25 6   

26Wa1609 1609-1001 Debitage Unknown  6209 2807 7.51 153 15 596 20 164 15 451 10 21.4 37.8 

    ± 112 36 0.14 18 4 10 4 7 2 24 7   

26Wa1609 1609-1002 Debitage Steam/Lago  1994 620 2.55 284 89 602 22 264 8 1163 34 33.5 40.9 

    ± 103 33 0.14 17 4 9 4 7 2 25 6   

26Wa1609 1609-1003 Debitage Steam/Lago  1737 974 2.54 81 90 559 22 249 9 1131 19 21.3 46.7 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1609 1609-1004 Debitage Unknown  5604 948 5.04 67 1 502 26 165 9 444 7 42.5 28.3 

    ± 109 33 0.14 17 4 9 4 7 2 25 6   

26Wa1609 1609-13 Projectile Point Steam/Lago  2245 998 3.32 347 85 579 19 255 8 1189 35 26.9 46.8 

    ± 104 33 0.14 18 4 9 4 7 2 25 6   

26Wa1609 1609-142 Projectile Point Steam/Lago  NM NM NM 101 91 609 21 265 9 1178 21 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

26Wa1609 1609-15 Projectile Point Unknown *  NM NM NM 72 46 522 26 304 13 1127 19 NM NM 

    ± NM NM NM 17 4 9 4 7 2 25 6   

26Wa1609 1609-16 Projectile Point Steam/Lago  NM NM NM 118 97 609 25 263 9 1156 20 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

26Wa1609 1609-19 Flake Tool Unknown  4256 828 4.02 99 48 904 20 212 10 1299 33 39.0 29.9 

    ± 108 33 0.14 16 4 10 4 7 2 25 6   

26Wa1609 1609-20 Flake Tool Unknown A  4348 895 4.42 212 39 786 17 196 11 1238 23 39.6 32.1 

    ± 108 33 0.14 18 4 10 4 7 2 25 6   

26Wa1609 1609-21 Flake Tool Unknown A  4536 706 4.52 301 37 807 19 209 10 1493 28 51.1 31.4 

    ± 108 33 0.14 18 4 10 4 7 2 25 6   

26Wa1609 1609-22 Flake Tool Unknown  5914 1094 6.13 88 3 617 23 135 9 412 16 44.6 32.5 

    ± 110 34 0.14 17 4 10 4 7 2 24 6   

26Wa1609 1609-23 Flake Tool Unknown A  4095 989 4.37 153 37 770 19 199 10 1273 27 35.4 33.7 

    ± 109 34 0.14 17 4 10 4 7 2 25 6   

26Wa1609 1609-24 Flake Tool Unknown A  4201 754 4.23 179 39 779 22 200 8 1214 27 44.9 31.8 

    ± 108 33 0.14 17 4 10 4 7 2 25 6   

26Wa1609 1609-25 Flake Tool Steam/Lago  1945 1026 2.93 341 96 631 26 273 10 1180 27 23.2 47.8 

    ± 103 33 0.14 17 4 9 4 7 2 25 6   

26Wa1609 1609-26 Flake Tool Unknown A  3714 492 3.25 116 38 844 21 209 9 1496 33 52.9 27.8 

    ± 106 33 0.14 17 4 10 4 7 2 26 6   

26Wa1609 1609-27 Flake Tool Steam/Lago  2113 858 3.29 107 93 571 19 253 11 1146 25 31.0 49.2 

    ± 104 33 0.14 16 4 9 4 7 2 25 6   

26Wa1609 1609-28 Flake Tool Steam/Lago  2286 861 3.35 173 89 579 23 261 9 1158 23 31.4 46.3 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 103 33 0.14 17 4 9 4 7 2 25 6   

26Wa1609 1609-333 Biface Steam/Lago  NM NM NM 86 91 615 21 261 8 1116 22 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

26Wa1609 1609-42a Debitage Unknown  11242 449 7.09 63 32 165 19 365 24 425 10 123.8 19.8 

    ± 122 33 0.14 17 4 9 4 7 2 24 6   

26Wa1609 1609-42b Debitage Alder Hill  NM NM NM 94 68 711 19 236 16 NM 20 NM NM 

    ± NM NM NM 17 4 10 4 7 2 NM 6   

26Wa1609 1609-42c Debitage Unknown A  4178 1111 4.45 118 43 816 17 206 9 1143 29 32.2 33.6 

    ± 108 34 0.14 17 4 10 4 7 2 25 6   

26Wa1609 1609-42d Flake Tool Steam/Lago  2131 937 3.25 198 88 579 22 260 12 1149 24 28.1 48.3 

    ± 104 33 0.14 17 4 9 4 7 2 25 6   

26Wa1609 1609-42e Debitage Steam/Lago  2041 918 3.01 128 88 553 18 253 10 1146 22 26.6 46.8 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa1609 1609-42f Debitage Unknown G  4146 1202 5.99 214 16 725 22 125 5 734 12 39.7 45.2 

    ± 108 34 0.14 18 4 10 4 7 2 25 6   

26Wa1609 1609-43 Biface Steam/Lago  1802 829 2.36 142 90 596 23 256 10 1173 34 23.3 41.9 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa1609 1609-433 Biface Steam/Lago  NM NM NM 100 97 624 25 254 8 1121 21 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

26Wa1609 1609-589 Biface Steam/Lago  NM NM NM 105 100 658 22 258 9 1121 19 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 5   

26Wa1609 1609-590 Biface Steam/Lago  NM NM NM 119 84 581 22 240 8 1089 17 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

26Wa1609 1609-6 Flake Tool Steam/Lago  2183 909 3.02 109 88 566 21 251 8 1156 26 26.9 43.9 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa1609 1609-8 Flake Tool Steam/Lago  1935 692 2.55 113 86 552 24 249 7 1097 18 30.0 42.0 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa1612 1612-1 Projectile Point Alder Hill  3956 464 3.32 85 62 696 20 229 16 1202 15 57.2 26.7 

    ± 107 33 0.14 17 4 10 4 7 2 25 6   

26Wa1612 1612-2 Projectile Point Steam/Lago  2006 769 2.85 101 90 617 23 258 9 1156 19 30.1 45.1 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa1612 1612-3 Debitage Unknown  3152 910 4.60 91 88 1205 24 145 11 1262 13 40.4 45.9 

    ± 106 33 0.14 18 4 11 4 7 2 25 7   

26Wa1612 1612-4 Debitage Unknown *  NM NM NM 107 31 664 22 134 8 NM 14 NM NM 

    ± NM NM NM 17 4 10 4 7 2 NM 6   

26Wa1612 1612-5 Debitage Steam/Lago *  NM NM NM 159 85 577 20 250 14 NM 20 NM NM 

    ± NM NM NM 17 4 9 4 7 2 NM 6   

26Wa2065 2065-1 Flake Tool Steam/Lago  2338 930 3.11 99 85 648 19 252 10 1114 23 27.1 42.2 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa2065 2065-10 Drill Alder Hill *  3504 393 3.02 76 61 661 17 226 13 1206 16 61.4 27.5 

    ± 105 33 0.14 17 4 10 4 7 2 25 6   

26Wa2065 2065-11 Biface Steam/Lago  1827 924 2.57 104 89 541 19 251 9 1171 15 22.7 44.9 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa2065 2065-12 Hammerstone Unknown  NM NM NM 76 13 568 28 204 16 308 4 NM NM 

    ± NM NM NM 18 4 10 4 7 2 24 8   

26Wa2065 2065-13 Debitage Unknown  3483 446 4.38 39 93 111 26 147 10 296 3 77.6 39.6 

    ± 105 33 0.14 17 4 9 4 7 2 24 8   

26Wa2065 2065-14 Biface Alder Hill *  3854 535 3.21 82 59 692 19 238 15 1216 11 48.2 26.5 

    ± 105 33 0.14 17 4 10 4 7 2 26 6   

26Wa2065 2065-15 Projectile Point Alder Hill  NM NM NM 83 64 699 20 240 16 NM 18 NM NM 

    ± NM NM NM 16 4 10 4 7 2 NM 6   

26Wa2065 2065-16 Debitage Unknown  6932 959 6.47 100 3 482 24 146 8 504 10 53.6 29.3 

    ± 111 33 0.14 18 4 9 4 7 2 25 7   

26Wa2065 2065-17 Core Unknown  4902 1086 5.70 154 61 424 27 156 10 486 14 41.9 36.5 

    ± 107 34 0.14 18 4 9 4 7 2 25 7   

26Wa2065 2065-18 Projectile Point Steam/Lago  2219 881 2.99 95 86 570 22 250 6 1178 14 27.5 42.8 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa2065 2065-19 Debitage Unknown  3128 1714 7.40 120 2 466 39 173 11 199 8 34.4 73.6 

    ± 104 35 0.14 17 4 9 4 7 2 24 7   

26Wa2065 2065-2 Biface Steam/Lago  1751 540 2.12 83 80 551 21 246 7 1056 30 32.0 38.9 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 101 33 0.14 16 4 9 4 7 2 25 6   

26Wa2065 2065-20 Flake Tool Unknown  2703 2213 8.76 111 40 319 19 163 11 256 16 31.5 100.5 

    ± 104 35 0.14 18 4 9 4 7 2 24 7   

26Wa2065 2065-21 Debitage Unknown  5247 1157 6.49 99 0 564 25 164 10 246 10 44.6 38.7 

    ± 109 34 0.14 18 4 10 4 7 2 24 7   

26Wa2065 2065-22 Hammerstone Unknown  3037 612 4.57 111 37 451 16 152 6 503 19 59.4 47.3 

    ± 104 33 0.14 17 4 9 4 7 2 24 6   

26Wa2065 2065-23 Debitage Unknown  4002 683 4.60 106 5 550 19 135 6 262 8 53.7 36.2 

    ± 106 33 0.14 18 4 10 4 7 2 25 8   

26Wa2065 2065-24 Debitage Unknown  3704 1010 5.06 157 45 453 20 125 11 492 32 40.1 42.9 

    ± 106 33 0.14 17 4 9 4 7 2 25 6   

26Wa2065 2065-25 Debitage Steam/Lago  2047 929 2.94 88 82 558 20 253 10 1147 26 25.7 45.6 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa2065 2065-26 Biface Steam/Lago  1874 875 3.19 69 88 528 19 241 8 1212 27 29.5 53.8 

    ± 103 33 0.14 17 4 9 4 7 2 25 6   

26Wa2065 2065-27 Projectile Point Steam/Lago *  NM NM NM 96 90 578 23 260 12 NM 23 NM NM 

    ± NM NM NM 16 4 9 4 7 2 NM 6   

26Wa2065 2065-28 Biface Steam/Lago *  NM NM NM 95 92 564 21 250 7 NM 21 NM NM 

    ± NM NM NM 16 4 9 4 7 2 NM 6   

26Wa2065 2065-29 Projectile Point Gold Lake  2766 1068 3.94 65 47 450 10 67 7 964 29 29.7 45.0 

    ± 104 33 0.14 17 4 9 4 7 2 25 6   

26Wa2065 2065-3 Debitage Unknown  3803 1043 4.46 120 78 695 20 118 4 648 24 34.3 37.0 

    ± 105 33 0.14 17 4 10 4 7 2 25 6   

26Wa2065 2065-30 Biface Steam/Lago  1951 918 2.68 103 90 575 24 258 9 1142 24 23.8 43.7 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa2065 2065-31 Debitage Steam/Lago  2153 852 3.06 84 95 598 25 259 9 1130 21 29.1 45.1 

    ± 103 33 0.14 16 4 9 4 7 2 26 6   

26Wa2065 2065-32 Biface Gold Lake *  NM NM NM 82 48 482 14 61 8 NM 27 NM NM 

    ± NM NM NM 16 4 9 4 7 2 NM 6   

26Wa2065 2065-33 Projectile Point Steam/Lago *  NM NM NM 118 98 617 21 262 8 NM 23 NM NM 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± NM NM NM 16 4 9 4 7 2 NM 6   

26Wa2065 2065-34 Projectile Point Alder Hill  NM NM NM 116 63 759 20 232 15 NM 23 NM NM 

    ± NM NM NM 16 4 10 4 7 2 NM 6   

26Wa2065 2065-35 Biface Steam/Lago  2035 964 3.08 80 94 579 20 241 8 1174 26 25.9 47.9 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa2065 2065-36 Biface Unknown H *  NM NM NM 92 107 699 23 270 11 NM 19 NM NM 

    ± NM NM NM 16 4 9 4 7 2 NM 6   

26Wa2065 2065-4 Projectile Point Gold Lake  2323 736 3.00 96 41 444 15 66 6 865 33 33.0 41.0 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa2065 2065-5 Biface Steam/Lago  NM NM NM 83 84 535 18 252 11 NM 26 NM NM 

    ± NM NM NM 17 4 9 4 7 2 NM 6   

26Wa2065 2065-6 Debitage Not  3417 115 2.98 27 0 24 3 124 4 702 33 194.9 27.8 

    ± 104 32 0.14 17 4 9 5 7 2 24 5   

26Wa2065 2065-7 Biface Steam/Lago  1999 619 2.34 91 89 578 22 257 7 1131 25 30.9 37.5 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa2065 2065-8 Projectile Point Steam/Lago  1872 679 2.19 101 89 561 23 252 10 1120 37 26.4 37.6 

    ± 101 33 0.14 16 4 9 4 7 2 26 6   

26Wa2065 2065-9 Projectile Point Steam/Lago *  NM NM NM 96 88 541 20 247 11 NM 20 NM NM 

    ± NM NM NM 16 4 9 4 7 2 NM 6   

26Wa2201 2201-1 Projectile Point Siegfried CR  NM NM NM 92 27 1192 19 80 5 836 22 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa2201 2201-10 Biface Steam/Lago *  NM NM NM 55 86 555 19 240 10 944 30 NM NM 

    ± NM NM NM 18 4 9 4 7 2 26 6   

26Wa2201 2201-2 Projectile Point Steam/Lago  NM NM NM 95 85 639 23 246 8 1052 31 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

26Wa2201 2201-4 Projectile Point Gold Lake  NM NM NM 74 48 484 14 58 6 869 32 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

26Wa3017 3017-1 Projectile Point Gold Lake  2254 668 3.17 73 35 481 14 60 7 851 17 38.3 44.6 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa3017 3017-10 Biface Steam/Lago  2044 815 2.99 85 94 600 20 266 10 1166 27 29.7 46.3 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 103 33 0.14 17 4 9 4 7 2 26 6   

26Wa3017 3017-11 Biface Siegfried CR*  NM NM NM 97 23 1219 16 103 6 NM 29 52.8 47.3 

    ± NM NM NM 17 4 10 4 7 2 NM 6   

26Wa3017 3017-12 Biface Unknown  1221 465 4.62 343 86 213 29 183 4 787 23 78.6 117.4 

    ± 100 33 0.14 17 4 9 4 7 2 25 5   

26Wa3017 3017-13 Biface Steam/Lago  2082 786 2.87 80 87 577 21 248 9 1178 31 29.6 43.9 

    ± 103 33 0.14 16 4 9 4 7 2 25 5   

26Wa3017 3017-14 Biface Steam/Lago  2181 1119 3.40 109 98 605 26 267 10 1205 23 24.6 49.3 

    ± 103 34 0.14 16 4 9 4 7 2 25 6   

26Wa3017 3017-15 Biface Alder Hill  4542 740 4.26 89 63 703 18 234 18 1296 13 46.0 29.6 

    ± 108 33 0.14 17 4 10 4 7 2 25 6   

26Wa3017 3017-16 Biface Siegfried CR  2701 935 4.39 86 25 1188 16 95 3 922 11 37.6 51.1 

    ± 104 33 0.14 17 4 10 4 7 2 25 6   

26Wa3017 3017-17 Biface Alder Hill *  NM NM NM 70 66 697 18 222 14 1202 24 58.2 27.3 

    ± NM NM NM 17 4 10 4 7 2 26 6   

26Wa3017 3017-18 Biface Unknown H  1302 665 1.60 124 115 698 24 280 12 1095 23 20.1 40.1 

    ± 100 33 0.14 18 5 10 4 7 2 26 7   

26Wa3017 3017-19 Biface Steam/Lago  1727 1016 2.86 92 83 592 25 248 7 1169 18 22.9 52.5 

    ± 102 33 0.14 17 4 9 4 7 2 25 6   

26Wa3017 3017-2 Projectile Point Steam/Lago  1967 790 2.93 87 96 611 22 263 7 1157 28 30.1 47.3 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa3017 3017-20 Debitage Unknown C  3286 628 4.42 63 69 534 20 165 8 835 12 56.1 42.3 

    ± 105 33 0.14 17 4 9 4 7 2 25 6   

26Wa3017 3017-21 Flake Tool Unknown F  1923 719 2.67 89 94 638 19 141 6 719 25 30.2 44.2 

    ± 102 33 0.14 16 4 9 4 7 2 25 5   

26Wa3017 3017-22 Biface Steam/Lago  1612 786 2.24 118 110 659 24 276 14 1200 30 23.3 44.4 

    ± 101 33 0.14 16 4 9 4 7 2 26 6   

26Wa3017 3017-23 Biface Unknown E  3206 479 4.97 43 43 616 17 163 12 1007 18 82.2 48.7 

    ± 105 33 0.14 18 4 10 4 7 2 25 6   

26Wa3017 3017-24 Flake Tool Unknown C  2830 469 3.92 55 65 528 22 179 12 680 22 66.4 43.7 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± 104 33 0.14 16 4 9 4 7 2 25 6   

26Wa3017 3017-25 Flake Tool Unknown B  2751 619 3.79 93 19 687 19 107 6 656 8 49.1 43.6 

    ± 103 33 0.14 17 4 10 4 7 2 25 7   

26Wa3017 3017-26 Flake Tool Unknown  3140 777 7.44 129 53 262 31 159 10 811 15 75.7 73.8 

    ± 105 33 0.14 16 4 9 4 7 2 25 6   

26Wa3017 3017-27 Biface Unknown E  3741 860 5.50 104 75 600 24 170 12 1133 19 50.9 46.1 

    ± 107 33 0.14 16 4 9 4 7 2 25 6   

26Wa3017 3017-28 Debitage Unknown C  2583 634 4.73 56 56 507 16 142 7 737 2 59.3 57.4 

    ± 104 33 0.14 17 4 9 4 7 2 25 11   

26Wa3017 3017-29 Flake Tool Unknown E  3991 892 5.26 77 63 606 22 164 9 1128 11 47.0 41.4 

    ± 107 33 0.14 17 4 9 4 7 2 25 6   

26Wa3017 3017-3 Projectile Point Alder Hill  4438 561 3.29 96 71 751 19 270 23 1391 23 47.0 23.6 

    ± 108 33 0.14 16 4 10 4 7 2 26 6   

26Wa3017 3017-30 Biface Unknown  3139 626 4.10 95 50 704 16 161 7 1050 23 52.2 41.2 

    ± 104 33 0.14 16 4 9 4 7 2 25 5   

26Wa3017 3017-31 Debitage Unknown  4726 731 5.00 95 29 1047 19 167 7 1140 22 54.5 33.3 

    ± 108 33 0.14 17 4 10 4 7 2 25 6   

26Wa3017 3017-32 Projectile Point Gold Lake  2321 756 3.17 92 39 472 11 57 6 802 15 33.9 43.4 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

26Wa3017 3017-4 Projectile Point Steam/Lago *  NM NM NM 80 102 595 24 259 12 NM 36 29.5 53.5 

    ± NM NM NM 17 4 9 4 7 2 NM 6   

26Wa3017 3017-5 Biface Alder Hill  4248 567 3.97 97 66 706 17 228 19 1243 10 55.9 29.6 

    ± 108 33 0.14 16 4 10 4 7 2 25 6   

26Wa3017 3017-6 Biface Steam/Lago  1830 825 2.89 94 93 620 23 260 11 1166 25 28.4 50.1 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

26Wa3017 3017-7 Biface Siegfried CR  2249 593 3.47 111 28 1365 19 99 5 993 28 46.9 48.7 

    ± 103 33 0.14 17 4 11 4 7 2 25 6   

26Wa3017 3017-8 Biface Alder Hill  3409 446 3.21 71 63 704 20 215 19 1191 24 57.6 30.0 

    ± 105 33 0.14 16 4 10 4 7 2 25 6   

26Wa3017 3017-9 Biface Unknown H *  NM NM NM 156 110 694 22 281 11 NM 36 29.1 50.3 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± NM NM NM 16 4 10 4 7 2 NM 6   

26Wa3017 353-2 Projectile Point Gold Lake   - - - - - - - - - - - - - 

26Wa3017 373-10 Projectile Point Steam/Lago  - - - - - - - - - - - - - 

26Wa3017 87-2 Projectile Point Steam/Lago  - - - - - - - - - - - - - 

26Wa3017 366-3 Projectile Point Alder Hill  - - - - - - - - - - - - - 

26Wa3017 137-1 Projectile Point Gold Lake  - - - - - - - - - - - - - 

26Wa3017 142-1 Projectile Point Steam/Lago  - - - - - - - - - - - - - 

26Wa3017 212-9 Projectile Point Steam/Lago  - - - - - - - - - - - - - 

26Wa3017 362-7 Projectile Point Steam/Lago  - - - - - - - - - - - - - 

26Wa3017 171-2 Projectile Point Steam/Lago  - - - - - - - - - - - - - 

26Wa3017 308-5 Projectile Point Steam/Lago  - - - - - - - - - - - - - 

26Wa3017 656-7 Projectile Point Steam/Lago  - - - - - - - - - - - - - 

26Wa5604 5604-3 Projectile Point Siegfried CR  NM NM NM 79 25 1232 18 87 4 806 28 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa5604 5604-6 Projectile Point Gold Lake  NM NM NM 59 43 491 15 57 6 842 30 NM NM 

    ± NM NM NM 17 4 9 4 7 2 25 6   

26Wa5606 5606-1 Biface Gold Lake  NM NM NM 95 41 448 11 52 8 818 31 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 5   

26Wa5606 5606-11 Debitage Unknown  NM NM NM 28 -2 490 8 68 2 2 6 NM NM 

    ± NM NM NM 19 52 9 4 7 2 23 7   

26Wa5606 5606-2 Biface Steam/Lago  NM NM NM 74 90 608 19 240 9 1068 36 NM NM 

    ± NM NM NM 17 4 9 4 7 2 25 6   

26Wa5606 5606-3 Projectile Point Steam/Lago  NM NM NM 57 91 558 19 256 8 1216 26 NM NM 

    ± NM NM NM 18 4 9 4 7 2 25 6   

26Wa5610 5610-121 Biface Steam/Lago  NM NM NM 80 85 554 20 241 10 1197 17 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

26Wa5610 5610-131 Biface Steam/Lago  NM NM NM 90 98 632 25 260 8 1142 32 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 5   

26Wa5610 5610-166 Debitage Unknown B  NM NM NM 88 14 696 15 112 8 707 11 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 7   
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

26Wa5610 5610-237 Flake Tool Unknown A  NM NM NM 98 36 823 18 188 6 1221 15 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa5610 5610-241 Debitage Unknown B  NM NM NM 119 20 725 18 113 7 709 11 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 7   

26Wa5610 5610-25 Projectile Point Gold Lake  NM NM NM 86 45 470 13 69 8 921 43 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

                  

26Wa5610 5610-255 Biface Alder Hill  NM NM NM 84 60 714 20 212 16 1247 12 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa5610 5610-274 Core Unknown A  NM NM NM 70 37 760 29 223 15 1425 24 NM NM 

    ± NM NM NM 17 4 10 4 7 2 26 6   

26Wa5610 5610-40 Biface Steam/Lago  NM NM NM 74 87 600 24 263 10 1162 26 NM NM 

    ± NM NM NM 17 4 9 4 7 2 25 6   

26Wa5610 5610-426 Debitage Unknown C  NM NM NM 57 58 577 14 151 6 894 16 NM NM 

    ± NM NM NM 17 4 9 4 7 2 25 6   

26Wa5611 5611-12 Core Unknown A  NM NM NM 87 26 829 26 176 9 984 23 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa5611 5611-16 Debitage Unknown A  NM NM NM 108 38 873 22 197 10 1429 21 NM NM 

    ± NM NM NM 16 4 10 4 7 2 26 6   

26Wa5611 5611-23 Flake Tool Unknown  NM NM NM 55 82 503 19 139 12 889 10 NM NM 

    ± NM NM NM 17 4 9 4 7 2 25 6   

26Wa5611 5611-60 Debitage Unknown B  NM NM NM 160 18 754 20 114 7 672 18 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa5611 5611-8 Biface Unknown  NM NM NM 117 102 665 24 260 11 1275 36 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

26Wa5611 5611-87 Debitage Unknown A  NM NM NM 71 33 630 26 172 12 1079 19 NM NM 

    ± NM NM NM 18 4 10 4 7 2 26 6   

26Wa5612 5612-161 Biface Unknown  NM NM NM 164 59 1001 22 178 16 1034 39 NM NM 

    ± NM NM NM 27 6 15 5 9 3 27 13   

26Wa5612 5612-170 Biface Steam/Lago *  NM NM NM 98 98 648 24 250 7 NM 26 NM NM 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± NM NM NM 16 4 9 4 7 2 NM 6   

26Wa5612 5612-185 Debitage Unknown B  NM NM NM 96 16 691 18 103 4 626 22 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa5612 5612-193 Projectile Point Steam/Lago  NM NM NM 96 90 583 21 242 11 1277 30 NM NM 

    ± NM NM NM 17 4 9 4 7 2 25 6   

26Wa5612 5612-218 Biface Steam/Lago  NM NM NM 171 82 560 18 226 8 1230 23 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

26Wa5612 5612-253 Debitage Unknown A  NM NM NM 99 39 796 24 169 9 1286 21 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa5612 5612-284 Flake Tool Unknown  NM NM NM 22 77 47 11 75 3 498 20 NM NM 

    ± NM NM NM 19 4 9 4 7 2 24 6   

26Wa5612 5612-287 Debitage Unknown A  NM NM NM 59 38 780 17 161 12 1246 9 NM NM 

    ± NM NM NM 18 4 10 4 7 2 25 7   

26Wa5612 5612-45 Core Unknown A  NM NM NM 73 36 754 20 161 15 1129 25 NM NM 

    ± NM NM NM 18 4 10 4 7 2 26 7   

26Wa5638 5638-12 Biface Steam/Lago  NM NM NM 106 93 587 24 248 8 1142 23 NM NM 

    ± NM NM NM 17 4 9 4 7 2 25 6   

26Wa5638 5638-120 Debitage Unknown A *  NM NM NM 111 31 784 20 165 10 1218 23 NM NM 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa5638 5638-34 Projectile Point Steam/Lago *  NM NM NM 84 88 608 20 240 7 NM 25 NM NM 

    ± NM NM NM 16 4 9 4 7 2 NM 5   

26Wa5638 5638-59 Flake Tool Unknown  NM NM NM 119 43 810 19 124 7 949 27 NM NM 

    ± NM NM NM 16 4 10 4 7 2 25 5   

26Wa5638 5638-77 Biface Steam/Lago *  NM NM NM 94 91 614 21 243 11 1139 28 NM NM 

    ± NM NM NM 16 4 9 4 7 2 25 6   

26Wa5638 5638-87 Core Unknown B  NM NM NM 100 19 702 23 118 10 590 7 NM NM 

    ± NM NM NM 18 4 10 4 7 2 25 8   

26Wa5638 5638-94 Projectile Point Steam/Lago *  NM NM NM 102 87 574 22 244 10 1139 25 NM NM 

    ± NM NM NM 17 4 9 4 7 2 26 6   

26Wa5638 5638-98 Flake Tool Unknown *  NM NM NM 70 76 620 21 114 8 614 26 NM NM 
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

    ± NM NM NM 17 4 10 4 7 2 25 6   

26Wa7522 2758 Projectile Point Alder Hill  - - - - - - - - - - - - - 

26Wa7522 2768 Projectile Point Steam/Lago  - - - - - - - - - - - - - 

26Wa7522 2753 Projectile Point Gold Lake  - - - - - - - - - - - - - 

26Wa7522 2755 Projectile Point Alder Hill  - - - - - - - - - - - - - 

26Wa7522 2756 Projectile Point Gold Lake  - - - - - - - - - - - - - 

26Wa7522 2759 Projectile Point Gold Lake  - - - - - - - - - - - - - 

26Wa7522 2853 Biface Not  - - - - - - - - - - - - - 

26Wa7522 4099 Biface Alder Hill  - - - - - - - - - - - - - 

26Wa7522 4107 Biface Steam/Lago  - - - - - - - - - - - - - 

26Wa7522 4113 Biface Not  - - - - - - - - - - - - - 

26Wa7522 4162 Biface Alder Hill  - - - - - - - - - - - - - 

26Wa7522 4188 Biface Gold Lake  - - - - - - - - - - - - - 

26Wa7522 4189 Biface Alder Hill  - - - - - - - - - - - - - 

26Wa8451 11 Projectile Point Steam/Lago  2132 1023 3.27 90 94 589 20 261 10 1184 28 26 49 

    ± 103 34 0.14 17 4 9 4 7 2 25 6   

26Wa8451 13 Core Unknown  1758 692 2.57 46 41 438 17 124 7 577 11 30 47 

    ± 101 33 0.14 16 4 9 4 7 2 24 6   

26Wa8451 14 Core Unknown  3950 1085 5.37 113 11 742 17 119 8 778 28 40 43 

    ± 106 34 0.14 17 4 10 4 7 2 25 6   

26Wa8451 30 Debitage Unknown  NM NM NM 115 23 788 19 119 7 668 23 39 36 

    ± NM NM NM 16 4 10 4 7 2 25 6   

26Wa8451 56 Debitage Unknown  3683 921 5.35 107 16 725 18 117 5 636 ND 46 46 

    ± 105 33 0.14 17 4 10 4 7 2 25 ND   

26Wa8451 59 Debitage Unknown  1860 261 2.75 16 36 465 18 121 7 496 ND 83 47 

    ± 101 32 0.14 22 4 9 4 7 2 24 ND   

26Wa8451 63 Debitage Unknown  4928 1730 4.65 82 31 1053 20 169 12 1339 24 22 30 

    ± 109 35 0.14 17 4 10 4 7 2 25 6   

26Wa8451 101 Geol Sample Unknown  5218 1822 7.68 116 0 362 18 97 4 1844 27 34 46 

    ± 109 35 0.14 17 4 9 4 7 2 26 6   
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X-Ray Fluorescence Data 

Site 

Number 

Catalog 

Number 
Artifact Type 

Geochemical 

Source 

 Trace Elements (in ppm) Ratios 

 Ti Mn Fe202
+ Zn Rb Sr Y Zr Nb Ba Pb Fe:Mn Fe:Ti 

Frear Site FS-1 Projectile Point Steam/Lago  2055 807 3.01 95 86 591 23 244 11 1179 27 30.2 46.5 

    ± 103 33 0.14 17 4 9 4 7 2 25 6   

Frear Site FS-10 Debitage Unknown A  4169 537 4.06 104 40 803 16 181 12 1126 14 60.3 30.8 

    ± 107 33 0.14 17 4 10 4 7 2 25 6   

Frear Site FS-2 Projectile Point Steam/Lago  1711 588 2.18 100 92 600 24 260 9 1145 27 30.3 40.9 

    ± 101 33 0.14 16 4 9 4 7 2 25 5   

                  

Frear Site FS-3 Projectile Point Steam/Lago  2306 1048 3.27 85 91 602 23 250 9 1273 24 25.3 44.9 

    ± 103 34 0.14 17 4 9 4 7 2 25 6   

Frear Site FS-4 Biface Steam/Lago  NM NM NM 100 90 562 22 245 9 NM 23 30.9 34.6 

    ± 101 33 0.14 16 4 9 4 7 2 NM 6   

Frear Site FS-5 Projectile Point Gold Lake  2011 758 2.75 69 43 488 13 67 6 943 26 29.5 43.6 

    ± 102 33 0.14 16 4 9 4 7 2 25 6   

Frear Site FS-6 Biface Steam/Lago  2393 738 2.90 82 87 586 21 251 7 1176 29 31.8 38.6 

    ± 103 33 0.14 16 4 9 4 7 2 25 6   

Frear Site FS-7 Flake Tool Unknown  3466 643 4.61 87 25 844 19 123 5 735 14 57.1 41.9 

    ± 105 33 0.14 17 4 10 4 7 2 25 7   

Frear Site FS-8 Core Unknown A  2672 452 2.29 66 37 693 18 174 11 1077 15 41.1 27.6 

    ± 103 33 0.14 18 4 10 4 7 2 25 6   

Frear Site FS-9 Biface Steam/Lago  2205 637 2.53 62 85 525 20 234 8 1203 28 32.2 36.6 

    ± 103 33 0.14 17 4 9 4 7 2 25 6   
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APPENDIX C – ARTIFACT DATA 

  

 
Appendix C: Artifact Data - Bifaces 

Site 

Number 

Artifact 

Number Stage Fragment Blank Other Description 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

26Wa1416 1416-1 Stage 4 Distal Indeterminate - 24 17 6 

26Wa1416 1416-2 Stage 3 End Indeterminate Cortex present 57 33 17 

26Wa1604 1604-11 Stage 4 Distal Indeterminate Elongate distal end; slight polish on high spots 

and tip 

28 14 7 

26Wa1604 1604-12 Stage 4 Lateral Indeterminate - 23 22 9 

26Wa1604 1604-13 Stage 4 Distal Indeterminate - 24 23 7 

26Wa1604 1604-14 Stage 5 Distal Indeterminate - 20 21 5 

26Wa1604 1604-15 Stage 4 Midsection Indeterminate - 29 23 10 

26Wa1604 1604-23 Stage 5 Midsection Indeterminate - 22 16 6 

26Wa1604 1604-25 Stage 5 Midsection Indeterminate - 28 24 7 

26Wa1606 1606-04 Stage 3 End Indeterminate - 32 26 11 

26Wa1608 1608-2 Stage 3 Lateral Indeterminate - 33 15 8 

26Wa1608 1608-14 Stage 5 Complete Indeterminate Possible projectile point preform 35 21 8 

26Wa1608 1608-47 Stage 3 End Indeterminate - 32 21 10 

26Wa1608 1608-52 Stage 5 Proximal Flake Slight polish on margins; possible knife 40 30 9 

26Wa1608 1608-59 Stage 4 Indeterminate Indeterminate Slight polish on one margin 37 32 9 

26Wa1608 1608-60 Stage 4 Complete Flake - 42 20 11 

26Wa1608 1608-68 Stage 4 Proximal Indeterminate Cortex present 30 19 8 

26Wa1608 1608-174 Stage 2 End Flake Cortex present; most flaking to dorsal surface 40 38 11 

26Wa1608 1608-203 Stage 2 End Flake Cortex present 28 29 10 

26Wa1608 1608-262a Stage 2 Midsection Indeterminate - 31 22 15 

26Wa1608 1608-269 Stage 5 Midsection Flake Small amount of cortex; possible small corner-

notched dart-sized point 

26 25 9 
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Appendix C: Artifact Data - Bifaces 

Site 

Number 

Artifact 

Number Stage Fragment Blank Other Description 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

26Wa1608 1608-274 Stage 5 End Flake - 22 24 6 

26Wa1608 1608-314 Stage 5 Midsection Indeterminate - 30 23 6 

26Wa1608 1608-370 Stage 3 Complete Flake Curved; use wear along margins 52 19 12 

26Wa1609 1609-43 Stage 5 Lateral Indeterminate - 20 18 5 

26Wa1609 1609-333 Stage 2 Complete Flake - 45 36 5 

26Wa1609 1609-433 Stage 3 Proximal Indeterminate Cortex present 43 31 9 

26Wa1609 1609-589 Stage 3 End Indeterminate - 21 25 7 

26Wa1609 1609-590 Stage 3 Distal Indeterminate - 21 17 8 

26Wa2065 2065-2 Stage 4 Distal Indeterminate - 27 15 10 

26Wa2065 2065-5 Stage 5 Distal Indeterminate Possible arrow-sized point 24 13 5 

26Wa2065 2065-7 Stage 4 End Indeterminate - 18 26 7 

26Wa2065 2065-11 Stage 4 End Flake Polish along one margin 39 26 7 

26Wa2065 2065-14 Stage 5 Midsection Indeterminate Possible projectile point 23 15 5 

26Wa2065 2065-26 Stage 4 Distal Flake - 43 26 10 

26Wa2065 2065-28 Stage 5 Distal Indeterminate Possible arrow-sized point 17 13 4 

26Wa2065 2065-30 Stage 3 Complete Flake Cortex present; polish and crushing along 

margins 

43 43 15 

26Wa2065 2065-32 Stage 5 Midsection Indeterminate Possible arrow-sized point 26 12 4 

26Wa2065 2065-35 Stage 5 Distal Indeterminate Possible dart-sized point 35 25 4 

26Wa2065 2065-36 Stage 5 Midsection Indeterminate - 13 14 5 

26Wa2201 2201-10 Stage 5 Midsection Indeterminate - 21 13 5 

26Wa3017 3017-5 Stage 5 Distal Flake Side notches 30 20 4 

26Wa3017 3017-6 Stage 5 Midsection Indeterminate Possible hafted knife; polish and crushing on 

edges 

52 24 8 

26Wa3017 3017-7 Stage 5 Distal Indeterminate Knife; polish on edges 49 20 8 

26Wa3017 3017-8 Stage 5 Distal Indeterminate - 34 15 5 

26Wa3017 3017-9 Stage 5 Distal Flake - 20 19 5 

26Wa3017 3017-10 Stage 5 Distal Flake - 25 20 3 

26Wa3017 3017-11 Stage 5 Distal Indeterminate - 22 15 5 
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Appendix C: Artifact Data - Bifaces 

Site 

Number 

Artifact 

Number Stage Fragment Blank Other Description 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

26Wa3017 3017-12 Stage 1 End Indeterminate Cortex present 37 20 9 

26Wa3017 3017-13 Stage 5 Midsection Indeterminate Possible hafted knife 28 23 7 

26Wa3017 3017-14 Stage 3 End Flake - 25 42 10 

26Wa3017 3017-15 Stage 2 End Flake - 36 30 7 

26Wa3017 3017-16 Stage 5 Midsection Flake - 28 23 5 

26Wa3017 3017-17 Stage 4 Distal Indeterminate - 23 17 8 

26Wa3017 3017-18 Stage 5 Proximal Indeterminate - 32 16 4 

26Wa3017 3017-19 Stage 5 Proximal Indeterminate Hafted knife 48 45 11 

26Wa3017 3017-22 Stage 5 End Flake Reworking present 26 15 4 

26Wa3017 3017-23 Stage 3 End Indeterminate - 44 52 17 

26Wa3017 3017-27 Stage 1 Complete Flake - 48 31 9 

26Wa3017 3017-30 Stage 1 Complete Cobble Cortex present 62 42 33 

26Wa5606 5606-1 Stage 5 Proximal Indeterminate Slight patina 30 21 6 

26Wa5606 5606-2 Stage 5 Proximal Indeterminate Polish and step fractures on margin 31 25 5 

26Wa5610 5610-40 Stage 4 Midsection Indeterminate - 47 34 13 

26Wa5610 5610-121 Stage 5 Midsection Indeterminate Polish on margins 27 20 9 

26Wa5610 5610-131 Stage 5 Proximal Indeterminate - 30 33 11 

26Wa5610 5610-255 Stage 4 Distal Indeterminate Weak patina 37 20 7 

26Wa5611 5611-8 Stage 3 Complete Indeterminate Cortex present 49 17 10 

26Wa5612 5612-161 Stage 2 Complete Flake Crushing along one margin 74 38 25 

26Wa5612 5612-170 Stage 4 Midsection Indeterminate - 26 13 6 

26Wa5612 5612-218 Stage 4 Distal Indeterminate Weak patina 33 22 7 

26Wa5638 5638-12 Stage 3 Complete Flake - 43 25 9 

26Wa5638 5638-77 Stage 4 Proximal Flake Proximal end slightly concave 34 23 8 

26Wa7522 2853 no data - - - - - - 

26Wa7522 4099 no data - - - - - - 

26Wa7522 4107 no data - - - - - - 

26Wa7522 4113 no data - - - - - - 

26Wa7522 4162 no data - - - - - - 
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Appendix C: Artifact Data - Bifaces 

Site 

Number 

Artifact 

Number Stage Fragment Blank Other Description 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

26Wa7522 4188 no data - - - - - - 

26Wa7522 4189 no data - - - - - - 

Frear Site FS-4 Stage 5 Distal Flake Possible projectile point tip 19 11 4 

Frear Site FS-6 Stage 3 Complete Flake - 48 29 14 

Frear Site FS-9 Stage 2 End Flake Cortex present 22 22 8 
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Appendix C: Artifact Data – Projectile Points 

Site 

Number 

Artifact 

Number Series Subtype Condition 

ML 

(mm) 

MW 

(mm) 

MTH 

(mm) 

WT 

(g)  

BW 

(mm) 

NW 

(mm) PSA DSA NOI 

26Wa1416 1416-5 Martis Martis Side-notched NCO 45 21 12 10.7 17 15 120 220 100 

26Wa1416 1416-6 Humboldt Humboldt NCO 39 15 5 3 12 - - - - 

26Wa1604 1604-01 Rosegate Eastgate Expanding Stem COM 22 20 3 1.2 1.1 10 100 120 20 

26Wa1604 1604-04 Rosegate Eastgate DIS 23 15 4 1.1 - 9 50 140 90 

26Wa1604 1604-07 Elko Elko Side-notched MED 30 20 7 5 - 16 120 230 110 

26Wa1604 1604-08 Pinto Pinto PROX 39 20 9 7.3 17 - - - - 

26Wa1604 1604-09 Martis Martis Side-notched PROX 32 19 7 4.3 17 15 110 220 110 

26Wa1604 1604-10 Martis Martis Contracting Stem PROX 31 22 7 5.4 16 16 90 220 130 

26Wa1606 1606-15 Rosegate Rose Spring NCO 36 20 4 - 10 9 - - - 

26Wa1608 1608-1 Martis Martis Corner-notched COM 27 17 6 2.6 12 11 120 220 100 

26Wa1608 1608-13 Elko Elko Side-notched PROX 27 18 5 2.9 17 15 130 260 130 

26Wa1608 1608-20 Elko Elko Corner-notched MED 28.6 22.2 5.3 3.1 - 11.2 110 160 50 

26Wa1608 1608-58 Martis Martis Contracting Stem COM 32.4 22.8 6.7 4 13 12.7 90 210 120 

26Wa1608 1608-67 Martis Martis Corner-notched NCO 32.2 17.4 8.3 3.2 17.2 15 120 230 110 

26Wa1608 1608-69 Elko Elko Corner-notched 

(Reworked) 

PROX 21 19 5 2.2 13 13 100 160 60 

26Wa1608 1608-188 Indeterminate Corner-notched (Reworked) DIS 23 25 5 2.2 - 13 90 170 80 

26Wa1608 1608-194 Elko Elko Contracting Stem PROX 35.5 23.9 6.9 5.8 7.5 15.7 70 210 140 

26Wa1608 1608-228 Elko Elko Contracting Stem MED 26 24 7 3.3 - - 90 200 110 

26Wa1608 1608-268 Indeterminate Indeterminate Dart sized 

point 

MED 40 21 6 4.6 - - 110 220 110 

26Wa1608 1608-270 Martis Martis Corner-notched 

(Reworked into drill)  

PROX 24 22 6 2.5 17 15 140 210 70 

26Wa1608 1608-341 Elko Elko Eared (Reworked) NCO 22 13 5 1.6 - 13 120 180 60 

26Wa1608 1608-426 Dart Indeterminate stemmed dart 

sized point 

DIS 23 23 6 4 - - 90 210 120 

26Wa1609 1609-13 Dart Indeterminate dart sized 

point 

PROX 30 24 7 - 18 16 - - - 
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Appendix C: Artifact Data – Projectile Points 

Site 

Number 

Artifact 

Number Series Subtype Condition 

ML 

(mm) 

MW 

(mm) 

MTH 

(mm) 

WT 

(g)  

BW 

(mm) 

NW 

(mm) PSA DSA NOI 

26Wa1609 1609-15 Elko  PROX 18.2 18.4 5.3 1.7 18.4 12.7 141 - - 

26Wa1609 1609-16 Dart Indeterminate dart sized 

point 

COM 39.7 20.5 6.4 5.1 15.6 13.2 110 222 112 

26Wa1609 1609-142 Dart Indeterminate dart sized 

point 

MED 22 20.8 4.1 2.5 - 13.8 - 194 - 

26Wa1612 1612-1 Rosegate Rose Spring NCO 28 18 5 - 10 9 - - - 

26Wa1612 1612-2 Indeterminate Indeterminate COM 29 22 5 - 7 9 - - - 

26Wa2065 2065-4 Martis Steamboat Variant PROX 28 14.5 5.5 2.4 11 - - - - 

26Wa2065 2065-8 Rosegate Eastgate NCO 28 20 4 1.6 - 10 90 130 40 

26Wa2065 2065-9 Humboldt Concave Base B COM 27 11 5 1.2 7 - - - - 

26Wa2065 2065-15 Rosegate Rose Spring COM 36 16 5 2.5 8 10 80 210 130 

26Wa2065 2065-18 Elko Elko Corner-notched PROX 27 30 7 6.1 - 20 120 140 20 

26Wa2065 2065-27  Surprise Valley Split Stem NCO 33 17 5 1.9 8 7 100 160 60 

26Wa2065 2065-29 Martis Martis Corner-notched LAT 32 18 5 3.4 15 11 140 190 50 

26Wa2065 2065-33 Humboldt Concave Base B NCO 30 10 5 1.3 7 - - - - 

26Wa2065 2065-34 Elko Elko Corner-notched COM 38 22 5 4 17 16 120 190 70 

26Wa2201 2201-1 Dart Indeterminate dart sized 

point 

MED 31.6 17.6 6.1 3.6 10.8 12.3 - - - 

26Wa2201 2201-2 Dart Indeterminate dart sized 

point 

NCO 32.6 14.9 7.2 2.9 8.8 - 93 149 56 

26Wa2201 2201-4 Dart Indeterminate dart sized 

point 

COM 45.2 22.1 6.6 4.9 8.7 9.8 66 206 140 

26Wa3017 87-2 Elko Elko  NCO 42.2 17 6.1 3.5 10.5 10.8 81 198 117 

26Wa3017 137-1 Gunther Gunther Round 

Shouldered/Shouldered 

Contracting Stem 

COM 33 16 6 2 5.8 7.7 83 225 142 

26Wa3017 142-1 Martis Martis Contracting Stem COM 41.2 23.1 7 4.3 9 9.7 76 173 97 

26Wa3017 171-2 Pinto Pinto PROX 22.2 16.4 6.1 2.4 14.7 12.9 73 248 175 
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Appendix C: Artifact Data – Projectile Points 

Site 

Number 

Artifact 

Number Series Subtype Condition 

ML 

(mm) 

MW 

(mm) 

MTH 

(mm) 

WT 

(g)  

BW 

(mm) 

NW 

(mm) PSA DSA NOI 

26Wa3017 212-9 Martis Martis Contracting Stem PROX 26.6 25.9 6.3 2.8 9 9.7 91 173 82 

26Wa3017 308-5 Pinto Pinto COM 32.6 20.9 7.8 4.8 18.3 17.5 88 176 88 

26Wa3017 353-2 Elko Elko  NCO 35.9 27.9 6.8 5.7 - 12.3 60 173 114 

26Wa3017 362-7 Martis Martis Side-notched NCO 42 26 8 6.5 - 19 130 220 90 

26Wa3017 366-3 Elko Elko Corner-notched PROX 21.9 22.9 4.6 2 10 8.6 95 150 55 

26Wa3017 373-10 Elko Elko  NCO 39.5 29.7 5.7 4.4 9.3 9.6 74 134 60 

26Wa3017 656-7 Pinto Pinto COM 38.1 14.6 4.7 2.5 11.2 10.6 - - - 

26Wa3017 3017-1 Elko Elko Contracting Stem NCO 30.2 21.8 5.5 2 4.9 9.4 76 172 96 

26Wa3017 3017-2 Rosegate Eastgate COM 31.4 20.1 4.4 1.2 9.3 9 98 135 37 

26Wa3017 3017-3 Rosegate Rose Spring COM 25 19 4.5 1.6 8.7 7.7 102 165 63 

26Wa3017 3017-4 Arrow Indeterminate Arrow Sized 

Point 

DIS 16 15 4 0.8 - 8 - 210 - 

26Wa3017 3017-32 Rosegate Rose Spring COM 28.7 16.2 3.3 1.2 8.6 7.4 108 179 71 

26Wa5604 5604-3 Great Basin 

Stemmed 

 PROX 26.6 20.8 5.8 3.9 12.5 - 88 - - 

26Wa5604 5604-6 Great Basin 

Stemmed 

 PROX 28.6 27.8 6 4.5 15.9 18.6 93 215 122 

26Wa5606 5606-3 Dart sized 

points 

Indeterminate dart sized 

point 

PROX 27.3 22.8 6.6 3.8 12.9 12.9 82 187 105 

26Wa5610 5610-25 Elko  COM 37.4 14.5 47 2.1 9.4 8.8 118 176 58 

26Wa5612 5612-193 Elko Eared NCO 39 24.9 6.1 6.3 19.9 18.6 105 173 68 

26Wa5638 5638-34 Dart Indeterminate dart sized 

point 

MED 14.2 24.4 4.5 1.3 10.7 - 104 180 76 

26Wa5638 5638-94 Dart Indeterminate dart sized 

point 

PROX 17.1 19.2 4.4 1.5 14.6 14.2 107 223 116 

26Wa7522 2753 Martis Steamboat Variant - - - - - - - - - - 

26Wa7522 2755 Martis Steamboat Variant - - - - - - - - - - 

26Wa7522 2756 Martis Steamboat Variant - - - - - - - - - - 
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Appendix C: Artifact Data – Projectile Points 

Site 

Number 

Artifact 

Number Series Subtype Condition 

ML 

(mm) 

MW 

(mm) 

MTH 

(mm) 

WT 

(g)  

BW 

(mm) 

NW 

(mm) PSA DSA NOI 

26Wa7522 2758 Elko Elko Contracting Stem - - - - - - - - - - 

26Wa7522 2759 Martis Steamboat Variant - - - - - - - - - - 

26Wa7522 2768 Humboldt Concave Base B - - - - - - - - - - 

26Wa8451 11 Dart Indeterminate dart sized 

point 

- - - - - - - - - - 

Frear Site FS-1 Martis Martis Side-notched NCO 39 23 7 6.2 22 20 140 200 60 

Frear Site FS-2 Rosegate Rose Spring COM 43 13 5 2.3 10 9 125 170 45 

Frear Site FS-3 Elko Elko Corner-notched COM 33 23 6 3.9 17 16 120 190 70 

Frear Site FS-5 Humboldt Humboldt COM 45 14 5 3.2 8 - - - - 

COM=Complete; DIS=Distal; LAT=Lateral; MED=Medial ; NCO=Nearly Complete; PROX=Proximal 

ML=Max Length; MW=Max Width; MTH=Max Thickness; WT=Weight; BW=Basal Width; NW=Neck Width;  

PSA=PROX Shoulder Angle; DSA=DIS Shoulder Angle; NOI=Notch Opening Index 

 

Source: 26Wa1608, 26Wa1609, 26Wa2201, 26Wa5604, 26Wa5606, 26Wa5610, 26Wa5612, and26Wa5638 data from Delacorte (1997a);  26Wa3017 data from Zeir and 

Elston (1986) 
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Appendix C: Artifact Data – Flake Tools 

Site  

Number 

Artifact 

Number Formality Flake Type Other Description 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

26Wa1604 1604-16 Informal Early biface thinning Polish and flaking along lateral edge and distal end to 

dorsal surface 

45 49 12 

26Wa1604 1604-18 Informal Early biface thinning Well-developed polish along lateral edges, 

predominantly to dorsal surface 

45 40 8 

26Wa1604 1604-19 Informal Interior core reduction Weak polish along lateral edge and distal end 43 62 16 

26Wa1606 1606-14 Informal Interior core reduction Use flaking along lateral edge to ventral surface 106 71 45 

26Wa1608 1608-233 Informal Early biface thinning Polish and few flakes off lateral edge to ventral 

surface 

31 30 8 

26Wa1608 1608-428 Informal Indeterminate Entire edge used, flaking and polish to both dorsal 

and ventral surfaces 

42 30 11 

26Wa1609 1609-6 Informal Indeterminate Weak polish and step fractures on lateral edges to 

dorsal surface,  

38 27 10 

26Wa1609 1609-8 Informal Indeterminate Weak polish along lateral edge 21 20 4 

26Wa1609 1609-19 Informal Interior core reduction Use wear on distal end to ventral surface 44 72 15 

26Wa1609 1609-20 Informal Interior core reduction Use wear on lateral edge to dorsal surface 57 30 15 

26Wa1609 1609-21 Informal Indeterminate Platform missing, use wear along all edges to dorsal 

surface 

50 41 12 

26Wa1609 1609-22 Informal Interior core reduction Use wear on lateral edges to dorsal surface, use edges 

no continuous, some polish 

47 52 14 

26Wa1609 1609-23 Informal Interior core reduction Polish and crushing along lateral edge 34 33 10 

26Wa1609 1609-24 Informal Interior core reduction Use wear on lateral edge to dorsal surface 50 32 12 

26Wa1609 1609-25 Formal Indeterminate Use and edge prep along lateral edges; steep edge on 

one ventral surface and flaking to opposite dorsal 

surface  

42 31 5 

26Wa1609 1609-26 Informal Interior core reduction Slight polish developed on distal end to ventral 

surface 

32 40 7 

26Wa1609 1609-27 Informal Indeterminate Polish along lateral edge to dorsal surface 26 20 6 

26Wa1609 1609-28 Informal Indeterminate Use wear on lateral edges, to dorsal surface on one 

edge and to opposite ventral surface 

32 21 6 
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Appendix C: Artifact Data – Flake Tools 

Site  

Number 

Artifact 

Number Formality Flake Type Other Description 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

26Wa1609 1609-42d Informal Late biface thinning Use wear on lateral edge 25 22 3 

26Wa2065 2065-1 Informal Indeterminate Slight polish and flaking along lateral edge 24 23 7 

26Wa2065 2065-20 Informal Exterior core reduction Polish and crushing on lateral and distal ends, edge 

not prepared 

65 58 26 

26Wa3017 3017-21 Informal Early biface thinning Polish along distal end 39 55 14 

26Wa3017 3017-24 Formal Early biface thinning Small flake removals along edge of flake, weak 

polish and crushing 

75 62 20 

26Wa3017 3017-25 Informal Interior core reduction Polish on lateral edge, predominantly on ventral 

surface 

81 37 21 

26Wa3017 3017-26 Informal Indeterminate  Use wear along lateral margins 48 38 14 

26Wa3017 3017-29 Informal Exterior core reduction Crushing and light polish along lateral and distal end 48 39 17 

26Wa5610 5610-237 Informal Exterior core reduction Use on lateral edge to dorsal surface 50 70 12 

26Wa5611 5611-23 Informal Interior core reduction Some polish and flaking on lateral edge and distal 

end to ventral surface 

55 65 21 

26Wa5612 5612-284 Informal Early biface thinning Use wear on lateral edges 41 30 6 

26Wa5638 5638-98 Informal Interior core reduction  Polish on distal end to dorsal surface 61 55 18 

Frear Site FS-7 Informal Interior core reduction Polish and crushing along lateral and distal end 71 88 23 
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Appendix C: Artifact Data – Cores and Hammerstones 

Site 

Number 

Artifact 

Number Artifact Type Core Type Other Description 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

26Wa1604 1604-03 Core Multidirectional <5 flake removals; cortex present 53 45 38 

26Wa1604 1604-06 Core Unidirectional core 

tool 

On large flake/split cobble; no cortex; most battering 

on one end and on high spots 

73 52 34 

26Wa1604 1604-20 Core Bifacial Small amount of cortex 105 97 58 

26Wa1606 1606-01 Core Chopper core Bifacially worked, sinuous edge; some crushing; cortex 

present  

109 103 47 

26Wa1606 1606-16 Core Multidirectional  >5 flake removals; no cortex 47 46 31 

26Wa1608 1608-19 Core Bifacial core tool Bifacially edged; 14 cm of use edge; some crushing on 

use edge; cortex present; smoothing from use; possible 

rejuvenation 

90 92 45 

26Wa1609 1609-1000 Core Unidirectional  <5 flake removals 45 32 16 

26Wa2065 2065-17 Core Multidirectional Most flakes removed from single platform; some 

battering 

47 32 26 

26Wa5610 5610-274 Core Multidirectional Cobble core; some polish and battering along margins; 

no cortex; ovoid shape 

75 56 52 

26Wa5611 5611-12 Core Multidirectional >5 flake removals; on large cobble; no battering or 

smoothing;  

80 77 83 

26Wa5612 5612-45 Core Core tool Multiple platforms; >5 flake removals; cortex present; 

three battered margins 

73 55 42 

26Wa5638 5638-87 Core Unidirectional  >8 flake removals; pyramidal; small amount of cortex; 

no battering;  

116 115 70 

26Wa8451 13 Core Bifacial core tool Cobble core; cortex present; multiple use edges; edge 

battered; step fractured 

72 72 41 

26Wa8451 14 Core Bifacial core tool Cobble core; single use edge; cortex present; edge 

battered 

100 82 65 

Frear Site FS-8 Core Multidirectional >5 flake removals; battering along multiple margins; 

cortex present 

80 72 62 

26Wa1606 1606-01 Chopper - Bifacially worked edge with some crushing, sinuous 

edge, cortex on back edge 

109 103 47 
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Appendix C: Artifact Data – Cores and Hammerstones 

Site 

Number 

Artifact 

Number Artifact Type Core Type Other Description 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

26Wa1606 1606-07 Hammerstone - On small cobble/core; slightly bifacial; ovoid shape; 

battering and step fractures most prominent on one end; 

some polish on opposite end;  

70 61 50 

26Wa1608 1608-140 Hammerstone - Hammerstone on cobble core; very little cortex; most 

edges crushed; some smoothing/polish on one side 

62 55 45 

26Wa1608 1608-162 Hammerstone - Hammerstone on multidirectional core; no cortex; one 

main margin with battering, smoothing, and crushing  

61 60 43 

26Wa2065 2065-12 Hammerstone - Hammerstone on river cobble; flakes removed from 

one side; battering along all margins; cortex on one 

side  

82 79 46 

26Wa2065 2065-22 Hammerstone - Hammerstone on small split cobble; battering on ends 

and high spots; few flake removals 

75 63 35 
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Appendix C: Artifact Data – Other Tools 

Site  

Number 

Artifact 

Number 

Artifact 

Type Description 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

26Wa1604 1604-02 Awl Elongate biface with well-

developed polish along margins 

and end, striations on margins, 

weak polish on other high spots, 

end burined 

46 18 8 

26Wa1608 1608-319 Awl/punch Elongate biface with narrow end, 

polish and crushing at tip, polish 

developed on all edges and high 

points, weak striations 

43 18 10 

26Wa1608 1608-344 Awl Elongate flake fragment with 

bifacial flaking at one end, slight 

polish and crushing at tip  

43 21 10 

26Wa1606 1606-13 Charmstone Smooth, spherical 24 16 18 

26Wa1608 1608-16 Drill Bifacial diamond shaped drill 

base, bit snapped at base of neck, 

neck/bit width 7 mm 

29 24 5 

26Wa1608 1608-231 Drill/Graver Biface with elongate tip, polish 

and crushing along tip, may have 

been reworked 

23 31 8 

26Wa2065 2065-10 Drill Formal drill, base is side-notched, 

complete 

45 20 6 

26Wa1608 1608-256 Scraper Indeterminate flake blank, cortex 

along back edge of scraper, most 

flaking to dorsal surface, polish 

and crushing along edge, use 

angle 40° 

30 29 9 

26Wa1608 1608-310 Scraper On a small cobble, use edge 

bifacially flaked, crushing and 

polish on use edge, opposite edge 

smoothed, use angle 8-20° 

58 45 2 

26Wa1608 1608-340 Scraper May have been hafted, polish, 

crushing, and step fractures along 

use edge, use angle 40° 

32 23 9 

26Wa1608 1608-1001 Scraper On large exterior core reduction 

flake, flaking to dorsal surface 

along use edge, crushing and step 

fractures on use edge, battering 

and smoothing on opposite edge, 

use angle 50° 

127 120 40 

26Wa5638 5638-59 Scraper Flake blank, bifacial edge, 

additional flaking and polish to 

dorsal surface, use angle 40° 

66 41 15 

26Wa1604 1604-05 Uniface Not FGV, not analyzed - - - 
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Appendix C: Artifact Data - Debitage 

Site Number 

Artifact 

Number Flake Type Cortex 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

26Wa1416 1416-3 Late biface thinning Absent 24 43 4 

26Wa1416 1416-4 Exterior core reduction Present 51 32 16 

26Wa1604 1604-17 Interior core reduction Present 30 33 12 

26Wa1604 1604-21 Late biface thinning Absent 31 36 10 

26Wa1604 1604-22 Interior core reduction Present 68 51 16 

26Wa1604 1604-24 Early biface thinning Absent 47 49 12 

26Wa1604 1604-26 Exterior core reduction Present 52 48 13 

26Wa1604 1604-27 Shatter Present 25 28 17 

26Wa1604 1604-28 Early biface thinning Absent 25 38 10 

26Wa1604 1604-29 Early biface thinning Present 35 24 5 

26Wa1604 1604-30 Interior core reduction Present 29 35 8 

26Wa1604 1604-31 Interior core reduction Present 32 17 4 

26Wa1604 1604-32 Early biface thinning Present 32 37 8 

26Wa1604 1604-33 Exterior core reduction Present 21 28 7 

26Wa1604 1604-34 Early biface thinning Present 25 35 7 

26Wa1604 1604-35 Interior core reduction Absent 53 22 13 

26Wa1604 1604-36 Interior core reduction Present 25 31 6 

26Wa1606 1606-2 Early biface thinning Present 53 51 12 

26Wa1606 1606-3 Early biface thinning Absent 70 52 17 

26Wa1606 1606-5 Late biface thinning Absent 23 26 6 

26Wa1606 1606-6 Early biface thinning Absent 35 43 9 

26Wa1606 1606-8 Early biface thinning Present 15 16 3 

26Wa1606 1606-9 Interior core reduction Present 16 28 9 

26Wa1606 1606-10 Fragment Absent 27 31 11 

26Wa1606 1606-11 Late biface thinning Absent 24 19 2 

26Wa1606 1606-12 Fragment Absent 11 20 2 

26Wa1608 1608-80 Interior core reduction Absent 37 48 18 

26Wa1608 1608-83 Spall Present 29 26 9 

26Wa1608 1608-155a Interior core reduction Absent 49 60 24 

26Wa1608 1608-155b Early biface thinning Present 39 28 7 

26Wa1608 1608-155c Interior core reduction Present 27 29 9 

26Wa1608 1608-170 Fragment Absent 31 32 8 

26Wa1608 1608-187 Late biface thinning Absent 18 31 6 

26Wa1608 1608-262b Interior core reduction Absent 49 26 8 

26Wa1608 1608-291a Exterior core reduction Present 37 32 8 

26Wa1608 1608-291b Interior core reduction Absent 38 52 14 

26Wa1608 1608-291c Late biface thinning Absent 26 26 5 

26Wa1608 1608-291d Early biface thinning Present 34 28 7 

26Wa1608 1608-335 Interior core reduction Absent 43 24 14 

26Wa1608 1608-412 Interior core reduction Absent 27 37 12 

26Wa1608 1608-430 Interior core reduction Present 72 64 26 

26Wa1609 1609-42a Interior core reduction Absent 30 47 12 

26Wa1609 1609-42b Late biface thinning Absent 27 40 7 

26Wa1609 1609-42c Late biface thinning Absent 22 20 5 
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Appendix C: Artifact Data - Debitage 

Site Number 

Artifact 

Number Flake Type Cortex 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

26Wa1609 1609-42e Late biface thinning Absent 25 25 5 

26Wa1609 1609-42f Early biface thinning Absent 26 35 7 

26Wa1609 1609-1001 Tested cobble Present 70 50 20 

26Wa1609 1609-1002 Early biface thinning Absent 14 27 2 

26Wa1609 1609-1003 Early biface thinning Present 25 23 5 

26Wa1609 1609-1004 Interior core reduction Present 47 28 13 

26Wa1612 1612-3 Exterior core reduction Present 22 40 13 

26Wa1612 1612-4 Late biface thinning Absent 12 19 2 

26Wa1612 1612-5 Shatter Present 16 13 6 

26Wa2065 2065-3 Interior core reduction Absent 25 45 9 

26Wa2065 2065-6 Early biface thinning - - - - 

26Wa2065 2065-13 Interior core reduction Present 30 51 12 

26Wa2065 2065-16 Fragment Absent 45 30 11 

26Wa2065 2065-19 Spall Present 51 33 1 

26Wa2065 2065-21 Interior core reduction Present 48 31 13 

26Wa2065 2065-23 Fragment Present 25 34 10 

26Wa2065 2065-24 Exterior core reduction Present 74 52 28 

26Wa2065 2065-25 Late biface thinning Absent 27 27 7 

26Wa2065 2065-31 Late biface thinning Absent 22 19 3 

26Wa3017 3017-20 Interior core reduction Absent 62 51 15 

26Wa3017 3017-28 Fragment Absent 43 36 16 

26Wa3017 3017-31 Interior core reduction Absent 41 47 12 

26Wa5606 5606-11 Late biface thinning Absent 31 25 4 

26Wa5610 5610-166 Exterior core reduction Present 50 40 17 

26Wa5610 5610-241 Interior core reduction Present 32 33 10 

26Wa5610 5610-426 Interior core reduction Absent 31 45 10 

26Wa5611 5611-16 Early biface thinning Absent 50 46 10 

26Wa5611 5611-60 Exterior core reduction Present 42 46 8 

26Wa5611 5611-87 Interior core reduction Present 65 55 19 

26Wa5612 5612-185 Interior core reduction Absent 85 68 12 

26Wa5612 5612-253 Interior core reduction Present 58 36 16 

26Wa5612 5612-287 Interior core reduction Absent 31 43 8 

26Wa5638 5638-120 Shatter Absent 32 25 8 

26Wa8451 30 No data - - - - 

26Wa8451 56 No data - - - - 

26Wa8451 59 No data - - - - 

26Wa8451 63 No data - - - - 

Frear Site FS-10 Interior core reduction Absent 45 35 12 

 


