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Abstract

Workers’ compensation is a form of insurance that protects employees and business

owners from the cost of injuries occurring in the workplace. The duration of time a

workers’ compensation claim remains open largely depends on the type and severity of

the injury. This work focuses on statistical analysis and modeling of claim duration

for a workers’ compensation insurer. A data set for claim duration that included

over two million claims spanning from 1915 to 1994 was analyzed. Exploratory data

analysis revealed that the distribution of the data was multi-modal with a gap at

approximately 55 years and a positive skew. Log linear analysis and modeling was

used to understand the association between categorical variables. The EM algorithm

was used to fit gamma and normal mixture models to the claim duration data. Log

likelihood and AIC values were used to show that a normal mixture provided the best

fit for the data. The likelihood ratio test was used to select the number of components

in the mixture model. This test indicated the four component normal mixture model

was the best model. The Komogorov-Smirnov goodness-of-fit test indicated that the

selected model was identical to the population distribution that generated the data.

Finally, standard errors of the parameter estimates were reported indicating that little

uncertainty existed in the estimates.
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Chapter 1 Introduction

1.1 Setting

Workers’ compensation is a form of insurance that protects employees and business

owners from the cost of injuries occurring in the workplace. For an employee this may

include medical bills required to treat an injury, lost wages, and rehabilitation cost.

For an employer, also called the insured, workers’ compensation insurance protects

from being liable for the injuries of the employee. A request for a workers’ compen-

sation insurer to indemnify the injuries of a worker is called a claim.

In the United States employers are required to purchase workers’ compensation

insurance in every state except Texas. Rules and requirements for employer coverage

vary among states. The cost to the employer for workers’ compensation coverage is

called the premium. The premium charged to an employer is typically a function of

the risk associated with the line of business, the amount of payroll being covered, and

the safety record of a respective business.

Examples of workers’ compensation claims range from being simple to complex.

A simple example may be a secretary opening a package delivered to her office by the

postal service. Suppose she is using a box cutter to open the package, her hand slips

and she cuts herself. The cut requires medical attention so the secretary visits the

doctor and has her cut treated. After treatment, she returns to work the same day.

The employer files a claim and the insurer pays the medical bills only. This claim is

referred to as a “medical only claim”.

In another example consider an analyst. The analyst’s work requires a large vol-

ume of typing each day. After years of work he begins feeling numbness and weakness
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in his hand. He visits his doctor and is diagnosed with carpal tunnel syndrome. The

doctor explains that his injury is related to his work as a analyst. The analyst is

also instructed by his doctor that he must permanently reduce his work load by 10

hours a week. The workers’ compensation insurer is liable for this injury, which is

referred to as a “cumulative trauma injury”. The workers compensation insurer is

liable for the medical bills of the analyst as well the lost wages associated with the an-

alyst’s injury. The analyst’s condition is referred to as “permanent partial disability.”

The first example shows that a workers’ compensation claim can be relatively

minor and open for a short period of time. The second example shows that a work-

ers’ compensation claim can be more serious, requiring treatment and payment for

long periods of time. Of course, even more serious claims are possible such as those

that are classified as “permanent total disability” and “fatalities.” The diversity of

potential claims makes the risk associated with workers’ compensation insurance rel-

atively complicated to estimate. Since the insurer continues making payments to the

claimant for the duration of time the claim is open, serious claims that are open for

a long time are of particular interest to an insurer. This is because they may total

large dollar amounts. If it is known what claims are most likely to be open for long

periods of time then more experienced claims adjusters can be assigned those claims

and implement best practices to reduce long-term cost. Knowing what claims are

most likely to be open for long periods of time also helps planning the reserves nec-

essary in the future for the company to remain solvent. Thus, explaining variability

of the time a claim is open is an important and practical problem for any workers’

compensation insurance company.
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1.2 The Data and Research Questions

The data used in this work was derived from a data set provided by a workers’ compen-

sation insurance company. The data includes a total of 2,238,444 rows of information

on different claims and 55 columns of variables that characterize those claims. The

oldest claim in the data set had a date of injury of 1/1/1915. The youngest claim in

the data set had a date of injury of 9/9/1994. Most of the variables were not relevant

to the direct computation of the duration of time claims remained open. However,

some variables provided insight into characteristics of claims open for long periods

of time. Those variables were used to attempt to explain the variability in claim

duration.

The duration of time claims remain open was computed by taking the difference

between the date a claim was closed and the date of injury. The date of injury is

defined as the date the insured reported that the injury took place. The date the

claim was closed reflects the date when the claim was determined to require no further

payment. In some states, such as Nevada, claims may be reopened if it is discovered

that an injury requires additional treatment. If claims were reopened, the close date

was updated accordingly. The date of injury was used as a proxy for the date the

claim was open. It is a proxy because there can be a lag between the date of injury

and the date the claim is reported to the insurer. The duration of time claims remain

open was computed in R using the strptime() function to format the dates and

the difftime() function to compute the time differences between dates. The key

variables from the data set that were used in this analysis are

− Date of Injury,

− Close Date,

− Extent of Injury, and

− Claim Type.
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Table 1.1 provides a glossary for the values that extent of injury and claim type take.

Other variables were explored, but did not provide substantial insight into the vari-

ability present in claim duration. This may be primarily because entries for several

variables were not consistently reported.

Table 1.1: A glossary for the values that extent of injury and claim type variables
take.

Variable Possible Values Definition

Extent of Injury 1 Fatality
2 Permanent total disability
5 Permanent partial disability
6 Temporary injury
9 Medical only

Claim Type NR Non-reserve (Outstanding reserves unavailable)
R Reserved (Outstanding reserves available)

RO No financial data
V Void / null (Duplicate claims)

Minimal clean-up of the data was necessary. Of the 2,238,444 computed claim

duration values 4,269 entries had NA (not available) values and 103 had values less

than zero. The NAs were claims that had not yet closed. The 103 entries that were

less than zero were taken to be the result of input error. NA and less than zero

entries represented 0.2% of the total observations and were removed from the data

set. After clean-up, the final data set included 2,234,072 observations of the duration

of time the claims remained open. The original units of time was days, but this was

converted to years by dividing values by 365.25 days. The additional quarter day is

used to account for leap years.

The general questions addressed in this work are as follows (here we refer to the

duration of time claims remain open as “data”):

1. What are the general statistical properties of the data such as the mean,
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median, range, and variance?

2. Does the distribution of data exhibit any skewness?

3. What is the general distribution of the data?

4. Are there any interesting features of the distribution such as gaps or mul-

tiple modes?

5. Does extent of injury or claim type help explain any of the interesting

properties of the distribution of the data such as gaps?

6. How can we model the data, and which is “the best” model?

To answer these questions the following statistical techniques were employed.

Exploratory data analysis was used to understand general statistical properties of the

data as well as its distribution. Log linear analysis of contingency tables was used

to investigate how the duration of time claims remained open depended on extent of

injury and claim type. Mixture models were determined to be the most appropriate

models for the duration of time claims remain open. Mixture models were chosen

because of the general properties of the distribution of the data. Those properties

included multiple modes and a gap in the data. The Expectation Maximization (EM)

algorithm was the modeling technique used to fit mixture models to the data. Model

selection was done using log-likelihood values, Akaike information criterion (AIC),

the likelihood ratio test, the Kolmogorov-Smirnov goodness-of-fit test, and standard

errors of the parameter estimates.

1.3 Conclusions and Findings

The general conclusions and findings for the work are as follows. Exploratory data

analysis showed that the mean duration of time claims remained open was 1.38 years
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(about 504 days). The range of the duration of time claims remain open was 0.0027

years to 69.11 years (about 1 day to 25,202 days). The distribution of the data was

shown to have a positive skew as the median was larger than the mean. The general

distribution of data was multi-modal and there was a notable gap in the data separat-

ing claims open less than 55 years (about 20,089 days) and claims open longer than

55 years. Log linear analysis and modeling showed that the main effects and two-way

interactions for both extent of injury and claim type were significant predictors of

counts in the three-way contingency table. Only the three-way interaction between

extent of injury, claim type, and an indicator for claims being open longer than 55

years was insignificant for predicting counts in the three-way contingency table. The

EM algorithm was used to fit gamma and normal mixture models to the duration of

time claims remained open. A normal mixture model with 4 components had the best

log-likelihood and AIC values. The respective model was selected and validated by

the likelihood ratio test and Kolmogorov-Smirnov goodness-of-fit test, respectively.

Standard errors for the parameter estimates were relatively small.

This work is organized as follows. Chapter 1 provides an introduction to the

setting, the data, the research questions, and general results. Chapter 2 provides

the methods used to answer the questions presented in the introduction and out-

lines the exploratory data analysis used, analysis used on the contingency tables,

the background for the EM algorithm used to fit mixture models to the data, and

the statistical test used to select and validate the model. Chapter 3 presents the

results of the analyses. Chapter 4 presents the final conclusions of the work and

recommendations for future work.
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Chapter 2 Methods

Exploratory data analysis, log linear analysis of contingency tables, model fitting with

the EM algorithm, and statistical tests such as χ2 tests of independence, likelihood

ratio tests, and the Kolmogorov-Smirnov goodness-of-fit test were used to answer the

questions listed in the introduction. Exploratory data analysis was used to answer

questions regarding standard statistical properties of the data. Exploratory data anal-

ysis was also used to understand the general properties of the distribution of the data.

Log linear analysis and modeling was used to explain the association between extent

of injury, claim type, and claim being open longer or shorter than 55 years. The EM

algorithm was used to fit mixture models to the data. Two types of mixture models

were fit to the data, normal mixture models and gamma mixture models. Statistical

tests such as the likelihood ratio test and Kolmogorov-Smirnov goodness-of-fit test

were used for model selection and validation.

2.1 Exploratory Data Analysis

Exploratory data analysis required computation of descriptive statistics for the du-

ration of time claims remain open. The pastecs library was used in R to compute

the statistics. The particular function used was stat.desc(). Histograms and box-

plots were also used to understand general properties of the distribution of the data.

Histograms were used to visualize properties like skewness, multi-modality, and the

existence of gaps. Box-plots were used to verify the presence of gaps and visualize

the variability of the data.
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2.2 Log linear analysis and modeling

Particular attention was given to characterizing claims that were open longer and

shorter than 55 years. This was done because a gap in the distribution was found

at that duration of time. Contingency tables were used to present the counts of

claims based on extent of injury (E), claim type (C), and an indicator for claims

being open longer than 55 years (O). Three-way and two-way contingency tables

were constructed based on these variables. χ2 tests of independence were performed

on the contingency tables. The hypotheses were (Degroot and Schervish, 2001):

H0 : The explanatory variables are independent

H1 : The explanatory variables are dependent.

For example, the explanatory variables for the two-way contingency tables could be

extent of injury and claim type, extent of injury and the indicator for claims being

open longer than 55 years, or claim type and the indicator for claims being open

longer than 55 years. Rejection of the null hypothesis for the two-way contingency

table of extent of injury and the indicator for claims being open longer than 55 years

would indicate that extent of injury is associated with a claim being open longer or

shorter than 55 years. The test statistic for the χ2 test of independence is computed

as

T =
∑ (Obs− Exp)2

Exp
(2.1)

where Obs is the observed count and Exp is the expected count of a cell in the

contingency table under H0 (DeGroot and Schervish, 2001). Under H0, T has a χ2

distribution with (r − 1)(c − 1) degrees of freedom (DeGroot and Schervish, 2001).

Here r is the number of rows in the contingency table and c is the number of columns.
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Log linear models were then used to further analyze and model the main (three-

way) contingency table. A log linear model is an example of a generalized linear

model where the count of a cell is the response variable (Christensen, 1997). The

response is assumed to be a Poisson random variable. Log linear models are often

used to understand the association between categorical variables (Christensen, 1997).

We refer to a log linear model that includes all main effects and interactions as the

“saturated model”. The saturated log linear model used to analyze the three-way

contingency table for extent of injury, claim type, and the indicator for claims being

open longer than 55 years has the following form:

log(ηe,c,o) = λ+ λEe + λCc + λOo + λE,Ce,c + λE,Oe,o + λC,Oc,o + λE,C,Oe,c,o , (2.2)

where ηe,c,o is the expected count for cell e, c, o, e refers to the possible values of

extent of injury, c refers to the possible values of claim type, and o is an indicator

for a claim being open longer than 55 years. In the model in (2.2) λ is the mean of

the log of the expected counts, λE is a main effect term for extent of injury, λC is the

main effect term for claim type, λO is the main effect term for the indicator for claims

being open longer than 55 years, λE,C is the interaction term for extent of injury

and claim type, λE,O is the interaction term for extent of injury and the indicator for

claims being open longer than 55 years, λC,O is the interaction term for claim type

and the indicator for claim open longer than 55 years, and λE,C,O is the interaction

term for all three categorical variables. The saturated log linear model was used as

a baseline in a backward model selection process. The backward selection process

was used to determine significant associations between categorical variables extent of

injury, claim type, and the indicator for claims open longer than 55 years. Backward

model selection was based on the Aikaike Information Criterion (AIC) discussed later.

Model fit was tested using χ2 deviance statistics. Deviance (D) is defined as
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−2(Lfitted−Lsaturated) and has a χ2 distribution where the degrees of freedom are the

difference between the number of parameters in the saturated model and the fitted

model (Christensen, 1997). The hypothesis being tested is (Christensen, 1997)

H0 : The log linear model fits well

H1 : The log linear model does not fit well.

Fit was further analyzed by investigating a dissimilarity index. The dissimilarity

index is another measure of how close the fitted counts are to the observed counts

(Kuha and Firth, 2009). The dissimilarity index (R) presented in Agresti (2002) is

computed as

R =

∑n
i=1 |ηi − η̂|

2n
. (2.3)

The dissimilarity index estimates the smallest fraction of the sample being studied

that would need to be adjusted to get a perfect fit (Kuha and Firth, 2009).

2.3 The Distribution of the Length of Time Claims Remain

Open

Mixture distributions arise in a variety of disciplines. The EM algorithm can be used

as an iterative method for solving the maximum likelihood problem of parameter

estimation for mixture models (Gupta and Chen, 2010). The EM algorithm was

first introduced by Sundberg in his dissertation (1971), and later developed in his

published papers (1974 and 1976). In these works Sundberg provided an iterative

method for solving the maximum-likelihood equation when data included missing

values and arose from a distribution from the exponential family. The exponential

family refers to a set of probability distributions with a probability density function
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(pdf) of the form

p(x|) = h(x)eθT (x)−A(θ), (2.4)

where θ is the vector of model parameters, T (x) is the vector of sufficient statistics,

A(θ) is the normalizing constant, which is independent of x, and h(x) is a known

function of the data (DeGroot and Schervish, 2001). Sundberg (1974) presents sev-

eral settings where the EM algorithm is applicable:

− Grouped and censored data, which is when information is observed about

a class it belongs to, rather then x directly.

− Fitting mixture models, which refers models with a pdf of the form

p(x|Θ) =
M∑
j=1

αjpj(x|θj), (2.5)

where M is the number of components participating in the mixture distribution,

pj’s belong to the exponential family for all j, αj’s are the mixing coefficients

subject to the constraint
∑
αj = 1, θj’s are vectors of parameters for the pj’s,

and Θ = {α1, . . . , αm, θ1, . . . , θm}. In this case the data that is missing indi-

cates what distribution pj generated a particular observation. Thus, a mixture

distribution is a probability distribution where any given observations may be

generated by one of two or more distinct probability distribution (pj’s) compris-

ing the mixture distribution. The mixing coefficients then may be interpreted

as the probabilities that an observation is generated by a particular pj in the

mixture distribution.

− Convolutions of data, which is when the sum of several observations is
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observed rather than each particular observation.

− Folded distributions, which arise when only |x| can be observed. Leone,

Nelson, and Nottingham (1961) provide an application of folded distributions

arising in US Air Force data where measurements were recorded without their

algebraic sign.

− Incomplete data arising in multivariate statistical analysis where missing

data occurred in a purely random fashion.

In this work we focus on the application of the EM algorithm to fitting mixture dis-

tributions.

To present the EM algorithm idea, we start with maximum likelihood estima-

tion. The maximum likelihood method of parameter estimation is foundational to the

EM algorithm. The maximum likelihood method proceeds in the following manner.

Let x = (x1, . . . , xn) be a sample of n independent and identically distributed (iid)

observations taken from a population with probability density function p(x|θ). The

likelihood function gives the likelihood of observing x under a given parameter θ.

Definition 2.3.1 (Likelihood function) Suppose Ω is the parameter space of

p and that θ ∈ Ω. Let L : Ω→ R+ such that

L(θ|x) = p(x1|θ) · · · p(xn|θ) =
n∏
i=1

p(xi|θ), (2.6)

then L is called the likelihood function of θ given x.

The maximum likelihood method finds θ that maximizes L in (2.6). The value of θ

that maximizes L is called the maximum likelihood estimator (MLE) of θ.
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Definition 2.3.2 (Maximum likelihood estimator) A parameter θMLE is

called the maximum likelihood estimator of θ if

L(θMLE|x) = max
θ∈Ω

{
L(θ|x)

}
. (2.7)

If L is a differentiable function, then θMLE can be obtained by taking the first

derivative of L with respect to θ, setting it to zero and solving for θ. Solutions are

critical points and may correspond to maxima, minima, or saddle points of L. Ver-

ification that a candidate for θMLE qualifies as a maximum involves checking if the

function is concave down at θMLE. In most cases the maximum likelihood estimation

problem is simplified by analyzing the log of the likelihood function since this trans-

forms the product in (2.6) into a sum. Application of the log function preserves the

value of θMLE since the log function is strictly increasing.

For mixture distributions (2.5) the likelihood function given x is

L(Θ|x) =
n∏
i=1

p(xi|Θ) =
n∏
i=1

( M∑
j=1

αjpj(xi|θj)
)
. (2.8)

Accordingly, the log-likelihood function is

ln
(
L(Θ|x)

)
= ln

( n∏
i=1

p(xi|Θ)
)

=
n∑
i=1

ln
( M∑
j=1

αjpj(xi|θj)
)
. (2.9)

Finding θMLE for (2.9) is simplified with the assumption that there exists unob-

served data y = (y1, . . . , yn), where yi indicates which pj generated the corresponding

xi (yi ∈ {1, . . . ,M}). Under this assumption (2.7) is referred to as the incomplete-

data likelihood function and
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ln
(
L(Θ|x,y)

)
=ln

( n∏
i=1

p(xi, yi|θi)
)

= ln
( n∏
i=1

p(xi, yi|θi)
p(yi)

p(yi)
)

ln
( n∏
i=1

p(xi|yi, θi)p(yi)
)

=
n∑
i=1

ln
(
αyipyi(xi|θyi)

)
(2.10)

is called the complete-data likelihood function (Blimes, 1998). In the complete-data

likelihood function the actual values of the yi’s are not known. Accordingly, (2.10)

cannot be computed directly. Assuming that y is a realization of the random vector

Y makes (2.10) a function of a random variable, and thus a random variable itself.

By deriving a probability distribution for the unobserved data, and making an ini-

tial guess at the set of parameters Θ(m), where m refers to the parameters at some

iteration m, the expectation of (2.10) conditioned on x and Θ(m) can be computed.

The expectation of the conditional complete-data likelihood function is called the Q

function, and is written

Q(Θ|Θ(m)) = E
[
ln
(
L(Θ|x,y)

)∣∣∣x,Θ(m)
]

=

∫
Y
lnL(Θ|x,y)p(y|x,Θ(m))dy, (2.11)

where Y is the support of Y (Blimes, 1998). It is shown in Blimes (1998) that

the Q-function can also be written,

Q(Θ|Θ(m)) =
M∑
l=1

n∑
i=1

ln
(
αlpl(xi|θl)

)
p(l|xi,Θ(m))

M∑
l=1

n∑
i=1

ln(αl)p(l|xi,Θ(m))+
M∑
l=1

n∑
i=1

ln
(
pl(xi|θl)

)
p(l|xi,Θ(m)), (2.12)

where l ∈ {1, . . . ,M} replaced the yis. In (2.12) p(l|xi,Θ(m)) is the probabil-

ity that component l in the mixture distribution generated observation xi under the

parameter estimates at iteration m. With this formulation of the Q-function it is

possible to maximize with respect to the αl parameters separately from the θl param-
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eters. This is because the second term on the right sight of equation (2.12) does not

depend on αl, and the first term on the right side of equation (2.12) does not depend

on θl. Application of the EM algorithm has the following general steps (Gupta and

Chen, 2010):

E-step: Given x and current parameter values Θ(m) derive the conditional proba-

bility distribution p(y|x,Θ(m)), and use it to evaluate the expected value of the

conditional complete-data log likelihood function.

M-step: Find the set of parameters Θ(m+1) that maximize the expected value of

the conditional complete-data log likelihood function evaluated in the E-step.

Use Θ(m+1) in the next iteration of the E-step and repeat until a convergence

threshold is exceeded. A convergence threshold (ε) is a user defined value that

causes the algorithm to stop when the difference in log likelihood for sequential

EM steps is less than ε.

It has been shown that the EM algorithm has the following properties. Gupta

and Chen (2010) presented proofs of the monotonicity of the EM algorithm. That

is, for each iteration the likelihood of the data under the new parameter estimates

is greater than or equal to the likelihood under the previous parameter estimates.

Given monotonicity, Gupta and Chen (2010) show that for each iteration the likeli-

hood of the data under the new parameter estimates is strictly greater than the prior

likelihood as long as the prior parameter estimates are not critical points. Although a

proof for general convergence of the EM algorithm does not exist, it has been shown

by Wu (1983) that under certain conditions (satisfied by the exponential family of

distributions) the EM algorithm will converge to either a local minimum, maximum,

or saddle point. By initializing the algorithm at different values of Θ one can compare
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results and determine the most desirable set of parameters.

2.3.1 EM Estimators for Normal Mixture Models

Given the notation introduced in (2.12) we derive EM algorithm estimators for fit-

ting normal mixture models to the data. We start with the assumption that pl is

the pdf of a normal distribution with mean µl and standard deviation σl, where

l ∈ {1, . . . ,M}. Thus, Θ = {α1, . . . , αM , (µ1, σ1), . . . , (µM , σM)}, and we have the

following Q-function:

Q(Θ|Θ(m)) =
M∑
l=1

n∑
i=1

ln(αl)p(l|xi,Θ(m)) +
M∑
l=1

n∑
i=1

ln
(
pl(xi)

)
p(l|xi,Θ(m)). (2.13)

For the mixing coefficients αl we use Lagrange multipliers to maximize Q with respect

to the constraint
∑M

l=1 αl = 1. Accordingly, we need to maximize the following

expression

S(αl, λ) :=
M∑
l=1

n∑
i=1

ln(αl)p(l|xi,Θ(m)) + λ

(
M∑
l=1

αl − 1

)
. (2.14)

In this case we left out the second term on the right side of equation (2.13) because

it did not depend on αl. Next, we take the partial derivative of (2.14) with respect

to αl and set to zero to maximize:

∂S

∂αl
=

n∑
i=1

p(l|xi,Θ(m))

αl
+ λ = 0,

where summing both sides over l gives λ = −n (Blimes, 1998).
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Substituting −n for λ and solving for α
(m+1)
l we obtain the following estimate for the

mixing coefficients at iteration m+ 1:

n∑
i=1

p(l|xi,Θ(m))

αl
+ λ = 0

n∑
i=1

p(l|xi,Θ(m))

αl
− n = 0

n∑
i=1

p(l|xi,Θ(m)) = αl · n

=⇒ α
(m+1)
l =

1

n

n∑
i=1

p(l|xi,Θ(m)) (2.15)

Next, we derive estimators µ
(m+1)
l and σ

2,(m+1)
l . For the estimator of µ

(m+1)
l we

take the partial derivative of (2.13) with respect to µl and solve after setting to zero:

∂

∂µl

[
M∑
l=1

n∑
i=1

ln
(
pl(xi)

)
p(l|xi,Θ(m))︸ ︷︷ ︸

β

]

=
∂

∂µl

[
M∑
l=1

n∑
i=1

(
− ln(

√
2πσl)−

1

2σ2
l

(xi − µl)2
)
β

]

=
n∑
i=1

−1

σ2
l

(xi − µl)β = 0

n∑
i=1

xiβ − µlβ = 0

=⇒ µ
(m+1)
l =

∑n
i=1 xiβ∑n
i=1 β

=

∑n
i=1 xip

(
l|xi,Θ(m)

)∑n
i=1 p

(
l|xi,Θ(m)

) (2.16)

For the estimate of σ
2(m+1)
l we take the partial derivative of (2.13) with respect
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to w = σ2,m+1
l and solve for w after setting to zero:

∂

∂w

[
M∑
l=1

n∑
i=1

ln
(
pl(xi)

)
p(l|xi,Θ(m))︸ ︷︷ ︸

β

]

=
∂

∂µl

[
M∑
l=1

n∑
i=1

(
− 1

2
ln(2π)− 1

2
ln(w)− 1

2w
(xi − µl)2

)
β

]

=
n∑
i=1

− β

2w
+

β

2w2
(xi − µl)2 = 0

n∑
i=1

βw −
n∑
i=1

β(xi − µl)2 = 0

Thus, w = σ
2,(m+1)
l =

∑N
i=1 β(xi − µl)2∑N

i=1 β
=

∑N
i=1(xi − µl)2p(l|xi,Θ(m))∑N

i=1 p(l|xi,Θ(m))
(2.17)

Finally, the execution of the EM algorithm for normal mixture models consists

of the following specific steps (Gupta and Chen, 2010),

Step 1: Initialize the algorithm by setting each parameter with a guess. Also,

set a stopping threshold, ε, and compute the value for ln L(m) based on initial

parameter estimates where

ln L(m) =
1

n

n∑
i=1

ln
( M∑
l=1

α
(m)
l pl(xi|Θ(m)

)
.

Step 2: (E-Step) For l ∈ {1, . . . ,M}, estimate the posterior probability that xi

was generated by the lth distribution given our observed xi and current param-
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eter estimates,

p(l|xi,Θ(m)) =
α

(m)
l pl

(
xi|Θ(m)

)∑M
l=1 α

(m)
l p

(
xi|Θ(m)

) .
Step 3: (M-Step) Use the posterior probabilities to derive the new parameter

estimates that maximize the Q function,

α
(m+1)
l =

1

n

n∑
i=1

p(l|xi,Θ(m))

µ
(m+1)
l =

∑n
i=1 xip

(
l|xi,Θ(m)

)∑n
i=1 p

(
l|xi,Θ(m)

)
σ

2,(m+1)
l =

∑n
i=1

(
xi − µl

)2
p
(
l|xi,Θ(m)

)∑n
i=1 p

(
l|xi,Θ(m)

)
Step 4: Compute lnL(m+1) and |lnL(m) − lnL(m+1)|. If |lnL(m) − lnL(m+1)| < ε,

then terminate the iterations. If not then ε then store lnL(m+1) and go to Step 2.

2.3.2 EM Estimators for Gamma Mixture Models

Given the notation introduced in (2.12) we derived estimators for fitting gamma mix-

ture models to the data following Almhana et al. (2006) and Schwander and Nielsen

(2013). We start with the assumption that pl is the pdf of a gamma distribution

with parameters kl and βl, where kl > 0 is a shape parameter and βl > 0 is a scale

parameter. In this case l ∈ {1, . . . ,M} and Θ = {α1, . . . , αm, (k1, β1), . . . , (kM , βM)}.

Further, pl has the form:

pl(xi) =
βkll

Γ(kl)
xkl−1
i e−xi/βl l ∈ {1, . . . ,M}, (2.18)
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and

Γ(kl) =

∫ ∞
0

zkl−1e−zdz. (2.19)

Derivation of α
(m+1)
l follows that of the normal mixture estimator with no change

except that pl is the pdf of a gamma random variable. Thus, α
(m+1)
l is updated

by using (2.15) and the new definition of pl. Derivation of the estimator for β
(m+1)
l

proceeds as follows (Almhana et al., 2006):

∂S

∂βl
=
∂

∂βl

[
M∑
l=1

n∑
i=1

ln(pl(xi)) p(l|xi,Θ(m))︸ ︷︷ ︸
ξ

]

=
∂

∂βl

[
M∑
l=1

n∑
i=1

(
− ln(pl(xi)) + (k − 1)ln(xi)− klln(βl)− xi/βl

)
ξ

]

=− kl
βl

n∑
i=1

ξ +
1

β2
l

n∑
i=1

xiξ = 0

=⇒ β
(m+1)
l =

k
(m)
l

∑n
i=1 ξ∑n

i=1 xiξ
=
k

(m)
l

∑n
i=1 p(l|xi,Θ(m))∑n

i=1 xip(l|xi,Θ(m))
. (2.20)

Derivation of estimator for k
(m+1)
l proceeds in a similar way (Almhana et al.,

2006),

∂S

∂kl
=
∂

∂kl

[
M∑
l=1

n∑
i=1

ln(pl(xi)) p(l|xi,Θ(m))︸ ︷︷ ︸
ξ

]

=
∂

∂kl

[
M∑
l=1

n∑
i=1

(
− ln(Γ(kl)) + (k − 1)ln(xi)− klln(βl)− xi/βl

)
ξ

]

=
n∑
i=1

[
ln(xi)− ln(βl)−

∂

∂kl
ln(Γ(kl))

]
ξ
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=
n∑
i=1

[
ln(xi)− ln(βl)− ψ(kl))

]
ξ. (2.21)

Setting (2.21) to zero and solving for kl has no closed form expression, meaning there

is no direct way to solve for k
(m+1)
l (Almhana et al., 2006). Almhana et al. (2006)

and Schwander and Nielsen (2013) use the fact that the EM algorithm is a gradient

based algorithm, and therefore propose to update kl in the direction of its gradient

by a prescribed step size. In this case,

k
(m+1)
l = k

(m)
l +

1

k
G, (2.22)

where

G =
1

n

n∑
i=1

[
ln(xi)− ln(β

(m)
l )− ψ(k

(m)
l )

]
p(l|xi,Θ(m)) (2.23)

where ψ(k) also has no explicit expression (Almhana et al., 2006). Almhana et al.

(2006) suggest using

ψ(k) ≈ ln(k − 0.5) +
1

24(x− 0.5)2
, (2.24)

which they show is a good approximation, particularly when k ≥ 2. Implementa-

tion of the EM algorithm for a mixture of gamma distributions follows the steps

outlined in section 2.3.1 with the exception that the gamma estimators are used.

Algorithms for fitting normal mixture models and gamma mixture models were im-

plemented using the mixtools library in R. The functions called were normalmixEM()

and gammamixEM().
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2.4 Model Selection and Validation

After models were fit using the EM algorithm a variety of methods were used to

select and validate them. Model selection was done through investigation of log-

likelihood values, Akaike information criterion (AIC) values, likelihood ratio tests,

and Kolmogorov-Smirnov goodness of fit tests. The tests were performed using para-

metric bootstrapping. The log-likelihood values provide a measure of the overall

likelihood of generating a given data set under the proposed model, AIC values are

a measure of the information carried in the model including a penalty for additional

parameters. The likelihood ratio test is used to compare nested models (M versus

M+1 where M is the number of component distributions in the mixture model), and

provides a method of selecting the best model. The Kolmogorov-Smirnov goodness

of fit test was used to verify the model was statistically identical to the population

distribution that generated the data.

2.4.1 Akaike information criterion (AIC)

The AIC is typically computed using the equation

AIC = 2m− 2ln(L), (2.25)

where m is the number of parameters in the model and L is the likelihood function

(Sakamoto et al., 1986). The second term in the equation is used to correct for bias

(Sakamoto et al., 1986). The most desirable model will have a minimum AIC value

and maximum L value. When fitting a model with the EM algorithm a definition

different from (2.25) is required because the EM algorithm analyzes the expected log

likelihood surface (Glosup and Axelrod, 1994). Sakamoto et al. (1986) define the

AIC such that the expected log likelihood is −1/2AIC. Thus for computing the
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AIC for models with parameters obtained by the EM algorithm

AIC = −2Q(Θ, Θ̂), (2.26)

is appropriate (Glosup and Axelrod, 1994). We used the formula in (2.26) for analysis.

2.4.2 Likelihood Ratio Test

The likelihood ratio test (DeGroot and Schervish, 2001) was used for model selection.

The likelihood ratio test tests the following hypotheses (Degroot and Schervish, 2001):

H0 : Θ = ΘM

H1 : Θ = ΘM+1.

Rejection of H0 means that the model with M + 1 components is significantly better

than a model with M components. In the testing of mixture models M starts at 2

and is increased until H0 cannot be rejected. The likelihood ratio statistic

λ =
L(ΘM |x)

L(ΘM+1|x)
(2.27)

can be used to test the above hypotheses (DeGroot and Schervish, 2001).

By applying −2ln to both sides of (2.27) we get,

−2ln(λ) = 2
(
lnL(ΘM+1|x)− lnL(ΘM |x)

)
∼ χ2

dim(M+1)−dim(M). (2.28)

which can be shown true when x is large. Computing the test statistic was approached

with caution since (2.28) requires actual log likelihood values while the EM algorithm

produces expected values of the log likelihood. To deal with this issue the distribution
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of under the null hypothesis was discovered through a parametric bootstrap. The

parametric bootstrap proceeds as follows:

1. We fit the claim duration data for M and M + 1 components using the

EM algorithm and set Qobs = 2(LM+1 − LM)

2. We simulate a new data set using the fitted M component model

3. We fit M and M+1 models to the simulated data using the EM algorithm

and call these log likelihood values L∗M+1 and L∗M

4. We store Q∗ = 2(L∗M+1 − L∗M)

5. We repeat steps (2) to (4) 1,000 times and then take the p-value for the

above hypothesis test to be the mean of I(Q∗ ≥ Qobs) where I is the indicator

function.

The result is a more robust test of the above hypotheses.

Model selection with the likelihood ratio test includes multiple comparisons. Mul-

tiple comparisons occur when a test involves multiple hypotheses that are dependent.

For example, in the likelihood ratio test outlined here testing the null hypothesis

that Θ = Θ3 is dependent on the outcome of the tests for H0 : Θ = Θ1 versus

H1 : Θ = Θ2 and H0 : Θ = Θ2 versus H1 : Θ = Θ3. The dependence arises because

we need to first reject the null hypotheses that Θ = Θ1 and Θ = Θ2 before testing

the null hypothesis that Θ = Θ3. This distinction alters the error structure of the test.

When tests involve only a single test we focus on controlling type I error, which

occurs when the null hypothesis is rejected even though it is true. The probability

of type I error is given by the probability η = P (reject H0 |H0 is true). When a test

includes multiple comparisons special attention should be given to the propagation

error, including type II error. Type II error occurs when the null hypothesis is not

rejected although the alternative hypothesis is true. The probability of type II error



25

is denoted β = P (fail to reject H0 |H1 is true). Figure 2.1 shows a logical tree of the

possible outcomes if the null hypothesis that Θ = Θ4 is the first null hypothesis that

fails to be rejected. The βis (i ∈ {1, 2, 3}) are the probability of committing a type

II error for the H0 : Θ = ΘM versus H1 : Θ = ΘM+1 tests denoted by the heptagons,

and η is the probability of committing a type I error, or the significance level of the

test.

Figure 2.1: A logical tree for the likelihood ratio test when failing to reject the null
hypothesis that Θ = Θ4.

The overall error of the test when the first null hypothesis failing to be rejected

is Θ = Θ4 is given by the sum of the probabilities of the blue boxes. In this case, the

probability that the selected model is correct is given by the product of the red boxes.

We determined the βis by using a parametric bootstrap and set the significance level

of the test, η, so that

P ( fail to reject H0 : Θ = ΘM |Θ 6= ΘM) = 0.05. (2.29)

In particular, for the case when we fail to reject the null hypothesis that Θ = Θ4 we
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set η such that

P ( fail to reject H0 : Θ = Θ4 |Θ 6= Θ4) =

β1 + (1− β1)β2 + (1− β1)(1− β2)β3 + (1− β1)(1− β2)(1− β3)η = 0.05. (2.30)

2.4.3 Kolmogorov-Smirnov Goodness-of-Fit Test

The Kolmogorov-Smirnov goodness-of-fit test (D’Agostino and Stephens, 1986) was

used to determine if the selected mixture model was statistically identical to the

distribution that generated the data. The Kolmogorov-Smirnov goodness-of-fit test

utilizes the empirical cumulative distribution function which is defined as

F̂ (x) = n(xi)/N, (2.31)

where xi is the ith observation, n(xi) is the number of observations less than or equal

to xi, and N is the total number of observations (Degroot and Schervish, 2001). The

hypotheses for this test are (Degroot and Schervish, 2001)

H0 : F̂ (x) =F (x)

H1 : F̂ (x) 6=F (x).

The test statistic for the Kolmogorov-Smirnov goodness-of-fit test is computed as

D = sup
i∈{1,...,N}

∣∣∣F (xi)− F̂ (xi)
∣∣∣, (2.32)

where F is the theoretical cumulative distribution function in H0 (D’Agostino and

Stephens, 1986). Critical values for the test are readily available in tables or in soft-

ware packages like R.
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To perform the test, the mean of 1,000 realizations of the Kolmogorov-Smirnov

goodness-of-fit test statistic were obtained with a parametric bootstrap. The boot-

strap is used because a bias may arise if the test is performed on the same data we

used to fit the model.

2.4.4 Standard Error of the Parameter Estimates

After the model had been selected using log-likelihood values, AIC values, the likeli-

hood ratio test, and the Kolmogorov-Smirnov goodness-of-fit test, analysis was per-

formed for the parameter estimates. The distribution and standard errors of the

parameters were obtained by another parametric bootstrap. The procedure reveals

the degree of uncertainty associated with the final set of parameters. The boot-

strap for the standard errors of the parameter estimates was implemented using the

boot.se function in the mixtools package in R.
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Chapter 3 Results

3.1 Exploratory Data Analysis of Claims Duration

Exploratory data analysis was used to answer the following questions:

− What are the general statistical properties of the data such as the mean,

median, range, and variance?

− Is the distribution of the data symmetric or skewed?

− What is the general distribution of the population the data comes from?

− Are there any interesting features of the distribution such as gaps or mul-

tiple modes?

To answer the first question descriptive statistics were produced for the data.

The descriptive statistics for all the claim duration data are presented in Table 3.1.

The descriptive statistics for claims open less than 55 years and for claims open longer

than 55 years are presented in Table 3.2 and Table 3.3, respectively.

As presented in Table 3.1, the mean of the entire data set was 1.38 years (about

504 days). The minimum (zeros omitted) was 0.0027 (about 1 day) and the max was

69.11 (about 25,242 days). Given the presented values for the min and max, the range

for the data was 69.107 years (about 25,242 days). The median for the entire data set

was 0.35 years (about 128 days). The data set has a positive skew. The coefficient

of variation (Cv = S/X̄) was 5.024. The coefficient of variation is a mean normalized

measure of the dispersion of the data. 103 claims were reported to be open less than

0 years, which was assumed to be due to input error. These claims were removed

from the data before computation of any descriptive statistics presented in Tables 3.1



29

through 3.3.

Table 3.1: Descriptive statistics for all claim lengths. Values are in years. The
minimum was taken to be the smallest value other than zero.

Non-zero entries Zero entries “NA” entries Min Max

2,233,784 288 4,269 0.0027 69.11

Median X̄ S2 S Cv
0.353 1.377 47.833 6.916 5.024

From Table 3.2, there were 2,206,553 claims open less than 55 years. These claims

had a median of 0.35 years (about 128 days), a mean of 0.62 years (about 226 days),

and a standard deviation of 1.387 (∼507 days). From Table 3.3, there were 27,444

claims open longer than 55 years. These claims had a median of 62.42 years (about

22,799 days), a mean of 62.19 years (about 22,715 days), and standard deviation of

3.15 years (about 115 days).

Table 3.2: Descriptive statistics for claims open less than 55 years. Values are in
years.

Non-zero entries Zero entries “NA” entries Min Max

2,206,553 288 4,269 0.0027 53.500
Median X̄ S2 S Cv
0.350 0.623 1.925 1.387 2.23

A histogram for the duration of time claims remain open is presented in Figure

3.1. The histogram in top-left panel of Figure 3.1 is multi-modal, having two peaks

in density occurring at values less than 0.5 years (about 183 days). In the histogram

it can be seen that there is a clustering of claims open longer than 55 years, which
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Table 3.3: Descriptive statistics for claims open longer than 55 years. Values are in
years.

Non-zero entries Zero entries “NA” entries Min Max

27,444 0 0 55.18 69.11

Median X̄ S2 S Cv
62.417 62.186 9.908 3.148 0.0506

is shown in the top-right panel of Figure 3.1. The box plot in the bottom panel of

Figure 3.1 conveys the fact that there is a gap between the claims open less than 55

years and the claims open longer than 55 years.

Figure 3.1: The histogram for the data representing the length of time claims
remain open. The figure in the top-left panel shows claims open less than 55 years.

The figure in the top-right panel shows claims open longer than 55 years.

3.1.1 Summary

The results of the exploratory data analysis are as follows:
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− The mean of the entire data set was 1.38 years (504 days) and the range

was 69.107 (about 25,241 days) (0 values omitted).

− The mean for the data open less than 55 years was 0.623 years (228 days)

and the range was 53.507 years (19,543 days).

− The mean for the data open longer than 55 years was 62.186 years (about

22,713 days) and the range was 13.93 years (about 5,088 days).

− The histograms revealed that the general distribution of the data is posi-

tively skewed.

− The histogram and box-plot revealed that there is a gap in the distribution

around 55 years. This suggests the claim duration data may be generated by a

mixture distribution.

− The general distribution of the data is multi-modal. This also suggests

the claim duration data is being generated by a mixture distribution.
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3.2 Log Linear Analysis and Modeling

The three-way contingency table for extent of injury, claim type, and the indicator for

claims open longer than 55 years is presented in Table 3.4. A χ2 test of independence

for Table 3.4 produced a χ2 statistic of 32,225,119 with 39 degrees of freedom. The

p-value for the test was less than 2.2e-16. The test reveals that there exists some

dependence between extent of injury, claim type, and the indicator for claims being

open longer than 55 years. The precise nature of this dependence is not revealed by

the test, but it can be due to a three-way interaction, or one of the three two-way

interactions.

Table 3.4: A 3-way contingency table for claim counts based on extent of injury,
claim type, and the indicator for claims open longer than 55 years.

Duration
Extent of Injury Claim Type ≥ 55 yrs < 55 yrs

1 NR 0 0
R 13 1,427

RO 0 0
V 0 0

2 NR 0 0
R 1 874

RO 0 0
V 0 0

5 NR 0 22
R 96 273,726

RO 0 0
V 2 0

6 NR 131 1,230,573
R 39 1288

RO 25,710 562,927
V 1,336 3,150

9 NR 0 10
R 6 132,453

RO 0 0
V 0 0

Two-way contingency tables were formed for extent of injury and claim type,

extent of injury and the indicator for claims open longer than 55 years, and claim



33

type and the indicator for claims open longer than 55 years. The contingency tables

for these three pairs of variables are presented in Table 3.5, 3.6, and 3.7, respectively.

Table 3.5: A contingency table for extent of injury codes with respect to claim type.

Claim Type
Extent of Injury NR R RO V

1 0 1,440 0 0
2 0 875 0 0
5 22 273,882 0 2
6 1,230,704 1,327 588,637 4,486
9 10 132,459 0 0

Table 3.6: A contingency table for extent of injury codes with respect to the
duration of time claims remain open (≤55 and <55)

Duration
Extent of Injury ≥ 55 yrs < 55 yrs

1 13 1427
2 1 874
5 98 273,748
6 27,216 1,797,938
9 6 132,463

Table 3.7: A contingency table for claim type codes with respect to the duration of
time claims remain open (≤55 and <55)

Duration
Claim Type ≥ 55 yrs < 55 yrs

N 131 1,230,605
R 155 409,768

RO 25,710 562,927
V 1,338 3,150

χ2 tests of independence were performed on Tables 3.5 to 3.7. The results of the

tests are presented in Table 3.8. The results indicate that the variables are dependent

in all cases.
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Table 3.8: Results for χ2 tests of independence performed on Tables 3.4 to 3.6.

Description χ2 df p-value
Extent of Injury / Claim Type 2,224,707 12 < 2.2e-16
Claim Type / 55 yr indicator 98,241 3 < 2.2e-16

Extent of Injury / 55 yr indicator 5,917 4 < 2.2e-16

Next we built a log linear model for the three-way contingency table in Table 3.4.

We began by fitting the saturated model and proceeded by progressively removing

interactions until the AIC was improved. The saturated model is the model with all

main effect terms, interaction terms, and a parameter for the intercept. The results

for the saturated model and backwards selection process is presented in Table 3.9.

The “*” between variables in the formulas in Table 3.9 indicates main effects and

all lower order interactions. The “:” between variables in the formulas in Table 3.9

indicates interactions. The “-” is used to indicate that the respective interaction term

was removed from the model with the lowest AIC.

Table 3.9: Results for backward selection of the log linear model for the three-way
contingency table in Table 3.4.

Formula χ2 df p-value AIC
∼Extent.of.Inj*Claim.Type*Indicator 0 0 1 80
−Exent.of.Inj:Claim.type:Indicator 21.13217 12 0.04848 77.13
−Extent.of.Inj:indicator 390.3802 16 0 428
−Claim.Type:Indicator 63,228.54 15 0 63,279
−Extent.of.Inj:Claim.Type 2,097,405 24 0 2,097,437

Table 3.9 shows that a minimum AIC value was obtained after removing the

three-way interaction from the saturated model. The AIC value obtained was 77.13.

When two-way interactions were removed from the model without the three-way in-

teraction the AIC value increased. The results show that the three-way interaction

was insignificant. Since the AIC values serves as a measure of information carried in

the model, where a lower AIC indicates more information, we can interpret the results

in Table 3.9 in a way that orders the two-way interaction in terms of predictor im-
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portance. For example, the models with two-way interactions Extent.of.Inj:Indicator

and Claim.Type:Indicator alternatively removed had AIC scores of 428 and 63,279,

respectively. Based on the AIC scores the former model is better. The AIC being

better when Extent.of.Inj:Indicator is removed as compared to Claim.Type:Indicator

implies that the Claim.Type:Indicator interaction is a more important predictor of

counts in the contingency table. Following this logic the decreasing order of impor-

tance for the two-way interactions was extent of injury / indicator, claim type /

indicator, and extent of injury / claim type.

The selected model based on the backward selection process was the saturated

model less the three-way interaction for extent of injury, claim type, and the indi-

cator for claims open longer than 55 years. The selected model failed to produce

estimations of the coefficients. However, this is not of huge importance since the log

linear model fit here is not intended to be predictive but rather it is used to explain

the association between categorical variables in the contingency table. The p-value

for the χ2 statistic rejects the null hypothesis that the log linear model fits well at

the 0.05 significance level. The results indicate that the model fit is unsatisfactory.

The fitted values for the selected log linear model are presented in Table 3.10. The

residuals are presented in Table 3.11.

The dissimilarity index (section 2.2, formula 2.3) was computed from the resid-

uals in Table 3.11. The value was equal to 0.000003%. The interpretation is that

0.000003%, or 6.8251 observations would need to be adjusted to achieve a perfect fit.
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Table 3.10: A 3-way contingency table of fitted claim counts based on the selected
log linear model.

Duration
Extent of Injury Claim Type ≥ 55 yrs < 55 yrs

1 NR 0 0
R 13.0076 1,426.9997

RO 0 0
V 0 0

2 NR 0 0
R 1.0006 873.9498

RO 0 0
V 0 0

5 NR 0.00003 21.9998
R 98.0470 273,723.9498

RO 0 0
V 1.9894 0.0158

6 NR 131 1,230,573
R 36.9413 1290.0802

RO 25,710 562,927
V 1,337.9890 3,148.0106

9 NR 0.000002 10
R 6.0035 132,452.9706

RO 0 0
V 0 0
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Table 3.11: A 3-way contingency table for claim counts based on extent of injury,
claim type, and the indicator for claims open longer than 55 years.

Duration
Extent of Injury Claim Type ≥ 55 yrs < 55 yrs

1 NR 0 0
R -2.1178e-3 8.3954e-6

RO 0 0
V 0 0

2 NR 0 0
R -5.8738e-4 6.5637e-6

RO 0 0
V 0 0

5 NR -7.6546e-3 4.7276e-6
R -2.0745e-1 3.9187e-3

RO 0 0
V 0.0063 -0.0158

6 NR 2.7032e-6 -8.1525e-6
R 3.3564e-1 -5.7931

RO 0 0
V -5.4401e-2 3.5454e-2

9 NR -1.8357e-3 2.6147e-7
R -1.4381e-3 8.0928e-5

RO 0 0
V 0 0
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3.2.1 Summary

The results of the log linear analysis are as follows:

− χ2 tests of independence on the three-way contingency table revealed that

some dependence exists between extent of injury, claim type, and the indicator

for claims being open longer than 55 years.

− χ2 tests of independence on the two-way contingency tables revealed that

some dependence exists between extent of injury and claim type, extent of injury

and the indicator for claims open longer than 55 years, and claim type and the

indicator for claims open longer than 55 years.

− Backward selection of a log linear model for the three-way contingency

table revealed that the three-way interaction between extent of injury, claim

type, and the indicator for claims open longer than 55 years was not significant.

It also showed that all two-way interactions were significant.

− Based on the AIC scores, backward selection revealed that extent of injury

and claim type was the most important two-way interaction, followed by claim

type and the indicator for claims open longer than 55 years, and then followed

by the extent of injury and the indicator for claims open longer than 55 years

interaction.

− The selected log linear model was the saturated model less the three-way

interaction for extent of injury, claim type, and the indicator for claims open

longer than 55 years.

− The χ2 statistic for the selected model produced a p-value of 0.04848.

The p-value rejects the null hypothesis that the model fits well at the 0.05

significance level.
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− Finally, a dissimilarity index was computed based on the residuals in Table

3.11. The dissimilarity statistic was computed to be 0.000003%, which has the

interpretation that 0.000003% of the observations (∼ 7 observations) would

need to be adjusted to achieve a perfect fit.
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3.3 Distribution of the Length of Time Claims Remain Open

3.3.1 Mixture of Normals

The EM algorithm was implemented in R using the package mixtools in order to

model the distribution of the duration of time claims remain open. Fitting normal

mixtures models to the data presented in Figure 3.1 was done in two ways. First,

a series of arbitrary initial estimates for Θ(0) were used to produce a set of results.

Second, constraints on parameter values were enforced to see if a better fit could be

attained through human intervention. The constraint was determined by partitioning

the data and fitting a normal distribution to a subset. The constraint consisted of

one mixture component being fixed as N (0.0484, 0.0218). Fitting the model with the

constraint means that the expected value of the conditional log likelihood was maxi-

mized with respect to all parameters except the constrained parameters. Thus, they

remained fixed throughout the EM algorithm process. Additional constraints were

attempted but did not improve the results. For both cases, results include estimates

of parameters for normal mixture models of up to 10 components. The key results

are presented in Table 3.12. Estimated parameters for each model are presented in

Appendix A. The convergence threshold was set to 10−8. The convergence threshold

corresponds to the difference between log likelihood values at iteration m and m+ 1

in the EM algorithm. When the difference is smaller than the convergence threshold,

the algorithm stops. Table 3.12 shows the log-likelihood of the model increases when

adding additional distributions. In both cases the log-likelihood greatly improved

when the number of distributions increased from M = 2 to 4. Table 3.12 also in-

cludes AIC values for each model. The AIC values in Table 3.12 suggests that a 4

component mixture of normal distributions is preferred. Figure 3.2 presents a graph

of the log-likelihood values presented in Table 3.12.
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Table 3.12: Results for fitting normal mixture models to the data with the EM
algorithm. The results include normal mixture models from M=2 to 10. Included in
the table are the resulting log-likelihood values, and AIC values for both the models

fitted with arbitrary Θ(0) values and a constrained set of parameters in Θ.

EM Results
Arbitrary Θ(0) Constrained Parameters in Θ

Iterations ln(L) AIC Iterations ln(L) AIC
M = 2 24 -1,372,205 3,179,872 6 -3,287,218 4,413,099

3 29 -1,020,804 1,775,874 31 -1,032,436 1,872,931
4 106 -845,038 950,610 107 -753,700 944,691
5 148 -722,724 2,790,358 270 -669,941 2,122,928
6 155 -650,499 2,839,688 459 -650,751 2,780,242
7 994 -606,686 3,185,950 739 -626,074 2,883,754
8 541 -592,645 3,280,084 489 -623,680 2,892,131
9 1035 -585,723 3,799,290 922 -616,466 3,250,340
10 1444 -575,359 4,509,210 1,534 -610,309 4,313,817

Figure 3.3 presents histograms of the data along with plots of the fitted normal

components for M = 2 to 10. The results in Figure 3.3 arose form arbitrary initial

values of Θ(0). Figure 3.4 presents plots of the empirical cumulative distribution

function of the data versus the theoretical cumulative distribution function of the

models plotted in Figure 3.3. A line for y = x was also plotted to aid interpretation.

Improvement is most noticeable when increasing the number of components from 2 to

4. Figure 3.5 shows plots that are similar to those in Figure 3.3 the difference being

that the models were fit with a single set of constrained parameters in Θ. Figure

3.6 presents plots the empirical cumulative distribution function (ECDF) versus the

theoretical cumulative distribution (TCDF) functions for the fitted models presented

in Figure 3.5. Greatest improvement for the models fit with a single constrained set

of parameters was when components were increased from M=2 to 4.

3.3.2 Mixture of Gammas

Fitting gamma mixture models to the data produced results that were sub-optimal

when compared to those produced by normal mixture models. Figure 3.7 shows his-

tograms for the data with curves plotted for fitted gamma mixture model components.
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Figure 3.2: A plot of the log likelihood values for different models produced by the
EM algorithm. The blue points refer to log likelihood values obtained wihthout any

constraints on Θ. The green points refer to log likelihood values obtained with a
constraint on Θ.

Table 3.13 presents the corresponding log likelihood values. When comparing the Log

likelihood values in Table 3.13 to those in Table 3.12 we see that the fitted normal

mixture models are more likely than the fitted gamma mixture models.

Table 3.13: Log likelihood values for gamma mixture models fit to the data.

Parameters
M=2 3 4 5 6 7

Log Likelihood -1,045,910 -881,089 -780,392 -694,172, -709,307 -737,339

3.4 Model Selection and Validation

Initial results indicate that a mixture of normal distributions provide a better fit for

the data than a mixture of gamma distributions. Log-likelihood values and computed
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AIC values suggest the selection of the 4 component mixture of normals produced

with a set of constrained parameters in Θ. Additional steps were taken to verify

and validate this selection. Results of the likelihood ratio test using a bootstrapped

likelihood ratio statistic are presented in Table 3.14. The results in Table 3.14 also

indicate selection of a mixture of 4 normal distributions. The significance level (η)

was set such that (2.32) was satisfied for β1 = 0, β2 = 0.02, and β3 = 0.01. β1 was

zero because H0 : Θ = Θ1 was not tested for the constrained models. β2 and β3 where

determined through parametric bootstrap. The significance level after accounting for

multiple comparisons was η = 0.021. The test failed to rejected the null hypothesis

that Θ = Θ4. The P ( fail to rejectH0 : Θ = Θ4 |Θ = Θ4) = 0.95 for this test.

Table 3.14: P-values computed using 1,000 realizations of the bootstrapped log of
the likelihood ratio statistic.

p-values
Components (M, M+1)

1, 2 2, 3 3, 4 4, 5

Arbitrary Θ(0) − 0 0.020 0.32
Contrained Θ − 0 0.015 0.28

A bootstrapped Kolmogorov-Smirnov goodness-of-fit test was applied to mixture

models with M =2 to 6 components. The mean of these realizations produced the

p-values presented in Table 3.15.

Table 3.15: P-values computed using the mean of 1,000 realizations of the
bootstrapped Kolmogorov-Smirnov goodness-of-fit test statistic.

p-values
Components (M)

2 3 4 5 6

Arbitrary Θ(0) 0.034 0.086 0.055 0.818 0.970
Contrained Θ 0.029 0.091 0.646 0.735 0.783

When the likelihood ratio statistic was computed using 1,000 realizations from a

parametric bootstrap procedure a mixture of normal distributions with 4 components

was selected. A Kolmogorov-Smirnov goodness-of-fit test was also performed to verify
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that the models fitted as mixtures of normal distributions were statistically identical

to the distribution generating the data. The Kolmogorov-Smirnov goodness-of-fit

test showed that fitted normal mixture models with 3 or more components were

statistically identical to the distribution generating the data. These results suggest

the 4 component normal mixture model fit with a constrained parameter in Θ should

be selected. The selected model is of the form

X ∼ α · (X1, X2, X3, X4)′ (3.1)

where X1 ∼ N (0.0484, 0.0218), X2 ∼ N (0.367, 0.155), X3 ∼ N (1.083, 0.570), X4 ∼

N (5.386, 5.341), and α ∼ Mult(1, π) with π = (0.185, 0.595, 0.183, 0.037). Where

multi(1, π) refers to a multinomial distribution that has a probability mass function

f(x1, . . . , xk) = P (X1 = x1 . . . Xk) =


n!

x1!...xk!
px11 · · · p

xk
k when

∑k
i=1 xi = n

0 otherwise

(3.2)

as defined in DeGroot & Schervish (2001). Standard errors for the parameters of the

model in (3.1) were estimated using 1,000 bootstrapped realizations. Histograms for

αi, µi, and σi are presented in Figures 3.8, 3.9, and 3.10, respectively. Table 3.16

presents the standard errors for each parameter. The small standard errors suggest

the parameter estimates are reliable.

Table 3.16: Standard errors for the parameter estimates for the fitted normal
mixture model with M=4 components. The model has a constrained parameter in

Θ.

Standard Errors
Component

X1 X2 X3 X4

α 0.00031 0.00049 0.00042 0.00014
µ 3.9771e-5 0.00016 0.00147 0.0192
σ 3.574e-5 1.5401e-4 8.5974e-4 1.308e-2
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3.4.1 Summary

Model selection and validation procedures produced a 4 component normal mixture

model. The model was fit by using a single fixed parameter in Θ where µ1 = 0.0484

and σ1 = 0.0218. This model was selected using a likelihood ratio test where the

likelihood ratio statistic was produced with 1,000 parametric bootstrap realizations.

After the model was selected it was shown to be identical to the distribution gener-

ating the data. This was done through a Kolmogorov-Smirnov goodness-of-fit test.

The test statistic was also computed using 1,000 parametric bootstrap realizations.

Finally, the standard errors of the final models parameters were computed using a

bootstrap. The small standard errors presented in Table 3.17 show that uncertainty

in the parameter estimates is small.

The selected model for claim duration X is

X ∼ α · (X1, X2, X3, X4)′ (3.3)

where X1 ∼ N (0.0484, 0.0218), X2 ∼ N (0.367, 0.155), X3 ∼ N (1.083, 0.570), X4 ∼

N (5.386, 5.341), and α ∼Mult(1, π) with π = (0.185, 0.595, 0.183, 0.037).
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Figure 3.3: Density plots of the components of the mixutre models produced by the
EM algorithm with arbitary intial values of Θ. The number of components range

from 2 to 10. The data from Figure 2 is presented in grey.
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Figure 3.4: Plots of the empirical cumulative distribution function of the data
versus the theoretical cumulative distribution function of the fitted models. A line

for y = x is also plotted to aid interpretation.
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Figure 3.5: Density plots of the components of the mixutre models produced by the
EM algorithm with a constrained set of parameters in Θ (µ1 = 0.0484 and

σ = 0.0218). The number of components range from 2 to 10. The data from Figure
2 is presented in grey.
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Figure 3.6: Plots of the empirical cumulative distribution function of the data
versus the theoretical cumulative distribution function of the fitted models. A line

for y = x is also plotted to aid interpretation.
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Figure 3.7: Plots of the histogram of the data with curves for the fitted gamma
mixture models. The plots are for gamma mixtures with 2 to 7 components.

Figure 3.8: Histograms of 1,000 realizations from a parametric bootstrap on the
weighting parameters α.
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Figure 3.9: Histograms of 1,000 realizations from a parametric bootstrap on µ.

Figure 3.10: Histograms of 1,000 realizations from a parametric bootstrap on σ.
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Chapter 4 Conclusions and Future Work

4.1 Conclusions

The questions addressed in this work were:

1. What are the general statistical properties of the data such as the mean,

median, range, and variance?

2. Does the distribution of data exhibit any skewness?

3. What is the general distribution of the data?

4. Are there any interesting features of the distribution such as gaps or mul-

tiple modes?

5. Does extent of injury or claim type help explain any of the interesting

properties of the distribution of the data such as gaps?

6. How can we model the data, and which is “the best” model?

The first four questions were answered through exploratory data analysis. The

mean duration of time claims remained open for the entire data set was 1.38 years

and the variance was 47.833. The non-zero minimum and maximum were 0.0027 and

69.11 years, respectively. The median was 0.35 years. The mean being greater than

the median revealed that the data exhibited positive skew. Histograms examined in

the exploratory data analysis section indicated that the general distribution of the

data was likely a mixture distribution. This was believed due to the multiple modes

and a gap at approximately 55 years.
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The fifth question was answered through log linear analysis and modeling. χ2

tests of independence were performed on the three-way contingency table and the

two-way contingency tables for extent of injury, claim type, and the indicator for

claims being open longer than 55 years. The tests of independence revealed that

dependence between the explanatory variables existed in all cases. A backward se-

lection process using the AIC for the log linear model of the three-way contingency

table was used to determine which interactions were significant. The process revealed

that all main effects and two-way interaction for extent of injury, claim type, and the

indicator for claims open longer than 55 years were significant. The interpretation is

that claims being open more or less than 55 years are dependent on both extent of

injury and claim type. A significant association also exists between claim type and

extent of injury. Only the three way interaction was determined to be insignificant in

the log linear model. Thus, the selected log linear model was the saturated model less

the three-way interaction term. The p-value for the deviance statistic of the model

was 0.04848, which rejects the null hypothesis that the model fits well at the 0.05

significance level. Residual analysis was performed using a dissimilarity index. The

analysis revealed 0.000003% of the observations (about 7) would need to be altered

to obtain a perfect fit.

Finally, we answered the last question in the list. It was determined that the

general distribution of the data could be fit well with normal and gamma mixture

models. Normal and gamma mixture models were fit using EM algorithm functions in

the mixtools library in R. Log-likelihood values and AIC values were used to deter-

mine whether the normal or gamma mixture models were to be preferred. The results

indicated that a normal mixture model with a single set of constrained parameters

was preferred. Model selection was done using 1,000 realization of the bootstrapped

likelihood ratio statistic. The result of the test was that a normal mixture model with

4 components was optimal. After the model was selected a bootstrapped Kolmogorov-

Smirnov goodness-of-fit test was performed to verify that the 4 component normal
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mixture model fit the population distribution that generated the data. The result

of the test indicated that the 4 component normal mixture model fit the population

distribution that generated the data. Finally, a bootstrap was performed to obtain

the standard errors of the parameter estimates. The standard errors of the param-

eter estimates for the selected 4 component normal mixture model indicated that

there was little uncertainty in the parameter estimates. The selected model for claim

duration X was:

X ∼ α · (X1, X2, X3, X4)′ (4.1)

where X1 ∼ N (0.0484, 0.0218), X2 ∼ N (0.367, 0.155), X3 ∼ N (1.083, 0.570), X4 ∼

N (5.386, 5.341), and α ∼Mult(1, π) with π = (0.185, 0.595, 0.183, 0.037).

The advantage of knowing the analytical form of the distribution of claim dura-

tion is to be able to approximate the probability of a claim being open longer than a

given duration of time. This is done using Monte Carlo simulation. As an example we

simulated 100,000 realizations of the distribution presented in (3.3), we call it x, and

looked at the mean of I(x > 5yrs). In doing so we determined that the probability

of a claim being open longer than 5 years is approximately 0.02.

4.2 Future Work

Analysis for future work includes looking at the relationship between claim duration

and loss amount. This could be done in several ways. One way would be by looking at

the conditional distributions of claim duration and loss amount with respect to extent

of injury and claim type. It may be that the conditional distributions are statistically

different, and if so this would explain variability in both claim duration and loss

data. In addition to this a hierarchical cluster analysis could be used to determine

which combinations of claims have duration and losses that are most similar. In both
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cases the results could be used by the claims department to make initial estimates of

losses based on the known characteristics of a claim. This information would assist

in reserving funds for future claim payments.
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Appendix A EM Algorithm Parameter Estimates

Table A.1: Parameter estimates for normal mixture models

N Arbitrary Θ(0) Constraint on Θ
α̂ µ̂ σ̂ α̂ µ̂ σ̂

M = 2 0.8833 0.3466 2.7457 0.1920 0.0484 0.0218
0.1167 0.2506 3.5603 0.8080 0.7637 1.5923

3 0.1686 0.0464 0.0197 0.1741 0.0484 0.0218
0.7119 0.4132 0.2217 0.7062 0.4154 0.2203
0.1195 2.7166 3.5214 0.1197 2.7140 3.5188

4 0.1822 0.0456 0.0210 0.1848 0.0484 0.0218
0.1819 1.0865 0.5727 0.5952 0.3671 0.1551
0.5986 0.3663 0.1562 0.1826 1.0834 0.5703
0.0372 5.4008 5.3506 0.0374 5.3864 5.3415

5 0.1012 0.0345 0.0114 0.1911 0.0484 0.0218
0.0966 0.0685 0.0233 0.5218 0.3429 0.1309
0.5771 0.3704 0.1487 0.0781 2.0714 1.0219
0.1864 1.0635 0.5549 0.1939 0.7468 0.2990
0.0386 5.2914 5.2818 0.0151 8.7383 7.0831

6 0.1930 0.0493 0.0226 0.1903 0.0484 0.0218
0.0666 2.3019 1.1143 0.1578 0.8537 0.3453
0.4682 0.3749 0.1588 0.0991 0.3047 0.0391
0.1015 0.3045 0.0395 0.4732 0.3729 0.1596
0.1576 0.8538 0.3446 0.0665 2.3036 1.1155
0.0131 9.4045 7.3701 0.0130 9.4113 7.3731

7 0.1181 0.0363 0.0127 0.1907 0.0484 0.0218
0.1014 0.0761 0.0270 0.0442 0.1144 0.0273
0.4055 0.3283 0.0998 0.2817 0.3114 0.0721
0.2269 0.5807 0.2012 0.2894 0.4858 0.1617
0.0432 2.9755 1.3443 0.1256 0.9894 0.3837
0.0955 1.2198 0.4737 0.0568 2.5393 1.1945
0.0095 11.0242 7.9902 0.0115 10.0129 7.6108
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Table A.2: Parameter estimates for normal mixture models

N Arbitrary Θ(0) Constraint on Θ
α̂ µ̂ σ̂ α̂ µ̂ σ̂

M = 8 0.1033 0.1195 0.0308 0.1929 0.0484 0.0218
0.1281 0.0378 0.0136 0.0226 0.1022 0.0138
0.0276 3.7690 1.6130 0.0253 0.1417 0.0264
0.2542 0.3031 0.0710 0.2557 0.3093 0.0653
0.2858 0.4484 0.1422 0.3000 0.4727 0.1542
0.1296 0.8158 0.2728 0.1320 0.9548 0.3692
0.0641 1.6735 0.6290 0.0595 2.4700 1.1686
0.0072 12.5666 8.5321 0.0120 9.3819 7.5390

9 0.1186 0.0366 0.0128 0.1537 0.0484 0.0218
0.0988 0.0766 0.0274 0.0353 0.0292 0.0073
0.4034 0.3648 0.1320 0.4591 0.3553 0.1490
0.0703 1.2796 0.4354 0.0231 0.2692 0.0157
0.0959 0.2996 0.0392 0.0627 0.3191 0.0323
0.1563 0.6823 0.2235 0.1578 0.7347 0.2630
0.0141 5.4880 2.3026 0.0702 3.5827 1.5536
0.0383 2.5253 0.9247 0.0077 1.5611 0.5988
0.0044 15.6288 9.5715 0.0304 12.2298 8.4200

10 0.0699 0.0296 0.0087 0.1941 0.0484 0.0218
0.0988 0.0537 0.0166 0.0249 0.1032 0.0147
0.0735 0.1034 0.0355 0.0318 0.1486 0.0297
0.0120 6.1085 2.5796 0.2157 0.3002 0.0561
0.2244 0.3001 0.0612 0.2766 0.4333 0.1200
0.2848 0.4339 0.1276 0.1383 0.7334 0.2279
0.1337 0.7507 0.2346 0.0662 1.3600 0.4598
0.0647 1.3987 0.4746 0.0357 2.6804 0.9829
0.0346 2.7622 1.0164 0.0126 5.8814 2.4762
0.0037 16.7391 9.9495 0.0039 16.3284 9.8086
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Table A.3: Parameter estimates for gamma mixture models

G Arbitrary Θ(0)

α̂ µ̂ σ̂
M = 2 0.8992 1.2562 0.3167

0.1008 0.7790 3.4309
3 0.2345 1.8052 0.0491

0.5176 9.7836 0.0437
0.2479 0.5322 4.2299

4 0.2142 3.2192 0.0186
0.0387 42.405 0.0005
0.6799 2.8597 0.2071
0.0673 1.0087 4.7710

5 0.2376 2.7308 0.0236
0.3217 27.401 0.0113
0.0077 1.00e4 4.28e-5
0.2622 13.369 0.0482
0.1639 0.6756 4.4480

6 0.2449 2.8744 0.0219
0.0548 70.234 0.0031
0.2840 45.881 0.0074
0.0063 1.84e4 2.41e-5
0.3074 7.4362 0.0993
0.1026 0.8451 4.6286

7 0.1996 5.3418 0.0090
0.0462 22.585 0.0060
0.0530 1.23e2 1.91e-3
0.0294 1.60e3 1.74e-4
0.2437 56.636 0.0064
0.4007 2.4896 0.3853
0.0274 1.4953 5.0030
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