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ABSTRACT

Air temperature is arguably the most important component of the mountain cli-

mate, and scientists have been studying it for centuries. Recently, researchers have

used arrays of inexpensive temperature sensors to observe and understand tem-

perature across the landscape. Much of this work has focused on landscape scale

features as drivers of local air temperature’s divergence from the greater regional

air mass. To this end, we conducted an empirical orthogonal function analysis of

gridded sea level pressure (SLP) from 1951-2014 for a spatial window including

the eastern Pacific and western North America, which identified a mode of SLP

variability that well describes synoptic weather in our study area. Pressure pat-

terns and NCEP Reanalysis 1 derived regional air temperature were linked with a

network of 40 temperature sensors spanning June 2013-2014 and GIS derived land-

scape variables to create hierarchical-mixed effects models of daily minimum and

maximum temperature in the Snake Range. Minimum temperatures were mostly

linked to elevation and the shape of the landscape, as cold air drainage is a com-

mon process in the Snake Range. Maximum temperature was largely related to

insolation and elevation, with a large seasonal component. We used these mod-

els to create maps coinciding with daily Snake Range Sensor Network readings

of minimum and maximum temperature in the Snake Range at 30 m spatial res-

olution. The map predictions were validated using an independent dataset and

a leave-one-out cross validation. Overall mean absolute error for minimum and

maximum temperature were 1.92 and 2.78 ◦C when calculated with the indepen-

dent dataset and 1.84 and 2.21 ◦C when calculated using the leave-one-out cross

validation. Together, these results show that temperature regimes in complex ter-

rain vary considerably over short distances and short periods of time. It is possible

to create a more realistic representation of maximum and minimum temperature
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for a particular study area, and the topoclimate of maximum and minimum tem-

perature identified here can likely be applied to similar systems.
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CHAPTER 1

NEAR-SURFACE AIR TEMPERATURE IN COMPLEX TERRAIN: DAILY

PREDICTIONS OF FINE-SCALE (30 M) TEMPERATURE IN THE SNAKE

RANGE, NEVADA, USA

1.1 Introduction

Air temperature is an essential component of climate in mountainous areas (Look-

ingbill and Urban, 2003; Barry, 2008). It affects many parts of the mountain system

such as the timing of snow melt, evapotranspiration, photosynthesis, drought tol-

erance, carbon fixation, and the distribution of plants and animals (Cabrera et al.,

1998; Barry, 2008; Adams et al., 2009; Geiger et al., 2009; Crimmins et al., 2011).

Near-surface air temperature is frequently a focal point of climate change im-

pact studies and resource management alike (Diaz et al., 2003; Millar et al., 2007),

highlighting the importance of understanding and accurately representing this dy-

namic environmental parameter across the landscape.

Near-surface air temperature gradients tend to vary over short distances and

with the seasons in mountain settings, making for a complex spatio-temporal pat-

tern. Patterns of near-surface air temperature are driven by both regional and

landscape-scale characteristics (Steinhauser, 1967; Dobrowski et al., 2009). In the

context of this work, regional-scale characteristics refers to synoptic-scale weather

patterns and larger-scale geographic features such as the orientation of mountain

ranges, latitude, and distance to significant water bodies. Landscape-scale charac-

teristics refers to site specific conditions at the scale of the watershed (Dobrowski

et al., 2009). While elevation is often highly correlated with surface air temperature

(temperature decreases with increasing elevation), this relationship alone does not
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account for the variation of temperature in mountain environments, as fine-scale

variations in net solar radiation occur due to varying landscape-scale characteris-

tics such as the terrain slope and orientation, shading from local vegetation, and

variation in evapotranspiration across the landscape, which can have profound ef-

fects on surface air temperature (Geiger et al., 2009; Barry, 2008; Dobrowski, 2011;

Fridley, 2009; Lundquist and Cayan, 2007). The influence of these landscape-scale

characteristics is dynamic through time, changing with the seasons and synoptic

weather conditions.

While the need to understand near-surface air temperature in mountain envi-

ronments is clear, it has proven very difficult to accurately estimate temperature

patterns in complex terrain. A common method of estimation has been the use of

a lapse rate of -6.5 ◦C km-1 (e.g. Martinec and Rango, 1986). This method describes

an average that fails to account for spatial differences in temperature driven by to-

pography, humidity, substrate, and many other factors (Barry, 2008; Geiger et al.,

2009), most of which vary greatly at different locations. Moreover, the use of a

standard lapse rate fails to account for temporal variation in the relationship be-

tween elevation and near-surface air temperature, which is known to vary greatly

on both diurnal and seasonal time scales, particularly in arid mountain settings.

Lapse rates tend to be steeper during the day than at night, and they also tend

to exhibit seasonal variations, with steeper lapse rates during the warmer months

than the colder months (Barry, 2008; Rolland, 2003; Pepin et al., 1999).

Synoptic weather also plays a large role in the variation of near-surface air tem-

perature in mountain environments. Although Blandford et al. (2008) found few

seasonal differences in lapse rates, they showed that lapse rates for daily maximum

temperature (Tmax) and daily minimum temperatures (Tmin) varied with synoptic
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conditions in the mountains of south-central Idaho. However, they found the re-

lationship with Tmax lapse rates and synoptic conditions was more tenuous than

that of Tmin lapse rates. Their study showed that lapse rates were generally steeper

while warmer air masses were present and more shallow when dry air masses

prevailed. They found that the largest diurnal fluctuations in lapse rates occurred

during dry tropical air masses, largely due to the clear skies associated with these

synoptic conditions.

Another study conducted by Pepin et al. (1999) found that synoptic conditions

also have a large effect on lapse rates in northern England, with anticyclones lead-

ing to larger differences between Tmax and Tmin lapse rates. Anticyclones are gen-

erally associated with calm weather and clear sky conditions. Calm conditions and

clear skies typically lead to cold air drainage during nighttime minima due to the

escape of long wave radiation since there is no cloud cover to trap the radiation.

Radiative cooling of the near-surface air through conduction with the ground sur-

face occurs, and the more dense air naturally sinks down the slope of the mountain

leading to lower temperatures at the valley floor than at higher elevations. Con-

versely, Tmax lapse rates tend to increase under these conditions, as more short

wave radiation reaches the ground surface under clear skies which leads to a well

mixed near-surface atmosphere (or boundary layer) due to convection.

Methods other than lapse rates have been developed to estimate near-surface

air temperature, particularly in the form of gridded datasets based on station ob-

servations. Three popular examples of such gridded datasets are PRISM, Daymet,

and WorldClim (Daly et al., 2008; Thornton et al., 1997; Hijmans et al., 2005). These

three examples all attempt to account for spatial variation in temperature. PRISM

uses a climate-elevation regression to account for variations in lapse rates through-
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out the continental United States. The model weights each individual station based

on the similarity of the station’s topography to that of a digital elevation model

(DEM) grid cell. PRISM also incorporates climatic data about the upper atmo-

sphere in an attempt to better model complicated situations such as inversion lay-

ers, and also relies on a ”spatial climate knowledge” that has been developed over

the years (Daly et al., 2008). Daymet uses a slightly different approach to create

their gridded meteorological variables. The algorithm relies on the spatial con-

volution of a truncated Gaussian weighting filter, applying weights to different

stations. Areas that have more dense observation networks tend to use a smaller

station search radius, while areas with less dense observation networks (e.g. Great

Basin National Park) tend to have a greater search radius. Daymet also allows

for the creation of spatially averaged regression slopes (akin to spatially averaged

lapse rates). The values employed by the algorithm vary greatly throughout the

seasons, and are based on Thornton et al. (1997). The WorldClim dataset is another

gridded climate dataset, and it is created using the thin-plate smoothing spline al-

gorithm implemented in the ANUSPLIN package. The interpolated product relies

on elevation, latitude, and longitude as independent variables to predict temper-

ature. Much like a regression analysis, the prediction will not necessarily match

the data point (Hijmans et al., 2005). WorldClim has global coverage, while PRISM

and Daymet are only available for the continental United States.

While the available gridded products are useful for many applications, their

use in mountainous, landscape-scale study areas is limited by their weather station

inputs. Weather stations are sparse in mountain environments; thus most weather

station observations come from valley locations (Hijmans et al., 2005; Myrick and

Horel, 2008; Horel and Dong, 2010). The limited sampling in mountain ranges

fails to quantifiably observe topographically driven temperature regimes at the
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landscape-scale, hence limiting our understanding of temperature’s relationship

with many processes (Lundquist and Cayan, 2007; Barry, 2008; Geiger et al., 2009;

Crimmins et al., 2011; Ashcroft et al., 2012).

There have been numerous efforts to characterize temperature at scales that

more completely account for landscape-scale drivers of near-surface air temper-

ature (Lookingbill and Urban, 2003; Lundquist and Cayan, 2007; Fridley, 2009;

Holden et al., 2011b; Ashcroft and Gollan, 2011). These studies have employed

different methods to analyze networks of temperature sensors in mountainous

environments, and they share both similarities and differences in their findings.

Lundquist and Cayan (2007) and Holden et al. (2011b) found that synoptic condi-

tions were important drivers of near-surface air temperature in the Sierra Nevada

of California and two mountain ranges in northern Idaho, respectively. Looking-

bill and Urban (2003) and Fridley (2009) found significant effects of distance to

streams on near-surface air temperatures, while Holden et al. (2011b), Ashcroft

and Gollan (2011), and Lundquist and Cayan (2007) did not report investigating

this variable. In general, researchers have had success in characterizing and map-

ping near-surface air temperatures at their respective study locations, highlighting

similarities and differences in the drivers of near-surface air temperature at differ-

ent locations across the globe when considering the landcape-scale. One difficulty

in comparing existing landscape-scale near-surface air temperature studies is the

difference in both study design (e.g. sensor height above ground, sampling loca-

tions, etc.) and statistical methods used. Thus, further study in new locations is

warranted.

The goals of this study were to: (1) observe and describe how near-surface air

temperature (2 m above the ground surface) varies both spatially and temporally
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in a topographically complex landscape characteristic of Great Basin mountain

ranges; (2) quantify the effects of synoptic weather conditions on spatial variation

in near-surface air temperature; (3) demonstrate the ability to construct inferen-

tial and predictive statistical models of site-specific near-surface Tmax and Tmin. To

achieve these goals, we have deployed the Snake Range Sensor Network (SRSN)

(Figure 1.1), a network of 40 temperature sensors, in and around Great Basin Na-

tional Park, Nevada, and obtained daily Tmax and Tmin from the sensors for the

period 17 June 2013 to 24 June 2014 (totalling 373 days). We have used methods

similar to Fridley (2009) by creating multilevel, mixed-effect linear models based

on maximum likelihood, as these models provide the flexibility of describing hi-

erarchically structured landscape processes while accounting for spatio-temporal

autocorrelation. The model coefficients were interpreted to obtain a better un-

derstanding of how near-surface air temperature varies in the study site. We

validated the hierarchical mixed effects models using two methods: (1) an inde-

pendent dataset from the Nevada Climate-ecohydrological Assessment Network

(NevCAN) (http://www.sensor.nevada.edu); (2) a leave-one-out cross val-

idation approach, and finally, we produced fine scale maps (30 m resolution) of

daily Tmax and Tmin for the study site and period using a GIS framework.

1.2 Methods

1.2.1 Study Site

Our study site (Figure 1.1) is located near and within Great Basin National Park

(GBNP), Nevada, USA on the west slope of the Snake Range of eastern Nevada.

http://www.sensor.nevada.edu
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SRSN Temperature Sensors
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Figure 1.1: A map of the study site in the Snake Range, Nevada, USA. The blue
diamond indicates the location of this study within the state of Nevada. The Snake
Range Sensor Network (SRSN) locations are shown as black points on the map
and the NevCAN weather stations are indicated by the gray squares and labeled
by name. Colored shading indicates elevation, the gray lines are elevation contours
spaced at 150 m, and the white line represents Shoshone Road (NV-894).

Typical of the Great Basin, our study site consists of a long, broad, north-south

oriented valley with steep mountains to both the east and west. The average ele-

vation of the valley is approximately 1500 m above mean sea level (AMSL), while

the highest point in our study site, Mount Washington, is about 3550 m AMSL.

Our study site encompasses four weather stations (Sage, PJ, Montane, Subalpine)

(Figure 1.1), which are a part of NevCAN. These stations are all sited within dif-

ferent dominant vegetation types. From west to east, the Snake Range study site

includes the sagebrush zone (dominant species: Artemesia tridentata), the Pinyon-

Juniper zone (dominant species: Pinus monophylla, Juniperus osteosperma), the mon-

tane zone (dominant species: Abies concolor, Pinus flexilis), and the subalpine zone

(dominant species: Pinus longaeva, Pinus flexilis). Approximately 10% of the study

site near the subalpine zone has burned within the last 15 years. Precipitation in

the area is mostly dominated by Pacific frontal storm systems in the winter, but

isolated to scattered thunderstorms are also common in the summer. The annual
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lapse rate for the area was calculated as -5.9 ◦C km-1 +/- 0.5 ◦C for the 2012 water

year (1 October 2011 to 30 September 2012) (Mensing et al., 2013), thus our study

site approximates the standard environmental lapse rate of -6.5 ◦C.

1.2.2 Snake Range Sensor Network

We installed the Snake Range Sensor Network (SRSN), a network of 40 LogTag

Trix 16 temperature sensors along an elevational gradient on the west slope of the

Snake Range. The sensors are housed in inexpensive radiation shields constructed

of easily sourced materials which perform in a manner similar to an unaspirated

Gill shield, as outlined by Holden et al. (2013). The sensors were placed 2 m

above the ground surface, affixed to trees when available (in a manner similar

to Lundquist and Cayan (2007); Lundquist and Huggett (2008)) and attached to

PVC poles that are strapped to shrubs when no trees were nearby. It is likely that

affixing the temperature sensors to trees has an effect on the temperature reading

(e.g. Hough, 1945), thus there is additional uncertainty surrounding the accuracy

of these measurements.

Using a GIS analysis, we identified a sampling design that diversified the topo-

graphic position and tocopoclimatic conditions sampled. The analysis consisted of

splitting the mountain into four elevation zones (1500-2000 m; 2000-2500 m; 2500-

3000 m; 3000-3500 m). For each elevation zone, we conducted a classification anal-

ysis using an isodata algorithm (ESRI, 2014) to identify 10 distinct clusters of data

based on slope, slope position, heat load index (McCune and Keon, 2002), and the

National Land Cover Dataset (NLCD) 2006 canopy cover dataset (Fry et al., 2011).

This left a total of 40 unique clusters (10 clusters in each of the 4 elevation zones).
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Each cluster had numerous occurrences throughout the analysis domain. To deter-

mine the final sensor location, we generated spatially random points within the 40

polygons that encompassed the largest surface area of the 40 clusters, as the largest

surface area polygon is most likely to represent the combination of the input data

that the Isocluster algorithm identified (Figure 1.1).

1.2.3 Predictor Variables: Synoptic Weather

Sea Level Pressure: Empirical Orthogonal Functions

It is known that synoptic weather patterns have a great influence on near-surface

air temperature in areas of complex terrain (e.g. Lundquist and Cayan, 2007). In

our eastern Nevada study site, both Tmax and Tmin can become cooler along the

lower elevation valley floor than at the summit of Mount Washington. These tem-

perature inversions occur more commonly in the Snake Range during anticyclonic

patterns. Inversions tend to form due to radiative cooling of the ground surface,

which in turn cools the air. The more dense, cooler air then sinks to lower eleva-

tion, concave terrain features, like the long, broad valleys of the Great Basin. Con-

versely, cyclonic conditions lead to a greater mixing of the boundary layer with the

free atmosphere, thus a linear decrease of temperature with increasing elevation is

typically observed under cyclonic conditions. Local scale topography is thought to

have a greater influence on Tmin, while Tmax is more influenced by synoptic scale

atmospheric conditions (Lundquist et al., 2008; Lundquist and Cayan, 2007; Pepin

et al., 2011).

There is a long history of using empirical orthogonal functions (EOFs), also
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commonly referred to as principal components analysis (PCA), to better under-

stand two dimensional fields of meteorological data (Hannachi et al., 2007). EOFs

work to decompose a dataset, a space-by-time matrix in the case of meteorological

fields, into new variables. The new variables are orthogonal to one another (i.e.

uncorrelated) account for much of the variance in the original data, and will be

linear combinations of the original data (Hannachi et al., 2007).

Based on the variation in lapse rates and near-surface air temperature that

have been related to synoptic weather conditions in our study site and locations

with similarly complex terrain (Lundquist and Cayan, 2007; Lundquist et al., 2008;

Blandford et al., 2008; Pepin et al., 2011), we suspected synoptic conditions would

have a strong effect on both Tmax and Tmin in the area of the SRSN. To better un-

derstand synoptic weather in our study site, we retrieved daily average sea level

pressure (SLP) grids (2.5◦ resolution) from the NCEP/NCAR Reanalysis 1 (Kalnay

et al., 1996) for the period of 1 January 1958 to 24 September 2014 in the spatial do-

main of approximately 176◦W to 98◦W and 16◦N to 68◦N. Using the raster package

in R (Hijmans, 2014; R Core Team, 2014), we first projected the data from a geo-

graphic coordinate system (longitude/latitude) to a planar equidistant projection

using a bilinear interpolation, which accounts for the decreasing surface area of

longitude/latitude grid cells at higher latitudes. We then calculated SLP anomalies

on the re-gridded dataset by subtracting the mean for the entire period from each

day’s assimilation. EOFs, or maps displaying modes of SLP variation identified

by the analysis, and their associated temporal variation (principal components or

PCs) were calculated for the entire period using the spacetime package (Pebesma,

2012; Bivand et al., 2013) in R (R Core Team, 2014) (Figure 1.2 and Figure 1.3, re-

spectively).
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Figure 1.2: The first 4 of 544 empirical orthogonal functions (EOFs) identified by
an empirical orthogonal function analysis of daily mean sea level pressure (SLP)
anomalies. Physical interpretation is in the text. The variation of these spatial
patterns through time as Principal Components (PCs) can be observed in Figure
1.3, where the numeric label of each PC corresponds to the numeric label of these
EOFs. The percent variance explained by EOF 1, EOF 2, EOF 3, and EOF 4 are 36%,
22%, 10%, and 8% respectively (Table 1.1).

The most difficult portion of an EOF analysis is surely the interpretation. With

careful consideration of both the EOFs (Figure 1.2) and their associated PC time se-

ries (Figure 1.3), we were able to identify interpretable modes of variability within

SLP fields over the Eastern Pacific Ocean and the Western United States. One fa-

miliar pattern of SLP that is apparent in EOF 1 (Figure 1.2 (a)) is the Aleutian Low.

This EOF accounts for 36% of the variance in SLP anomalies (Table 1.1), and dis-

plays a highly seasonal trend with negative PC values in the winter, and positive

PC values in the summer (Figure 1.3 (a)).
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Figure 1.3: The first 4 of 544 principal components (PCs) identified and described
in text. A temporal subset spanning 1 January 2009 to the final day of the analysis
period, 24 September 2014, is displayed for clarity. Also note the differing y-axes,
as the PC scores are relative. The vertical red lines indicate the portion of the time
series that coincides with the SRSN analysis period.

Table 1.1: Summary statistics for the EOF analysis conducted on SLP anomolies for
the years 1958-2014. Only the first 4 of 544 EOFs are shown.

EOF1 EOF2 EOF3 EOF4
Standard Deviation 120.14 92.90 63.92 54.60

Proportion of Variance 0.36 0.22 0.10 0.08
Cumulative Proportion of Variance 0.36 0.58 0.68 0.76
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The second EOF (Figure 1.2 (b)) represents anomalously high SLP over the Pa-

cific and anomalously low SLP over the northeastern portion of the analysis do-

main. It is associated with the formation and movement of large frontal storms

from the Pacific over the northern portion of the domain, while the inverse of this

pattern is associated with the formation of a high pressure ridge off the coast of

Western North America. Again, this EOF displays more variation during the win-

ter season (Figure 1.3 (b)) and a largely seasonal pattern. We found that EOF2/PC2

accounts for 22% of the variation observed in SLP anomalies (Table 1.1).

The third EOF (Figure 1.2 (c)) accounts for less of the variation in SLP anoma-

lies at 10% (Table 1.1). The pattern identified here reflects anomalously low SLP off

the coast of the Western United States, and when in the negative phase, an anoma-

lously high SLP occurs off the coast of the Western United States. While there is a

fair amount of intra-annual variability of this pattern (Figure 1.3 (c)), it appears to

evolve on a timescale measured in weeks rather than days.

Finally, the fourth EOF presented here (Figure 1.2 (d)) accounts for 8% (Table

1.1) of the total variance in SLP anomalies in the study domain. While not quan-

tified, we noted that pattern displays a strong correlation with the formation and

passage of low pressure systems over the western portion of the United States.

This correlation was determined by inspecting a number of weather maps during

periods of relatively extreme EOF 4 values (example maps in Figure 1.4). It is pre-

dominantly associated with positive values of PC 4, which exhibits daily variation

in its magnitude and sign (Figure 1.3 (d)). This mode of SLP identified by the EOF

analysis is indicative of changes in synoptic weather patterns on a time scale that

is directly comparable to variations in daily near-surface air temperature. As a

first-order test of this assertion, we calculated daily lapse rates for Tmin and Tmax
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Figure 1.4: The left panel shows surface weather conditions for the study do-
main during 28 February 2014, a day with a relatively high value of PC4 and
the presence of a relatively unstable air mass (Figure 1.3). The right panel shows
surface weather for 12 November 2013, a day with relatively low values in PC4
and a high pressure system dominating the study domain. Maps from http:
//www.hpc.ncep.noaa.gov/dailywxmap/.

from the SRSN data. The Pearson’s Correlation Coefficient of lapse rates and PC4

were calculated as -0.40 for Tmax and -0.41 for Tmin. Thus, we considered PC4 as

a predictor variable in our hierarchical mixed-effects models for near-surface air

temperature at the study site in an attempt to quantify the effects of synoptic scale

circulations on temperature patterns in the region.

Free Air Temperature

As one of the underlying interests of this study is characterizing terrain’s ability

to create local deviations in temperature from the free-air, we need an effective

means of representing free-air temperature for our study site. Our study site lies

http://www.hpc.ncep.noaa.gov/dailywxmap/
http://www.hpc.ncep.noaa.gov/dailywxmap/
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within a single grid cell of the NCEP/NCAR Reanalysis 1 (Kalnay et al., 1996). The

Reanalysis 1 project assimilates data from a number of sources, including land,

ship, satellite, radiosondes, and others, using an operational weather forecasting

model to interpolate the data. Assimilations are produced 4-times daily and in-

clude daily and monthly means. We use daily mean air temperature at the 700 hPa

level to indicate free-air temperature at our study site, as this pressure level is gen-

erally found at approximately 3000 m AMSL. The exact height AMSL of the 700

hPa level varies on a daily basis. We have extracted a time series of daily average

temperature from the 700 hPa level for the period 17 June 2013 to 24 June 2014,

which we use to indicate regional air mass temperature (Figure 1.5). Temperature

at 700 hPa is expected to be generally cooler than the near-surface air temperature.

Additionally, it is highly correlated with daily Tmin and Tmax (r = 0.92 and 0.84

respectively).

Seasonality

There is a large component of seasonality that affects regional air mass tempera-

ture and which topographic variables have the greatest influence over temperature

across the landscape. While we make an attempt to quantify the two most notable

effects of seasonality (regional air temperature and low pressure systems), we ac-

knowledge that limitations of data and understanding of the system prevent quan-

tifying every individual seasonal effect (e.g. the depth and spatial distribution of

snow). Such maps detailed enough for inclusion in a landscape-scale topoclimate

study do not exist for the study site or period. To this end, we have included a sine

and cosine wave for consideration as predictor variables. The values of these vari-

ables are calculated as cos(2π/365 × JDAY ) or sin(2π/365 × JDAY ) where JDAY



16

−20

0

20

40

Jul 2013 Oct 2013 Jan 2014 Apr 2014 Jul 2014
Date

Te
m

pe
ra

tu
re

 (
°C

)

Regional Avg. Temp. SRSN Max. Temp. SRSN Min. Temp.

Daily Air Temperature in the Snake Range, NV

Figure 1.5: A time series showing all SRSN maximum and minimum daily tem-
perature data collected during the study period (17 June 2013 to 24 June 2014) as
semitransparent red and blue symbols, respectively, and the NCEP Reanalysis 1
daily average air temperature at the 700 hPa level drawn as a black line. All of the
SRSN Tmax and Tmin data are plotted for each day, thus up to 80 dots are present on
each day. Due to the data points being drawn as semitransparent, darker shades
of red and blue indicate greater point density on the scatterplot.

is the day of year as an integer (1-365 on non-leap years) and 2π/365 indicates a

full annual cycle.

1.2.4 Predictor Variables: Topography

A number of studies have successfully associated processes that drive landscape-

scale near-surface air temperature with easily measured features of the landscape

(e.g. elevation, slope, topographic position indices) (Fridley, 2009; Dobrowski

et al., 2009; Ashcroft and Gollan, 2011). Here, we present a brief description of

the main landscape feature we expect to contribute to Tmin and Tmax at our study
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site.

For a given geographic location and time, maximum temperatures tend to vary

based on the amount of direct beam solar radiation that is received at the location

(Geiger et al., 2009). This is mostly controlled by the slope and aspect of the surface

in complex terrain, with additional influences due to shading caused by adjacent

topographic features. The radiation warms up the land surface, which in turn acts

to warm the near-surface air (Geiger et al., 2009).

Minimum temperatures are indirectly related to daily solar energy balances,

but are influenced more directly by the movement of cold air over the landscape

(e.g. katabatic winds and cold air drainage). The loss of longwave radiation from

the ground surface is an important process for Tmin, and is largely determined by

slope angle and vegetation cover (Fridley, 2009; Geiger et al., 2009).

For our study site, we suspected that the principal landscape-scale drivers of

near-surface air temperature are incoming solar radiation, cold air drainage (more

commonly in Tmin than Tmax), and evapotranspiration. GRASS GIS 6.4 (GRASS

Development Team, 2012) has implemented the r.sun algorithm, which calculates

direct beam, diffuse, and reflected radiation for a given raster cell on a given day

from an input DEM. It considers latitude, shading from nearby terrain features,

day of year, slope orientation, and slope angle in its estimate of solar irradiance

(Wm2). A preliminary analysis was conducted using a similar metric, the heat load

index (McCune and Keon, 2002), but early indications pointed towards the GRASS

r.sun algorithm as a superior method for estimating clear-sky solar irradiance.

As expected, the large range of elevations exhibited in our study site are associ-

ated with a rapidly changing vegetation structure as you travel east to west across
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the study site (Figure 1.1). Vegetation cover tends to have a moderating effect

on near-surface air temperature. Areas of high canopy cover tend to stay slightly

warmer at night and slightly cooler during the day, making canopy cover a large

component of the near-surface energy balance. We have downloaded the 2011

United States Geological Survey (USGS) National Landcover Database (NLCD), a

remotely sensed product that includes an estimate of percent canopy cover at 30 m

resolution for the conterminous United States (Jin et al., 2013), for consideration as

predictor variables in our Tmin and Tmax models.

Cold air drainage has been represented by the terrain convergence index (TCI),

which can also be easily calculated in GRASS GIS (r.terraflow algorithm). This al-

gorithm calculates the accumulation of a fluid over terrain, requiring only a DEM

as input. TCI at our study site ranged in values from 2.1-17.1, where higher values

are associated concave terrain features. As cold, dense air tends to respond simi-

larly to water, we anticipate areas of high TCI values are more likely to encounter

cold air drainage. Dobrowski et al. (2009) successfully used TCI as a proxy to cold

air drainage.

The slope angle of the terrain can also play a major role in the near-surface

energy balance. Terrain slope can act as a further proxy to cold air drainage, as low

slope areas are more likely to experience accumulation of cold air. Further, slope

is also influential in the amount of solar irradiance received at an area. We have

included terrain slope as a variable for consideration. All terrain variables were

derived in GIS software using an approximately 30 m resolution DEM obtained

from the USGS.
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1.2.5 Model Construction

Similar to Fridley (2009), we used a mixed-effects hierarchical linear model struc-

ture to predict Tmin and Tmax from synoptic weather conditions and GIS derived

predictor variables. These models are effective at representing nested data, as they

incorporate both fixed effects and random effects. Fixed effects are measurable en-

vironmental variables, while random effects are unmeasured noise associated with

individual samples or groups of samples (Pinheiro and Bates, 2000). Given the se-

rial correlation of temperature within our study site through both space and time,

mixed effect models are further justified, as they provide the benefit of describing

nested covariance structures. In the case of our study, temporal variation is nested

within each spatial location (i.e. each sensor location as seen in Figure 1.1). The

sampling design of this study results in a model of two nested levels. The first

level is the daily variation of temperature at each site. We have observed Tmax and

Tmin over the course of 373 days (17 June 2013 to 24 June 2014). The second level

of the model describes variation across space (i.e. the mean temperature over the

373 days of observations varies as a function of spatial location on the landscape).

The mixed-effects hierarchical linear model structure allows for random effects to

be associated with each sample unit (here days within location and each individ-

ual location). The random effects describe variance in the response that can not be

attributed to the environmental variables included within the model (i.e. the fixed

effects), thus can account for noise that would affect model extrapolation to the

landscape.

A detailed list of the predictor variables used in the modeling is included as Ta-

ble 1.2. The final Tmax and Tmin models were selected using a forward fitting proce-

dure. We started with relatively simple models that included key topographic and
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landscape variables, such as elevation, TCI, and NLCD canopy cover. Additional

independent variables were added to the models based on physical relevance and

interpretability. We used Aikake’s information criterion (AIC) to determine if each

additional model term improved the fit of the model to the data until we reached

a model that is statistically robust and physically relevant. Second order inter-

actions and polynomials were considered for all variables, but were only tested

for model inclusion using AIC when a physically relevant explanation could be

provided. Much of the spatial and temporal autocorrelation is addressed by inclu-

sion of random effects in the final models. Models were fit with and without an

exponentially decaying temporal covariance structure, but the added complexity

did not improve fit as indicated by log likelihood tests and AIC. As the relationship

between elevation and Tmin and Tmax change daily, the inclusion of a random slope

for elevation and its quadratic were tested using AIC. The tests indicated that ran-

dom slopes by elevation improved the model fit, thus these terms were included

in both final models. A more detailed description of the model fitting procedure

and the final fitted models is described in Appendix A. We fit the models with R

version 3.1.2 (R Core Team, 2014). Both the ”nlme” (Pinheiro et al., 2014) package

and the ”lme4” (Bates et al., 2014) package were used to fit the hierarchical models.
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Table 1.2: Predictor variables used both the minimum and maximum daily temperature models that are described in
text. The variable name, a brief description of the variable, the units of the variable, range of observed values, and data
source are included in this table.

Variable Description Units Range of Values Source
Tair Daily mean temperature at 700 hPa ◦C -20.55 - 19.27 NCEP Reanalysis 1
PC4 Daily fluctuations of SLP -4.96 - 4.70 EOF Analysis of daily SLP
ELEV Elevation (AMSL) km 1.56 - 3.85 USGS elevation model
TCI Terrain Convergence Index 2.1 - 17.1 r.terraflow in GRASS GIS
IRRAD Daily shortwave radiation MWm2 0.378 - 9.81 r.sun in GRASS GIS
CC Canopy Cover % 0 - 72 USGS NLCD 2011
SLOPE Terrain Slope ◦ 0 - 73.3 GIS derived from elevation
JDAY Day of year 1 - 365 Gregorian Calendar
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1.2.6 Model Validation and Mapping

Model Validation with an Independent Dataset

To validate our models of Tmax and Tmin for the entirety of the mapped region, we

downloaded daily maximum and minimum temperature at 2 m above the ground

surface from the NevCAN stations in the region (Sagebrush, PJ, Montane, Sub-

alpine; Figure 1.1). The models were used to predict Tmax and Tmin for these loca-

tions, and we calculated model bias (difference between predicted and observed

temperature, Table 1.3), accuracy (mean absolute error [MAE], calculated as the

difference between the predicted and observed temperature after all values have

been made positive, Table 1.4), and root mean squared error ([RMSE], calculated

as the square root of the mean bias squared, Table 1.5).
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Table 1.3: Model bias for daily maximum and daily minimum temperature models described in text. Bias is calculated
as predicted temperature minus observed temperature. Average bias per month (Figures 1.11 and 1.12) at each NevCAN
station (Figure 1.1) are displayed here as well as overall average bias for the entirety of the time series.

Site Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Overall
Minimum Temperature Bias

Sage 1.80 0.27 0.47 -2.24 1.24 1.33 5.56 2.47 -0.81 0.09 -0.98 0.77 0.85
PJ 2.88 1.69 1.98 -0.82 2.76 3.57 7.69 4.05 0.72 1.63 0.51 2.29 2.43
Montane -0.54 0.07 -0.74 -0.54 -0.16 0.05 1.21 -0.33 -0.32 0.51 0.13 0.12 -0.05
Subalpine -0.61 -0.06 -0.10 -1.14 -0.84 -0.30 -0.41 -1.70 -0.97 0.55 0.30 0.36 -0.40
Overall 0.53 0.49 0.40 -1.19 0.75 1.16 3.51 1.12 -0.34 0.70 -0.01 0.88 0.69

Maximum Temperature Bias
Sage -0.89 0.25 -0.35 -0.11 -1.73 0.51 3.92 -0.01 -0.73 -1.04 -0.17 0.71 0.05
PJ -4.27 -3.14 -3.78 -3.58 -5.16 -2.82 0.64 -3.34 -4.17 -4.57 -3.67 -2.72 -3.36
Montane -4.75 -3.10 -3.86 -2.40 -3.37 -2.33 -3.61 -3.71 -3.40 -3.00 -2.96 -2.31 -3.22
Subalpine -3.55 -1.55 -2.36 -0.32 -1.62 -0.05 -1.83 -1.63 0.34 -0.16 -0.22 -0.22 -1.12
Overall -3.20 -1.88 -2.59 -1.60 -2.97 -1.17 -0.22 -2.17 -1.99 -2.19 -1.75 -1.13 -1.92
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Table 1.4: Model MAE for daily maximum and daily minimum temperature models described in text. MAE is calculated
as the difference between the predicted and observed temperature after all vaules have been made positive. MAE at
each NevCAN station (Figure 1.1) are displayed here as well as overall average bias for the entirety of the time series.

Site Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Overall
Minimum Temperature MAE

Sage 2.98 1.78 2.32 2.50 3.98 2.73 6.15 4.82 2.77 2.70 2.56 2.49 3.16
PJ 1.58 1.65 1.87 1.64 1.85 1.76 1.85 2.00 2.55 1.88 2.11 1.43 1.84
Montane 1.08 1.14 1.28 1.14 1.47 0.83 1.61 1.25 1.43 1.46 1.31 1.30 1.27
Subalpine 1.02 0.82 0.80 1.44 1.67 1.55 1.88 2.14 1.70 1.57 1.54 1.17 1.43
Overall 1.56 1.35 1.57 1.68 2.24 1.72 2.87 2.55 2.11 1.90 1.88 1.60 1.92

Maximum Temperature MAE
Sage 1.90 1.35 1.33 2.23 2.53 3.14 4.68 1.95 2.48 1.86 2.03 1.75 2.27
PJ 2.86 2.14 2.47 2.84 3.19 3.04 1.81 2.32 2.47 2.54 2.96 2.40 2.59
Montane 4.64 3.47 4.04 3.45 3.73 2.94 3.70 3.71 3.69 3.50 3.80 3.38 3.69
Subalpine 3.60 2.07 2.79 2.34 2.93 2.63 2.84 2.68 2.35 2.21 2.00 2.03 2.56
Overall 3.36 2.26 2.65 2.72 3.10 2.94 3.26 2.67 2.75 2.53 2.70 2.39 2.78
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Table 1.5: Model RMSE for daily maximum and daily minimum temperature models described in text. RMSE is calcu-
lated as the square root of the mean bias squared. RMSE at each NevCAN station (Figure 1.1) are displayed here as well
as overall average bias for the entirety of the time series.

Site Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Overall
Minimum Temperature RMSE

Sage 3.72 2.23 2.89 3.06 4.56 3.35 8.00 5.76 3.56 3.22 3.13 3.05 4.18
PJ 2.04 1.90 2.33 1.99 2.28 2.01 2.25 2.60 2.96 2.41 2.54 1.93 2.28
Montane 1.40 1.49 1.51 1.41 1.86 1.11 2.21 1.63 2.00 2.29 2.09 1.65 1.75
Subalpine 1.34 1.13 1.02 1.73 1.97 1.99 2.35 2.54 2.16 2.36 2.26 1.45 1.91
Overall 2.19 1.74 2.07 2.14 2.89 2.26 4.46 3.50 2.74 2.60 2.54 2.11 2.70

Maximum Temperature RMSE
Sage 2.55 1.76 1.79 2.81 2.90 4.11 5.64 2.52 2.95 2.20 2.55 2.52 3.04
PJ 3.35 2.54 2.74 3.41 3.54 3.66 2.16 2.76 3.24 2.93 3.32 2.81 3.07
Montane 5.06 3.94 4.35 3.82 4.05 3.34 4.03 4.05 4.32 4.05 4.22 3.86 4.13
Subalpine 3.96 2.46 3.06 2.81 3.28 3.37 3.53 3.26 2.76 2.49 2.40 2.44 3.04
Overall 3.92 2.79 3.12 3.24 3.47 3.63 4.04 3.20 3.37 3.00 3.21 2.96 3.35
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Leave-One-Out Cross Validation

To further validate our models of Tmax and Tmin, we conducted a leave-one-out

cross validation. In this procedure, we used all of the SRSN data to fit the models

as described in text. Once the final models for Tmax and Tmin were decided, we refit

the model to 39 of the 40 sensors. We used the coefficients produced by the model

that was without observations from one of the SRSN sensors to predict maximum

and minimum temperature values for the geographic location of the 40th sensor

(i.e. the sensor that was left out). This process was repeated 40 times until all

sensors had been left out. We then calculated mean square error, root mean square

error, mean absolute error, and bias for all 40 model runs (Table 1.6).

To generate spatial maps of Tmax and Tmin, the fixed-effect coefficients of the

models were then used to predict temperature for a grid with square cells of ap-

proximately 30 m for the entire study area during the entire period of observation

(17 June 2013 to 24 June 2014). Maps were generated within R, using the ”rgdal”

(Bivand et al., 2014) and ”raster” (Hijmans, 2014) packages to handle the spatial

data and apply the fixed effects to the GIS predictor variables. Predicted Tmax and

Tmin are available as GeoTIFF files.
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Table 1.6: Model validation statistics for the Tmin and Tmax models described in text. Mean squared error (MSE) is
calculated as the mean of the observed value minus the prediction squared, root mean squared error (RMSE) is the
square root of MSE, mean absolute error (MAE) is calculated as the mean of the absolute value of the observation minus
the predicted value, and the bias is calculated as the observed value minus the predicted value. Monthly means are
calculated using leave-one-out cross validation, and the overall values are the mean value for each statistic over the
course of the 373 day SRSN observations.

Statistic Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Overall
Minimum Temperature

MSE 9.07 6.56 6.63 5.10 4.11 4.19 3.52 3.21 4.44 6.61 4.96 12.98 5.95
RMSE 3.01 2.56 2.58 2.26 2.03 2.05 1.88 1.79 2.11 2.57 2.23 3.60 2.39
MAE 2.33 2.05 1.92 1.72 1.60 1.60 1.49 1.38 1.64 1.99 1.75 2.64 1.84
Bias 0.16 1.15 -0.13 0.20 -0.38 0.13 -0.45 0.01 0.83 0.24 -0.14 -1.41 0.02

Maximum Temperature
MSE 6.32 7.54 6.05 8.22 8.34 10.62 5.24 4.05 9.64 7.44 12.28 10.42 8.01
RMSE 2.51 2.75 2.46 2.87 2.89 3.26 2.29 2.01 3.10 2.73 3.50 3.23 2.80
MAE 1.96 2.25 2.00 2.33 2.17 2.49 1.75 1.59 2.46 2.28 2.71 2.53 2.21
Bias 0.56 0.15 0.18 -0.20 -0.86 0.92 -0.32 0.24 -0.48 0.91 -0.71 -0.45 0.00
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1.3 Results

1.3.1 Synoptic Patterns in the Snake Range

Large variations in average daily temperature of the free air mass (i.e. NCEP Re-

analysis 1 daily average temperature at 700 hPa) were observed in the Snake Range

between 17 June 2013 and 24 June 2014. The regional air mass maximum tempera-

ture value of 19.3 ◦C occurred on 1 July 2013, while the minimum value of -20.6 ◦C

occurred on 5 December 2013. This minimum value is substantially lower than the

majority of winter days in the region (Figure 1.5). It occurred during what can be

thought of as an extreme cold event (a ”cold snap”) that spanned approximately 4

December 2013 to 9 December 2013. Average temperature in the region dropped

from -4.9 ◦C to -17.3 ◦C in the span of 24 hours. Between 9 December 2013 and 10

December 2013 temperatures warmed in a similarly sudden manner, with average

daily temperature of the regional air mass jumping from -17.7 ◦C to -8.4 ◦C in a 24

hour span. PC4 (an indicator of low pressure system passage, with positive values

representing low pressure and negative values representing high pressure) shows

the greatest variation in the winter months (Figure 1.3), which is consistent with

the climatology of the region. Throughout our record, the cold events are typically

preceded by high values of PC4. For example, the maximum value of PC4 during

the period of the SRSN occurred on 28 February 2014 with a value of 3.0. This

date precedes the onset of a ”cold snap” in the Snake Range area (Figure 1.5), with

temperatures dipping for a period of a few days. This pattern represents a cold

front moving through the area. The low pressure is indicated by PC4. Once the

front clears, high pressure builds with a cold air mass in place, thus persistent low

temperatures occur. A local maximum of PC4 also occurs prior to the 5 Decem-
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Figure 1.6: A sequence of weather maps that coincide with a ”cold snap” in the
Snake Range, Nevada, USA. The left most map is from 3 December 2014, the
middle map is from 4 December 2014, and the right most map is from 5 De-
cember 2014. The passage of the low on 3 December 2014 is well exhibited in
this sequence of maps, which are downloaded from http://www.hpc.ncep.
noaa.gov/dailywxmap/index_20131203.html. Advance the maps by click-
ing ”NEXT DAY”.

ber 2013 ”cold snap” (Figures 1.3 and 1.5 and the NCEP daily weather map tool

(Figure 1.6)).

1.3.2 Temperature Variation across the SRSN

Minimum Temperature

There is a significant amount of temporal variation in minimum temperature across

the SRSN (Figures 1.3 and 1.7). Typical of mountain environments, elevation is

generally a strong predictor of temperature. However, this relationship often breaks

down, and other terrain factors have a large influence over temperature at a par-

http://www.hpc.ncep.noaa.gov/dailywxmap/index_20131203.html
http://www.hpc.ncep.noaa.gov/dailywxmap/index_20131203.html
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ticular location. Partial residual plots were constructed using the average monthly

temperature for each sensor location. The residuals were derived from the fitting

of a linear mixed-effects model of Tmin, allowing the intercept to randomly vary

by month. The residual of this model indicates variation in Tmin that could not

be explained by elevation. Comparisons of the residuals to other topographic in-

dices were made to gain a better understanding of when and how temperature

and elevation diverge. Terrain slope better explained the residuals when com-

pared to TCI and NLCD canopy cover, as was exhibited by fitting a generalized

least squares regression to predict the residuals and comparing model fits using

AIC. The relationship between residual minimum temperature and slope is fairly

constant throughout the course of the year, displaying larger variance at lower

slope angles and a consistent relationship across months with a slightly steeper

relationship in the winter months (results not shown).

Conversely, the relationship between TCI and residual minimum temperature

shows large variability across months (Figure 1.7). The winter months show a

strong negative relationship between residual minimum temperature and TCI,

with higher values of TCI generally associated with negative Tmin residuals. This

indicates that areas with high TCI values (valley floors) are experiencing colder

than expected Tmin values when only elevation is considered. While this relation-

ship holds true for the winter months, there does not appear to be a significant

relationship in the spring, summer, or fall.

Maximum Temperature

There is a large amount of variation present in daily maximum temperature across

the SRSN (Figures 1.5 and 1.8). Elevation is an even stronger predictor of maxi-
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Figure 1.7: Modeled minimum daily temperature averaged over the course of a
month between 17 June 2013 and 24 June 2014 expressed as a function of terrain
convergence index (TCI). Temperature is expressed as the residual of a mixed- ef-
fect model fit to the entirety of the SRSN data predicted solely by elevation with
random intercepts by month. Residuals are averaged for each site per month, and
plotted against the TCI value at each sensor. The lines are fit by least squares
regression. Lines are colored by the p-value associated with these least square
regressions, where red indicates significance at the 0.05 level (p < 0.05), orange in-
dicates significance at the 0.10 level (p < 0.10), and gray indicates no significance
at the 0.10 level (p≥ 0.10). The gray shading associated with each regression line
indicates the standard error.
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mum temperature in the Snake Range than it is for minimum temperature. Partial

residual plots were constructed using the residuals of a linear mixed-effects model

of Tmax, allowing the intercept to randomly vary by month, using average monthly

temperature for each sensor location. Again, similar to minimum temperature, ter-

rain slope best explained the residuals of the maximum temperature model. The

strength of this relationship varies by month, with the strongest positive linear re-

lationship occurring in the winter months, when inversions are most likely to form.

The residuals of maximum temperature predicted by elevation are most variable

in winter, and closest to 0 in the summer months (Figure 1.8).

1.3.3 Model Performance and Validation

Model Validation with an Independent Dataset

We calculated model bias (Figure 1.9 and Figure 1.10), mean absolute error (MAE),

and root mean square (RMSE) for the maximum and minimum daily temperature

hierarchical mixed-effects models (Table 1.3, Table 1.4, and Table 1.5, respectively).

These tables show the performance of the Tmin and Tmax models for each month

of the record as well as at 4 separate NevCAN sites, which are associated with

different vegetation types and distinct elevations (Figure 1.1).

The Tmin model displayed a relatively small bias when averaged over sites and

months of 0.69 ◦C (Table 1.3). Bias was relatively low for the Sage (0.85 ◦C), Mon-

tane (-0.05 ◦C), and Subalpine sites (-0.40 ◦C), while the Pinyon-Juniper (PJ) site

had the highest overall bias (2.43 ◦C). In general, biases in the Tmin model were

highest in the winter months, when temperature inversions are most likely to oc-
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Figure 1.8: Modeled maximum daily temperature averaged over the course of a
month between 17 June 2013 and 24 June 2014 expressed as a function of terrain
slope (◦). Temperature is expressed as the residual of a mixed-effect model fit to
the entirety of the SRSN data predicted by elevation with random intercepts by
month. Residuals are averaged for each site per month and plotted against the
terrain slope at each sensor. The lines are fit by least squares regression. All months
were statistically significant at the 0.05 level (p<0.05). The gray shading associated
with each regression line indicates the standard error.
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cur. The lower elevation minimum temperature predictions show greater variation

over time. The higher elevation Montane and Subalpine sites show relatively sta-

ble biases throughout the months.

The Tmax model does not perform as well for the study site as does the Tmin

model (Table 1.3), with an overall bias across sites and times of -1.92 ◦C. The Tmax

model performs best at the Sage site over the course of the year, with an overall

bias of only 0.05 ◦C. The PJ and Montane sites are both subject to consistently large,

negative biases, indicating that the model is under predicting temperature at those

sites. The Subalpine site shows the greatest seasonal variation in bias for Tmax

predictions, with more negative biases in the summer months, and biases close to

zero in the winter. Overall, the smallest biases for Tmax are observed at the Sage

and Subalpine sites (0.05 and -1.12 ◦C respectively), while the PJ and Montane sites

display higher biases (-3.36 and -3.22 ◦C respectively).

Mean Absolute Error (MAE) of the Tmin model was relatively low (1.92 ◦C, Ta-

ble 1.4). The site displaying the highest MAE was the Sage site (3.16 ◦C), while

the lowest MAE was observed at the Montane site (1.27 ◦C). The highest MAE by

month at the Sage site is observed during the month of December (6.15 ◦C), while

the lowest MAE is observed at the high elevation Subalpine site in August (0.80

◦C). When comparing between sites, the PJ, Montane, and Subalpine sites show

relatively stable MAEs throughout time, while the Sage site shows large variations

over the course of the year.

MAE of the Tmax model was higher than the Tmin model (2.78 ◦C, Table 1.4),

with consistently high MAE values across sites. The site with the lowest Tmax MAE

was the Sage site (2.27 ◦C). The Spring, and Summer MAE values for the Sage site

were relatively consistent across time, while the Fall and Winter MAE values were
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Figure 1.9: Difference between daily minimum temperature (◦C) as predicted by
the hierarchical mixed-effects model described in text and observed daily mini-
mum temperature at 4 NevCAN stations over time. The Montane site is visualized
as orange dots, the Pinyon-Juniper site (PJ) is dark blue, the Sagebrush (Sage) site
is dark green, and the Subalpine site is purple. The black horizontal line is placed
at the 0 ◦C mark.

higher and varied more significantly. The Sage site MAE in the month of December

was particularly high (4.68 ◦C), while the MAE for the Sage site in August was

much lower (1.33 ◦C). The month with the highest MAE across sites (Overall in

Table 1.4) was December (3.26 ◦C).

The root mean squared error (RMSE) of the Tmin model was 2.70 ◦C (Table 1.5).

The site with the highest RMSE was the Sage site (4.18 ◦C), which was a full 1.9 ◦C

higher than the second highest RMSE at the PJ site (2.28 ◦C). December at the Sage

site stands out with the highest RMSE (8.00 ◦C), and the sage site again shows lots

of variation by month. The PJ, Montane, and Subalpine sites all show relatively

stable RMSE values across months compared to the Sage site.
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Figure 1.10: Difference between daily maximum temperature (◦C) as predicted by
the hierarchical mixed-effects model described in text and observed daily maxi-
mum temperature at 4 NevCAN stations over time. The Montane site is visualized
as orange dots, the Pinyon-Juniper site (PJ) is dark blue, the Sagebrush (Sage) site
is dark green, and the Subalpine site is purple. The black horizontal line is placed
at the 0 ◦C mark.

RMSE of the Tmax model across time and space was slightly higher than the

Tmin model (3.35 ◦C, Table 1.5). RMSE values are more consistent for the Tmax

model than those of the Tmin model, with the difference between the highest and

lowest RMSE by site equaling 1.09 ◦C. The Sage site displays higher RMSE values

during the winter, and the Montane site displays higher RMSE values in the Spring

and Summer. The PJ site is relatively stable across months.

Leave-One-Out Cross Validation

The MSE, RMSE, MAE, and bias of Tmin and Tmax (Figure 1.11 and 1.12) were cal-

culated using a leave-one-out cross validation (Table 1.6), and each statistic was
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aggregated by Gregorian Calendar month.

The minimum temperature model fits were better during the summer months,

as evidenced by lower MSE, RMSE, MAE, and bias values during the summer

months relative to the winter. Model bias centers closer to zero during the sum-

mer months with less variation (Figure 1.11). The month of greatest variation in

minimum temperature bias is December, during which an extreme cold snap was

observed. The overall MSE for our Tmin model was 5.95 ◦C, the overall RMSE was

2.39 ◦C, the overall MAE was 1.84 ◦C, and the overall bias was 0.02 ◦C (Table 1.6).

The maximum temperature model showed more variation in its performance

throughout the year. In general, the summer validation statistics are lower than

those values found for Winter (Table 1.6). There is more variation in model bias

throughout all months when compared to the Tmin model (Figure 1.10), with the

months of November and December showing the largest amounts of variation.

The overall MSE for our Tmax model was 8.01 ◦C, the overall RMSE was 2.80 ◦C,

the overall MAE was 2.21 ◦C, and the overall bias was 0.00 ◦C.

1.3.4 Temperature Distribution in the SRSN

We have created daily maps of minimum and maximum temperature for the en-

tirety of the SRSN study site during the duration of our 373 day SRSN record.

Mean minimum temperature for the month of December 2013 was calculated (Fig-

ure 1.13 (a)), as was mean maximum temperature for the month of July 2013 (Fig-

ure 1.13 (b)). The pattern of minimum temperature (Figure 1.13 (a)), particularly

in the winter months, is highly variable across the landscape. The correlation of

the average temperature of each SRSN throughout the time period with elevation
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Figure 1.11: Histograms of the minimum temperature model bias for each month
of the 373 day SRSN period. Model bias is calculated as the observed tempera-
ture minus the predicted temperature. All bias calculations were produced using
a leave-one-out cross validation approach, in which the model was fit with all but
one sensor, predictions were generated for the location of the sensor, and the ob-
servations and predictions for each location were used to calculate bias. These his-
tograms display the bias for all 40 sensor locations and all 373 days of the record,
and averages are displayed in Table 1.6. Gray dotted lines are drawn at the 0 ◦C
mark.
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Figure 1.12: Histograms of the maximum temperature model bias for each month
of the 373 day SRSN period. Model bias is calculated as the observed tempera-
ture minus the predicted temperature. All bias calculations were produced using
a leave-one-out cross validation approach, in which the model was fit with all but
one sensor, predictions were generated for the location of the sensor, and the ob-
servations and predictions for each location were used to calculate bias. These his-
tograms display the bias for all 40 sensor locations and all 373 days of the record,
and averages are displayed in Table 1.6. Gray dotted lines are drawn at the 0 ◦C
mark.
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is low for Tmin (r = -0.65), as valley locations are often as cold or colder than the

summit of Mount Washington. Maximum temperature averaged across the time

series at each sensor location is more strongly correlated with elevation (r = -0.89)

(Figure 1.13 (b)).

1.4 Discussion

Our approach to quantify variation in SLP is a novel contribution to the study of

topoclimate. We have successfully captured variation in SLP that is relevant to

our study site, and inclusion of this information in our study quantified synoptic

weather conditions and improved our predictions of Tmax and Tmin. Further, we

have found that lapse rates are highly variable throughout the seasons. The en-

vironmental lapse rate of -6.5 ◦C km−1 is more representative of Tmax than Tmin,

but an environmental lapse rate is not representative of day-to-day variation in

near-surface air temperature.

1.4.1 Variation of Temperature in Complex Topography

This work shows that the environmental lapse rate of -6.5 ◦C fails to capture daily

variation of near-surface air temperature in the Snake Range of Nevada. Tmin

shows substantial variation in values over very short distances (e.g. Figure 1.13

(a)) and within short periods of time (e.g. Figure 1.5). The mosaic of minimum

temperatures is very complicated at the landscape scale, and generally does not

follow a standard atmospheric lapse rate in our study area. The valley floor is

often nearly as cold as the mountain summits, which can have profound implica-
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Figure 1.13: Two maps of temperature as predicted by the models described in
text. Black dots indicate NevCAN stations and the size of the dot displays mean
monthly temperature at that station. These sites are also used as validation sites in
this work. Scale and orientation are the same as Figure 1.1. Note that (a) and (b)
have different legends and dispaly results from different months. (a) A map of De-
cember 2013 average minimum temperature throughout the study site, calculated
by taking the mean of daily minimum temperature for the month of December
2013. (b) A map of average maximum temperature for July 2013, calculated by
taking the mean of daily maximum temperature predictions for the month of July
2013.
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tions for many applications and indicates that environmental lapse rates are not

always a satisfactory estimate. This confirms the findings of Blandford et al. (2008)

and Pepin et al. (1999). Higher values of percent canopy cover are associated with

higher minimum temperatures, indicating that forested areas tend to buffer the re-

gion from extreme cold. While this phenomenon has been pointed out repeatedly

throughout the literature (e.g. Hough, 1945; Geiger et al., 2009; Barry, 2008), it is

often not accounted for in applied research. Moreover, given the arid nature of our

study site, vegetation height changes dramatically with elevation, making for an

even more complex landscape.

In our study site, Tmax more frequently displays an environmental lapse rate

approaching the standard -6.5 ◦C km−1. There is generally a consistent decrease

in maximum temperature with increasing elevation, and the regional air mass

largely dictates what the temperature will be across the landscape. While this is

true throughout most of the year, there are still times (particularly in the winter)

when Tmax exhibits inversion conditions. In these cases, even at the hottest point

of the day, the valley floor is cooler than higher elevations. Canopy cover also has

a moderating effect on maximum temperatures, in that it can often produce cooler

temperatures at elevations that would indicate otherwise. The complex spatio-

temporal mosaic of both minimum and maximum temperature exhibited here and

elsewhere (e.g. Fridley, 2009) is quite difficult to quantify, thus the reliance in the

past on simplified methods.
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1.4.2 Effects of Synoptic Weather and Seasonality on Near-Surface

Temperature

Minimum Temperature

As expected, regional air temperature is the most predictive variable for the daily

Tmin maps in the study area, similar to many works (e.g. Fridley, 2009; Lundquist

and Cayan, 2007; Holden et al., 2011a). If the air mass is warm, all sites at the SRSN

were slightly warmer than normal. The inverse is also true, where cool regional

air masses lead to cooler temperatures across all sites (Figure 1.5).

Minimum temperature exhibited persistent inversions throughout the study

period, which is to be expected from other works investigating cold air drainage

(e.g. Lundquist et al., 2008). Cold air drainage is a major feature of the mini-

mum temperature climate (Table 1.7). Not only is there a strong effect of elevation

in predicting minimum temperature, but there is also quite a large effect of the

quadratic of elevation. The quadratic term helps to account for the persistent cold

air drainage observed at the study site at some elevations. Minimum temperature

tends to display no change in temperature with elevation until approximately 2.3

km, where the decrease in temperature with elevation becomes linear (Figure 1.14

(a)). TCI and slope also help to account for the persistence of cold air drainage at

the study site as indicated by their relatively high t values (Table 1.7). These two

variables help to identify landscape features that are likely to allow dense, cold air

to pool in convex or low slope features (i.e. areas with a high TCI value and/or

low slope).

Another interesting feature that is shown here is the mobility of the elevation
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Table 1.7: Fixed effect coefficients of hierarchical mixed-effects model of minimum
daily temperature for the SRSN.

Coefficient (TminTminTmin) Estimate Standard Error t value
(Intercept) -36.07 10.27 -3.51
IRRAD 0.002 0.02 0.10
ELEV 32.60 8.46 3.85
ELEV2 -6.87 1.61 -4.25
PC4 0.13 0.02 5.96
Tair 0.88 0.02 55.23
TCI -0.16 0.07 -2.36
CC 1.05 0.245 4.22
SLOPE 0.04 0.02 2.57
cos(2π/365 * JDAY) -1.78 0.18 -9.69
sin(2π/365 * JDAY) -0.17 0.12 -1.41
ELEV:PC4 -0.09 0.02 -5.24
ELEV2:PC4 0.01 0.002 4.42
ELEV:CC -0.80 0.20 -3.96
ELEV2:CC 0.14 0.04 3.68

where the effect of cold air drainage is observed. The elevation of the cold air

drainage layer seems to vary around the 2,000-2,500 m mark (not shown), though

the elevation is inconsistent and we did not study its mobility. The PJ NevCAN

station is at an elevation of 2,200 m. It is clear that Tmin model predictions for the

PJ station were very inconsistent throughout the year (Figure 1.9). Part of the high

bias of the Tmin model for this particular site is likely due to our inability to estimate

how thick the cold air drainage layer is on any given night with the predictor

variables presented here. The depth and persistence of these layers at this site calls

for more study. The SRSN data are well suited for this, as the inflection point of

temperature change with elevation could easily be highlighted with a smoothing

average analysis. The variability of the inversion depth would likely be related to

the regional weather patterns, time of year, temperature of the air mass, and local

winds.
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Figure 1.14: Minimum temperature across the 40 sites of the SRSN on two separate
days plotted against site elevation. The red lines represent a least squares linear
regression model that has been fit to the data, which is often thought of as the lapse
rate, and the gray shading associated with the lines indicates standard error from
the regression fit. (a) Observations from 19 June 2013, which displays the more
typical pattern of Tmin for the area. Minimum temperature at the lower elevation
sites is relatively constant, as cold air drainage occurs on a nearly nightly basis at
the site. (b) Minimum temperature recorded by the SRSN plotted against elevation
for 12 December 2013. This particular day shows a deep inversion present at the
study site, where temperature increases with elevation rather than decreases.

Atmospheric mixing is another important component of the Snake Range cli-

mate, particularly in the winter months. Atmospheric mixing refers to the mixing

of the near-surface air mass with the greater regional air mass. In the summer

months, this can be achieved by convection where the air near the ground surface

is warmed and rises (Geiger et al., 2009; Barry, 2008). However, this process is

limited in the winter, as the lower sun angles coupled with the complexity of the

terrain lead to more of the landscape experiencing ”deep shade”; that is to say that

these areas receive no direct solar radiation throughout the course of the day. Thus,

in the winter, atmospheric mixing is often achieved by the passage of a frontal sys-
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tem, which increases winds, instability, and mixing in the regional air mass. As

high pressure systems build in the area, cold air drainage persists, limited land

surface heating takes place, and thus limited atmospheric mixing occurs. During

these high pressure systems, elevation and its quadratic have a complicated rela-

tionship with minimum temperature (Figure 1.14 (b)), as the site is under inver-

sions. This phenomenon is pointed out repeatedly in the literature (e.g. Lundquist

et al., 2008; Holden et al., 2011b) and well described by our model, and it is quan-

tified by elevation, the quadratic of elevation, and their interaction with PC4. The

inclusion of these terms is a first step in attempting to incorporate better infor-

mation about synoptic weather conditions and their relation to landscape scale

temperature mapping, and is one of the most novel contributions of this work.

Maximum Temperature

Regional air temperature is also highly correlated with Tmax at the study site (Fig-

ure 1.5). Maximum temperatures tend to increase and decrease with the regional

air mass. However, the range of maximum temperature values observed on a

given day varies by season and synoptic weather conditions. This result appears

to be consistent with Fridley (2009).

The lapse rate of maximum temperatures is much more consistent than that of

minimum temperature (Figure 1.15 (a)), as cold air drainage is not a major com-

ponent of the daytime climate at our study site, again confirming the results of

Blandford et al. (2008). There is a strong effect of elevation and its quadratic inter-

acting with the sine and cosine waves that were fit to the model, which indicates

that the effects of elevation and its quadratic change with the seasons (Table 1.8).

This is easy to reconcile, as changes in the season also bring about changes in the
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sun angle. Much like in minimum temperature, high pressure coupled with low

sun angles (hence low atmospheric mixing) during the winter months can lead to

inversions in maximum daily temperature (Figure 1.15 (b)). The cosine curve bet-

ter explains the seasonality of our study site. It has a maximum value in the winter

and a minimum value in the summer, indicating that the hydro-climatic regime of

the region is centered on winter and summer. To further explain the seasonality

of inversions, the maximum temperature model includes an interaction term of

the cosine wave with TCI at the study site. This accounts for the fact that TCI is

more predictive of Tmax in our study site during the winter months, as this is when

inversions are most likely to occur.

Table 1.8: Fixed effect coefficients of hierarchical mixed-effects model of maximum
daily temperature for the SRSN.

Coefficient (TmaxTmaxTmax) Estimate Standard Error t value
(Intercept) 31.98 6.66 4.80
Tair 0.87 0.02 35.68
IRRAD 0.58 0.03 21.96
PC4 -0.01 0.00 -5.62
ELEV -10.91 5.49 -1.99
ELEV2 0.37 1.03 0.36
TCI -0.07 0.07 -1.00
cos(2π/365 * JDAY) -0.70 0.96 -0.73
sin(2π/365 * JDAY) -0.43 0.96 -0.45
SLOPE 0.03 0.02 1.95
CC 0.01 0.01 1.13
TCI:cos(2π/365 * JDAY) 0.02 0.01 3.34
TCI:sin(2π/365 * JDAY) 0.00 0.01 0.21
ELEV:cos(2π/365 * JDAY) -3.61 0.71 -5.06
ELEV2:cos(2π/365 * JDAY) 1.08 0.14 7.75
ELEV:sin(2π/365 * JDAY) 1.13 0.72 1.57
ELEV2 :sin(2π/365 * JDAY) -0.32 0.14 -2.26

Aside from some extreme winter values (Figure 1.10, December 2013), the bias

in the Tmax model is relatively consistent. This is likely due to the stability and pre-
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dictability of maximum temperatures throughout most of the year. Atmospheric

lapse rates are reasonable estimates of the distribution of maximum temperature

throughout a landscape due to the stability of Tmax. However, this overly sim-

ple approach still does not account for site specific differences in solar irradiance,

canopy cover, and other important variables, thus trade-offs between highly de-

tailed temperature maps and ease of construction should be considered on a project

by project basis.

1.4.3 Effects of Landscape Features on Near-Surface Temperature

Minimum Temperature

Elevation is certainly one of the most important components of Tmin distribution

in the area, but the relationship is not a simple linear one. Our model accounts for

numerous ways in which relationships between elevation and Tmin vary through-

out the landscape (Table 1.7), and we are likely still missing part of the picture.

Allowing a quadratic term of elevation helps to account for the persistent cold air

drainage encountered at our site, and will likely apply to other sites in the west-

ern United States or any arid, mid-latitude site. Elevation and its quadratic also

exhibit a strong interaction with canopy cover at the study site. We speculate that

this interaction term helps to account for the varying structure of the canopy, as it

changes dramatically at our study site with elevation.

There is a very weak effect of IRRAD on Tmin at our study site. By the time

daily minimum temperature occurs at our site, the effects of daily insolation have

diminished. Canopy cover has a strong effect on minimum temperature at our
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study site, as thicker canopies tend to insulate the near-surface climate from ex-

treme temperature swings, which is a well studied process (e.g. Hough, 1945).

Our study confirms that this process is taking place at the Snake Range. One of

the strongest landscape effects is the shape of the terrain and its effect on cold air

drainage. Our model accounts for this effect by including TCI and terrain slope

as model terms. These two variables have relatively strong effects. The effect of

TCI is negative, as areas with high TCI values are typically concavities in the land-

scape. These concavities are areas that are likely to allow more dense cold air to

accumulate, thus will generally display a colder climate than would areas with a

more convex landscape. Slope has a positive effect on Tmin, as areas with higher

slope values will ”clear” the more dense cold air rapidly as it cools, helping to keep

these areas near the same temperature as the regional air mass. This result is con-

sistent with Lundquist et al. (2008), as they found terrain slope to be an important

factor in identifying areas likely to accumulate cold air.

Maximum temperature

Elevation has a strong effect on Tmax in the Snake Range, with a relatively small

effect displayed by the quadratic of elevation (e.g. Figure 1.15 (a)). As elevation

data are readily available and highly predictive of temperature, predicting Tmax

is relatively simple. However, this relationship is not stationary with time, as in

the winter months, temperature inversions from the valley floor all the way to the

mountain summit are not uncommon (e.g. Figure 1.15 (b)). Thus, if the application

requires detailed information about temperature or requires the ability to describe

when and how deep inversions are in the study site, a method similar to what was

employed in this study is suggested.
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Figure 1.15: Maximum temperature across the 40 sites of the SRSN on two separate
days plotted against site elevation. The red lines represent a least squares linear
regression model that has been fit to the data, which is often thought of as the
lapse rate, and the gray shading associated with the lines indicates standard error
from the regression fit. (a) Maximum daily temperature from 2013 June 19. This
displays a typical maximum temperature observation at the site, where maximum
temperature decreases linearly with decreasing elevation. Note the relatively small
standard error, as elevation is largely representative of maximum temperature on
this date. (b) Maximum daily temperature from 2013 December 12, which shows a
persistent inversion occurring at the site. As you increase elevation, there is a very
slight decrease in maximum temperature for that day.

Incoming solar radiation has a very large effect on maximum temperature at

the sites in the SRSN (Table 1.8). The effects are comparable to those found by

Fridley (2009), but a direct comparison between the two studies is tenuous. Fri-

dley (2009) allowed IRRAD to interact with other variables, while this study did

not. The relationship between Tmax and IRRAD is intuitive, with high solar radia-

tion equating to high maximum temperature and vice versa. Theoretical incoming

solar radiation can be easily modeled within a GIS framework, making this im-

portant variable available to all applications. However, to better understand the
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dynamics of how irradiance effects maximum temperature, it would be ideal to

include information on cloud cover. On cloudy days or during the formation of

summer thunderstorms, the actual incoming solar radiation could greatly diverge

from the theoretical value calculated with GIS despite our study site having a large

proportion of sunny days. Some scientists have gone as far as to exclude irradi-

ance in their studies for this reason (e.g. Ashcroft and Gollan, 2011), but given our

results, it is certainly worth inclusion in arid regions.

As temperature inversions of Tmax occur at our study site, particularly in the

winter (not shown), we have included an interaction term of TCI, elevation, and

the quadratic of elevation with the sine and cosine waves that describe seasonal

variation at our study site. Again, the cosine wave seems to better fit the timing

of seasonality at our site. Allowing our landscape variables to interact with the

day of year helps to account for the differing effect of these landscape variables

through time. While TCI and ELEV2 are both important variables to help describe

inversion conditions, they do not contribute much information to the distribution

of maximum temperature over the landscape during normal conditions. Ideally a

better description of the seasonality at our site can be achieved, which will allow

for more accurate mapping of the timing and distribution of inversions in Tmax in

the Snake Range.

1.4.4 Refinements and future work

The availability and low cost of modern microsensors such as the LogTag Trix 16

units used in this study have led to a proliferation of landscape-scale temperature

studies. These studies will benefit from some form of standardization, as it is cur-
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rently quite difficult to compare results. Some researchers place their sensors in

trees as we have (Lundquist and Cayan, 2007; Lookingbill and Urban, 2003), some

place their sensors under the soil surface (Ford et al., 2013), some use PVC housings

for radiation shields (Fridley, 2009; Ashcroft and Gollan, 2011), and others make

their own in house radiation shields (Holden et al., 2013, 2011a; Hubbart, 2005).

The amount of measurement error and bias that is contributed by these different

methods needs to be accounted for when quantitatively comparing results, but

the general drivers of near-surface air temperature in different geographic regions

likely hold true.

It is important to note that while this model effectively describes near-surface

temperature in the Snake Range throughout the period of record, researchers must

be cautious if they are to extrapolate such models to larger landscapes or different

time periods. While the use of the NCEP Reanalysis 1 data to describe synoptic

conditions at our study site makes the model well suited for calculating temper-

ature maps of past conditions, it is worth noting that the near-ground climate of

the past may be very different than the near-ground climate of the present. This

exercise would certainly hold some merit in a first glimpse of a detailed climate

history for the area, but many of the assumptions made by this work will likely

break in different points in space or time.
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APPENDIX A

HIERARCHICAL MIXED-EFFECTS MODEL FITTING

A.1 General Fitting Procedure

Construction of multilevel models such as those employed here requires assess-

ing the variance at each level of the model. This is because more complex model

structures are only supported within this framework if they have relatively high

variance and degrees of freedom on a particular level.

Level One of our models includes daily fluctuations of the regional air mass

temperature (Tair), SLP patterns in the study region (PC4), clear sky irradiance

(IRRAD), other seasonal variation (sine and cosine periodic functions), and any

interactions between these variables. The model includes 373 days of values at

level one, thus most of the variance and most of the degrees of freedom come

from this level. Level One includes factors that influence site specific temperature

during time t at location i. A forward fitting procedure was used, in which only

the variables thought to be most physically relevant are included in the first model.

This model was tested with log likeliehood via AIC against alternative models

which included varying forms of random effects and additional predictor variables

for date until a ”best” model (as determined by AIC) that is physically relevant is

achieved. Each model on Level 1 can include a random effect that varies over the

course of the 373 days, helping to account for noise and serial autocorrelation in

the time series. In our final models, we employed a random intercept by date.

Next, we address the level 2 variables in a similar manner. Level two variables

describe spatial variation of maximum and minimum temperature throughout the

study site, such that the predictor varies at each location i. Forward model fitting

procedures were employed to determine the most suitable Level Two of the model.
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Next, Level One coefficients can be modeled at Level Two, such that interactions

between temporal and spatial predictors can occur (e.g. the effect of elevation can

vary with differing levels of PC4). Each component of Level 2 can also include

random effects of the slope and/or intercept to account for errors between sites. In

our final model, we included a random intercept by sensor location and a random

slope by elevation for each day to account for the variability of lapse rates at the

site. Once a full model was determined by comparing competing models with log-

likelihood tests, we removed random effects terms to determine their significance.

After demonstrating the statistical significance of these terms, we tested for tem-

poral autocorrelation in the residuals of the models by comparing the full model

to the same model including an exponential decay autocorrelation term (Pinheiro

et al., 2014), and found that the random terms accounted for enough of the tem-

poral autocorrelation that the more complicated covariance structure was not jus-

tified by log-likelihood testing and AIC values.

A.2 Minimum Temperature Model

Our final hierarchical mixed-effects linear regression model for Tmin where i indi-

cates some location, t indicates some day, and minTit indicates the minimum daily
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temperature from that day and that location was as follows:

minTit =β0it + β1itTAIR + β2itIRRAD + β3tPC4+

β4tcos(2π/365 ∗ JDAY ) + β5tsin(2π/365 ∗ JDAY )+

β6itELEV + β7itELEV
2 + β8itTCI+

β9itCC + β10itSLOPE + β11itPC4× ELEV+

β12itPC4× ELEV 2 + β13itELEV × CC+

β14itELEV
2 × CC + u00i + u00t + w00itELEV+

w01itELEV
2 + εit

(A.1)

which includes random intercepts for site and date, and random slopes for ele-

vation and its quadratic each day of the record. Fixed effects terms include regional

air mass (TAIR or Tair in text), irradiance, PC4, periodic sine and cosine functions,

elevation, the quadratic of elevation, TCI, canopy cover, slope, the interaction of

PC4, elevation, and the quadratic of elevation, and finally the interaction of CC,

elevation, and the quadratic of elevation. The final term of the model is normally

distributed error.

A.3 Maximum Temperature Model

The final hierarchical mixed-effects linear regression model for Tmax at some lo-

cation i and some time t to predict the maximum temperautre, maxTit, at that
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location during that time is:

maxTit =β0it + β1itTAIR + β2itIRRAD + β3tPC4+

β4tcos(2π/365 ∗ JDAY ) + β5tsin(2π/365 ∗ JDAY )+

β6itELEV + β7itELEV
2 + β8itTCI+

β9itCC + β10itSLOPE + β11itTCI × sin(2π/365 ∗ JDAY )+

β12itTCI × cos(2π/365 ∗ JDAY ) + β13itELEV × sin(2π/365 ∗ JDAY )+

β14itELEV × cos(2π/365 ∗ JDAY ) + β15itELEV
2 × sin(2π/365 ∗ JDAY )+

β16itELEV
2 × cos(2π/365 ∗ JDAY ) + u00i + u00t + w00itELEV+

w01itELEV
2 + εit

(A.2)

This model includes random intercepts for site and date, as well as random

slopes for elevation and its quadratic for each day. Fixed effects include regional air

temperature, irradiance, PC4, elevation, the quadratic of elevation, TCI, periodic

sine and cosine functions (seasonality), slope, canopy cover, the interaction of TCI

with seasonality, the interaction of elevation and seasonality, and the interaction of

the quadratic of elevation and seasonality. The final term of the model is normally

distributed error.
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