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Abstract 

Throughout much of the arid Western United States, groundwater-dependent 

ecosystems (GDEs; those in which the flora necessarily rely on surface expressions of 

groundwater) represent hotspots of biodiversity, providing pockets of rich mesic habitat in an 

otherwise arid landscape. Yet, despite their integral ecological role, little is known about the long 

term dynamic spatiotemporal response of GDEs in arid lands to both disturbance and climatic 

variability. Climate change and anthropogenic groundwater abstraction have combined to 

drastically alter the hydrologic regime throughout regions of the Great Basin. As such, 

anthropogenically induced or exacerbated hydrologic disturbance have placed springs, 

wetlands, phreatophytic flats and a slew of additional Great Basin GDEs under intense 

environmental stress. Given the ecological and economic value of the many ecosystem services 

these unique environments perform, improving understanding of their spatiotemporal dynamics 

such that resource managers may simultaneously meet the needs of both humans and nature, 

is of the utmost importance.  

Remotely sensed vegetation indices (VI) are commonly used proxies for estimating 

vegetation vigor and net primary productivity across many terrestrial ecosystems, though 

limitations in data availability and computing power have historically confined these analyses 

both spatially and temporally. In this work, however, spatiotemporally vast analyses of GDE 

vegetation vigor change through space and time were conducted using Google’s Earth Engine 

(EE) cloud computing and environmental monitoring platform. This platform allows for the 

streamlining of computationally intense environmental analyses, and to access pre-processed 

Landsat archive and gridded meteorological data, effectively overcoming the temporal and 

spatial constraints previously posed by limited economic resources and computing power. 

Results of Landsat derived GDE vegetation vigor and associated environmental variable time 

series’ and trend analyses illustrate the existence of a strong and highly significant coupling 
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between depth to groundwater (DTG) and GDE vegetation vigor. Further, it was found that the 

presence of groundwater-vegetation feedbacks renders these systems highly prone to 

irreversible transitions to alternative, often barren or xerophytic, ecohydrological states, should a 

given GDE become decoupled from shallow groundwater resources as a result of surpassing 

species and tissue specific soil moisture threshold values.  
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1.0  Introduction 

Water stored beneath the Earth’s surface as groundwater represents the largest 

reservoir of liquid freshwater on our planet, comprising a staggering 96% of the precious 

resource (Shiklomanov, 2003). Across the Great Basin section of the Basin and Range 

physiographic province, where average annual precipitation reaches a mere 15-35 cm year-1, 

groundwater represents the principal, if not sole, source of water (Nichols, 2000; Devitt et al., 

2011). Throughout this region, rapid groundwater abstraction combined with population growth, 

climate change and extended periods of drought have placed increasing pressure on 

subterranean water resources in recent years (Nichols, 1994; 2000; Cooper et al., 2006; 

Deacon et al., 2007; Devitt et al., 2011; Devitt & Bird, 2015).   

In arid and semiarid regions worldwide, and particularly so in endorheic regions like the 

Great Basin, the presence of shallow aquifers facilitate groundwater dependant ecosystems 

(GDEs) like springs, rivers, lakes and  phreatophytic meadows. These ecologically invaluable 

communities support greater vegetation densities (Manning, 1999; Maitre et al., 1999; Elmore et 

al., 2003; Naumburg, 2005; Cooper et al., 2006; Patten et al., 2007; etc.), and increased 

biodiversity (Manning, 1999; Elmore et al., 2003;  Ridolfi et al., 2007; Kløve et al., 2011), relative 

to areas with deeper water tables, through the continued provision of water in a region critically 

limited by this natural commodity. Though GDEs come in many shapes and sizes, they are 

unified by their necessary dependence upon subterranean water in order to maintain their 

present structure and function (Eamus et al., 2006; 2015; Eamus & Froend, 2006; Froend & 

Sommer, 2010; Kløve et al., 2011).  

 GDEs can be broadly divided into three types, as first suggested by Eamus et al. 

(2006b). Type I GDEs are those which rely on subsurface expressions of groundwater 

resources. Or, in other words, are those ecosystems that exist entirely within the subsurface 

aquifer (e.g. submerged cave systems, aquifer dwelling microbes etc.). Type II GDEs are 
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ecosystems which depend on surface expressions of groundwater. Lakes, ponds, rivers, 

streams and any other systems that exist as a consequence of surface expressions of 

subsurface water fall into this category. Finally, type III GDEs exist on the surface, with their 

access to groundwater facilitated by a form of vegetation known as a phreatophyte (Eamus et 

al., 2006; 2015; Eamus & Froend, 2006). 

A phreatophyte is a plant--most commonly a tree, shrub or grass--that is characterized 

by long roots, penetrating deep into the soil in order to reach for the upper portion of the 

watertable (Gatewood et al. 1950; Robinson, 1970; Nichols,1993; 1994; 2000). A more 

functional definition proposed by Naumburg et al. (2005) states that phreatophytes grow where 

precipitation alone provides an inadequate quantity of water for their long-term survival, and 

thus phreatophytes require groundwater. These species act as ecosystem engineers, 

influencing groundwater levels across their range such that conditions are optimized for their 

existence and propagation. Phreatophytes may be classified as either obligate or facultative 

depending on their level of groundwater dependence, though implicit in the definition of GDEs is 

the caveat that without groundwater, the structure and function of the ecosystem in question 

would be compromised.  

Though phreatophytes common to the Great Basin boast relatively meager groundwater 

evapotranspiration (ETG) rates and are commonly found in densities of 20% total cover or less 

(Nichols, 2000), their simple spatial breadth renders these ecosystem engineers crucial 

components of regional water budgets (Nichols, 1993; 1994; 2000; Devitt et al., 2011; Beamer 

et al., 2013). Greasewood (Sarcobatus vermiculatus), the dominant phreatophyte of the Great 

Basin (Nichols, 1993; 1994), occupies an area of at least 4.8 million hectares in western North 

America (Shreve, 1942). Given their vast distribution and continuous water access, an improved 

understanding of these dynamic ecosystems and their interactions with the water table is 

paramount to a water managers ability to close basin budgets, and provide accurate estimates 

of the volume of groundwater potentially available for human use. 
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 Throughout the multitude of closed and semi-closed hydrographic basins comprising the 

Nevada portion of the Great Basin, a water budget must be realized, with a perennial yield 

volume specified for potential “beneficial” human uses. Perennial yield, as defined by the 

Nevada Division of Water Resources (NDWR)--the agency tasked with regulating water 

resources throughout Nevada--is “the maximum amount of groundwater that can be salvaged 

each year over the long term without depleting the groundwater reservoir” (Horton, 2008). It is, 

therefore, often the case that water managers responsible for basins in which shallow aquifers 

facilitate a significant volume of annual GDE ETG, define the basin's perennial yield as being a 

majority, if not all of, this evapotranspired volume (Nichols, 1993, 1994, 2001; Elmore et al,. 

2003).   

 Not surprisingly, regions with shallow groundwater (< 5m) commonly support greater 

vegetation densities than areas in which the underlying water is deeper (Nichols, 1994; 2000; 

Manning, 1999; Elmore et al., 2003; Naumburg et al., 2005; Patten et al., 2008; Eamus et al., 

2015). When left solely to natural devices, this combination of dense and diverse vegetation and 

consistent access to water can create a mesic microclimate (e.g. from Maitre et al. (1999) a 7℃ 

temperature decrease and a 14% relative humidity increase) which attracts a large variety of 

wildlife, resulting in a biologically rich and diverse environment (Manning, 1999; Elmore et al., 

2003;  Ridolfi et al., 2007; Kløve et al., 2011; Eamus et al., 2015). Nowhere is this particular 

richness more pronounced than in the so often water limited arid and semi-arid environments of 

the world, in which GDEs commonly act as biologically rich “island” ecosystems, surrounded by 

water-limited, xerophyte-dominated, low productivity desert ecosystems (Patten et al., 2008; 

Eamus et al., 2015).  

Somewhat remarkably, these unique species are not only able to themselves 

consistently access groundwater, but through a process known as hydraulic redistribution (i.e. 

hydraulic lift) can actually transport groundwater from as much as 18 meters deep (Robinson, 

1958; Nichols, 1994, 2000; Cooper et al., 2006) to shallow soil horizons, wherein it may be 
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utilized by associated, non-phreatophytic vegetation assemblages (Naumburg et al., 2005; 

Steinwand et al., 2006; Asbjornsen et al., 2011; Orellana et al., 2012). These vegetative 

ecosystem engineers are therefore crucial to the survival of the entire associated assemblage of 

flora and fauna, as without their provision of deep subterranean water many of these species 

would likely not exist where hydrologic redistribution allows them to.  

In addition to the biodiversity they promote through the provision of critical habitat for a 

number of federally listed threatened and endangered species, (Deacon et al., 2007; Patten et 

al, 2007; Huntington et al., 2016) GDEs in the Great Basin, stimulated by their consistent water 

access, perform a number of ecosystem services. These ecosystem services include but are 

not limited to, dust prevention (Patten et al., 2008; Elmore et al., 2008), groundwater purification 

and desalinization (Murray et al., 2006; Patten, 2008), nutrient cycling (Murray et al., 2006) and 

the sequestration of atmospheric CO2 (Chapin III, 2000; Murray et al., 2006). In light of the 

provision of these services, balancing human water abstraction needs with those of GDE 

vegetation is necessary not only for the continued integrity of the ecosystems themselves, but 

also for ensuring the crucial ecosystem services which they perform are not threatened by our 

own gluttony for water.  

GDEs represent a crucial yet poorly understood aspect of our natural environment 

(Kløve et al., 2011). Given the criticality of the ecosystem services that GDEs provide, as well 

as the scarcity of the crucial mesic habitat that they represent, ensuring their continued 

ecological integrity represents a fundamental aspect of any successful water resource 

management strategy. In light of this, the potential impacts of natural climatic variability both 

independent of, and in combination with, anthropogenic groundwater abstraction are important 

considerations for water resource managers throughout the Great Basin and arid Western 

United States.  

 In recent years, the short-term ecological response of GDE communities to perturbations 

of their historic hydrologic and climatic regimes has received increasing attention. Naumburg et 
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al. (2005) provided a thorough review on the impacts of both declining and rising water tables 

on GDE vegetation, as well as a a pair of conceptual models describing the dynamic 

relationship between GDEs and depth to groundwater (DTG). They conclude that, despite the 

remarkable ability of phreatophytes to engineer environmental conditions that are suitable for 

their continued survival, excessive disturbance can result in a dramatic threshold response. 

Should the rate of water table drawdown exceed a given species maximum root growth rate, or 

surpass a maximum rooting depth, water stress, canopy dieback and even catastrophic shifts in 

ecosystem structure and function, may be experienced (Naumburg et al., 2005; Ridolfi et al., 

2006, 2007; Froend & Sommer, 2010; Asbjornsen et al., 2012; Eamus et al., 2015). Ultimately, 

this scenario may lead to increases in temperature, dust generation and groundwater 

salinization (Patten et al., 2007), and decreases in carbon sequestration as well as community 

resilience, thereby leaving the door open to hysteretic community succession (Ridolfi & Laio, 

2006; Cooper et al., 2006; Elmore et al., 2008; Froend & Sommer, 2010; Asbjorsen et al., 2011; 

Eamus, 2006a; Eamus et al., 2015).  

 There exist a plethora of examples in recent literature of anthropogenically exacerbated 

groundwater drawdown leading to a threshold response, one that almost certainly would not 

have been realized if the system were influenced by natural processes alone (Cooper et al., 

2006; Ridolfi et al., 2006; Froend & Sommer, 2010; Eamus, 2015). In fact, anthropogenic 

alteration of subsurface hydrologic flows is considered to be one of, if not the single, greatest 

threats to the integrity of GDEs worldwide (Eamus et al., 2006a, 2015; Münch & Conrad, 2007) 

as well as specifically within the Great Basin physiographic region (Patten, 2007; Pritchett & 

Manning, 2012).  

 What is not clear, however, are the key groundwater factor(s) and specific threshold 

values which determine whether a gradual or threshold response will be exhibited by a given 

GDE. Moreover, though a number of both spatially and temporally limited studies have aimed to 

address these uncertainties, only one of these considered the long term (30+ year) behavior of 
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GDE communities (Froend & Sommer, 2010), and even this lone temporally vast study was 

limited in its spatial coverage by manual vegetation sampling techniques. Consequently, an 

improved understanding of how both climate and anthropogenic perturbations of hydrologic 

regime affect the vigor and resilience of GDEs at spatiotemporal scales relevant to resource 

managers, is needed in order to improve regional groundwater models and budgets, ecosystem 

assessments, adaptive management frameworks, and the identification and designation of 

protected areas (Eamus & Froend, 2006; Froend & Sommer, 2010; Kløve et al., 2011; 

Huntington et al., 2016).  

Historically, the absence of long-term, large-scale observations has constrained GDE 

analyses, and precluded the possibility of scientifically informed management decisions on the 

basin scale (Nichols, 2000; Huntington et al., 2016). More recently, however, decades of 

remotely sensed observations from the Landsat archive have proven effective in filling this data 

gap. The longevity and frequent return interval of the observations in the lineage Landsat’s 

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land 

Imager (OLI), combine to provide an unparalleled 30+ year record of GDE vegetation vigor, that 

would not otherwise be attainable (Huntington et al., 2016). Vegetation indices, like the 

Enhanced Vegetation Index (EVI), derived from these remote sensing platforms have further 

proven the utility of Landsat observations through the successful identification, assessment and 

monitoring of GDEs changes relative to changing climate and hydrology (Elmore et al., 2000; 

2003; 2006a; 2006b; Eamus et al., 2006; Groeneveld, 2008; Yang et al., 2011; Pritchett and 

Manning, 2012; Barron et al., 2012; Nguyen et al., 2014; Homer et al, 2015; Huntington et al., 

2016). Moreover, despite significant changes in bandwidths between synonymous channels 

across Landsat sensors, Huntington et al. (2016) found vegetation indices (VIs) originating from 

different Landsat platforms to be highly comparable, and the differences negligible enough to 

allow for seamless analysis over the entire archive. 
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Thanks to the freely accessible nature of the landsat archive, land and resource 

managers may now utilize this decades long dataset in order to ascertain invaluable information 

about the dynamic structure and function of GDEs throughout the Great Basin and arid and 

semi-arid Western United States. This vast quantity of data represents a tremendous 

improvement in the availability of pertinent data to resource managers throughout these regions 

relative to classic field and energy balance approaches. That being said, however, the sheer 

volume of data contained within the Landsat archive, presents a new array of challenges, 

including limitations in data storage and computational efficiency (Huntington et al., 2016). 

Fortunately, both of these potential limitations can be easily addressed by parallelized cloud 

computing within Google’s Earth Engine (EE), a powerful new planetary-scale platform for 

environmental data and analysis. In order to effectively quantify GDE changes relative to 

changing climate and hydrology, the effects of natural variability must be isolated from 

anthropogenic impacts.  

2.0  Objective 

 The objectives of this work are to: 1) Identify patterns of GDE vegetation vigor change 

through space and time using an EVI slope map derived from an ordinary least squares (OLS) 

regression of 32-year historical enhanced vegetation index datasets, computed on Google’s 

earth Engine using observations from sensors of the Landsat TM, ETM+, and OLI lineage, and 

2) determine the extent to which spatiotemporal patterns in observed GDE above ground net 

primary productivity (ANPP), as represented by 32-year historical EVI datasets, may be 

explained by changes in annual precipitation, summer precipitation, summer theoretical water 

deficit (TWD) and groundwater levels.  

3.0  Study Areas 

Study sites were selected primarily for their vegetative cover characteristic of Nevada’s 

endemic phreatophytic flora, and their proximity to one or more USGS or Nevada State 
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Engineer’s office hydrograph locations of sufficient return sampling interval (1+ sample/year). All 

sites selected fall within the Great Basin section of the Basin and Range physiographic province 

as defined by Fenneman (1928, 1932), a vast stretch of land that covers the majority of Nevada, 

and portions of Utah, California, Oregon, Idaho and Arizona.  

The Great Basin, made of 260 smaller closed and interconnected basins, collectively 

represents the largest endorheic basin in North America (Harrill et al., 1988). Generally, these 

basins contain a highly permeable basin-fill aquifer, a deeper underlying semi-permeable 

fractured carbonate regional aquifer, and finally relatively impermeable basement rock which 

effectively confines the aquifer system to the two above levels. This basement rock typically 

rises up to form the regions north-south oriented mountain ranges, and as such these 

topographic divides often define hydrographic boundaries, as well. Flow systems in these 

basins can be restricted to a single basin, or be comprised of multiple hydrologically connected 

basins (Eaton, 1982; Harrill & Prudic, 1983; Harrill et al., 1988;  Patten et al., 2008).  

 Most closed or semi-closed basins and valleys of the Great Basin have a central playa 

underlain--at least in the absence of anthropogenic influence--by a shallow (< 2.5m) water table 

(Nichols, 1994; 2000). The margins of playa are populated by halophytic vegetation of the salt 

desert community, which is typically found growing in areas with a DTG of about 2.5m or less, 

though it has been observed at depths up to 3.6 m (Blaney et al., 1993). Saltgrass (Distichlis 

spicata var. stricta), the dominant species in this margin community, is commonly found in 

association with lower densities of pickleweed (Allenrolfea occidentalis), and saltsage (Atriplex 

tridentata).  

Just up-gradient of the playa margins beyond the salt desert community typically exists 

the greasewood-shadscale community. Greasewood (Sarcobatus vermiculatis) is widespread 

across the lower portions of alluvial fans and desert valleys throughout the Great Basin, and 

represents the dominant species in the shadscale-greasewood community (Robinson, 1958; 

Robertson, 1983; Nichols; 2000). Though greasewood may occasionally be found growing in 
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monotonic stands (generally in areas of hypersaline or alkali groundwater, an environment in 

which greasewoods tolerance gives it a competitive advantage), it is most often found 

associated with shadscale (Atriplex confertifolia) and with smaller proportions of saltbrush 

(Atriplex canescens), spiny hopsage (Grayia spinosa) and winterfat (Certoides lanata) 

(Robinson, 1958; Nichols, 1994; 2000). Where soils are less saline rabbitbrush 

(Chrycothammus nauseosus) and big sagebrush (Artemisia tridentata) may also occupy roles 

within this community. The various shrubs comprising the greasewood-shadscale type III GDE 

community typically require 1 m or more of unsaturated soil (White, 1932), and are therefore 

most commonly found in areas with water table depths of 1.5-11 m (Nichols, 2000), but have 

been observed growing with water table depths of almost 20 m (Robinson, 1958).  

Specific study locations were selected to represent a range of GDEs and environmental 

conditions within the Great Basin important for three scenarios: 1) Baseline assessment of GDE 

vegetation with respect to climate and DTG, 2) relatively constant and continuous changes in 

DTG, and, 3) variable and discontinuous changes in DTG (Figure 1).  

    3.1  Baseline assessment of GDE vegetation 

 Located in eastern Nevada near the Utah-Nevada border, Spring Valley (Figure 2) is one 

of several basins which the Southern Nevada Water Authority (SNWA) has proposed as a site 

for major groundwater development and export to Las Vegas. This large scale groundwater 

development project aims to decrease the Las Vegas area's dependence on surface waters 

from the over-allocated Colorado River through the conveyance of up to 1.91 x108 cubic meters 

per year (m3 year-1). State and federal laws as well as a stipulated agreement reached between 

SNWA and federal agencies require a thorough review of the potential environmental impacts 

resulting from such development, including detailed hydrologic and biological assessments and 

monitoring (Southern Nevada Water Authority, 2011).  

 Spring Valley covers an area of roughly 4,302 km2, and boasts an impressive perennial 

yield of 1.04x108 m3 year-1 (NDWR, 2016b). DTG throughout the valley floor of Spring Valley 
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ranges from 2 to 10 m below land surface, and annual precipitation ranges from 16 to 29 cm 

(Moreo et al., 2007). Natural groundwater discharge in Spring Valley occurs primarily in type II 

(Springs, groundwater fed ponds, ephemeral wetlands, etc.) and type III GDEs, as evaporation 

from soil and open water, and phreatophyte transpiration, respectively. The greasewood 

dominated community analyzed in this study lies about halfway along the basin’s valley floor 

gradient, in a location likely to be impacted by groundwater development due to its proximity 

both up and down-gradient to proposed pumping well locations (Rush & Kamzi, 1965). 

Observations and analysis of the long-term annual-to-decadal variability of the relatively 

unperturbed GDEs occupying the Spring valley study site hold the potential to provide valuable 

insights into the natural long-term functionality of Great Basin type III GDEs, as well as their 

resilience to disturbance and succession resulting from natural variability alone.  

    3.2  Groundwater level change  

Throughout the Great Basin, the combination of meager annual precipitation totals and 

minimal surface water storage preclude the use of surface and rain waters alone, for irrigation. 

Instead growers must pump groundwater in order to irrigate their agricultural land. This trend 

applies to municipalities as well, with large communities across the arid and semi-arid Western 

United States like Las Vegas, Reno, Salt Lake City, and many others, relying on an ever 

increasing proportion of groundwater to meet water demands (Thiros, 2003; Deacon et al., 

2007). Additional consumptive uses of groundwater in the region include large scale mining 

operations, with both lithium brine mining and the dewatering of large pit and underground 

mines being common practices to the Great Basin’s many deep and saturated alluvial fill 

aquifers.   

Inevitably, though, as it was put by Theis (1940) “all water discharged by wells is 

balanced by a loss of water somewhere”. Groundwater pumping for municipal use, agricultural 

irrigation, mining activities, and a multitude of additional uses often times results in the lowering 

of local water tables. This occurs due to the fact that the water lost to pumping, is at first derived 
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from storage within the aquifer being pumped (Theis, 1940). The ultimate consequence of this 

anthropogenic perturbation of change in aquifer storage is the lowering of the phreatic surface 

(i.e. water table)  and subsequent reduction in groundwater discharge via reduced phreatophyte 

evapotranspiration (ET) and vegetation vigor (Bredehoeft et al., 1982; Bredehoeft, 2002; Nichols 

1994: 2000: Elmore et al., 2006; Naumburg et al., 2005; Cooper et al., 2006; Patten et al., 2008; 

Groeneveld, 2008; Huntington et al., 2016).   

    3.2.1 Constant and continuous groundwater level change 

Fish Lake Valley straddles the Nevada-California border (Figure 3), lying predominantly 

in Esmeralda County, Nevada, and extending into portions of both Mono and Inyo Counties, 

California. Between the two states the semi-closed basin covers an area of roughly 2,616 km2, 

and has an estimated perennial yield of 3.70x107 m3 year-1(Loeltz & Eakin, 1953; Rush, 1973; 

CA DWR bulletin 118, 2004; NSE summary, 2016). Fish Lake Valley receives between 10 to 50 

cm of annual precipitation, and is characterized by DTG values varying from in excess of 100 m 

deep in upper portions of some alluvial fans, to less than 2 m below land surface near the 

Valley’s playa and principle areas of groundwater ETG (Rush, 1973). Saltgrass dominated 

meadow communities were reported to have DTG values in the range of 0 to 3.5 m below land 

surface, and combined with playa surfaces cover roughly 93.5 km2 of valley floor. The various 

spatially prevalent greasewood dominated communities cover an extent of 200 km2, with DTG 

values beneath these type III GDEs ranging from 3 to 15 m below land surface (both saltgrass 

and greasewood ranges represent pre-disturbance values) (Rush, 1973). Irrigated agriculture 

has expanded throughout the valley since the completion of the 1973 reconnaissance report, 

with NDWR approved groundwater abstraction permits for irrigation growing from roughly 

1.36x107 m3 year-1 in 1973 to more than 6.17x107 m3 year-1 in 2016 (2.47x107 m3 year-1 more 

than the basin’s perennial yield) (Rush, 1973; NDWR, 2016e). An apparent consequence of the 

anthropogenically modified hydrologic conditions found within Fish Lake Valley has been the 
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continuous and relatively constant decline of groundwater levels throughout the basin since 

approximately 1970.  

San Emidio Desert is a relatively small hydrographic basin of only 790 km2  (Figure 4) 

that lies split between Washoe and Pershing Counties, Nevada, approximately 160 km North-

Northeast of Reno, Nevada (NDWR, 2016d). The semi-closed basin ranges in elevation from 

roughly 1,190 m above mean sea level (AMSL) at its lowest point, to nearly 2,500 m AMSL atop 

Tohakum Peak. Annual precipitation totals range from less than 13 cm year-1 to as much as 

greater than 50 cm year-1, with the greatest values found in the highest elevations (Glancy & 

Rush, 1968; NDWR, 2016d). Depth to groundwater historically ranged from as great as 80+ m 

in the upper portions of alluvial fans, to within 1 m of the playa surface in the lower reaches of 

the drainage. In the absence of anthropogenic hydrologic perturbation, groundwater movement 

in San Emidio Desert is generally towards the North, in the direction of the Black Rock Desert 

(Glancy & Rush, 1968). Greasewood dominated type III GDEs with DTG ranging from 6 m to as 

much as 19 m cover 60.7 km2 of valley floor, with an additional 12.1 km2 of mixed greasewood 

and salt desert community occupying playa margins, underline by DTG ranging between 1.5 m 

to 6 m. Finally relatively bare playa covers roughly 24.3 km3 of San Emidio Desert, and is 

underlain by rather shallow DTG (0.6 - 2.5 m). Despite its small size and relative isolation, San 

Emidio Desert has a decades long history of agriculture and mining activities, with perhaps the 

most notable of these being the Wind Mountain Gold and Silver Mine located along the basins 

eastern edge. Basin groundwater allocations in 2016 totaled more than 9.25x106 m3 year-1, well 

exceeding the basin’s modest perennial yield of 5.67x106 m3 year-1 (NSE ruling 3569, 1988; 

NDWR, 2016d).   

    3.2.2 Variable and discontinuous groundwater level change 

Boulder Flat hydrographic area (Figure 5) is a 1,409 km2 drainage located in the middle 

portion of the Humboldt River basin between Battle Mountain and Carlin, Nevada (Huntington et 

al., 2014; NDWR, 2016a). Boulder Flat and four other adjacent hydrographic basins function as 
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a single extensive groundwater flow system, with precipitation representing the sole recharge 

mechanism, and ETG, as well as both surface and subsurface flows through the Humboldt 

corridor representing the conglomerate basins sinks. (Plume & Ponce, 1999; Huntington et al. , 

2014). Precipitation throughout Boulder Flat ranges between 20-51 cm year-1, with a mean of 

28.75 cm annually (Berger, 2000). Several mining operations are located in Boulder Flat, 

including Newmont Genesis, Carlin, and Leeville mines, and Barrick Goldstrike mines 

(Huntington et al., 2014). Infiltration of excess water from mine dewatering operations has 

caused valley floor groundwater levels to rise from anywhere between 1.5 to 6 m over an area 

of 50 km2  across Boulder Flat. This water, discharged from injection wells, rapid infiltration 

basins (RIBs), and through infiltration of irrigation water both from fields and the storage 

reservoir, has created shallow groundwater conditions throughout the lower reaches of the 

basin, characterized by resulting significant rises in ETG (Plume, 2005; Zhan et al., 2011; 

Huntington et al., 2014). Greasewood represents the dominant form of type III GDE vegetation 

in Boulder Flat, and is intermixed with smaller amounts of rabbitbrush, saltgrass and 

facultatively dependent sagebrush, as well as some regions of riparian vegetation (Huntington 

et al., 2014).  

 Smith Valley (Figure 6), one of several independent hydrographic basins comprising the 

Walker River Flow System, lies approximately 60 km east of the obtuse angle of the California-

Nevada border. The vast majority of the roughly elliptical 982 km2 basin falls within Lyon 

County, Nevada, with a small area along the basin’s western edge falling into Douglas County 

(Loeltz & Eakin, 1953; NDWR, 2016c). Precipitation in Smith Valley ranges between 10-50 cm 

year-1, with the valley floor receiving a mean of 19.1 cm year-1 (Loeltz & Eakin, 1953; Rush & 

Schroer, 1975).  Despite being a portion of the Walker River Flow System, Smith Valley actually 

functions more or less as two hydrographic basins separated by a groundwater divide. The first 

is comprised the southernmost two thirds of the Basin, and functions as a bonafide portion of 

the river system. In this region, flow in generally towards the River from both the North and the 
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South (Rush & Schroer, 1975). The second portion, with which this study is concerned, 

functions instead as a hydrographically closed basin, its terminus the ephemeral Artesia Lake. 

The aforementioned groundwater divide represents the Southern border, and rising hydrophobic 

rock formations underlying the surrounding mountain ranges closing the Western, Northern and 

Eastern edges (Rush & Schroer, 1975). Throughout both regions, the highest reaches of alluvial 

fans reveal depths to groundwater in excess of 65 m, but the majority of the valley was 

historically characterized by DTG levels under 15 m. The Artesia lake area (all study locations) 

fall within areas delineated in 1972 as being within 3 m of land surface. Discharge in the 

Southern region is dominated by surface and groundwater flows through the Walker River 

Corridor. In the Northern portion, however, ETG from 52.6 km2 of playa and phreatophytic 

vegetation surrounding Artesia Lake dominates the discharge component of water budgets 

(Rush & Schroer, 1975). Past studies and an August 2016 field visit suggest greasewood is the 

dominant form of GDE vegetation throughout much of the Artesia Lake area (DTG 1.5 - 15 m), 

with smaller regions of concentrated saltgrass occurring where DTG is between 0 and 2 m below 

land surface. Smith Valley’s perennial groundwater allocation of roughly 6.78x107 m3 year-1 well 

exceeds the basin perennial yield of 2.10x107 m3 year-1, and in fact comes close to the Walker 

River system-wide perennial yield of 7.65x107 m3 year-1 (NDWR, 2016c).  

4.0  Methods  

Estimates of GDE vegetation vigor through both space and time were realized by 

calculating VI’s from remotely sensed imagery contained within the Landsat archive. Using 

Google’s Earth Engine Cloud Computing Platform in order to both vastly improve processing 

time, and to take advantage of the pre-georegistered and radiometrically corrected archive of 

Landsat images provided on Google’s servers, EVI was calculated over the the spatial extent of 

hydrographic study basins, over the length of the entire Landsat record. An ordinary least 

squares regression of pixelwise EVI values through time was then performed and the resulting 
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EVI slope map used to guide spatial averaging of EVI and environmental variables for further 

focused time series analysis of GDE vegetation vigor with respect to climate and hydrology.  

4.1  Data preparation for GDE assessments  

Landsat remote sensing observations have repeatedly demonstrated ecosystem 

monitoring utility (see introduction), and are increasingly being used in long-term GDE 

evaluations (Elmore et al., 2000; 2003; 2006a; 2006b; Eamus et al., 2006; Groeneveld et al., 

2007; Groeneveld, 2008; Yang et al., 2011; Pritchett & Manning, 2012; Barron et al., 2014; 

Nguyen et al., 2014; Homer et al, 2015; Huntington et al., 2016) Total canopy chlorophyll 

content has been found to explain more than 92% of ANPP variation (Gitelson et al., 2014), and 

remotely sensed VI’s track chlorophyll content with a high degree of accuracy (Gitelson & 

Merzlyak, 1997), particularly in arid environments where canopies rarely overlap. Therefore, the 

values of the VIs derived from the landsat archive are representative of the ANPP and  thus 

vegetation vigor, of GDE vegetation through both space and time.  

 This study considered scenes acquired by multiple sensors in the Landsat lineage. 

Specifically, Thematic Mapper scenes obtained between between January 11st, 1984 and May 

5th, 2012, Enhanced Thematic Mapper Plus scenes from January 1st, 1999 to August 16th, 

2016, and Operational Land Imager scenes obtained from April 11th, 2013 to August 17th, 

2016, were considered. This wide range of images was further refined to unobscured scenes 

depicting the extent of a given study site falling between Julian day 182 and 273 (July 1st-

September 30th, non-leap year) for any given year. The analyses performed were limited to 

scenes falling between these two dates for any given year in order to more easily differentiate 

between GDE and non-GDE areas geospatially, as their phenotypic expressions differ from 

surrounding xerophytic vegetation to the greatest degree, during this period (Huntington et al., 

2016). 

There exists a growing record of the use of summer specific VIs as proxies for annual 

phreatophyte ET within the Great Basin (Nichols et al., 2000; Groenveld et al., 2007; Smith et 
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al., 2007; Beamer et al., 2013; Garcia et al., 2014; Huntington Et al., 2016). The late summer 

period represents the time of peak GDE groundwater usage for that year, as most any other 

water resources that may be available to GDE vegetation have long since been spent 

(Groenveld et al., 2007; Huntington et al., 2016). It is postulated, therefore, that any impacts 

related to the availability of groundwater as a hydrological resource for GDE vegetation will be 

most apparent during the time of year that this resource would, in the absence of any impacts, 

be principally called upon. 

Following this temporal filtering, images were combined into a single, multi-temporal 

image stack. Next, the enhanced vegetation index was calculated by equation 1 (below), and 

added to the image stack as a new ‘band’  

��� = 	
(�	
�
�)

(������∗������∗������)
     (1) 

where C1, C2, and L are coefficients, to correct for aerosol resistance. NIR, RED and BLUE are 

for Landsat bands 4, 3, 1, and 5, 4, 2, for Landsat 4-7, and Landsat 8, respectively. The stack of 

images for a given study basin was then annually consolidated in order to create a single image 

representative of GDE vegetation vigor for the mid to late summer target period. Every image 

within the target period r was considered, and median EVI values were selected on a pixel-wise 

basis, and aggregated into a single scene. Median values were used rather than the mean of all 

qualified scenes due to the limited number of scenes in some years leaving the mean highly 

vulnerable to outliers. Fmask software was used in order to perform an automated identification 

and masking of clouds, cloud shadows, and snow covered areas in order to minimize the 

possibility or errors arising due to unsatisfactory conditions for the remote sensing of GDE 

vegetation (Zhu & Woodcock, 2012; 2014; Zhu et al., 2015). 

In addition to VI derived estimates of GDE vegetation vigor through space and time, 

hydrographs from any groundwater monitoring wells in proximity to the vegetation in question is 

annually averaged and examined for relationships between DTG and GDE vegetation vigor (i.e. 
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EVI). DTG
 data derived from NDWR and USGS groundwater level data bases were constrained 

by the requirement of a minimum of one DTG data point per calendar year spanned by the 

record, though these entries need not be evenly spaced in time. For years in which multiple 

measurements fell, a single DTG value was realized by taking the average of all values within 

the year. Conversely, for years missing DTG data, an estimate was realized by linear 

interpolation of the two most temporally proximal entries in the record. The location, datasource, 

temporal span and number of data points for each hydrograph considered in this analysis can 

be found in Appendix E.  

In a manner similar to that of the EVI, annually aggregated time series of both total water 

year (October 1st - September 30th) and summer (June 15th-September 30th) precipitation 

(PPT), as well as summer (June 15th-September 30th) theoretical water deficit (TWD) over the 

same spatial extents, were be obtained from the University of Idaho Gridded Surface 

Meteorological Dataset (GRIDMET). University of Idaho GRIDMET data covers the entirety of 

the coterminous United States with a 4 km spatial resolution, and daily temporal resolution, 

providing unparalleled high-resolution surface meteorological data for Landscape-scale 

analyses (Abatzoglou, 2012). Unlike EVI, where median values were considered such that the 

small sample size provided was not skewed by outliers resulting from partially obscured, or 

otherwise dubious images, the sum of environmental variables over given periods of time were 

considered. For this study, TWD is defined as being the cumulative difference between 

reference evapotranspiration (ETO) and PPT over a given period of time. TWD can be 

calculated by equation 2, below: 

 ��� =	∑!!� −	∑��#     (2) 

 

Where PPT is the cumulative sum of precipitation, and ETO is the sum of daily Penman-

Monteith reference evapotranspiration values, throughout a given period. TWD, though not a 

complete water balance, was included to approximate the climatic water deficit (CWD) of a 
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given study location. The CWD approach provides an ecologically functional descriptor of 

climatic influences that limit plant distributions (Stephenson, 1990, 1998; Dilts et al., 2015). 

While practical constraints precluded the calculation of a full water balance necessary to realize 

CWD, TWD provides a ‘cheap’ functional approximation that serves the purposes of this work 

well.  

4.2  Slope Map  

 In order to preliminarily identify regions of potentially disturbed GDE vegetation, a map of 

EVI slope based on annual mid-late summer median EVI values from 1985-2010 (i.e. 25 data 

points) was created for each study basin considered.  Ordinary least squares (OLS) regression 

was performed via Google’s EE cloud computing platform to derive per-pixel annual EVI slope 

estimates. The resulting geospatial representation of the annual rate of changes in GDE 

vegetation vigor was used to identify and describe patterns of spatiotemporal change of 

phreatophytic communities throughout the study basins. 

The EVI calculation and regression performed in this step was, unlike subsequent 

portions of the analyses described herein, performed on data from sensors of the Landsat TM, 

ETM+, and OLI lineage that was radiometrically corrected following the method put forth by 

Chandler et al. (2009) only to top-of-atmosphere reflectance. The absence of correction to at-

surface reflectance renders the data considered in the slope map, at best, rough. Nonetheless, 

as this step served primarily to identify spatial regions of GDE impact for subsequent, 

quantitative analyses, errors arising from incomplete radiometric correction are assumed to be 

negligible. 

4.3  GDE time series analysis  

The seasonal and historical temporal constraints described in the above data 

preparation section were applied to the lineage of Landsat scenes retrieved from the archive for 

these time series analyses, as well. Unlike the data used in the creation of the EVI Slope Maps, 

however, the 2,150 unique Landsat scenes that were collected over the 5 study basins in order 
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to create 16 individual spatially averaged EVI time series considered in this study, were 

radiometrically and atmospherically corrected to at-surface-reflectance. This correction was 

achieved through the completion of steps outlined by both Tasumi et al. (2008) and Trezza and 

Allen (2013). Implementation of the Tasumi/Trezza method was accomplished using Google’s 

EE to access both geospatially distributed, near-surface hourly vapor pressure data from the 

North American Land Data Assimilation System (NLDAS)  (Mitchell et al., 2004) to estimate 

precipitable water and atmospheric transmittance (Tasumi et al., 2008), and the 30m National 

Elevation Dataset (NED) in order to estimate geospatially distributed atmospheric pressure 

(ASCE-EWRI, 2005). Following the retrieval and estimation of these prerequisite variables, 

scenes were individually corrected to at-surface-reflectance, also within Google’s EE.  

Next, preceding the application of the Fmask algorithm to scenes selected from the 

Landsat archive, Landsat quicklooks were downloaded and manually examined. This manual 

examination was carried out in order to identify scenes where the presence of clouds throughout 

much of the scenes extent may have previously disqualified the scene from further analysis 

despite GDEs of interest (typically a small spatial area relative to the geospatial coverage of 

individual Landsat scenes) remaining unobscured. The converse, and albeit less common, 

scenario where the majority of the scene remains unobscured yet the GDE of interest is partially 

or completely covered, is also captured by this step. Fmask was then applied to the remaining 

scenes in order to automatically identify and mask any regions of cloud, cloud shadow, or snow 

cover which might have slipped through the manual filtering process. Finally, scenes in which 

more than 30% of a given polygons spatial area were masked were eliminated, such that they 

wouldn’t impact spatially averaged time series results. 

Once the relative insignificance of polygon size impacts had been established (see 

results), the aforementioned EVI slope maps were used in conjunction with a multitude of 

geospatial datasets to guide the drawing of polygons. Between 1-3 regions over which impacts 

to GDE vegetation vigor were considered, were drawn manually for each study basin, such that 
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their extent was comprised only of spatial areas being described as GDEs in one or more of the 

multitude of reports or datasets described below. Following this functional division, the pixel-

wise values of EVI and the environmental variables discussed in the data preparation section, 

through time were averaged on an annual, region-wise basis. In other words, the EVI and 

environmental signals of all of the pixels within a given region of common impact were spatially 

averaged into a single value representative of that region's value, for a given year. 

EVI Slope Maps described above were used in concert with a USGS published 

phreatophyte geospatial extent dataset (Mathie et al., 2008), Google Earth’s derived digital 

elevation model, and both a multitude of historic NSE and USGS Reconnaissance Reports and 

Bulletins, and recent peer reviewed works, manually delineate various regions comprised solely 

or predominantly of GDE vegetation, for further quantitative impact analysis. Spring Valley 

served as the control for this study, and the lone polygon considered there (SPV) was drawn 

such that its entirety was comprised of GDE vegetation as reported by both Rush & Kamzi 

(1965) and Moreo et al. (2007). Fish Lake Valley’s three polygons (FLV1, FLV2 and FLV3) were 

drawn such that they were comprised only of GDE regions designated by both Loeltz & Eakin 

(1953) and Rush (1973). One polygon was drawn for San Emidio Desert (SE), its spatial extent 

lies entirely within GDE communities described by Glancy (1968). The single polygon drawn for 

Boulder Flat (BF) was guided by relatively recent reports from Berger (2000) and Huntington et 

al. (2014). In Smith Valley, the other variable impact basin considered, the two polygons (SMV1 

and SMV2) were drawn within GDE areas as designated by both Loeltz & Eakin (1953) and 

Rush & Schroer (1975). 

In order to detect and quantify the significance of changes in EVI and the other 

environmental and hydrologic variables considered, the nonparametric Mann-Kendall test for 

trend and Sen’s estimate of slope were calculated for each time series considered in these 

analyses. These trend tests were carried out using the MAKESENS Excel template application 

(Salmi et al., 2002), and are detailed in the results section.  
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Next, to in order to attribute any changes in detected GDE vegetation vigor (i.e. EVI) to 

the proper environmental forcing, a number of correlation coefficients were calculated, with GDE 

EVI as the dependent variable, and DTG, summer and water year precipitation and summer 

TWD, respectively, as the independent variables. Pearson’s correlation coefficient is a 

commonplace measure of the association between two continuous variables. Implicit in its 

calculation are the assumptions that the data are linearly related, normally distributed and 

homoscedastic. Spearman correlation is simply a rank-based version or the Pearson coefficient, 

without the assumptions of normality or linearity. Finally Kendall’s tau correlation coefficient 

quantifies the numbers of both concordant and discordant data pairs and measures the 

discrepancy between these (Chok, 2010). Each of these measures of correlation returns a value 

between -1 and 1 indicative of both the strength and nature (direct or inverse) of the relationship 

between the two series considered, as well as a p-value detailing the likelihood these 

observations are the result of simple chance. Cohen’s (1988) conventions were used to interpret 

the effect size of correlation coefficients returned (e.g. 0.10-0.29, small effect, 0.30-0.49 

moderate effect, 0.50 and above, large effect).  

Finally, relationships between annual GDE vegetation vigor and both atmospheric and 

climatic feedbacks are further evaluated by plotting median annual EVI and reference 

evapotranspiration (ETO) on primary and secondary y-axes, respectively, both against annual 

water year PPT on the x-axis (Figure 9). EVI and ETO were grouped based on observation year, 

with 1984-1999 representing the “early” period, and 2000-2015 representing the “late”, for each 

study polygon. This functional division was carried out to more clearly illustrate any changes in 

the climate-atmosphere-vegetation relationship that might have occurred over the course of the 

32-year record. The resulting figure illustration is somewhat synonymous to the classic 

complementary relationship between ET and ETO in arid environments (Brutsaert & Stricker, 

1979; Hobbins et al., 2004; Huntington et al., 2011; Jaksa et al., 2013), as EVI is exceptionally 
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closely correlated with Great Basin GDE ET (Beamer et al., 2013), and the use of summer VIs 

as proxies for annual phreatophyte ET is well established within the Great Basin.  

5.0   Results 

5.1  Polygon area influence 

To assess the influence the magnitude of a given polygon’s area has on the resulting 

time series’, five overlapping polygons of increasing size were drawn in Fish Lake Valley, and 

their resulting time series analyzed for trend and covariance. The results of this initial analysis 

(described in detail in Appendix A) suggest that the influence of polygon size on the resulting 

time series’ is overall, insignificant. That being said, smaller polygons tended to be more prone 

to drastic swings, while the largest polygons lost some degree of temporal specificity, returning 

generally more gradual EVI curves, overall. Following the establishment of the relative 

insignificance of polygon size on the resulting time series’, polygons were drawn to isolate 

regions of common impact for hydrologic and environmental influence analysis. 

5.2  Baseline assessment of vegetation and climate 

 The long-term variability of vegetation vigor, depth to groundwater and climate for Spring 

Valley are illustrated in Figures 7 and 8 by plotting EVI with DTG and water year PPT, over time. 

Results of the nonparametric Mann-Kendall trend test failed to identify trends of any significance 

in EVI, summer precipitation, water year precipitation or summer theoretical water deficit, and 

therefore Sen’s estimates of slope will not be reported for these variables. The lone trend of 

significance identified by the Mann-Kendall tests on control site time series was an exceptionally 

slow change in the depth to groundwater. DTG was found to be increasing at a rate of 0.02 m 

year-1 (p > 0.01), with a Mann-Kendall test statistic (Z) of 3.10.  

In the absence of large scale anthropogenic hydrologic alteration, the vegetation vigor of 

the GDE observed in SPV was found to covary most closely with water year precipitation. 

Strong and highly significant (p > 2x10-5) Pearson’s and Spearman’s correlation coefficients of 
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0.73 and 0.72, respectively, were observed between EVI and water year PPT throughout the 

32-year time series analyzed. Much less significant (p > 0.05), moderate strength Pearson’s 

correlation coefficients were observed between EVI and both summer TWD (0.41) and summer 

PPT (0.38). Specific p-values, as well as correlation coefficients unreported due to their 

insignificance may be found in appendix C.  

Figure 9 illustrates clearly that Spring Valley, in the absence of anthropogenic hydrologic 

disturbance, has maintained a relatively stationary climate-atmosphere-vegetation relationship 

through time. Throughout the course of the 32-year record, as water year PPT increases, EVI 

increases and ETO decreases.  

These results are consistent with past observations of the complementary relationship in 

the Great Basin (Huntington et al., 2011; 2016; Beamer et al., 2013), as well as surface energy 

balance theory. In water limited environments where energy is relatively uniform in space, 

energy that would have resulted in ET with adequate water, instead results in sensible heat 

production and subsequent increases in air temperature, vapor pressure deficit and, 

ultimately,  ETO (Brutsaert and Stricker, 1979). The results presented here illustrate clearly the 

complementary relationship and drying scenario described above, and confirm the relative lack 

of impact experienced by GDEs in Spring Valley, to date.  

5.3  Constant and continuous groundwater level change 

 Annual groundwater levels, water year PPT and median summer EVI for Fish Lake 

Valley polygons 1-3 is illustrated in Figures 10-17. Throughout Fish Lake Valley groundwater 

levels have steadily decreased since the 1970s due to groundwater abstraction, primarily for the 

valley’s plentitude of irrigated agricultural lands. Mann-Kendall trend test results indicate highly 

significant (1x10-3 > p) positive and negative trends for depth to groundwater and summer 

median GDE EVI, respectively, for FLV1, FLV2 and FLV3. The rate of increase in depth to 

groundwater was found to be 0.15, 0.54, and 0.27, meters per year, and median summer EVI 

decreased at rates of -6.42x10-3, -6.0x10-4, and -1.04x10-3, year-1 for polygons 1, 2 and 3, 
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respectively. No trends of any significance were observed for water year PPT, summer PPT, or 

summer TWD, across all three Fish Lake Valley polygons. Specific values of Mann-Kendall test 

statistics and additional information regarding Mann-Kendall trend and Sen’s slope estimates 

may be found in appendix D.  

 Though a number of statistically significant correlations were identified between EVI and 

the environmental variables considered for each of the three polygons in Fish Lake Valley, 

across the board the strongest and most statistically significant relationships identified were 

between EVI and DTG. Polygons 1, 2 and 3 boasted impressively significant (2x10-6 > p) and 

strong, negative Pearson correlation coefficients of -0.91, -0.75 and -0.74, respectively. 

Spearman’s correlation coefficients between the two variables across all three polygons were 

slightly less significant, (2x10-5 > p), though similarly negative and strong (-0.88, -0.68 and -0.81 

for FLV1, FLV2 and FLV3, respectively).  

The EVI time series of polygon 1 was observed to have no statistically significant 

correlations with any environmental variable other than DTG. In polygon 3, beyond EVI and DTG, 

a lone significant (0.05 > p), moderately strong, positive Spearman correlation coefficient of 0.40 

was observed between EVI and water year PPT. Polygon 2’s EVI time series was found to have 

significant (0.05 > p), positive Pearson’s correlation coefficients of 0.38 for summer PPT and 

0.36 for water year PPT, as well as a somewhat more significant (0.005 > p) and strong 

Spearman correlation of 0.53 between EVI and water year precipitation.  

A closer examination of Figure 13 reveals polygon 2’s EVI rather closely tracking 

changes in DTG for the period of 1984-1999, and the apparent cessation of this relationship 

around the year 2000. Dividing the correlation analysis of polygon 2 into both and early (1984-

1999) and late (2000-2015) periods confirms these qualitative observations. A significant (4x10-4 

> p) and quite strong negative Pearson's correlation coefficient of -0.78 exists between EVI and 

DTG for the early period, while water year PPT shows no correlation with EVI over the same 

period. Conversely, for the late period, the Spearman’s correlation coefficient between EVI and 
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water year PPT is significant (5x10-3 > p) and strong, whereas no statistically appreciable 

correlation exists between EVI and DTG, over this period.  

Figures 12, 15 and 18 show the complementary relationship between ET and ETO for 

Fish Lake Valley polygons 1, 2 and 3--similar to the complimentary Spring Valley figure (Figure 

9), described in detail in section 5.1. These figures, as well, are divided into both an early and 

late period in order to more clearly illustrate changes in the climate-atmosphere-vegetation 

relationship over time. Figure 12 shows a transition from an inverse, to a direct, relationship 

between water year PPT and EVI, indicating a shift towards greater water sensitivity in this 

ecosystem. Figures 15 and 18 (associated with Polygons 2 and 3, respectively) show similar 

increases in ecosystem sensitivity to water year PPT, though both of these ecosystems began 

with almost no relationship, rather than an inverse one, with water year PPT.  

San Emidio Desert Polygon annual summer median EVI values, in combination with 

water year PPT and DTG, are illustrated in Figures 19 and 21. Kendall-Mann trend tests 

performed on the various time series associated with SE returned a number of significant 

trends, with water year PPT remaining the sole insignificantly changed environmental variable. 

EVI and DTG were observed to be decreasing (0.001 > p) at rates of 1.18x10-3 year-1, and 0.1 m 

year-1 DTG, respectively. Summer PPT (0.1 > p) and TWD (0.05 > p) were also found to be 

decreasing at respective rates of -0.34 and -0.99 mm year-1. Specific values of Mann-Kendall 

test statistics, Sen’s slope intercept estimates and more for San Emidio Desert Polygon 1 may 

be found in appendix D.  

SE’s median summer EVI time series was found to be highly significantly and quite 

strongly correlated with changes in DTG, in a negative manner. SE’s Pearson’s correlation 

coefficient (1x10-6 > p) of -0.76, and its somewhat less significant (1x10-4 > p) and strong 

Spearman’s correlation coefficient of -0.65, both suggest rather unequivocally that DTG is the 

most influential environmental variable on GDE ANPP, considered here. Moreover, neither 
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Pearson’s nor Spearman’s correlation coefficients between all of the remaining environmental 

variables and median summer EVI returned values of even minimal significance (0.1 > p).  

Figure 21 illustrates the complementary relationship between ET (as EVI) and ETO for 

the lone San Emidio Desert polygon. Qualitative examination of this figure reveals nearly 

identical slopes of the two best fit lines, indicating the dynamic nature of the relationship 

between EVI and water year PPT has changed very little throughout the course of the study. 

That being said, however, it would appear as if vegetation vigor has been universally 

decreased, perhaps indicating the community has experienced increased stress in the more 

recent period from 1999-2015.  

5.4  Variable and discontinuous groundwater level change  

 The long-term vegetation vigor of the GDEs in Boulder Flat’s lone polygon with respect 

to climate and hydrology is illustrated in Figures 22 and 23 by plotting polygon-wide spatial 

averages of summer median EVI over time with DTG and water year precipitation, occupying 

secondary y-axes. A Mann-Kendall trend test and Sen’s slope estimate performed on the 

polygons 32-year long record of median EVI values revealed a statistically significant (0.001 > 

p) trend of EVI decreasing at a rate of 4.56x10-3 year-1. A similar trend analysis of the 31-year 

DTG record returned a statistically significant (0.001 > p) trend of increase in the depth to 

groundwater of 0.15 m year-1. Mann-Kendall trend tests did not, however, return any statistically 

significant (0.1 > p) trends when performed on BF’s summer PPT, TWD and water year PPT, 

time series. Therefore Sen’s slope estimates for these series will not be reported. Additional 

information and statistics regarding both Sen’s slope estimates and Mann-Kendall trend tests on 

BF may be found in appendix D.  

 The vegetation vigor of the GDEs observed in BF was found to covary most closely and 

significantly with depth to groundwater, even despite sudden, large scale anthropogenic 

hydrologic alteration resulting from mining operations up-gradient from the study polygon. 

Strong, negative and highly significant Pearson’s (p > 1x10-11) and Spearman’s (p > 1x10-5) 
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correlation coefficients of -0.91 and -0.71, respectively, were observed between EVI and depth 

to groundwater throughout the 31-year time series analyzed. Though both Mann-Kendall trend 

tests and Sen’s slope estimates were completed for all remaining variables, no trends of any 

significance were observed for water year PPT, summer PPT, or summer TWD. Specific 

correlation coefficient p-values as well as correlation coefficients unreported due to their 

insignificance may be found in appendix C.  

Figure 24 illustrates the complementary relationship shared by ET and ETO throughout 

the study polygon considered for Boulder Flat from 1984-2015, and specifically how that 

relationship changes through time. Boulder Flat’s EVI time series was distinctly lower and 

significantly more precipitation dependent, prior to mine dewatering activities. This dewatering 

appears to have resulted in significant volumes of groundwater infiltration down-gradient of an 

irrigation reservoir and the subsequent induction of large swaths of GDEs in areas previously 

indescribable as such. The consistent availability of groundwater to GDEs resulting from the 

presence of a large volume of continuously infiltrating water results in the practical indifference 

of GDEs in this polygon to water year precipitation totals.  

 Figures 25 and 26 and illustrate 32-year records of spatially averaged summer median 

EVI paired respectively with water year PPT, and DTG, for Smith Valley polygon 1, as do 

Figures 28 and 29 for Smith Valley polygon 2. The Mann-Kendall trend test, when performed on 

the two EVI time series, returned significant trends of declining EVI, with SMV1 declining at a 

rate of -2.82x10-3 (0.001 > p), and SMV2 characterized by a rate of EVI decline of 2.0x10-3 year-

1 (0.05 > p). Mann-Kendall trend test on both SMV1 and SMV2’s depth to groundwater time 

series’ revealed statistically significant (0.001 > p) increases in DTG, with DTG increasing at a 

rate of 0.42 m year-1, and 0.45 m year-1, for polygons 1 and  2, respectively. Trend tests applied 

to both SMV1 and SMV2’s water year PPT, summer PPT and summer TWD time series’ 

revealed no trends of significance (0.05 > p), and therefore Sen’s estimates of slope will not be 

reported for these 6 series. Mann-Kendall test statistics (Z), Sen’s slope and intercept 
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estimates, and additional information are available for all time Smith Valley series considered in 

this work in appendix D.   

 Though multiple statistically significant correlations were observed between EVI time 

series of the two Smith Valley study polygons and the environmental variables considered for 

these polygons, once again, the strongest and most statistically significant relationships 

identified were between EVI and DTG. Polygon 1’s EVI-DTG relationship was characterized by 

strong, negative, highly significant Pearson’s (5x10-5 > p) and Spearman’s (5x10-7 > p) 

correlation coefficients, which returned values of -0.66 and -0.78, respectively. Additionally, 

SMV1’s EVI and water year PPT time series’, as well as its EVI and summer TWD series’, were 

found to be characterized by moderately strong, positive, statistically significant (0.05 > p) 

Pearson's and Spearman’s correlation coefficients of, 0.37 and 0.32, respectively.  In a manner 

similar to that of SMV1, SMV2’s EVI-DTG relationship returned strong, negative, statistically 

significant Pearson’s (5x10-4 > p) and Spearman’s (0.001 > p) correlation coefficients of -0.59, 

and -0.58. Polygon 2 was also found to have somewhat less significant, strong, positive 

Pearson’s (5x10-4 > p) and Spearman’s (5x10-3 > p) correlation coefficients of 0.59 and 0.50. 

Summer precipitation was not correlated with EVI through time in a statistically significant (0.05 

> p) manner, for either polygon 1 or 2. Similarly, polygon 2’s EVI was not correlated in a 

significant manner (0.05 > p) with summer TWD.   

 The multiple cycles of impact and recovery experienced throughout the 32-year period of 

observation for Smith Valley preclude the simple division of the complementary figures (Figures 

27 and 30, for SMV1 and SMV2, respectively) into two simple periods of pre-impact and post-

impact as was done for all previous study sites. Moreover, due to Smith Valley’s long and rich 

agrarian history, and specifically the irrigation ditches that have conveyed Walker River water to 

fields throughout the valley since the 1860s, the complementary figures for polygons 1 and 2 

respond to precipitation differently than do GDEs not confounded by this system. This results in 

a significant correlation between EVI and water year PPT across both polygons during both 
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periods of time considered, though only as a consequence of anthropogenic activity (see 

section 6, below).  

6.0  Discussion 

6.1  Baseline assessment of vegetation and climate 

The EVI time series for the baseline assessment study polygon, Spring Valley 1, was 

found to have no significant Mann-Kendall trend throughout the period considered. Trends of 

significance were identified in neither the summer, nor the water year PPT time series, though 

the strongest (R = 0.73) and most significant (5x10-5 > p) correlation between any two time 

series was observed between the water year PPT time series and Spring Valley Polygon 1’s 

EVI time series. Though somewhat weak correlations were observed between EVI and both 

summer TWD and summer PPT time series’, the strength and significance of these 

relationships pale in comparison to the aforementioned EVI-water year PPT association. 

Additionally, Spring Valley polygon 1’s DTG time series revealed groundwater levels decreasing 

in a highly significant manner, though no significant correlation was observed between this 

series and the polygon-wide EVI time series. The meager rate of phreatic decline of 2 cm year-1 

is the likely culprit of the lack of an observed relationship between the DTG and EVI time series, 

for this particular polygon. Together, these results suggest that, in the absence of pronounced 

anthropogenic hydrologic disturbance resulting in changes to the depth of the phreatic surface 

of a given basin, water year PPT acts as the primary factor controlling GDE vegetation vigor, 

considered in this study.  

The strength of the observed vegetation vigor-PPT relationship is likely, in part, a 

consequence of phreatophytes ability to switch between shallow soil moisture and groundwater, 

preferentially using the former when available (Naumburg et al., 2005; Steinwand et al., 2006; 

McLendon et al., 2008; Devitt & Bird, 2015). Though the EVI time series clearly responds to 

highs in annual PPT, groundwater appears to support a rather more constant minimum EVI 
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value throughout the series (Figure 8). The lack of a significant relationship (0.05 > p) between 

DTG and EVI is interpreted to be a consequence of the Spring Valley’s relatively unchanged 

watertable depths, which were found to be increasing in depth at a meager rate of 2 cm year-1 

(Figure 7), throughout the study period.  

Shallow groundwater throughout valley floors of the Great Basin is derived primarily from 

mountain block recharge associated with snowmelt (Thomas et al., 1996; Hershey et al., 2007). 

Therefore water year precipitation is a primary constraint on the natural variability of basin-wide 

interannual trends in DTG. In the absence of anthropogenic perturbation of the hydrologic cycle, 

water influxes to hydrographic areas throughout the Great Basin are limited to only interbasin 

flow and precipitation. It follows, therefore, that in the absence of human perturbation resulting 

in transient aquifer conditions, water year PPT is representative of aquifer recharge, and will be 

proportional to aquifer discharge through the course of a given water year. Viewed in this 

context, the observed strong correlation between Spring Valley EVI and water year PPT may 

simply be explained as the combined consequence of interannual variations in local aquifer 

recharge, and the preferential use of shallow soil moisture by phreatophytes, when available.  

Paleoclimatic reconstructions indicate the Great Basin has experienced multiple 

extended (> 100 year) droughts in the past two millennia (Mensing et al., 2004; 2008). 

Nonetheless, these same packrat midden and pollen core records clearly illustrate that 

throughout periods of drought the relative abundance of phreatophytic species either remained 

unchanged or increased (Elmore et al., 2003; Mensing et al., 2004; 2008). The abundance of 

GDE pollen in these times of sparse precipitation indicates that GDE vegetation is particularly 

resilient to extended drought.  

GDE vegetation’s resilience to drought is so pronounced, palaeoclimatologists even use 

a sagebrush / saltbush + greasewood (non-phreatophyte / phreatophyte) pollen ratio as 

measure of available moisture (Byrne et al., 1979; Wigand, 1987; Mensing, 2001; Mensing et al, 

2004; 2008). During periods of minimal precipitation, deep rooted phreatophytes are not only 
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able to preferentially switch between water sources, but also can achieve exceptionally rapid 

root growth rates in order to “keep up” with water tables falling at natural rates (Naumburg et al., 

2005; Canham et al., 2011), up to community specific maximum rooting depths (i.e. extinction 

depth). These unique adaptations impart upon phreatophytic species a competitive advantage 

over xeric floral assemblages throughout periods of sparse or irregular precipitation (Mensing, 

2001; Mensing et al., 2004).  

Though GDEs are well adapted to extended drought, their resilience is rooted in their 

ability to consistently access groundwater; a remarkable trait resulting from rapid, but not 

limitless root growth rates. In reality, while other forms of Great Basin vegetation are well 

adapted to intense water stress, with some xeric shrubs boasting impressive xylem cavitation 

tolerances up to -12.0 MPa, Great Basin phreatophytes are actually rather sensitive to drops in 

water potential (Hacke et al., 2000; Naumburg et al., 2005). That is to say, while they are adept 

at securing water sources, phreatophytes are rather poorly evolved in terms of their ability to 

withstand direct water stress, with Rabbitbrush experiencing extensive xylem cavitation at 

pressures lower than -2.0 MPa, and  Greasewood likely following suit at soil water potentials of 

roughly -4.0MPa (Donovan et al., 1996; Hacke et al., 2000). Therefore, despite their impressive 

resilience toward natural disturbances, Great Basin GDE vegetation is highly susceptible to 

acute water table drawdown events resulting from abstraction alone, or in combination with 

natural fluctuations in DTG.  

6.2 Groundwater level change and GDE vegetation vigor 

For each of the polygons considered where anthropogenic groundwater abstraction was 

the suspected culprit of observed groundwater elevation change, rather strong and highly 

significant (0.001 > p) Mann-Kendall trends were observed in DTG for all seven well 

hydrographs associated with impacted sites, as well as in all seven of the polygon’s spatially 

averaged median summer EVI time series. These trends were characterized by Sen’s slope 

estimates ranging from 0.08 to -0.54 m year-1 and -6.00x10-4 -  to 4.56x10-3 (dimensionless year-
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1) for DTG and EVI, respectively. Across these same seven polygons, four individual summer 

TWD and summer PPT time series returned Mann-Kendall trend tests of significance (0.05 > p). 

Despite these statistically meaningful trends, however, the absence of significant (0.01 > p) 

correlation coefficients between EVI, summer TWD and summer PPT across any of the study 

polygons considered, demonstrates, rather unequivocally, the lack of influence these 

environmental variables have on GDE vegetation vigor in anthropogenically impacted basins.  

In addition to each of the seven impacted polygons being found to have rather 

pronounced trends in their individual DTG and EVI series, these same variables were observed 

to be universally correlated across each of the groundwater impacted study sites, in a highly 

significant, rather strong, and universally negative manner. For each polygon, the correlation 

coefficients describing the DTG-EVI relationship were found to be the single strongest (-0.55 - -

0.91) and most significantly ( 0.001 > p > 1x10-12) correlated environmental variable considered. 

Across four of the seven polygons (Smith Valley polygons 1 and 2, and Fish Lake Valley 

polygons 1 and 2), water year PPT was also found to covary with EVI in a moderately strong 

(0.37-0.59) and somewhat less significant (0.05 > p > 0.001) fashion than that of DTG. Despite 

this correlation, however, the presence of significant trends in each impacted polygons EVI 

series, and lack thereof in any of the seven water year PPT time series considered, suggests 

changes in precipitation are not the driving force of the observed changes in polygon-wide 

vegetation vigor. Moreover, the aforementioned ability of phreatophytes to preferentially source 

their water resources explains the somewhat strong water year precipitation-EVI correlation 

observed for a number of impacted basins.  

In the case of Smith Valley, specifically, the basin’s long history of Walker River 

diversion-fed irrigated agriculture may explain the observed covariance between water year 

PPT and EVI. Dating back to the 1860s, the Walker River, which flows through the heart of 

Smith Valley provided for the majority of the basins significant irrigation demands through an 

extensive network of irrigation ditches (Rush & Schroer, 1975). Water infiltrating through the 
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banks of these unlined ditches recharges the local aquifer, thereby raising the water table and 

increasing GDE vegetation vigor during wet years (i.e. preferential water sourcing). Historically, 

infiltration from widespread irrigation ditches and fields significantly raised groundwater levels 

throughout Smith Valley (Loeltz & Eakin, 1953; Rush & Schroer, 1975). More recently, however, 

increased reliance on groundwater irrigation during periods of minimal surface water availability 

has resulted in cyclic periods of aquifer drawdown and recovery (Sharpe et al., 2007). 

In addition to the somewhat unique case experienced by Smith Valley, water year and 

summer precipitation can impact already disturbed GDEs in a variety of ways. Should a GDE 

become decoupled from groundwater (i.e. DTG > depth of roots), it will necessarily transition 

towards shallow soil moisture dependence until it might resecure groundwater access. Shallow 

soil moisture throughout the Great Basin is typically the result of either precipitation events, or 

mountain block recharge in the form of snowmelt runoff. Therefore, impacted GDEs become 

increasingly dependent upon precipitation in order to maintain their structure and function in 

times of groundwater stress.  

That said, results from this study clearly and unequivocally illustrate that the influence of 

water year PPT is secondary to that of changes in DTG, which represent the predominant driving 

force in observed changes to GDE vegetation vigor through space and time. Across all 

impacted sites, changes in DTG were found to share significant and pronounced negative 

correlation through time with spatially averaged observations of GDE vegetation vigor. This was 

true not only for each of the 6 impacted study polygons underlain by falling water tables, but 

also by the lone polygon, Boulder Flat 1, characterized by a significantly and consistently rising 

water table throughout the study record (i.e. falling DTG), where areas of new, or increasing, 

groundwater dependence were observed. Moreover, the findings of this study regarding the 

influence of DTG on GDE vegetation vigor are in line with a plethora of past studies findings, 

which also suggest groundwater availability (i.e. depth) as being the predominant constraint on 

GDE vegetation vigor (Nichols, 1994, 2000; Manning, 1999; Nichols et al., 2000; Elmore et al., 
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2006; Cooper et al., 2006; Devitt et al., 2011; Devitt & Bird, 2015). As such, the question 

becomes not whether or not changes in DTG impact GDE communities, but rather the manner in 

which the impacted ecosystems respond to these perturbations.  

6.3 GDE response regimes 

 A number of past studies have suggested the depth and/or rate of groundwater 

drawdown to be the primary variable constraining GDE vigor and function (Nichols, 1993; 1994; 

2000; Manning, 1999; Elmore et al., 2000; 2003; 2006; Naumburg et al., 2005; Cooper et al., 

2006; Froend & Sommer, 2009; Pritchett & Manning, 2012). They postulate the rate and 

duration of changes in DTG determine whether a given GDE might experience either a linear 

decline in vegetation vigor or a dramatic transition to an alternative ecohydrological state. 

Measures of DTG, do not, however, take into account soil physics, capillary action, shallow soil 

moisture from precipitation and runoff, and a number of additional factors that have been found 

to influence the structure and function of Great Basin GDEs (Naumburg et al., 2005; Devitt et 

al., 2011; Devitt & Bird, 2015). Rather, the results from this study suggest that depending upon 

the degree of changes to a community’s soil moisture content--a result of the rate, depth, and 

duration of the change in DTG, and more--a GDE community might exhibit one of two given 

modes of disturbance response (Scott et al., 1999; Shatfroth et al., 2000).  

If the hydrologic disturbance is within a tolerable range, canopy dieback and some 

mortality will occur in phreatophytic species, resulting in an observable linear cover decline. 

Linear GDE responses to falling (or rising) water tables are essentially the result of an impacted 

GDE where DTG is increasing (or decreasing), but the roots of the community have not become 

decoupled from their retreating water source (or inundated resulting in anoxia and root 

mortality). The previously mentioned dramatic root growth rates exhibited by phreatophytes 

allow these ecosystem engineers to adjust to a changing environment, so long as the rate of 

drawdown does not exceed their ability to keep up, nor exceed their maximum depth 

(Naumburg et al., 2005; Canham et al., 2012). Despite some degree of adverse impact, the 
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functionality of the groundwater dependent ecosystem will not, as a whole, be compromised 

(Naumburg et al., 2005; Eamus et al., 2006; 2015; Froend & Sommer, 2009; Sommer & Froend, 

2010).  

Linear cover declines in response to falling water tables were observed in EVI-DTG time 

series’ for three of seven impacted polygons considered, specifically in the series of Fish Lake 

Valley polygon 3, San Emidio Desert polygon, and Smith Valley polygon 2 (Figures 16, 19 and 

28), which were characterized by water levels falling at rates of 0.27 m year-1, 0.09 m year-1, and 

0.45 m year-1, respectively. Each of the above polygons represents a GDE, or assemblage of 

GDEs, which have experienced disturbance extensive enough to result in a linear cover decline, 

though not so acute as to induce a nonlinear, threshold, response (Ridolfi et al., 2006; 2007). 

That being said, however, both their complementary figures and EVI-DTG time series indicate 

that while stressed, these communities have likely not become decoupled from their 

groundwater source. This is an important distinction, as linear declines, unlike threshold 

responses, generally allow for a high degree of ecosystem recovery following restoration of 

natural hydrologic function. The scenario where ∂DTG (i.e. the rate of drawdown) exceeds a 

given GDEs maximum root growth rate results in a rather starker outcome than the linear 

scenario described above.  

Rapid groundwater declines may result in the complete decoupling of GDEs from the 

water table, thereby breaching a threshold variable and resulting in the possible subsequent 

transition to an alternative ecohydrological state (Naumburg et al., 2005; Froend & Sommer, 

2009; Devitt et al., 2011; Devitt & Bird, 2015). If an excessive rate of drawdown is sustained for 

a sufficiently long period, the phreatic surface and capillary fringe will drop below the rooting 

zone and GDE vegetation will become entirely decoupled from the water table (Naumburg et al., 

2005; Devitt & Bird, 2015). If this decoupling results in soil water potentials in GDE rooting 

zones falling below species and community specific threshold values, extensive xylem cavitation 

will occur (Hacke et al., 2000). When this threshold is surpassed, GDEs not only lose their 
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competitive advantage (i.e. consistent water access) over other forms of both endemic and 

invasive Great Basin floral species, but potentially also experience irrecoverable physical 

damage resulting in their widespread mortality, thereby opening the window for the potential of 

highly hysteretic, practically irreversible, community succession (Elmore et al., 2003 2006; 

naumburg et al., 2005; Ridolfi et al., 2006; 2007; Froend & Sommer, 2009; Pritchett & Manning, 

2012; Eamus et al., 2015).  

Four of the seven impacted polygons EVI-DTG time series’ considered were observed to 

depict threshold community responses resulting from GDE-groundwater decoupling. Fish Lake 

Valley Polygon 1, Fish Lake Valley Polygon 2, and Smith Valley Polygon 1 (Figures 10, 13, and 

25) all appear to decline in cover linearly for some time before experiencing a drastic, threshold 

event. These three polygons had associated well groundwater level decline rates of 0.15 m 

year-1, 0.53 m year-1, and 0.42 m year-1, respectively. The lone study site characterized by a 

rising water table, Boulder Flat, was found to respond in a similar if opposite manner, with a 

threshold event resulting from rising water levels (at a rate of 0.08 m year-1) being followed 

thereafter by linear cover increase (Figure 22).  

The EVI and DTG time series’ for Fish Lake Valley polygon 2 represents the most clear 

case of a threshold response observed in this study (Figure 13). While EVI appears to track DTG 

in a linear fashion for a handful of years at the beginning of the record, by ~1995 the two series 

have diverged completely. To examine this transition, correlation coefficients were re-run for 

both the early period (1984-1999) and the late (2000-2015), to analyze how the variable driving 

the ecosystem in question might have changed over time. The early portion returned significant 

Spearman (5.0x10-4 > p) and Pearson's (0.01 > p) correlation coefficients between only DTG and 

EVI, of -0.78 and -0.64, respectively. Conversely, the latter half of the record returned significant 

(0.01 > p) Pearson’s and Spearman’s (0.005 > p) correlations between only EVI and water year 

precipitation, with magnitudes of 0.59 and 0.67, respectively. These values illustrate that though 

Fish Lake Valley 2 once functioned as a GDE, changes in DTG resulted in a threshold response 
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and functional transition towards precipitation dependence. That said, though the available 

evidence certainly points in the direction of irreversibility, unless hydrologic and other 

environmental variables are returned to pre-disturbance values it is impossible to say with 

complete certainty that hysteric community succession to an alternate ecohydrologic state has 

occurred for this, as well as all other, sites.  

Perhaps the most striking illustration of the functional transition each of these 

ecosystems experienced may be seen in their respective complementary diagrams. This style of 

figure illustrates the manner in which a given area's precipitation-vegetation vigor relationship 

might change through time. This can be most clearly seen in the slope of the best fit line through 

the EVI-water year PPT scatter, where no slope indicates no relation to water year PPT, a 

negative slope an inverse relationship (dense, shallow DTG GDE vulnerable to inundation 

resulting in root anoxia and mortality) and a positive slope indicates precipitation dependence.  

Figures 12, 15, and 24, representing the complementary diagrams for Fish Lake Valley , 

Fish Lake Valley 2, and Boulder Flat’s lone polygon, clearly illustrate negative or nearly flat 

slopes for their respective periods of groundwater dependence, and increasingly positive slopes 

with through periods with falling water levels resulting in GDE stress. Additionally, despite the 

absence of an apparent threshold in the time series, the slopes of best fit for Fish Lake Valley 

Polygon 3’s complementary figure (Figure 18), also indicate the likelihood of a functional 

transition away from groundwater dependence. These observations suggest the ecosystems in 

question may likely have experienced a transition in terms of their water dependence, from 

groundwater dependence towards being precipitation dependent. Moreover, the universal drop 

in EVI values from periods of groundwater to precipitation, dependence, indicates a drop in 

primary productivity, likely indicating the loss of ecosystems services associated with GDEs.  

Smith Valley’s two polygons, along with the lone San Emidio Desert polygon, were found 

to have relatively unchanged slopes of their best fit lines from the early to the late periods 

considered. The almost identical slopes indicate that the nature of the precipitation relationship 
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did not change considerably throughout the study period. Despite the similarity of their slopes, 

across all three polygons the later period was characterized by nearly universally lower EVI 

values. These distinctly lower values of EVI indicate the regions in question were, in fact, 

impacted by changes in DTG, the polygons simply did not exhibit a threshold response. For both 

Smith Valley polygons the absence of this dramatic reaction to a falling water table is likely due 

significant ditch induced aquifer recharge during above average water years providing enough 

shallow soil moisture to delay a more dramatic, threshold response. for the time being.  

The lone polygon considered in San Emidio Desert was found, for both periods, to have 

an inverse precipitation-vegetation vigor relationship, indicating the continuous functioning of the 

polygon as a GDE throughout the period of observation. In this case, too, differences in 

recharge throughout the period may explain this observed change in the EVI magnitude. Once 

mining operations ceased in 1993, some portion of what was formerly mountain block recharge 

was diverted towards filling the large excavated mine pit. This change in recharge combined 

with the change in DTG (Figure 19), may have resulted in a floristic compositional transition of 

San Emidio, though the GDE nature was retained.   

7.0    Conclusions  

The objectives of this study were to both Identify patterns of GDE vegetation vigor 

change through space and time and to determine the extent to which climate and hydrology 

might explain those patterns. Through the use of Google’s  Earth Engine cloud computing 

platform, and statistical analyses of  annual EVI time series, it was determined that DTG and 

GDE vegetation vigor, as represented by spatially averaged EVI time series, share a rather 

strong and quite significant correlation across all impacted study locations.  

In the absence of significant anthropogenic perturbation of the hydrologic cycle, this 

study found GDE communities to be rather resilient to drought and other forms of natural 

disturbance. Phreatophytes remarkable root growth rates allow them to track rising and falling 

water tables, so long as the changes in the depth of the phreatic surface aren’t too drastic.  
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Alternatively, study sites characterized by anthropogenically driven significantly changing 

groundwater levels were universally found to display associated significant changes in their 

remotely sensed vegetation vigor, suggesting that significant human groundwater abstraction is 

likely to result in adverse impacts to GDE communities. The type of adverse impacts which a 

given community was likely to experience, however, proved to be a somewhat more difficult 

phenomenon to predict. Depending on the severity of the hydrologic impact endured, GDE 

communities either exhibited linear cover declines, or more drastic threshold transitions. 

However, groundwater level change alone was not found to explain the observed variance in 

community response. Instead, it is postulated that antecedent conditions, soil properties, 

precipitation and more, combine with groundwater conditions to influence GDE vegetation vigor. 

The role of precipitation and other factors further suggest that soil moisture content at GDE 

rooting depths may represent a more telling variable regarding community and tissue specific 

threshold values that once surpassed, result in a non-linear and often irreversible, community 

transition. 

Isolating anthropogenic impacts to GDEs from those arising as a consequence of natural 

climatic variability is a complicated, multifaceted, and yet highly necessary endeavor. The 

identification of cause and effect relationships in these dynamic systems is prerequisite to 

resource manager’s ability to make informed decisions that will adequately address the 

simultaneous the needs of both humans and nature. Across the endorheic Great Basin, 

balancing the abstraction of groundwater for human use, and the preservation of GDEs and the 

invaluable services which they perform, requires detailed knowledge regarding multiple modes 

of disturbance response, historic conditions, specific environmental thresholds, and more 

(Nichols, 2000; Hacke et al., 2000; Eamus et al., 2006; Hinsby et al., 2008; Kløve et al., 2011; 

Huntington et al., 2016).Moving forward, adaptive water management frameworks which 

promote the resilience of GDEs through appropriate regulation of groundwater abstraction, must 

be implemented. Moreover, it is imperative that GDEs receive renewed interest in both terms of 
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scientific study, and legislative protection, so that these unique ecosystems and the invaluable 

services which they perform are not lost forever.    
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8.0   Figures  

8.1  Maps  
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Figure 1: Nevada’s hydrologic basins. Study basins are colored by EVI regression slope map. 
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Figure 2: Spring Valley, NV. Color indicates the slope of 32-year summer median value EVI regression. 



44 

 

 

 
Figure 3: EVI slope map of Fish Lake Valley, NV over 32-year study period. 
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Figure 4: EVI slope map of San Emidio Desert, NV over 32-year study period. 
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Figure 5: EVI slope map of Boulder Flat hydrographic area, NV over 32-year study period. 
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Figure 6: EVI slope map of Smith Valley, NV over 32-year study period. 
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8.2   Spring Valley 

 

Figure 7: Spring Valley paired 32-year time series of both EVI and DTG (blue). Annual EVI maxima and 
minima are displayed as semi-transparent ticks above and below the median time series, respectively. The 
associated well is located 56 feet AMSL above the discharge area. 

 

 

Figure 8: Spring Valley paired 32-year time series of both EVI (green) and water year precipitation (black). 
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Figure 9: Spring Valley complementary figure. Similar equations of the best fit PPT-EVI scatter lines 
illustrates stationarity of system over study period. 

 
 

8.3  Fish Lake Valley polygon 1 

 

 
Figure 10: Fish Lake Valley polygon 1 Paired 32-year time series of both EVI (green) and DTG (blue). Annual 
EVI maxima and minima are displayed as semi-transparent ticks above and below the median time series, 
respectively. The associated well is located 10 feet AMSL above the centroid of the discharge area.  
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Figure 11: Fish Lake Valley polygon 1 Paired 32-year time series of both EVI (green) and water year 
precipitation (black). 

 

 

Figure 12: Fish Lake Valley polygon 1 complementary figure. Dramatic change in the slope of the best fit 
PPT-EVI scatter lines illustrates obvious change in ecosystem function.  
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8.4  Fish Lake Valley polygon 2 

 
Figure 13: Fish Lake Valley polygon 2  Paired 32-year time series of both EVI (green) and DTG (blue). Closely 
tracks DTG until ~90-95, by 2000 no more tracking and ecosystem appears to have lost all GW dependence. 
Annual EVI maxima and minima are displayed as semi-transparent ticks above and below the median time 
series, respectively. The associated well is located 16 feet AMSL above the centroid of the discharge area.  

 

 
Figure 14: Fish Lake Valley polygon 2  Paired 32-year time series of both EVI (green) and water year 
precipitation (black). Influential primarily during the latter portion of the record, once region had transitioned 
away from GW dependence.  
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Figure 15: Fish Lake Valley polygon 2 complementary figure. Dramatic change in the slope of the best fit 
PPT-EVI scatter lines illustrates a distinct transition from ground water dependence to precipitation 
dependence. 

8.5  Fish Lake Valley polygon 3 

 

 
Figure 16: Fish Lake Valley Polygon 3 Paired 32-year time series of both EVI (green) and DTG (blue). 
Particular GW depth is too great, but well is decently above observation area. Annual EVI maxima and 
minima are displayed as semi-transparent ticks above and below the median time series, respectively. The 
associated well is located 43 feet AMSL above the centroid of the discharge area.  
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Figure 17: Fish Lake Valley Polygon 3 paired 32-year time series of both EVI (green) and water year 
precipitation black). 

 

Figure 18: Fish Lake Valley polygon 3 complementary figure. Dramatic change in the slope of the best fit 
PPT-EVI scatter lines illustrates, once again, a distinct transition from ground water dependence to 
precipitation dependence. 
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8.6  San Emidio Desert 

 

 
Figure 19: San Emidio Desert Paired 32-year time series of both EVI (green) and DTG (blue). Annual EVI 
maxima and minima are displayed as semi-transparent ticks above and below the median time series, 
respectively. The associated well is located 17 feet AMSL below the centroid of the area.  

 

Figure 20: San Emidio Desert paired 32-year time series of both EVI (green) and water year precipitation 
(black). 
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Figure 21: San Emidio Desert complementary figure. A nearly identical negative slope of the best-fit PPT-EVI 
lines indicates groundwater dependence maintained. Nonetheless, change in EVI magnitude (i.e. y-intercept 
of best-fit line) suggests lower overall groundwater utilization.  

8.7  Boulder Flat 

 

 
Figure 22: Boulder Flat paired 32-year time series of both EVI (green) and DTG (blue). EVI closely tracks 
changes in DTG throughout the record. Annual EVI maxima and minima are displayed as semi-transparent 
ticks above and below the median time series, respectively. The associated well is equal in elevation with the 
centroid of the discharge area. 
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Figure 23: Boulder Flat paired 32-year time series of both EVI (green) and water year precipitation (black). 

 

Figure 24:  Boulder Flat complementary figure. Dramatic change in the slope of the best fit PPT-EVI scatter 
lines illustrates the polygons transition from precipitation dependence towards groundwater dependence, as 
well as the resulting marked increase in EVI. 
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8.8  Smith Valley polygon 1 

 

 
Figure 25: Smith Valley Polygon 1 paired 32-year time series of both EVI (green) and DTG (blue). Annual EVI 
maxima and minima are displayed as semi-transparent ticks above and below the median time series, 
respectively. The associated well is located 66 feet AMSL above the centroid of the discharge area.  

 
 

 
Figure 26: Smith Valley Polygon 1 paired 32-year time series of both EVI (green) and water year precipitation 
(black). 
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Figure 27: Smith Valley Polygon 1 complementary figure. Best-fit PPT-EVI lines indicate some form of PPT 
dependence. Nonetheless, change in EVI magnitude (i.e. y-intercept of best-fit line) suggests lower overall 
groundwater utilization in latter period. 

 
 
 

8.9  Smith Valley polygon 2  

 

 
Figure 28: Smith Valley Polygon 1 paired 32-year time series of both EVI (green) and DTG (blue). EVI impacted 
from ~1989 onward, much accelerated by accelerated DD ~2003. Annual EVI maxima and minima are 
displayed as semi-transparent ticks above and below the median time series, respectively. The associated 
well is located 200 feet AMSL above the centroid of the discharge area. 
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Figure 29: Smith Valley Polygon 2 paired 32-year time series of both EVI (green) and water year precipitation 
(black). 

 

 
Figure 30:  

Smith Valley Polygon 2 complementary figure. Practically unchanged best-fit PPT-EVI line slopes indicates 
some form of precipitation dependence present throughout record. Despite this, universally lower EVI values 
throughout the late period suggests lower overall groundwater utilization. 
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8.10  Field photographs  

 
Figure 31: Dried up spring in Smith Valley. Bare soil occupies what was once a lush GDE. Impacted yet still 
functional GDEs occupy the area between the former spring and playa visible in the distance. Though a few 
individuals cling to life, widespread Greasewood and Rabbitbrush mortality is visible in the right-center of 
the image. Photo was taken at 2:35 pm on 8/26/16 along the southernmost edge of Smith Valley Polygon 1. 
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Figure 32:  Impacted Greasewood-Rabbitbrush flat. Despite extensive water table drawdown, this community 
has yet to undergo succession to an alternative ecohydrological state. Photo taken along Northwestern edge 
of Smith Valley Polygon 2 at 2:13 pm 8/26/16. 
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Figure 33: Apparent Greasewood encroachment on playa. Historically greasewood establishment directly on 
the playa surface was precluded by periods of shallow groundwater, or even inundation in surface water, 
resulting in hypoxia and mortality. Consistently lowered groundwater levels more recently, however, have 
allowed for its establishment upon the margins previously occupied by saltgrass, and as seen here, even 
propagation onto the playa surface. Photo taken at 3:45 pm, 8/26/16.  
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Figure 34: Apparent Greasewood encroachment on playa. Historically greasewood establishment directly on 
the playa surface was precluded by periods of shallow groundwater, or even inundation in surface water, 
resulting in hypoxia and mortality. Consistently lowered groundwater levels more recently, however, have 
allowed for its establishment upon the margins previously occupied by saltgrass, and as seen here, even 
propagation onto the playa surface. Photo taken at 3:55 pm, 8/26/16.  
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Figure 35: A look back at the Alkali Lake State Wildlife Management Area entrance road. Decreasing 
groundwater dependence with increasing elevation/distance from playa margin is apparent as decrease in 
“greenness” of vegetation. Photo taken at 3:05 pm, 8/26/16. 
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Figure 36: Irrigated agriculture, Smith Valley, Nevada. One of many agriculturally active fields throughout the 
valley. Water for irrigation comes from both widespread diversion of the Walker River, and from extensive 
groundwater abstraction. Photo taken at 4:48 pm 8/26/16. 
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Figure 37: Irrigation ditch, Smith Valley, Nevada. One of many ditches used throughout the valley for 
widespread diversion of the Walker River for agricultural irrigation. Photo taken at 5:15pm 8/26/16. 
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Appendix A. Geometric Verification. 

 
Background 

To assess the influence the magnitude of a given polygon’s area has on the resulting 
time series’, five overlapping polygons of increasing size were drawn in Fish Lake Valley. These 
polygons were drawn with the aim of capturing only areas of similar EVI regression slope, such 
that, regardless of their size, each of these polygons might represent a region of common 
impact. The EVI-slope map of Fish Lake Valley created following a 32-year OLS regression of 
median summer EVI values (see section 4 for details) was used to guide this process and 
ensure the regions denoted and subsequently analyzed were indeed representative of regions 
of common impact. Five overlapping polygons were drawn in this fashion, and their resulting 
time series analyzed for trend and covariance.   
Results 

Median EVI values through time of all five of the polygons drawn in order to examine the 
impacts of polygon size on the resulting time series’ are illustrated in figure 8. Despite their 
respective areas varying by in excess of an order of magnitude, similar Mann-Kendall trends, 
Sens slopes and relative strengths of correlation with respect to the various environmental 
variables considered, were observed for all five polygons. Polygons one, two, three, four, and 
five were found to be 0.081 km2, 0.49 km2, 2.7 km2, and  4.1 km2, respectively. Smaller polygons 
were observed to be more prone to drastic swings in EVI values resulting from environmental 
“noise” like precipitation, human activities and more. Conversely, though large polygons are less 
prone to sudden changes in EVI values, some aspect of temporal specificity may be lost, as 
GDE response throughout may not be entirely synchronized, due simply to the size of these 
larger polygons delaying the propagation environmental process. Due to the overall rather 
similar behavior of the various polygons, results presented in the following sections were 
obtained by drawing polygons limited primarily by past reports of species distributions and 
observations of uniform spatial areas of EVI trend obtained from EVI slope maps.  

Across the board, the five geometric verification polygons were found to have 
decreasing Mann-Kendall EVI trends at the 0.001 > p confidence level. Summer PPT, wateryear 
PPT and summer TWD, however, weren’t found to have significant trends in either direction for 
any of the polygons. Sen’s slope estimates and Mann-Kendall test statistic (Z) values for 
polygons 1, 2, 3, 4 and 5 varied between -8.67x10-4 and -1.11x10-3, and -5.11 and -5.77, 
respectively. Specific values for EVI and environmental trends across individual polygons 
considered in this portion of the analyses may be found in appendix D.  

Across all five polygons EVI was found to have a strong, negative highly significant 
relationship (1x10-9 > p) with DTG, with Pearson’s and Spearman's correlation coefficients varying 
from -0.83 to -0.86, and -0.85 to -0.85, respectively. Water Year precipitation, the next most 
closely correlated of the time series, were found to have statistically significant (0.05 > p) 
Pearson’s coefficients varying between 0.37 and 0.41 for polygons 1-5, and even more 
significant (0.01 > p) and strong Spearman’s correlation coefficients varying between 0.44 and 
0.49. Specific values of both Pearson’s and Spearman’s correlation coefficients as well as their 
respective p-values for geometric verification polygons 1-5 can be found in appendix C.  
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Figure 38: Geometric verification EVI time series for all 5 polygons considered. 
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Appendix B. Mesquite Valley 

 
Study Site 

Mesquite Valley splits the California-Nevada border, with somewhat more than half of 
the drainages total area of 374 mi2 lying in Clark County, Nevada (CA DWR, 2004; NSE 
Summary, 2016). Mesquite Valley is considered hydrologically closed, with an alluvial drainage 
divide defining the Northern edge, and hydrophobic rock formations underlying the mountain 
ranges to the West, South and East. No data exist for the perennial yield of the california portion 
of mesquite valley, the Nevada perennial yield, however, is defined as being 1500 afy (Glancy, 
1968). Precipitation throughout the drainage varies from 3 to 20 in year-1 in a highly 
topographically stratified manner, with the highest elevations receiving the greatest totals 
Glancy, 1968). Depths to the phreatic surface vary throughout Mesquite Valley, with the 
greatest depths of roughly 130 ft below land surface being observed along the upper portions of 
alluvial fan, and with the shallowest region existing beneath the  valley’s playa  at depths of less 
than 5 ft below land surface (Glancy, 1968). Historically, mesquite covered 6,400 acres of the 
valley at depths of 5-45 feet below land surface, saltbrush covered 6,000 acres at depths of 5-
50 feet, and the valley’s southerly located playa covered an additional 6,000 acres, and was 
underlain by water within 4-10 feet of the lands surface. The jointly published USGS and NSE 
recon report also identified additional 15,000 acres of “scrubby saltbrush of undetermined 
species” growing upgradient of playa, with DTG  ranging from 35 ft to 60 ft below land surface. 
Additional studies suggest this region may have been dominated by greasewood (U.S. Coast 
and Geodetic Survey, 1901; Waring, 1919). Groundwater discharge in hydrographically closed 
Mesquite valley occurs mainly through pumpage by wells or by evapotranspiration (Waring 
1920; DWR 1964).  Despite meager groundwater allocations on the Nevada side, significant 
groundwater abstraction for irrigated agriculture across the California portion of Mesquite 
Valley’s floor combined with 30+ year records of continuously falling groundwater levels 
throughout basin suggest its overallocation.  

 
 

Methods 
 Mesquite Valley represents a somewhat different scenario than either Fish Lake valley 
or San Emidio Desert, as the continuous and constant drawdown of groundwater throughout the 
basin is much more mild than the aforementioned basins, and may even be the result of 
competition within floral communities rather than a consequence of anthropogenic 
environmental alterations. As such, polygon 1 was drawn with the aim of isolating GDE 
vegetation of increasing vigor, through time. Whereas polygon 2 was drawn such that its extent 
captured GDE vegetation whose vigor had decreased through time.  Two polygons were drawn 
for Mesquite Valley, their spatial extents lay entirely within GDE communities described by 
Glacy and Rush (1968). 

See section 4 of main paper for more details on the procedures used.  
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Figure 39: Mesquite Valley 32-year EVI regression slope map, with study polygons highlighted and detailed. 
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Results 
Annual summer median EVI values, in combination with water year PPT and DTG , are 

illustrated in figures B2 and B3 for Mesquite Valley polygon 1, and in figures B5, B6 for 
Mesquite Valley polygon 2. Mann-Kendall trend tests performed on median summer EVI time 
series for both polygon 1 and polygon 2 were found to be statistically significant at the 0.05 > p 
and 0.001 > p levels, and with Sen’s slope estimates of -5.48x10-4 year-1 and 1.12x10-3 year-1, 
respectively. As the two polygons share a common well, the depth to groundwater time series 
for both polygons were identical and found to be increasing (i.e. greater depths) in a significant 
manner (0.001 > p) at a rate of 0.28 ft year-1. Basin-wide water year PPT time series for these 
two polygons were similarly identical (as the two lie in the same basin), and found to be 
significantly (0.05 > p) decreasing at a rate of -3.33 mm year-1. Mann-Kendall trend tests on 
summer PPT and TWD time series for both polygons 1 and 2 returned no significant trends. 
Additional information regarding both Sen’s slope estimates and Mann-Kendall trend tests, 
including y-intercept, Z-statistic values, and more, may be found in appendix 3.   

Once again, as has been the case for every preceding impacted basin examined, 
correlation coefficient analyses of both Mesquite Valley polygons suggest DTG is the variable 
with the greatest influence over GDE vegetation vigor in the basin. Polygon 1’s EVI-DTG 
relationship was characterized by moderately strong, negative, statistically significant (0.01 > p) 
Pearson and Spearman correlation coefficients of -0.55 and -0.46. Polygon 2 boasted much 
more significant (1x10-5 > p) correlations between EVI and DTG, with strong, positive Pearson’s 
and Spearman’s coefficients of 0.72, and 0.74, respectively. The EVI time series of polygon 2 
was observed to have no statistically significant correlations with any environmental variable 
other than DTG. Polygon 1’s EVI time series, however, was found covary in a statistically 
significant manner (0.005 > p) with water year PPT, with moderately strong, positive Pearson 
and Spearman’s correlation coefficients of 0.51 and 0.52, respectively.  

Qualitative examination of polygon 1’s EVI time series reveals a close association of DTG 
and EVI for the first half or so of the 32-year record, followed in roughly 2004 by an apparent 
functional transition and loss of this association--not unlike was the case with Fish Lake Valley 
polygon 2. In light of this observation, correlation statistics for polygon 1 were ran for the period 
from 1984-2004, in addition to the full record. This limited time window returned more strongly 
negative and similarly statistically significant (0.005 > p) relationships, despite the unavoidable 
detrimental impact the shortening of a record has on the p-value returned by both Pearson's 
and Spearman’s correlation coefficients. Pearson’s correlation coefficient was found to be -0.63, 
and Spearman’s -0.64, for this shortened record.  

Figures B4 and B7 illustrate the quantitative relationship shared by ET and ETO for 
Mesquite Valley polygons 1, and 2. In both cases, the slope of the best fit line has increased 
from the historic (1984-1993) to the recent (1994-2015) periods, indicating a functional shift in 
the ecosystems comprising these polygons from being almost entirely groundwater dependant 
to significantly more dependant upon water year PPT totals. Where the complementary 
relationship changes over time between these two polygons do differ, however, is in the 
resulting average EVI. For polygon 1 EVI has experienced a marked decrease with this shift to 
PPT dependance. Conversely, the species occupying polygon 2 appear to have benefitted from 
decreasing groundwater levels and dependence, as EVI is nearly universally higher in the more 
recent, PPT dependant, time period.  
 
Mesquite Valley polygon 1 
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Figure 40: Paired 32-year time series of both EVI (green) and DTG (blue) for Mesquite valley polygon 1.  

 

 
Figure 41: Mesquite valley polygon 1 paired 32-year time series of both EVI (green) and water year 
precipitation (black).  
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Figure 42: Mesquite Valley polygon 1 complementary figure. Change in the slope of the best fit PPT-EVI 
scatter lines from near zero to distinctly positive illustrates the ecosystems transition away from ground 
water dependence and towards greater PPT dependence. Moreover, lower EVI values indicate a drastic drop 
in primary productivity. 

  
Mesquite Valley Polygon 2  
 

 
Figure 43: Paired 32-year time series of both EVI (green) and DTG (blue) for Mesquite Valley polygon 2. EVI 
appears to share an inverse relationship with DTG, indicating increasing DTG likely results in competitive 
advantage for individuals of this community. 
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Figure 44: Mesquite Valley polygon 2 paired 32-year time series of both EVI (green) and water year 
precipitation (black).  

 
 

 
Figure 45: Mesquite Valley polygon 2 complementary figure. Change in the slope of the best fit PPT-EVI 
scatter lines from near zero to distinctly positive illustrates the ecosystems transition away from ground 
water dependence and towards greater PPT dependence. 

  
Discussion and Conclusions 
 Omitted due to the omission of this section from the main report body.  
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Appendix C. Correlation Coefficient results, including insignificant and otherwise unreported 

values.  

 
 

Fish Lake Valley Geometric Verification 

  

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

Polygon 
1 

 

R p-value Rho p-value Tau p-value 

DTGW -0.83 3.45E-09 -0.86 3.11E-10 
-

0.66 1.32E-07 

Summer Precip -0.01 0.953 -0.07 0.723 
-

0.04 0.721 

Water Year Precip 0.40 0.025 0.44 0.011 0.30 0.015 
Theoretical Water 

Def 0.11 0.560 0.18 0.337 0.12 0.347 

  

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

Polygon 
2 

 

R p-value 
  

R p-value 

DTGW -0.86 1.78E-10 -0.87 1.12E-10 
-

0.68 3.74E-08 

Summer Precip 0.05 0.778 0.01 0.963 
-

0.01 0.948 

Water Year Precip 0.37 0.039 0.45 0.009 0.31 0.014 
Theoretical Water 

Def 0.14 0.454 0.23 0.197 0.15 0.218 

  

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

Polygon 
3 

 

R p-value 
  

R p-value 

DTGW -0.86 4.16E-10 -0.86 1.73E-10 
-

0.69 3.30E-08 

Summer Precip 0.10 0.577 0.03 0.887 0.01 0.961 

Water Year Precip 0.41 0.019 0.47 0.006 0.31 0.012 
Theoretical Water 

Def 0.16 0.378 0.25 0.173 0.16 0.200 

  

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

Polygon 
4 

 

R p-value 
  

R p-value 

DTGW -0.86 2.42E-10 -0.87 9.45E-11 
-

0.70 1.56E-08 

Summer Precip 0.16 0.392 0.02 0.914 
-

0.01 0.961 

Water Year Precip 0.40 0.022 0.46 0.008 0.30 0.016 
Theoretical Water 

Def 0.18 0.317 0.25 0.175 0.15 0.223 

  

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

Polygon 
5 

 

R p-value 
  

R p-value 

DTGW -0.85 5.87E-10 -0.85 1.05E-09 
-

0.69 3.10E-08 
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Summer Precip 0.16 0.380 0.01 0.946 
-

0.01 0.935 

Water Year Precip 0.41 0.020 0.49 0.004 0.33 0.007 
Theoretical Water 

Def 0.14 0.441 0.20 0.267 0.13 0.290 

Boulder Flat 

Polygon 
1 

 

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

 

R p-value Rho p-value Tau p-value 

DTGW -0.91 1.15E-12 -0.71 7.38E-06 
-

0.53 3.30E-05 

Summer Precip 0.00 0.996 -0.15 0.425 
-

0.11 0.376 

Water Year Precip 0.12 0.509 0.15 0.417 0.09 0.496 

Theoretical Water 
Def -0.10 0.598 -0.17 0.351 

-
0.10 0.434 

Fish Lake Valley 

  

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

Polygon 
1 

 

R p-value Rho p-value Tau p-value 

DTGW -0.87 1.15E-10 -0.88 3.24E-11 
-

0.71 1.00E-08 

Summer Precip 0.18 0.327 0.05 0.767 0.04 0.758 

Water Year Precip 0.20 0.261 0.30 0.090 0.20 0.101 
Theoretical Water 

Def 0.26 0.154 0.28 0.116 0.18 0.140 

Polygon 
2 

Full Record 
Pearson's Correlation 

Coefficent 
Spearman's Correlation 

Coefficent Kendalls Tau A 
(1984-2015) R p-value Rho p-value Tau p-value 

DTGW -0.75 6.05E-07 -0.68 1.84E-05 
-

0.53 1.69E-05 

Summer Precip 0.38 0.032 0.02 0.930 0.01 0.935 

Water Year Precip 0.36 0.041 0.53 0.002 0.37 0.003 
Theoretical Water 

Def 0.30 0.101 0.18 0.318 0.14 0.263 

Polygon 
2 

 

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

(1984-1999) R p-value Rho p-value Tau p-value 

DTGW -0.78 3.90E-04 -0.64 7.80E-03 
-

0.47 1.17E-02 

Summer Precip 0.59 0.015 0.25 0.350 0.18 0.322 

Water Year Precip 0.10 0.715 0.16 0.542 0.10 0.589 
Theoretical Water 

Def 0.52 0.037 0.25 0.356 0.18 0.322 

  

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 
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Polygon 
2 

(2000-2015) R p-value 
  

R p-value 

DTGW -0.13 0.62 -0.18 0.52 
-

0.16 0.39 

Summer Precip -0.39 0.139 -0.41 0.117 
-

0.28 0.136 

Water Year Precip 0.59 1.68E-02 0.67 4.67E-03 0.53 4.40E-03 

Theoretical Water 
Def -0.34 0.191 -0.43 9.42E-02 

-
0.28 0.136 

  

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

Polygon 
3 

 

R p-value 
  

R p-value 

DTGW -0.74 1.49E-06 -0.81 2.13E-08 
-

0.65 2.00E-07 

Summer Precip 0.09 0.610 -0.01 0.938 
-

0.03 0.820 

Water Year Precip 0.35 0.050 0.40 0.023 0.26 0.035 
Theoretical Water 

Def 0.23 0.202 0.27 0.130 0.17 0.163 

San Emidio Valley 

Polygon 
1 

 

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

R p-value Rho p-value Tau p-value 

DTGW -0.76 5.69E-07 -0.65 6.21E-05 
-

0.49 7.60E-05 

Summer Precip 0.11 0.540 0.25 0.169 0.19 0.136 

Water Year Precip 0.13 0.487 0.14 0.437 0.08 0.517 
Theoretical Water 

Def 0.18 0.337 0.30 0.100 0.19 0.127 

Sandy (Mesquite) Valley 

Polygon 
1 

(1984-2015) 

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

R p-value Rho p-value Tau p-value 

DTGW -0.55 1.10E-03 -0.46 7.95E-03 
-

0.33 8.61E-03 

Summer Precip 0.13 0.483 0.09 0.618 0.06 0.650 

Water Year Precip 0.51 3.13E-03 0.52 2.50E-03 0.32 1.04E-02 
Theoretical Water 

Def 0.27 0.128 0.32 0.076 0.18 0.144 

Polygon 
2 

(1984-2015) 

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

R p-value Rho p-value Tau p-value 

DTGW 0.72 3.38E-06 0.74 1.36E-06 0.56 5.61E-06 

Summer Precip 0.01 0.946 0.14 0.443 0.12 0.347 

Water Year Precip 0.05 0.792 0.01 0.944 0.02 0.897 
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Theoretical Water 
Def 0.29 0.108 0.28 0.118 0.19 0.120 

Polygon 
1 

(1984-2004) 

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

R p-value Rho p-value Tau p-value 

DTGW -0.63 1.63E-03 -0.64 1.31E-03 
-

0.48 1.75E-03 

Summer Precip 0.13 0.578 0.23 0.311 0.13 0.414 

Water Year Precip 0.53 1.17E-02 0.57 5.64E-03 0.37 1.65E-02 
Theoretical Water 

Def 0.26 0.234 0.31 0.159 0.17 0.271 

Polygon 
2 

(1984-2004) 

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

R p-value Rho p-value Tau p-value 

DTGW 0.37 9.023E-02 0.33 1.318E-01 0.26 
8.542E-

02 

Summer Precip 0.01 0.964 0.09 0.684 0.09 0.554 

Water Year Precip 0.53 0.012 0.53 0.012 0.42 0.006 
Theoretical Water 

Def 0.07 0.760 0.19 0.399 0.13 0.382 

Smith Valley 

Polygon 
1 

 

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

R p-value Rho p-value Tau p-value 

DTGW -0.66 4.46E-05 -0.78 1.09E-07 
-

0.58 2.71E-06 

Summer Precip 0.29 0.105 0.29 0.102 0.20 0.108 

Water Year Precip 0.37 3.69E-02 0.32 7.68E-02 0.23 6.66E-02 
Theoretical Water 

Def 0.34 5.40E-02 0.42 1.64E-02 0.28 2.62E-02 

Polygon 
2 

 

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

R p-value Rho p-value Tau p-value 

DTGW -0.59 3.53E-04 -0.58 5.30E-04 
-

0.39 1.85E-03 

Summer Precip 0.14 0.435 0.01 0.967 0.00 0.974 

Water Year Precip 0.59 3.92E-04 0.50 3.48E-03 0.33 8.61E-03 
Theoretical Water 

Def 0.16 0.383 0.15 0.415 0.13 0.299 

Spring Valley 

Polygon 
1 

 

Pearson's Correlation 
Coefficent 

Spearman's Correlation 
Coefficent Kendalls Tau A 

R p-value Rho p-value Tau p-value 

DTGW 0.35 6.92E-02 0.32 0.102 0.23 9.18E-02 

Summer Precip 0.38 4.90E-02 0.18 0.353 0.13 0.332 
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Water Year Precip 0.73 9.35E-06 0.72 1.59E-05 0.53 7.00E-05 
Theoretical Water 

Def 0.41 3.13E-02 0.32 9.78E-02 0.26 5.50E-02 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix D. Mann-Kendall trend test results. Full results including Mann-Kendall test statistics, 

significance levels, series information and Sen’s slope and y-intercept estimates. 
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Geometrtic Verification All polys (1984-2015) 

Time Series Name 

Series Details Mann-Kendall 
Sen's slope 

estimate 

First 
year 

Last 
Year n 

Test 
Z Signific. Q B 

Polygon Summer PPT 1984 2015 32 0.02 N/A 5.36E-03 20.61 
Basin-Wide WY PPT 1984 2015 32 -1.51 N/A -1.24 187.94 

Summer TWD (PPT-Eto) 1984 2015 32 -1.18 N/A -0.67 -608.99 
Median Summer EVI Polygon 

1 1984 2015 32 -5.11 0.001 > p -1.11E-03 0.11 
Median Summer EVI Polygon 

2 1984 2015 32 -5.66 0.001 > p -1.10E-03 0.11 
Median Summer EVI Polygon 

3 1984 2015 32 -5.64 0.001 > p -1.09E-03 0.11 
Median Summer EVI Polygon 

4 1984 2015 32 -5.77 0.001 > p -1.04E-03 0.10 
Median Summer EVI Polygon 

5 1984 2015 32 -5.61 0.001 > p -8.67E-04 0.10 
Depth to Groundwater 

(ft/year) 1984 2015 32 7.85 0.001 > p 0.53 18.48 
Depth to Groundwater 

(ft/year) 1984 2015 32 7.51 0.001 > p 1.75 26.46 

Boulder Flat Polygon1 (1984-2015) 

Time Series Name 

Series Details Mann-Kendall 
Sen's slope 

estimate 

First 
year 

Last 
Year n 

Test 
Z Signific. Q B 

Mean Summer EVI 1984 2015 32 4.49 0.001 > p 4.34E-03 0.11 
Median Summer EVI 1984 2015 32 4.35 0.001 > p 4.56E-03 0.11 

Minimum Summer EVI 1984 2015 32 3.67 0.001 > p 3.14E-03 0.10 
Maximum Summer EVI 1984 2015 32 4.56 0.001 > p 5.11E-03 0.12 
Polygon Annual ETo 1984 2015 32 1.70 0.1 > p 1.34 1307.70 

Polygon WY PPT 1984 2015 32 0.34 N/A 0.37 189.32 
Depth to Groundwater 1984 2014 31 -4.18 0.001 > p -0.26 9.84 
Polygon Summer PPT 1984 2015 32 0.60 N/A 0.23 19.55 
Basin-Wide WY PPT 1984 2015 32 -0.47 N/A -0.65 223.59 

Summer TWD (PPT-Eto) 1984 2015 32 0.08 N/A 0.11 -575.53 

FishLake Polygon1 (1984-2015) 

Time Series Name 

Series Details Mann-Kendall 
Sen's slope 

estimate 

First 
year 

Last 
Year n 

Test 
Z Signific. Q B 

Mean Summer EVI 1984 2015 32 -5.95 0.001 > p -6.25E-03 0.29 
Median Summer EVI 1984 2015 32 -5.74 0.001 > p -6.42E-03 0.30 

Minimum Summer EVI 1984 2015 32 -5.82 0.001 > p -4.28E-03 0.22 
Maximum Summer EVI 1984 2015 32 -5.59 0.001 > p -7.60E-03 0.35 
Polygon Annual ETo 1984 2015 32 2.81 0.01 > p 2.56 1571.14 
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Polygon WY PPT 1984 2015 32 -0.47 N/A -0.24 109.00 
Depth to Groundwater 1984 2015 32 7.67 0.001 > p 0.49 4.78 
Polygon Summer PPT 1984 2015 32 0.02 N/A 5.36E-03 20.61 
Basin-Wide WY PPT 1984 2015 32 -1.51 N/A -1.24 187.94 

Summer TWD (PPT-Eto) 1984 2015 32 -1.18 N/A -0.67 -608.99 
FishLake Polygon 2 (1984-2015) 

Time Series Name 

Series Details Mann-Kendall 
Sen's slope 

estimate 

First 
year 

Last 
Year n 

Test 
Z Signific. Q B 

Mean Summer EVI 1984 2015 32 -4.25 0.001 > p -5.42E-04 0.07 
Median Summer EVI 1984 2015 32 -4.64 0.001 > p -6.00E-04 0.07 

Minimum Summer EVI 1984 2015 32 -4.62 0.001 > p -6.23E-04 0.06 
Maximum Summer EVI 1984 2015 32 -1.88 0.1 > p -3.75E-04 0.07 
Polygon Annual ETo 1984 2015 32 2.71 0.01 > p 2.49 1523.58 

Polygon WY PPT 1984 2015 32 -0.44 N/A -0.17 108.31 
Depth to Groundwater 1984 2015 32 7.51 0.001 > p 1.75 26.46 
Polygon Summer PPT 1984 2015 32 0.02 N/A 5.36E-03 20.61 
Basin-Wide WY PPT 1984 2015 32 -1.51 N/A -1.24 187.94 

Summer TWD (PPT-Eto) 1984 2015 32 -1.18 N/A -0.67 -608.99 
FishLake Polygon 3 (1984-2015) 

Time Series Name 

Series Details Mann-Kendall 
Sen's slope 

estimate 

First 
year 

Last 
Year n 

Test 
Z Signific. Q B 

Mean Summer EVI 1984 2015 32 -5.95 
0.001 > 

p -1.03E-03 0.10 
Median Summer EVI 1984 2015 32 -5.82 0.001 > p -1.04E-03 0.10 

Minimum Summer EVI 1984 2015 32 -5.74 0.001 > p -9.19E-04 0.09 
Maximum Summer EVI 1984 2015 32 -4.75 0.001 > p -9.54E-04 0.11 
Polygon Annual ETo 1984 2015 32 2.81 0.01 > p 2.56 1571.14 

Polygon WY PPT 1984 2015 32 -0.47 N/A -0.24 109.00 
Depth to Groundwater 1984 2015 32 6.60 0.001 > p 0.90 57.70 
Polygon Summer PPT 1984 2015 32 0.02 N/A 5.36E-03 20.61 
Basin-Wide WY PPT 1984 2015 32 -1.51 N/A -1.24 187.94 

Summer TWD (PPT-Eto) 1984 2015 32 -1.18 N/A -0.67 -608.99 

Sandy Valley Polygon1 (1984-2015) 

Time Series Name 

Series Details Mann-Kendall 
Sen's slope 

estimate 

First 
year 

Last 
Year n 

Test 
Z Signific. Q B 

Mean Summer EVI 1984 2015 32 -2.56 0.05 > p -6.06E-04 0.11 
Median Summer EVI 1984 2015 32 -2.48 0.05 > p -5.48E-04 0.11 

Minimum Summer EVI 1984 2015 32 -3.19 0.01 > p -6.79E-04 0.10 
Maximum Summer EVI 1984 2015 32 -2.03 0.05 > p -5.90E-04 0.12 
Polygon Annual ETo 1984 2015 32 1.57 N/A 2.45 1913.53 

Polygon WY PPT 1984 2015 32 -2.03 0.05 > p -2.47 170.16 
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Depth to Groundwater 1984 2015 32 7.18 0.001 > p 0.28 32.47 
Polygon Summer PPT 1984 2015 32 0.02 N/A 1.72E-02 24.84 
Basin-Wide WY PPT 1984 2015 32 -2.12 0.05 > p -3.33 249.00 

Summer TWD (PPT-Eto) 1984 2015 32 0.50 N/A 0.70 -737.86 
SandyValley Polygon 2 (1984-2015) 

Time Series Name 

Series Details Mann-Kendall 
Sen's slope 

estimate 

First 
year 

Last 
Year n 

Test 
Z Signific. Q B 

Mean Summer EVI 1984 2015 32 4.59 0.001 > p 1.12E-03 0.13 
Median Summer EVI 1984 2015 32 4.72 0.001 > p 1.12E-03 0.13 

Minimum Summer EVI 1984 2015 32 3.84 0.001 > p 8.13E-04 0.12 
Maximum Summer EVI 1984 2015 32 4.49 0.001 > p 1.48E-03 0.13 
Polygon Annual ETo 1984 2015 32 1.57 N/A 2.45 1913.53 

Polygon WY PPT 1984 2015 32 -2.03 0.05 > p -2.47 170.16 
Depth to Groundwater 1984 2015 32 7.18 0.001 > p 0.28 32.47 
Polygon Summer PPT 1984 2015 32 0.02 N/A 1.72E-02 24.84 
Basin-Wide WY PPT 1984 2015 32 -2.12 0.05 > p -3.33 249.00 

Summer TWD (PPT-Eto) 1984 2015 32 0.50 N/A 0.70 -737.86 

San Emidio Desert 1 (1984-2015) 

Time Series Name 

Series Details Mann-Kendall 
Sen's slope 

estimate 

First 
year 

Last 
Year n 

Test 
Z Signific. Q B 

Mean Summer EVI 1984 2015 32 -4.56 0.001 > p -1.27E-03 0.14 
Median Summer EVI 1984 2015 32 -4.23 0.001 > p -1.18E-03 0.13 

Minimum Summer EVI 1984 2015 32 -4.70 0.001 > p -1.47E-03 0.13 
Maximum Summer EVI 1984 2015 32 -4.64 0.001 > p -1.33E-03 0.15 
Polygon Annual ETo 1984 2015 32 2.77 0.01 > p 3.87 1402.31 

Polygon WY PPT 1984 2015 32 -1.28 N/A -1.42 185.52 
Depth to Groundwater 1984 2015 32 7.70 0.001 > p 0.29 53.58 
Depth to Groundwater 1984 2015 32 7.28 0.001 > p 0.31 53.43 
Polygon Summer PPT 1984 2015 32 -1.77 0.1 > p -0.43 21.55 
Basin-Wide WY PPT 1984 2015 32 -1.57 N/A -1.95 244.31 

Summer TWD (PPT-Eto) 1984 2015 32 -2.12 0.05 > p -1.58 -607.65 

Smith Valley 1 (1984-2015) 

Time Series Name 

Series Details Mann-Kendall 
Sen's slope 

estimate 

First 
year 

Last 
Year n 

Test 
Z Signific. Q B 

Mean Summer EVI 1984 2015 32 -4.91 0.001 > p -2.69E-03 0.23 
Median Summer EVI 1984 2015 32 -4.80 0.001 > p -2.82E-03 0.23 

Minimum Summer EVI 1984 2015 32 -4.17 0.001 > p -1.75E-03 0.18 
Maximum Summer EVI 1984 2015 32 -3.88 0.001 > p -3.06E-03 0.26 
Polygon Annual ETo 1984 2015 32 3.06 0.01 > p 3.89 1429.22 

Polygon WY PPT 1984 2015 32 -1.12 N/A -1.22 157.44 
Depth to Groundwater 1984 2015 32 6.60 0.001 > p 1.36 17.08 



83 

 

 

Polygon Summer PPT 1984 2015 32 -1.22 N/A -0.34 20.64 
Basin-Wide WY PPT 1984 2015 32 -0.83 N/A -1.22 259.60 

Summer TWD (PPT-Eto) 1984 2015 32 -1.77 0.1 > p -0.99 -572.02 
Smith Valley 2 (1984-2015) 

Time Series Name 

Series Details Mann-Kendall 
Sen's slope 

estimate 

First 
year 

Last 
Year n 

Test 
Z Signific. Q B 

Mean Summer EVI 1984 2015 32 -1.96 0.05 > p -2.00E-03 0.23 
Median Summer EVI 1984 2015 32 -2.09 0.05 > p -2.00E-03 0.23 

Minimum Summer EVI 1984 2015 32 -1.51 N/A -1.00E-03 0.17 
Maximum Summer EVI 1984 2015 32 -1.93 0.1 > p -2.00E-03 0.26 
Polygon Annual ETo 1984 2015 32 3.00 0.01 > p 3.65 1417.41 

Polygon WY PPT 1984 2015 32 -1.28 N/A -1.42 156.23 
Depth to Groundwater 1984 2015 32 4.30 0.001 > p 1.46 20.85 
Polygon Summer PPT 1984 2015 32 -1.22 N/A -0.34 20.64 
Basin-Wide WY PPT 1984 2015 32 -0.83 N/A -1.22 259.60 

Summer TWD (PPT-Eto) 1984 2015 32 -1.77 0.1 > p -0.99 -572.02 

Spring Valley 1 (1984-2015) 

Time Series Name 

Series Details Mann-Kendall 
Sen's slope 

estimate 

First 
year 

Last 
Year n 

Test 
Z Signific. Q B 

Mean Summer EVI 1984 2015 32 0.06 N/A 1.68E-05 0.11 
Median Summer EVI 1984 2015 32 0.23 N/A 4.45E-05 0.11 

Minimum Summer EVI 1984 2015 32 -0.24 N/A -2.50E-05 0.10 
Maximum Summer EVI 1984 2015 32 0.62 N/A 1.86E-04 0.12 
Polygon Annual ETo 1984 2015 32 1.15 N/A 1.63 1421.31 

Polygon WY PPT 1984 2015 32 -1.35 N/A -1.59 247.69 
Depth to Groundwater 1984 2011 28 3.10 0.01 > p 0.07 36.67 
Polygon Summer PPT 1984 2015 32 -0.08 N/A -0.06 45.01 
Basin-Wide WY PPT 1984 2015 32 -1.31 N/A -1.56 313.91 

Summer TWD (PPT-Eto) 1984 2015 32 0.28 N/A 0.46 -568.79 
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Appendix E. Well location and details. Information provided includes associated polygon, data 

source, and the website URL where the data was accessed.  

 

Latitu
de 

Longi
tude 

Name Sourc
e 

Website URL 

39.0
6475 

-
114.5

16 

Spring 
Valley  

USGS http://nwis.waterdata.usgs.gov/nwis/gwlevels/?site_no=390
352114305401&agency_cd=USGS&amp 

40.8
5377 

-
116.4

16 

Boulder 
Flat 

NSE http://water.nv.gov/data/waterlevel/site.cfm?ID=2441 

38.8
6545 

-
119.3

99 

Smith 
Valley 

Polygon 
1 

NSE http://water.nv.gov/data/waterlevel/site.cfm?ID=968 

38.9
6222 

-
119.3

85 

Smith 
Valley 

Polygon 
2 

NSE http://water.nv.gov/data/waterlevel/site.cfm?ID=973 

37.7
6009 

-
118.0

32 

Fish 
Lake 
Valley 

Polygon 
1 

NSE/U
SGS 

http://water.nv.gov/data/waterlevel/site.cfm?ID=1284 

37.6
2809 

-
117.9

Fish 
Lake 

NSE http://water.nv.gov/data/waterlevel/site.cfm?ID=1298 
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98 Valley 
Polygon 

2 

37.7
095 

-
118.0

85 

Fish 
Lake 
Valley 

Polygon 
3 

NSE http://water.nv.gov/data/waterlevel/site.cfm?ID=1295 

40.4
4522 

-
119.4

27 

San 
Emidio 

Desert  P
olygon 

NSE/U
SGS 

http://water.nv.gov/data/waterlevel/site.cfm?ID=295 

35.7
9 

-
115.5

86 

Mesquite 
Valley  P
olygon 1 

NSE http://water.nv.gov/data/waterlevel/site.cfm?ID=1311 

35.7
6915 

-
115.5

84 

Mesquite 
Valley  P
olygon 2 

NSE http://water.nv.gov/data/waterlevel/site.cfm?ID=1313 
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