University of Nevada Reno

1-G SHAKE TABLE EXPERIMENTAL EVALUATION OF BUILDING SETTLEMENTS FOUNDED ON LIQUEFIABLE SOILS

A thesis submitted in partial fulfillment of

the requirements for the degree of Master of Science

in Civil and Environmental Engineering

by

Joseph A.W. Toth

Dr. Ramin Motamed / Thesis Advisor

December, 2016

THE GRADUATE SCHOOL

We recommend that the thesis prepared under our supervision by

Joseph A.W. Toth

Entitled

1-G SHAKE TABLE EXPERIMENTAL EVALUATION OF BUILDING SETTLEMENTS FOUNDED ON LIQUEFIABLE SOILS

be accepted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Ramin Motamed, Ph.D., Advisor

Raj Siddharthan, Ph.D., Committee Member

John G. Anderson, Ph.D., Graduate School Representative

David W Zeh, Ph.D., Graduate Dean, Graduate School

December, 2016

Abstract

Post-disaster reconnaissance of areas affected by recent earthquakes in Japan and New Zealand has documented extensive damage to buildings with shallow foundations resulting from liquefaction-induced settlement. Current practices in predicting degree of liquefaction-induced settlement are based on semi-empirical relationships for free-field conditions and do not consider external loadings from structures. However, field observations have noted that liquefaction settlement from buildings can be considerably greater than the semi-empirical estimations.

The controlling mechanisms of liquefaction settlement under load are not well understood and are currently being investigated by researchers within the Geoseismic community. Our research is based on a series of 1-g shake table experiments using a transparent soil box to reproduce liquefaction-induced building settlements. Settlements were evaluated using a scaled model of a building foundation representative of a lightly loaded single to double story building. Experimental testing included use of manually induced shaking, implementation of an eccentric-mass shaker and use of a biaxial large scale shake table. Comprehensive parametric study was carried out to establish the effects of several parameters on free-field and building settlements such as building width, relative density, ground motion duration and thickness of liquefiable layer. Experiments included use of accelerometers, pore water pressure sensors and linear variable differential transformers (LVDT) to monitor behavior in both free-field and model building footprints during induction of

i

liquefaction. A comprehensive parametric study was conducted evaluating the influence of key parameters. Results of this study suggest the following on liquefaction settlement behavior. Increases in foundation width showed decreases in settlement. Increases in relative density of soil also showed decreases in settlement. Increases in ground motion duration lead to increases in settlement. Increases in thickness of liquefiable layer lead to increases in settlement. Free-field settlement was predicted using two common methods in practice and compared with the settlements measured directly in our experiments. These predictions are shown to be lower than measurements observed for building foundations and also slightly over-predict settlements observed in the free-field. Results of these studies are also compared with previous centrifuge, shake table and field observations normalized for width of foundation and thickness of liquefiable layer and are generally in good agreement. Lastly, a brief discussion is presented suggesting the use of helical piles as a mitigation strategy in reducing the building settlements of structures founded over liquefiable soils.

The width of the soil container used in experimentation restricted use of larger model foundation diameters. Current model diameters used in experimentation suggest that prototype foundations are more typical of isolated piers and footings rather than mat foundations when considering laws of similitude. Additionally, soil model grain size characteristics are representative of a coarse sand to fine grained gravel.

Dedication

Dedicated to the memory of Helen Georgina Roney

Acknowledgements

I would like to acknowledge Bob Fehling of VersaGrade Inc. for providing the background geotechnical information which served as the starting point of my physical model and was the basis of all my research.

Dr. Ramin Motamed, Assistant Professor at the University of Nevada, Reno, Department of Civil and Environmental Engineering. Thank you for your guidance and instruction throughout this project.

Katy Cottingham, Andrew Walker and Rick Mitchells at the offices of Golder Associates Inc. located in Redmond, Washington and Anchorage, Alaska. Your encouragement, mentorship and support has played a large role in my professional development as an engineer.

This project would not have been possible without the following people in the Department of Civil and Environmental Engineering at the University of Nevada, Reno. Murugaiyah Piratheepan, Laboratory Manager and Research Scientist through the Western Regional Superpave Center, Pavement Engineering and Science Program. Murugaiyah kindly accommodated our project needs by providing use of their ovens located in the aggregate laboratory. Mark Lattin, Development Technician. Mark assisted us greatly in setting up our instrumentation. Patrick LaPlace, Chad and Todd Lyttle at the Earthquake Engineering Laboratory at the University of Nevada, Reno for their time and services in using the biaxial shake table.

Lastly, to everyone who assisted me with operating the camera during experimentation, recording measurements, running the instrument software and especially helping to construct, deconstruct and dry the sand in preparation for the next experiment.

Chapter 1 Introduction	1
1.1 General Introduction	1
1.2 Problem Description	2
1.3 Scope	3
Chapter 2 Literature Review	5
2.1 Observations from Past Earthquakes	5
March 11, 2011 Tohoku Earthquake	6
2010-2011 Canterbury Earthquake Sequence	10
2.2 Prior Experimental Studies	13
Liu and Dobry (1997)	13
Dashti et al. (2010a)	15
Dashti et al. (2010b)	18
Bray and Dashti (2014)	19
Rasouli et al. (2015)	21
2.3 Current Practices in Estimating Liquefaction Induced Free-Field Settlements	23
Tokimatsu and Seed (1987)	24
Ishihara and Yoshimine (1992)	26
Youd et al. 2001	29
2.4 Shake Table Testing Model Similitude	33
Chapter 3 Test Procedures and Materials	37
3.1 Soil Container	37
3.2 Shake Table Fabrication	39

Table of Contents

3.3 Shake Table Evaluations	41
3.3.1 Manual Shaking	41
3.3.2 Eccentric Mass Shaker	41
3.3.3 Earthquake Engineering Laboratory (EEL)	43
3.4 Liquefaction Testing Medium	44
3.5 Construction of Liquefaction Evaluation Model	45
3.6 Instrumentation	47
3.6 Foundation Models	50
3.6.1 Model Rigid Shallow Foundations	50
3.6.2 Model Helical Pile Foundations	51
3.6.3 Model Similitude	53
3.6.4 Model Static Bearing Capacity	54
3.7 Experimental Testing Input Motions	55
3.7.1 Manual Shaking	55
3.7.2 Eccentric Mass Shaker	56
3.7.3 Earthquake Engineering Laboratory (EEL)	56
Chapter 4 Experimental Program	57
4.1 Model Configuration and Preparation	57
4.2 Phase 1 - Initial Testing and Model Calibration	59
4.3 Phase 2 - Eccentric Mass Vibrator Testing	68
4.4 Phase 3 - Manual Shaking Testing Results	74
4.5 Phase 4 - EEL Validation (El Centro Input Record)	82
4.6 Semi-Empirical Estimation of Liquefaction-Induced Settlement	89

4.7 Results and Findings from Parametric Study	93
4.7.2 Influence of Relative Density	94
4.7.3 Influence of Foundation Diameter	95
4.7.4 Influence of Ground Motion Duration	97
4.7.5 Influence of Thickness of Liquefiable Layer	99
4.7.6 Normalized Settlement	101
4.7.7 Comparison of Hand Measurements versus LVDT	104
4.7.8 Limitations in Scaled Model	109
Chapter 5 Conclusions and Recommendations	111
5.1 Summary of Findings	112
5.2 Recommendations for Future Research	115
Chapter 6 References	117
Appendix A – Experimental Results	121
Appendix B – Testing Summary Table	122
Appendix C – Laboratory Notes and Measurements	123

LIST OF TABLES

TABLE 2-1: SIMILITUDE FOR 1-G SHAKE TABLE TESTS (ADAPTED FROM IAI, 1989)	35
TABLE 3-1: INSTRUMENTATION USED IN EXPERIMENTAL EVALUATION	48
TABLE 3-2: SIMILITUDE LAWS FOR 1-G SHAKE TABLE TESTS (Λ = 10, SCALING RATIO IN THIS	
STUDY)	53
TABLE 3-3: MATERIAL PROPERTIES OF HELICAL PILE FOUNDATION	54
TABLE 4-1: DENSENESS OF GRANULAR SOIL (DAS 2015)	60
TABLE 4-2: SOIL MODEL PROPERTIES	61
TABLE 4-3: SUMMARY OF PHASE 1 EXPERIMENTAL PROGRAM	68
TABLE 4-4: SUMMARY OF PHASE 2 EXPERIMENTAL PROGRAM	74
TABLE 4-5: SUMMARY OF PHASE 3 EXPERIMENTAL PROGRAM	82
TABLE 4-6: SUMMARY OF PHASE 4 EXPERIMENTAL PROGRAM	89

LIST OF FIGURES

FIGURE 2-1: TYPICAL SCHEMATIC OF DREDGING OPERATIONS FOR RECLAIMED SOILS (YASUDA
ET AL. 2012)
FIGURE 2-2: LIQUEFACTION-INDUCED BUILDING SETTLEMENT IN URAYSU, JAPAN (ASHFORD ET
AL. 2011 AND BRAY 2016)9
FIGURE 2-3: SEVERITY OF LIQUEFACTION-INDUCED DAMAGE WITHIN CHRISTCHURCH AFTER
FEBRUARY 22, 2011 EVENT. (HENDERSON 2013)11
FIGURE 2-4: LIQUEFACTION-INDUCED DAMAGE CHRISTCHURCH (VAN BALLEGOOY 2014)2.2
PRIOR EXPERIMENTAL STUDIES12
FIGURE 2-5: NORMALIZED SETTLEMENT VERSUS NORMALIZED BUILDING WIDTH FOR
CENTRIFUGE TESTING (LIU AND DOBRY 1997)15
FIGURE 2-6: NORMALIZED FOUNDATION SETTLEMENTS OF DASHTI CENTRIFUGE EXPERIMENTS
(DASHTI ET AL. 2010A)17
FIGURE 2-7: COMPARISON OF SETTLEMENT RATE TO SHAKING INTENSITY RATE WITH
INCREASING RELATIVE DENSITY (DASHTI ET AL. 2010B)19
FIGURE 2-8: LIQUEFACTION-INDUCED DISPLACEMENT MECHANISMS (BRAY AND DASHTI 2014)
FIGURE 2-9: VOLUMETRIC STRAIN FOR CLEAN SATURATED SANDS (TOKIMATSU AND SEED, 1987)
FIGURE 2-10: VOLUMETRIC STRAIN AS A FUNCTION OF FACTOR OF SAFETY (ISHIHARA AND
YOSHIMINE, 1992)
FIGURE 2-11:SPT CLEAN-SAND BASE CURVE FOR EVALUATING CYCLIC STRESS RATIO (YOUD ET
AL., 2001)

FIGURE 2-12: RECOMMENDED MAGNITUDE SCALING FACTORS (MSF) (YOUD ET AL., 2001)......33

FIGURE 2-13: COMBINATION OF RELATIVE DENSITY AND EFFECTIVE STRESS LEVEL (TOWHATA,

2008)	
FIGURE 3-1: SOIL TANK DIMENSIONS	
FIGURE 3-2: SOIL TANK USED IN EXPERIMENTAL EVALUATIONS	
FIGURE 3-3: FABRICATION OF SHAKE TABLE	40
FIGURE 3-4: CONSTRUCTION OF TOP HALF OF SHAKE TABLE	40
FIGURE 3-5: ANCO ECCENTRIC-MASS SHAKER	42
FIGURE 3-6: BIAXIAL SHAKE TABLE WITH SOIL CONTAINER LOCATED IN EEL.	43
FIGURE 3-7: SIERRA SILICA #60 MESH IN STORAGE CONTAINER	44
FIGURE 3-8: AVERAGE GRAIN-SIZE DISTRIBUTION OF SIERRA SILICA #60 MESH	45
FIGURE 3-9: PREPARATION OF NON-LIQUEFIABLE LAYER	46
FIGURE 3-10: SOIL TANK WITH PREPARED SATURATED DENSE LAYER PRIOR TO PLACEME	NT OF
LIQUEFIABLE LAYER	47
FIGURE 3-11: MEMSIC ACCELEROMETERS USED IN EXPERIMENTAL EVALUATIONS.	48
FIGURE 3-12: PRESSURE SENSOR CELLS USED IN EXPERIMENTAL EVALUATIONS	49
FIGURE 3-13: TYPICAL LVDT USED IN EXPERIMENTAL EVALUATIONS.	49
FIGURE 3-14: SCHEMATIC OF SOIL PROFILE AND INSTRUMENTATION LAYOUT	50
FIGURE 3-15: FOUNDATION MODELS UTILIZED IN THE EXPERIMENTS	51
FIGURE 3-16: MODEL HELICAL PILE FOUNDATIONS UTILIZED IN THE EXPERIMENTS	52
FIGURE 4-1: LOCATION OF "THE LANDING RESORT" ADJACENT TO BEACH IN SOUTH LAKE	

TAHOE, NV (GOOGLE EARTH, 2016			
FIGURE 4-2: PROFILE VIEW OF SOIL MOD	EL CONFIGURATION	FOR 1-G SHAKE TABLE	TESTING58

FIGURE 4-3: PLAN VIEW OF SOIL MODEL CONFIGURATION FOR 1-G SHAKE TABLE TESTING 59
FIGURE 4-4: PHASE 1 BOUNDARY EFFECT MODEL DEFORMATIONS63
FIGURE 4-5: HIGH DENSITY FOAM FOR BOUNDARY EFFECT REDUCTION
FIGURE 4-6: PHASE 1 TYPICAL SOIL TANK PROFILE WITH COLORED SAND DELINEATORS
FIGURE 4-7: TEST #9 – SOIL MODEL ACCELERATIONS
FIGURE 4-8: TEST #9 – OBSERVED SOIL MODEL SETTLEMENT (MANUALLY MEASURED)67
FIGURE 4-9: TEST #24 PRIOR TO SHAKING70
FIGURE 4-10: TEST #24 PRIOR TO SHAKING70
FIGURE 4-11: TEST #27 – SOIL MODEL ACCELERATIONS AND PORE PRESSURE RATIO71
FIGURE 4-12: TEST #27 – OBSERVED SOIL MODEL SETTLEMENT (MANUALLY MEASURED)
FIGURE 4-13: TEST #27 – ESTIMATED SPECTRAL ACCELERATIONS73
FIGURE 4-14: TEST #43 PRIOR TO SHAKING76
FIGURE 4-15: TEST #52 DEPICTION OF SETTLEMENT RESULTING FROM LIQUEFACTION (A)
BEFORE AND (B) AFTER SHAKING76
FIGURE 4-16: TEST #52 PLAN VIEW OF SETTLEMENT RESULTING FROM LIQUEFACTION FOR BOTH
MODEL FOUNDATIONS (A) BEFORE AND (B) AFTER SHAKING77
FIGURE 4-17: TEST #38 – SOIL MODEL ACCELERATIONS
FIGURE 4-18: TEST #38 – OBSERVED PORE PRESSURE RATIOS
FIGURE 4-19: TEST #38 – ESTIMATED MODEL SPECTRA AND MEASURED LVDT80
FIGURE 4-20: TEST #38 – OBSERVED SOIL MODEL SETTLEMENT (MANUALLY MEASURED)81
FIGURE 4-21: TEST #53 POSITIONED ON BIAXIAL SHAKING TABLE83
FIGURE 4-22: TEST #53 PRIOR TO SHAKING
FIGURE 4-23: TEST #53 – SOIL MODEL ACCELERATIONS

FIGURE 4-24: TEST #53 – OBSERVED PORE PRESSURE RATIOS
FIGURE 4-25: TEST #53 – ESTIMATED MODEL SPECTRA AND MEASURED LVDT
FIGURE 4-26: TEST #53 – OBSERVED SOIL MODEL SETTLEMENT (MANUALLY MEASURED)
FIGURE 4-27: TYPICAL MEASUREMENT OF SETTLEMENT UPON COMPLETION OF SHAKE TABLE
TESTING91
FIGURE 4-28: COMPARISON OF SEMI-EMPIRICAL ESTIMATES OF LIQUEFACTION SETTLEMENT TO
AVERAGE MEASURED SETTLEMENT FOR FREE-FIELD
FIGURE 4-29: COMPARISON OF SEMI-EMPIRICAL ESTIMATES OF LIQUEFACTION SETTLEMENT TO
AVERAGE MEASURED SETTLEMENT FOR FREE-FIELD
FIGURE 4-30: COMPARISON OF RELATIVE DENSITY OF LIQUEFIABLE SOIL AND MEASURED
SETTLEMENT IN FREE-FIELD94
FIGURE 4-31: COMPARISON OF RELATIVE DENSITY OF LIQUEFIABLE SOIL AND MEASURED
SETTLEMENT FOR 6-INCH DIAMETER FOUNDATION95
FIGURE 4-32: COMPARISON OF FOUNDATION DIAMETER AND MEASURED SETTLEMENT97
FIGURE 4-33: COMPARISON OF GROUND MOTION DURATION AND MEASURED SETTLEMENT IN
FREE-FIELD
FIGURE 4-34: COMPARISON OF GROUND MOTION DURATION AND MEASURED SETTLEMENT
FOR 6-INCH BUILDING FOUNDATION
FIGURE 4-35: COMPARISON OF LIQUEFIABLE LAYER THICKNESS AND MEASURED SETTLEMENT
FOR FREE-FIELD
FIGURE 4-36: COMPARISON OF LIQUEFIABLE LAYER THICKNESS AND MEASURED SETTLEMENT
FOR 6-INCH AND 10-INCH BUILDING FOUNDATION101

FIGURE 4-37: COMPARISON OF UNSUPPORTED FOUNDATIONS WITH PREVIOUS RESEARCH
(ADAPTED FROM DASHTI ET AL. 2010B)103
FIGURE 4-38: COMPARISON OF HELICAL PILE SUPPORTED FOUNDATIONS WITH PREVIOUS
RESEARCH (ADAPTED FROM DASHTI ET AL. 2010B)104
FIGURE 4-39: COMPARISON OF FREE-FIELD AND BUILDING SETTLEMENT FOR HAND MEASURED
AND LVDT
FIGURE 4-40: COMPARISON OF HAND MEASURED VALUES VS LVDT FOR FREE-FIELD
FIGURE 4-41: COMPARISON OF HAND MEASURED VALUES VS LVDT FOR BUILDING FOOTPRINT

Chapter 1 Introduction

1.1 General Introduction

Recent earthquakes in New Zealand and Japan have documented extensive settlement and damage to buildings and residential structures resulting from the effects of liquefaction. Depending on the type of foundation, settlement can translate damage to the superstructure of the building. The Canterbury Earthquake Sequence (2010-2011) saw as many as 20,000 residential homes damaged from poor ground conditions that were susceptible to liquefaction (Henderson 2013). Almost half of those structures were deemed a total loss. The Great Tohoku Earthquake of 2011 produced similar effects to structures. Field reconnaissance of the areas affected by these earthquakes noted several observations in regards to performance of foundation types and degree of settlement. In Christchurch, certain foundation types performed better in terms of damage not translating to the superstructure, while other foundation types settled and resulted in large differential displacements and damage to the building superstructure.

Until recently, liquefaction-induced settlement has been estimated for free-field conditions, meaning a liquefiable area not subject to the influence of external loadings such as buildings. Methods to develop these estimates provide a general range of probable settlement in liquefaction susceptible soils. Estimates have been proposed by Tokimatsu and Seed (1987), Ishihara and Yoshimine

(1992). However, it has always been understood that structures founded over liquefiable soils will typically show greater settlement than predicted using the free-field settlement estimates. Current standards of practice in estimating probable liquefaction-induced settlements are solely based on volumetric strains. These volumetric strains are a result of dissipation of excess pore water pressures and assume that the majority of settlement occurs in post-liquefaction. Numerous experimental studies have been conducted in an effort to improve the methods that predict liquefaction-induced building settlement. These studies included centrifuge and 1-g shake table tests to monitor behavior of settlement during development of soil liquefaction. Additionally, previous research has focused on isolating the mechanisms controlling the settlement to gain further insights on the behavior and relationships of governing liquefaction settlement. Field observations of building foundation settlement and research have illustrated that liquefaction settlement tends to decrease with increasing foundation width. However, further research is needed to better isolate and define other factors that influence and contribute to the settlement of such structures within liquefiable soils.

1.2 Problem Description

Current practices used to predict liquefaction-induced building settlement are based on semi-empirical relationships in the free-field. The controlling mechanisms of liquefaction-induced building settlement are not well understood. Research focused on identifying the controlling mechanisms and influence of parameters such as foundation width, relative density of soil, thickness of liquefiable layer and ground motion duration on liquefaction settlement will provide additional insight on this issue. Improved understandings and better insights on liquefaction-induced building settlement will ultimately lead to better design procedures and mitigations for foundations residing over liquefaction susceptible soils. Additionally, these insights will also lead to improved semiempirical methods in predicting liquefaction settlements.

1.3 Scope

A comprehensive parametric study was conducted to evaluate liquefactioninduced settlement for a series of model structures founded over liquefiable soils. However, before commencement of any experimentation, a thorough review of previous research and literature concerning the effects of liquefaction-induced settlement was conducted and used as a guide to narrow our experimental focus. Review of these previous studies allowed us to identify parameters that were well understood as well as parameters that could benefit from additional research. Our literature review also included field reconnaissance reports of previous earthquakes that documented extensively the effects of liquefaction on structures. Review of previous research and field observations assisted in refining our experimental models to draw focus to specific fundamental parameters contributing to liquefaction such as ground accelerations and excess pore water pressures.

Each model structure was representative of a typical one-to-two story building. The models consisted of circular "rigid shallow" foundations of various diameters, each applying a similar contact pressure on the soil model. The study also evaluated the efficacy of helical piles as a mitigation strategy for underpinning of these foundations in liquefiable soils. In total, 56 experiments were conducted on a scaled model with liquefiable soil conditions. Liquefaction was induced using a 1-g shaking table for each experiment. The experiments were carried out in four phases. Phase 1, the initial phase, was used mainly to gain an understanding of how best to construct each model and implement instrumentation. Phase 2, continued to refine and calibrate the models, however it included pressure sensors to measure pore water pressure and one linear variable differential transformer (LVDT) to observe settlement for our model buildings. Phase 3 testing was more of the production phase. In Phase 3, the model included all instrumentation and model buildings. These results were used to conduct the majority of our parametric study. Phase 4 tested our soil model on a large scale shake table equipped with hydraulic actuators. In addition, it also used a realistic input motion for the 1979 El Centro Earthquake. Results of Phases 2 through 4 were compared to previous experimental studies and field observations that have focused on defining the relationship between width of foundations and magnitude of settlement during instances of liquefaction.

Chapter 2 Literature Review

Although devastating and oftentimes tragic, earthquake events provide the opportunity for observation of both the mechanisms of earthquake induced failures as well as the performance of structures and their various types of foundations. Often these observations lead practitioners to new insights on soil structure interactions, soil mechanics and new designs or mitigation strategies towards preventing future catastrophes. Commonly, these insights are observed and then evaluated through means of experimental studies, where researchers draw inferences based on the outcomes of those experiments with the ultimate goal of deriving new understandings and building upon the standards of practice in engineering design.

The following sections will explore in detail some of the more recent field observations of past earthquake events that are providing greater insight into the controlling mechanisms of liquefaction and their subsequent damage. These observations, coupled with recent experiments into the behavior of structures founded on liquefiable soils are intent on furthering the understanding of the behavior and improving the standards of practice used in designing structures in such environments.

2.1 Observations from Past Earthquakes

Recent large magnitude earthquakes have caused significant damage both in Japan and New Zealand. These earthquakes were centered near large

population centers with structures and appurtenances ranging from lightly loaded to larger multi-story buildings. Immediately after each event, researchers mobilized to document the damage and effects resulting from these catastrophic events. Both the March 11, 2011 M9.0 earthquake centered off the northeastern coast of Japan and the 2010-2011 Canterbury earthquake sequence centered off the New Zealand coast near Christchurch were equally devastating. Unfortunately, these events also provided the opportunity for observations on the performance of many foundation types subjected to these events.

March 11, 2011 Tohoku Earthquake

The March 11th event in Japan was centered approximately 200 miles northeast of Tokyo Bay. The magnitude 9.0 earthquake was responsible for generating a catastrophic tsunami that inundated the coastlines. The long duration event was also responsible for causing severe liquefaction. In fact, the areas of highest liquefaction-induced damage within the Tokyo Bay and surrounding areas were identified as those constructed over reclaimed soils (Ashford et al. 2011, Yasuda et al. 2012). According to Yasuda 2012, a great deal of land has been reclaimed in the Tokyo Bay area since the seventeenth century. More recently in the 1960's, Tokyo began dredging marine sediments from the bay and reclaiming them to accommodate growth in industry and increase land for residential property. Figure 2-1 presents a typical schematic of the dredging operation that was employed for land reclamation. In the figure it can be clearly seen that the dredged marine sediments were re-deposited below the sea level (ground water table). As a result, the soils were largely loose, unconsolidated and saturated based on the nature of their deposition. Yasuda also noted that historically, land reclamation had occurred in the original estuaries along the Tokyo Bay region.

Composition of the dredged fill soils from Tokyo Bay were characterized as being mostly a sandy soil, however it was also noted that at times the fill material did contain a higher fines content. Subsurface characterization of the Tokyo Bay area after the March 11th event identified that the reclaimed soils in the Urayasu District were as much as 6-9 meters in thickness below the groundwater table and contained SPT N-values ranging from 2-8 blows (Yasuda et al. 2012). It was further identified that although the fill soils with higher fines contents should have been less susceptible to liquefaction, the long duration of the seismic event was likely a contributing factor.

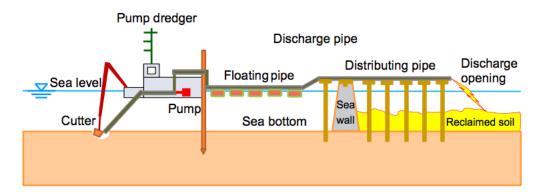


Figure 2-1: Typical Schematic of Dredging Operations for Reclaimed Soils (Yasuda et al. 2012)

According to Yasuda et al. 2012, as many as 27,000 structures within the Tohoku and Kanto regions of Japan were damaged as a result of liquefaction.

Performance of these structures varied considerably based on their foundation type and whether ground improvement methods had been implemented. Ashford et al. 2011 observed that many light residential and commercial structures experienced a large degree of settlement and tilting. These structures were typically founded on a rigid mat foundation with deep grade beams and also noted that damage usually did not translate to the super structure despite the large degree of tilting and settlement. Figure 2-2 presents the typical damage incurred as a result of liquefaction-induced settlement. The figure shows two buildings with an adjacent sidewalk. It is apparent that one building has experienced minimal settlement and the other has experienced significant settlement and appears to be tilting. The building that experienced the large degree of settlement is founded on a mat-type foundation while the other is supported by a pile foundation system. Liquefaction-induced damages were also observed to have impacted buried utilities and lifelines as well as levee structures and many other appurtenances of infrastructure.

Figure 2-2: Liquefaction-Induced Building Settlement in Uraysu, Japan (Ashford et al. 2011 and Bray 2016)

During the field reconnaissance after the March 11th event both Yasuda et al. 2012, and Ashord et al. 2011 observed foundations that had previously employed ground improvement methods. Ground improvement methods have been employed within the Tokyo Bay region as a liquefaction countermeasure since the 1980's. These methods consist of vibratory sand compaction piles SCP), non-vibratory SCP, gravel drains and lattice-type deep mixing (Yasuda et al. 2012). Reconnaissance of the areas that implemented ground improvement methods typically showed good performance and minimal damage (Ashford et al. 2011, Yasuda et al. 2012).

2010-2011 Canterbury Earthquake Sequence

The Canterbury earthquake sequence also provided good grounds to observe the performance of structures and foundations subjected to the effects of liquefaction-induced settlement. Between September 2010 through December 2011, New Zealand was affected by a series of strong motions that triggered localized to widespread, minor to severe liquefaction in the Canterbury region (Bray et al. 2015, Henderson 2013, van Ballegooy et al. 2014). Reconnaissance of the affected areas identified that the Central Business District (CBD) of downtown Christchurch experienced the most significant damage resulting from liquefaction. Furthermore, it was observed that liquefaction-induced damage produced varying effects on buildings with different structural and foundation systems (Bray et al. 2015). Four types of foundations were identified on lightly loaded structures in the heavily affected area, (1) concrete perimeter with short piers, (2) concrete slab on grade, (3) RibRaft slabs and (4) driven pile foundations (Henderson 2013). Figure 2-3 presents an aerial view of Christchurch region and the corresponding ground surface observations of liquefaction-induced damage resulting from the February 22nd, 2011 event. The areas of highest liquefaction damage can be seen within and around the channels and flood plains of the Avon River. Subsurface conditions throughout the CBD and Christchurch can be characterized as having highly variable, alternating deposits of sands and gravels with overbank deposits of silty soils (Bray et al., 2015). The water table throughout the area is relatively shallow, 1-3 meters below the ground surface (Bray et al. 2015).

Approximately 20,000 homes were identified to have experienced some degree of damage and approximately 7,000 of those homes were deemed uninhabitable due to the severity of the damage incurred (Henderson 2013). Reconnaissance teams performed detailed inspections of these homes and areas subjected to the effects of liquefaction. These detailed inspections focused on level of subsidence, degree of tilting and any noticeable damage incurred to the foundation and superstructure (Henderson 2013).

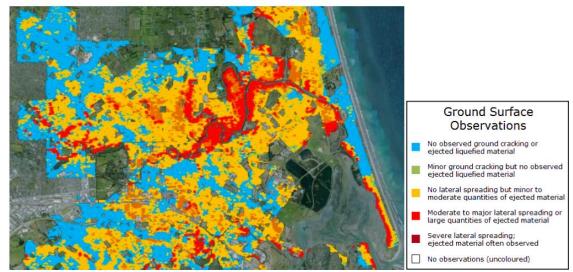


Figure 2-3: Severity of Liquefaction-Induced Damage within Christchurch after February 22, 2011 Event. (Henderson 2013)

In addition, these inspections led to the development of a qualitative system of seven groupings that defined the severity of damage to foundations and structures, ultimately defining a "red zone", where reconstruction of damaged structures was no longer feasible. These groupings also included three "technical land categories" to assist in repair and reconstruction; where each category is based on severity and potential for future liquefaction-induced damage effecting performance of foundations (van Ballegooy 2014). In the case of van Ballegooy et al. 2014, the field reconnaissance was conducted to assist in insurance compensation purposes given the scale of homes effected by liquefactioninduced damage. Figure 2-4 presents the liquefaction-induced damage resulting from the February 22, 2011 event. Considerable amounts of sediment ejecta can be seen in addition to the water inundation of homes resulting from liquefaction.

Figure 2-4: Liquefaction-Induced Damage Christchurch (van Ballegooy 2014)

2.2 Prior Experimental Studies

Liu and Dobry (1997)

Liu and Dobry (1997) conducted 8 centrifugal tests that investigated the seismic response of shallow foundations on liquefiable soil. Two series of experiments were conducted that evaluated the settlement of shallow foundations subjected to soil liquefaction; Series C focused on varying the depth of compaction of soil beneath the model foundation while Series G investigated the effects of soil permeability on seismic response. Series C utilized vibrocompaction methods to vary the depth of compaction for five model tests (C0 through C4). Test C0 served as a base model for the case of zero compaction. Series G focused on effects of different cohesionless grain sizes by employing a glycol solution in the centrifuge to model permeability of a finer grained soil. Three tests were performed for Series G (G0, G55 and G85). Each suffix for Series G represents the percentage of glycol present in solution for the centrifuge model. Series C testing was completed using a model footing, representative of a shallow foundation that induced a prototype dimensions and contact pressure of approximately 4.56 m and 100 kPa respectively. Series G testing was completed using a model footing, representative of a shallow foundation that induced a prototype dimensions and contact pressure of approximately 2.85 m and 122 kPa respectively. Liu and Dobry (1997) concluded in Series C that as the compaction depth increased, so did the acceleration of the building footing during shaking. With increased compaction and footing acceleration, the settlement of the building decreased as well. Series G showed that with decreasing grain size, or

decreasing permeability, the dissipation of excess pore water pressure increases. Series G also suggest that with decreasing soil permeability in sands, post-liquefaction settlement is likely to increase. The data for each series were validated by comparing the results to the bounds presented in Figure 2-5. Figure 2-5 presents two plots, the first plot is the data set from two historic earthquakes (1964 Niigata and 1990 Luzon) where liquefaction-induced settlement was prevalent. Each event allowed researchers to document first-hand the degree of settlement for varying widths of foundations. The data resulted in the two bounded curves and is commonly used today to compare liquefaction-induced settlement data. The curves suggest based on observations that settlement is proportional to the foundation width. The second plot in Figure 2-5 presents the results of both the Series C and G experiments. Series C data clearly shows that with increasing compaction of soils and reduction in thickness of liquefiable layer, the settlement is decreased. Series G shows that results without ground improvement fall within the bounds of previous observations.

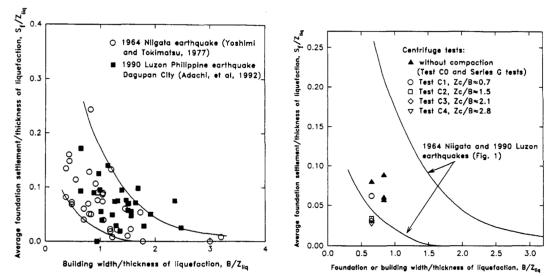


Figure 2-5: Normalized Settlement versus Normalized Building Width for Centrifuge Testing (Liu and Dobry 1997)

<u>Dashti et al. (2010a)</u>

Current state of practice in estimating liquefaction-induced settlement is to use procedures that evaluate postliquefaction settlement in the free-field environment. However, recent earthquakes have shown that seismically induced settlement for buildings on shallow foundations can be considerably larger. Dashti et al. (2010a) have identified the need to identify the key mechanisms involved in liquefaction-induced building settlement. A series of centrifuge experiments evaluating model buildings on shallow foundations seated over a layered liquefiable stratum were performed to identify those key mechanisms. Each test included three model foundations A, B and C. Model foundation A represented a two-story structure, Model B represented a two-story structure with wider footprint and Model C represented a four-story structure. Contact pressures for Models A, B and C ranged from 80, 80 and 130 kPa respectively.

Dashti et al. (2010a) indicated through the results of the centrifuge testing that building settlement is not directly proportional to the thickness of the liquefiable layer. Additionally, the results show that the majority of settlement occurs during strong shaking with minimal settlement occurring as a result of postliguefaction excess pore water pressure dissipation. Past investigations of the relationship between building settlement and liquefaction have identified other important factors such as intensity of shaking, relative density of soils, thickness of liquefiable deposits and contact pressure of the structure in question. Commonly, these parameters, excepting contact pressure, are used in the 1D free-field liquefaction settlement procedures proposed by Tokimatsu and Seed (1987); Ishihara and Yoshimine (1992). Dashti et al. (2010a), however, point out that these procedures ignore the partial drainage that occurs during strong shaking and important deviatoric strain mechanisms. It was observed during testing that partial drainage existed both horizontally and vertically away from each model building in response to the increased pore pressures, while each model footing generated a soil-structure cyclic response in both inertial forces and pore water pressure. Bray et al. (2014) also noted that settlement of the building occurred linearly with duration of shaking and dramatically decreased upon cessation of shaking. Significant settlements were also observed in the free-field during shaking suggesting partial drainage. Lastly, Dashti et al. (2010a) concluded that for each scenario in centrifuge testing, static and dynamic deviatoric-induced movements in combination with sedimentation and localized volumetric strains due to partial drainage during earthquake shaking were responsible for most of

settlements measured in the experiments. Similar inferences can be assumed for the case of free-field settlement excluding the influence of static and deviatoricinduced movements. In Figure 2-6, Dashti et al. (2010a) expand on the previous results from the Liu and Dobry case study in an attempt to validate their data. Normalized results in this plot do not show good agreement with the Lui and Dobry centrifuge tests. It should be noted that the contact pressure for the Dashti experiments were quite large, on the order of 80 and 130kPa which is not characteristic of a shallow lightly loaded foundation.

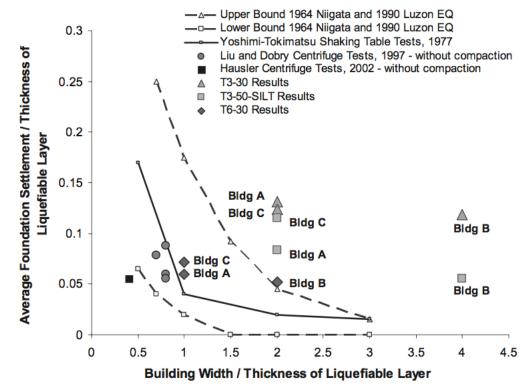


Figure 2-6: Normalized Foundation Settlements of Dashti Centrifuge Experiments (Dashti et al. 2010a)

<u>Dashti et al. (2010b)</u>

Dashti et al. (2010b) further elaborates on their previously published research. The author further iterates that estimating postliguefaction settlement in the freefield is not an appropriate measure to evaluate settlement of buildings founded over liquefiable soils. Dashti et al. (2010a) performed centrifuge experiments to identify controlling mechanisms governing seismically-induced settlement of buildings with rigid mat foundations over thin layers of liquefiable soils. To further understand the controlling mechanisms of settlement, specific mitigation techniques were employed on each model in an attempt to isolate selective parameters. Dashti et al. (2010b) observed that denser liquefiable soils lead to increased stiffness and thus decrease likelihood of bearing failure. However, an increase in relative density of liquefiable soil, also leads to an increase in demand on the structure, thus promoting ratcheting of the soil-structure. Ratcheting can be described as an accumulation of strain during each cycle during strong ground motion. Results of these experiments have revealed that the initiation, rate and amount of liquefaction-induced building settlement follow the rate of ground shaking intensity. The shaking intensity rate (SIR) can be measured as the slope of the arias intensity at its strongest time of shaking. Dashti et al. (2010b) surmise that the SIR along with other key parameters may be useful in developing a framework for estimating liquefaction-induced building settlement. Specific mitigation strategies were implemented in each model to reduce influence of certain key parameters while isolating others. Latex water barriers were installed on some model perimeters to reduce horizontal flow of

water while more rigid structural walls were used to reduce effects of shearinduced deformations and volumetric strains. Each subsurface remediation reduced overall settlement of the model building.

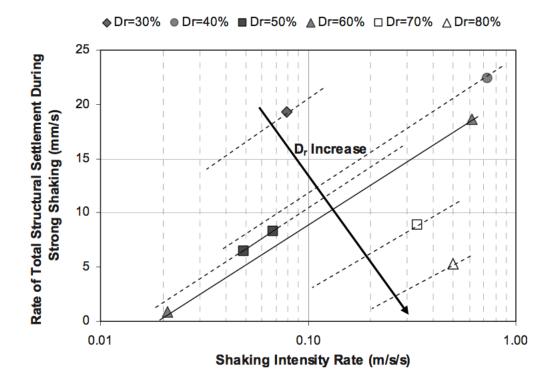


Figure 2-7: Comparison of Settlement Rate to Shaking Intensity Rate with Increasing Relative Density (Dashti et al. 2010b)

Bray and Dashti (2014)

Liquefaction-induced ground displacement has contributed greatly to differential movements of buildings founded in liquefiable soils during earthquakes. Settlement based damage has been observed in buildings that experience punching, tilting and lateral sliding as a result of bearing failure. Bray and Dashti (2014) have observed in previous centrifuge experiments that much of the building movement occurs during earthquake strong shaking. Bray and Dashti

(2014) further clarify that shear-induced movements resulting from shakinginduced ratcheting of the buildings into the softened soil and volumetric-induced movements due to localized drainage in response to high transient hydraulic gradients during shaking are important effects that are not captured in most design procedures. More specifically, importance of each mechanism are dependent upon earthquake motions, the liquefiable soil and structure. These mechanisms are further dependent upon the shaking intensity rate (SIR) of the ground motion. Sediment ejecta, resulting from dissipation of excess pore water pressure, tended to have more of an influence on building settlement when founded over shallow thin deposits of liquefiable material. Bray and Dashti (2014) have identified that the dominant mechanisms for many cases of liquefactioninduced settlement are, sediment ejecta, foundation ratcheting, bearing failure due to soil strength loss and localized volumetric strains resulting from transient hydraulic gradients. Building settlement was also observed to increase significantly after $Ru \approx 1$ with minor contributions in consolidation-induced volumetric strain after shaking had ceased. Lastly, Bray and Dashti (2014) reassert that current engineering practices use an empirical based solution to estimate liquefaction-induced settlement for free-field conditions. The empirical approach does not take into consideration other dominant key parameters that contribute to liquefaction settlement of structures during seismic loading events. Although a simplified approach currently does not exist, Bray and Dashti (2014) provide recommendations to help guide the engineer in performance-based engineering assessment. Bray and Dashti (2014) recommend performing a wellcalibrated, nonlinear, effective stress, dynamic analysis to provide further insight into the problem and has been implemented with reasonably well results using the UBCSAND model within FLAC-2D. Figure 2-8 presents the Liquefactioninduced displacement mechanisms typically of a structure during seismic events. These movements contribute to development of deviatoric and volumetric strains.

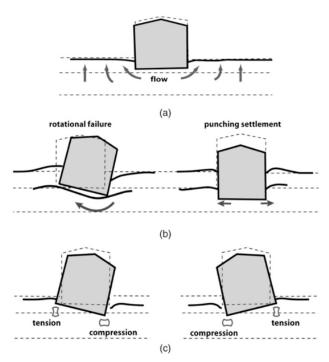


Figure 2-8: Liquefaction-Induced Displacement Mechanisms (Bray and Dashti 2014)

Rasouli et al. (2015)

Liquefaction-induced settlement of lightly loaded structures, such as residential properties, in liquefaction prone areas is very common. To date, cost-effective solutions in mitigation of these settlements is not very prevalent. Rasouli et al. (2015) performed a series of 1-g shake table experiments that investigated the

performance of sheetpile walls as a potential mitigation strategy in reducing settlements experienced from the effects of liquefaction. It was believed that by restricting the lateral displacement of liquefiable soils during earthquake events, the overall settlement of structures founded within the perimeter of those sheetpile walls could be reduced.

The study focused specifically on four scenarios of evaluation; (1) Baseline (no mitigation employed), (2) Full embedment of sheetpiles in a non-liquefiable bearing layer, (3) Staggered embedment of sheetpiles into non-liquefiable bearing layer and (4) Half-length embedment of sheetpiles terminating in liquefiable soils. In addition, evaluations were conducted that compared degree of settlement resulting from different depths of ground water table (shallow vs. deep). Rasouli et al. observed that in all cases that lower groundwater table, or non-liquefiable surface layer, the ultimate settlement is reduced. Sheetpiles with non-liquefiable surficial layers tend to increase the fixity of the sheetpile system and protect the foundation against settlement (Rasouli et al. 2015). Continuous sheetpiles were observed to delay the generation of excess pore water pressure ultimately offsetting the initiation of liquefaction-induced settlement. Rasouli et al. (2015) surmised that this is beneficial for cases of weaker shaking. Cases of staggered embedment of sheetpile systems into bearing stratum also showed a delay in generation of excess pore water pressure. However, the staggered approach did not restrict lateral movement of liquefiable soil and in some cases was observed to increase the degree of

settlement. Cases of half-length embedment of sheetpile walls into the subsurface showed no reduction in liquefaction-induced settlement. Lastly, Rasouli et al. (2015) touch on the subject of post-liquefaction settlement in structures. It was observed during some evaluations that thin pockets of water developed within the liquefiable stratum beneath the foundation as a result of the large excess pore water pressures. As the pressures dissipated after cessation of shaking the settlement of the model structure continued.

2.3 Current Practices in Estimating Liquefaction Induced Free-Field Settlements

According to Kramer (1996) the tendency of sands to densify when subjected to earthquake loading is well documented. The process of densification, or settlement, frequently causes distress to structures and foundations. However, reasonably approximate estimations of this settlement have proven to be complex. Several semi-empirical methods have been developed to evaluate settlement of sands subjected to earthquake loadings (Tokimatsu and Seed 1987; Ishihara and Yoshimine 1992). These semi-empirical methods are derived largely from theory in liquefaction susceptibility based on the relationship between cyclic stress and cyclic resistance ratios. Theory and practice of evaluating liquefaction resistance has more recently been discussed by leading practitioners, providing new recommendations and updates to current standards of practice (Youd et al. 2001; Idriss and Boulanger 2004).

Tokimatsu and Seed (1987)

Tokimatsu and Seed propose a simplified approach in evaluating settlement of saturated and unsaturated sands subjected to earthquake loading. This simplified method of analysis considers the cyclic stress ratio and maximum shear strain to be the primary controlling factors of liquefaction-induced settlement for saturated sands. Additionally, the relative density of the soil or standard penetration value (N-value) along with earthquake magnitude also contribute to the degree of settlement. Tokimatsu and Seed present observed settlements at 6 sites and compare those observations with the predictions using their simplified approach. Results of these observations compare well with the predictive chart presented in Figure 2-9. Tokimatsu and Seed noted that, under static conditions, this predictive analysis can pose error on the order of 25-50%. They further point out that this method becomes less reliable when considering more complex soil conditions associated with earthquake loadings. Use of this method can be considered a first case approximation in evaluating settlement of saturated sands based on volumetric deformations.

The following equations (2.1 through 2.4) are used when evaluating the settlement for clean saturated sands in conjunction with Figure 2-9. Figure 2.9 is an empirical chart that relates the cyclic stress ratio and corrected standard blow counts to a corresponding volumetric strain.

Cyclic Shear Stress

$$\tau cyc = 0.65 * \left(\frac{amax}{g}\right) * \sigma o * rd \quad (2.1)$$

amax = Maximum horizontal acceleration at the ground surface

 σ_{o} = Total overburden stress at target depth

 r_d = Stress reduction factor

Cyclic Shear Stress Ratio

$$CSR = \frac{\tau cyc}{\sigma o'} \tag{2.2}$$

 $\sigma_{o'}$ = Effective overburden stress at target depth

<u>SPT N-Value</u> – Normalized to an effective overburden pressure of 1 tsf and effective drill rod energy equal to 60%.

$$(N1)60 = CER * CN * N$$
 (2.3)

 C_{ER} = Correction factor for drill rod energy during SPT.

 C_N = Correction factor for effective overburden pressure.

Free-Field Settlement

$$\Delta H = \varepsilon v (\%) * H \tag{2.4}$$

 ϵ_v = Volumetric Strain (%)

H = Thickness of Liquefiable Layer

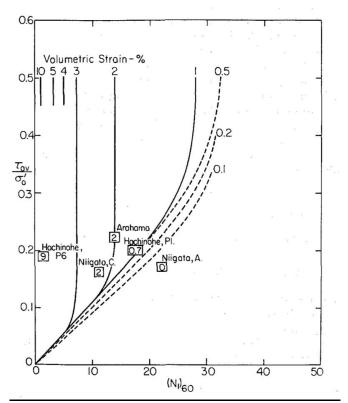


Figure 2-9: Volumetric Strain for Clean Saturated Sands (Tokimatsu and Seed, 1987)

Ishihara and Yoshimine (1992)

Ishihara and Yoshimine (1992) evaluated laboratory data on sands tested using a simple shear apparatus. The results of this evaluation were used to generate a series of curves defining volumetric strains resulting from the dissipation of pore water pressures. Ishihara and Yoshimine (1992) further correlated these volumetric strains to the relative density of sand and factor of safety against liquefaction. Similar to the original methodology presented by Tokimatsu and Seed (1987), Ishihara and Yoshimine (1992) augmented the methodology to include the factor of safety. According to Ishihara and Yoshimine (1992), the factor of safety considered using the maximum shear strain is a key parameter in identifying changes in volumetric strain. These volumetric strains and their corresponding relationships with relative density can be used to estimate the probable liquefaction induced settlement for a given site by integrating the volume changes for each subsurface layer. Ishihara and Yoshimine (1992) used the proposed methodology to compare estimated liquefaction induced settlement for sites damaged during the 1964 Niigata earthquake. They conclude that the methodology enables an approximate estimate of liquefaction-induced settlements resulting from postliquefaction volumetric strains.

The following equations (2.5 through 2.10) are used when evaluating the settlement for clean saturated sands in conjunction with Figure 2-10.

Cyclic Shear Stress

$$\tau cyc = 0.65 * \left(\frac{amax}{g}\right) * \sigma o * rd \tag{2.5}$$

 a_{max} = Maximum horizontal acceleration at the ground surface

 σ_{o} = Total overburden stress at target depth

 r_d = Stress reduction factor

Cyclic Shear Stress Ratio

$$CSR = \frac{\tau cyc}{\sigma o'} \tag{2.6}$$

 $\sigma_{o'}$ = Effective overburden stress at target depth

Cyclic Shear Stress Ratio (Liquefaction)

$$CSRL = CSRM7.5 (MCF)$$
(2.7)

CSR_{M7.5} – CSR from equation 2.6, representative of a M7.5 event.

MCF – Magnitude Correction Factor = 1.0

Factor of Safety (Liquefaction)

$$FSL = \frac{\tau cyc,L}{\tau cyc}$$
(2.8)

$$\tau cyc$$
, $L = CSR_{L}^* \sigma_{o'}$

<u>SPT N-Value</u> – Normalized to an effective overburden pressure of 1 tsf and effective drill rod energy equal to 60%.

$$(N1)60 = CER * CN * N$$
 (2.9)

 C_{ER} = Correction factor for drill rod energy during SPT.

 C_N = Correction factor for effective overburden pressure.

Free-Field Settlement

$$\Delta H = \varepsilon v (\%) * H \tag{2.10}$$

 ϵ_v = Volumetric Strain (%)

H = Thickness of Liquefiable Layer

Figure 2-10 is an empirical chart based on similar correlations to Tokimatsu and Seed. However, Figure 2-10 uses the cyclic stress ratio to estimate the factor of safety against liquefaction and relates it to the corrected standard blow count,

relative density of soil or tip stress using (CPT) to derive an estimate volumetric strain.

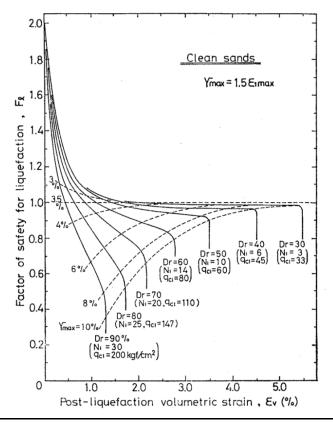


Figure 2-10: Volumetric Strain as a Function of Factor of Safety (Ishihara and Yoshimine, 1992)

Youd et al. 2001

Standard practice for evaluating liquefaction resistance of soils has commonly employed a "simplified approach" originally investigated and proposed by Seed and Idriss (1971). Youd and Seed stated that the largely empirical method has not undergone any general peer review nor updates to the procedure. A sponsored workshop was conducted in 1996 by the National Center for Earthquake Engineering Research (NCEER) to discuss developments and implement improvements to the simplified approach. Recommendations were developed for the following topics. (a) criteria based on standard penetration tests, (b) criteria based on cone penetration tests, (c) criteria based on shear wave velocity measurements, (d) use of the becker penetration test for gravelly soil, (e) magnitude scaling factors, (f) correction factors for overburden pressures and sloping ground, (g) input values for earthquake magnitude and peak acceleration.

The workshop participants proposed the following equations for determining the mean stress reduction factor when evaluating the cyclic stress ratio (CSR). The following equations (2.11 and 2.12) are recommended for noncritical and routine practice.

Stress Reduction Factors

$$rd = 1.0 - 0.00765z \, (for \le 9.15m) \tag{2.11}$$

$$rd = 1.174 - 0.0267z (for \ 9.15m < z \le 23m)$$
(2.12)

z = depth below ground surface in meters.

In regards to the CSR, the workshop also proposed an updated plot for clean sands for a Magnitude 7.5 earthquake. The following plot presented in Figure 2-11, recommended limiting the low end of the CSR at 0.05 for lower values of $(N_1)_{60}$. Additionally, they also provide recommendations to updating the

estimation of $(N_1)_{60}$ through a series of corrections that account for hammer energy ratio, borehole diameter, rod length and sampler corrections. Most importantly there is also a correction factor for overburden stress. The following equation presents the proposed correction factors.

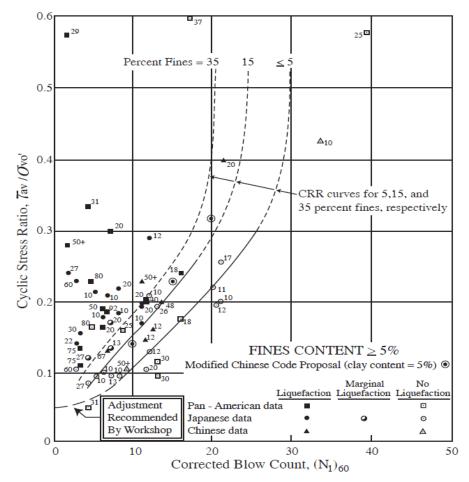


Figure 2-11: SPT Clean-Sand Base Curve for Evaluating Cyclic Stress Ratio (Youd et al., 2001)

<u>SPT N-Value</u> – Normalized to an effective overburden pressure of 1 tsf and effective drill rod energy equal to 60%.

$$(N1)60 = Nm * CN * CE * CB * CR * CS$$
(2.13)

 N_M = Measured standard penetration resistance

 C_N = Correction factor to normalize N_M to common reference overburden stress.

- C_E = Correction factor for hammer energy ratio.
- C_B = Correction factor for borehole diameter
- C_R = Correction factor for rod length
- C_{S} = Correction for SPT samplers with or without liners

The magnitude scaling factor is also an important factor when evaluating the liquefaction resistance of soils. The simplified methods and recommendations discussed in Youd et al. 2001 were intended to put qualitative measures for an earthquake representative of a M7.5 event. The recommended revised Magnitude Scaling Factors based on the moment magnitude are presented in Figure 2-12.

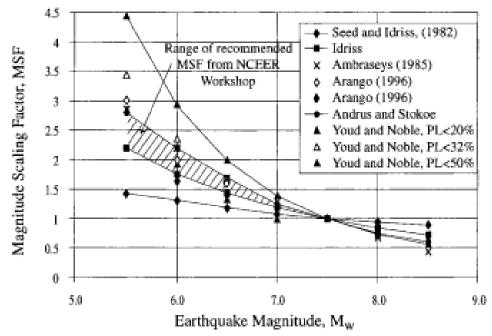


Figure 2-12: Recommended Magnitude Scaling Factors (MSF) (Youd et al., 2001)

2.4 Shake Table Testing Model Similitude

According to Kramer (1996), shake table testing has been used in geotechnical research for quite some time. Shake table testing allows for the model to be viewed from many perspectives during testing and can be constructed for many different sizes. Depending on the facilities available, shake tables can be so large that they allow for testing of soils and structures in prototype "actual" scale. However, this is not very common and therefore testing usually requires evaluations be completed on a scaled model with soil conditions at much lower in-situ stress levels. As a result, correction procedures have been developed to aid in the interpretation of shaking table test results (Kramer 1996). These correction procedures applied are known as the law of similitude.

The laws of similitude govern the scaling of specific parameters for a model whose corresponding dynamic behavior the model is trying to reproduce (Towhata 2008). The law provides basic scaling factors that consider geometry, stresses and strains for both soils and structures as well as dynamic behavior. Iai (1989) developed a theoretical consideration for similitude for shaking table tests of saturated soil-structure-fluid systems in the 1-g gravitational field. This theory was based on the basic equations that govern the equilibrium and the mass balance of soil skeleton, pore water and structures. Table 2-1 presents the scaling factors considered in our experimental evaluation using a 1-g shake table. Similitude for 1-g shake table tests assumed the special case as presented in lai (1989) where the scaling factor for density of testing medium was assumed to be equal to 1. This is a reasonable assumption for soils.

Parameter	Item	Scaling Factors	
x	Length	λ	
ρ	Density of Saturated Soil	1*	
٤	Strain of Soil	λ ^{0.5}	
t	Time	λ ^{0.75}	
σ	Total and Effective Stress	λ	
р	Pore-Water Pressure	λ	
ü	Acceleration of Soil or Structure	1	
EI	Flexural Rigidity λ ^{3.5}		
EA	Longitudinal Rigidity	λ ^{1.5}	

Table 2-1: Similitude for 1-g Shake Table Tests (Adapted from Iai, 1989)

Lastly, consideration is being given towards the density of the soils utilized in shake table testing. Table 2-1 assumes that the density of the soil has a scale factor equal to one, meaning that the model and prototype densities are equal. However, discussion has arisen if testing would be more accurate to prototype conditions by considering the shape of the stress-strain curve and dilatancy in model tests under low-effective stresses rather than assuming equal soil density (Towhata 2008). The brittleness index is a quantitative measure of the difference between peak and residual shear stress in relation to the peak shear stress. Research has identified through ring shear testing that confining stress plays an important role when choosing an appropriate relative density between prototype and model scales. The following Figure 2-13 presents the results of an experimental study that evaluated strength softening of soils. According to

Towhata (2008) the results of the study concluded that strength softening is a result of pore water pressure and soil dilatancy. Towhata further defines that soil dilatancy is influenced by both stress and density. Therefore consideration should be given when using 1-g shake table models of a scaled size because the stresses will not be representative.

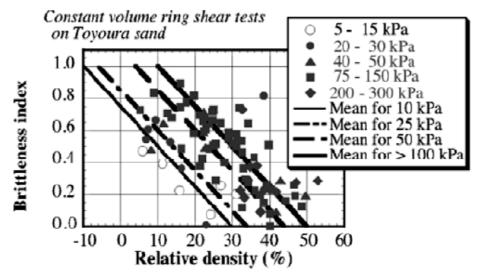


Figure 2-13: Combination of Relative Density and Effective Stress Level (Towhata, 2008)

Chapter 3 Test Procedures and Materials

3.1 Soil Container

Each experiment utilized a transparent soil box fitting the dimensions of 6.7 feet x 2.1 feet x 2.7 feet (length - width - height). The box was constructed of 1-inch thick lexan and reinforced along the corners by a rigid steel frame. Two valves were installed near the base of the box, allowing for saturation of the soil medium prior to testing. The inside base of the soil box contained 1-inch thick spacers and a perforated 0.25-inch thick acrylic sheet. The perforated acrylic sheet assisted in allowing the soil medium to be drained upon completion of each test. The inside of the soil container was fit with thin sheets of plexiglass. A grid pattern was marked on each plexiglass sheet with the dimensions of 5 by 10-cm and was used to make observations in settlement of the surface and placement of instrumentation. Lastly, the inside ends of the soil container were fit with 3-inch thick high density foam pads to reduce boundary effects during experimentation. Figures 3-1 presents the soil tank with corresponding dimensions utilized for experimental evaluations.

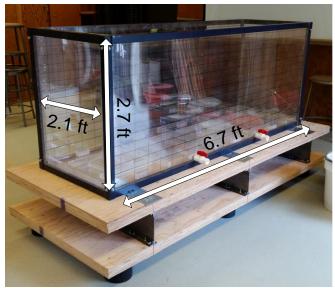


Figure 3-1: Soil Tank Dimensions

Figure 3-2 presented below shows our soil model consisting of two 1-foot thick

layers of sand (non-liquefiable and liquefiable).

Figure 3-2: Soil Tank used in Experimental Evaluations

3.2 Shake Table Fabrication

A simple constructed shake table was utilized to perform the majority of our experimental evaluations. The table consisted of two 2-inch thick pieces of plywood separated by three equally spaced vertical support members (VSM) constructed of steel. The outer VSM were 1/16-inch in thickness and the center VSM was 1/8-inch thickness. The table was designed to seat the soil container with input motion being induced by displacing the top half of the table in relation to the bottom half of the table. The table was designed for approximately 1-inch of displacement and produce a frequency of 5-6 Hz. Configuration of the shake table and fabrication are presented in the following Figures 3-3 and 3-4. Figure 3-3 presents the bottom half of the shake table and VSM used to support the top half of the table.

Figure 3-3: Fabrication of Shake Table

Figure 3-4: Construction of top half of Shake Table

3.3 Shake Table Evaluations

Throughout the course of our research, three separate methods of shaking were employed to apply input-motions to the soil container. The first method utilized a simple 1-g manual shaking table. The second method, in an attempt to induce more consistent input motions, incorporated an eccentric-mass shaker to the shake table. The third method was performed using the facilities at the Earthquake Engineering Laboratory located at the University of Nevada, Reno.

3.3.1 Manual Shaking

Displacement or input shaking motion was implemented by inducing a horizontal force on the soil container for a specified duration. Repeatability of generating identical input acceleration characteristics between experiments presented challenges when applying shaking through means of manual shaking.

3.3.2 Eccentric Mass Shaker

In an effort to produce more consistent input motions for the experimental evaluations, an eccentric-mass shaker was installed on the shake table. An eccentric-mass shaker consists of a series of counter-rotating weights that are able to induce motions ranging from purely horizontal direction to purely vertical direction. The University of Nevada, Department of Civil and Environmental Engineering purchased the eccentric-mass shaker from ANCO in 1991. It is a Model # MK-12.2-49 and produces a maximum eccentricity of 49 lb-in over a range of 0 - 40 Hz. The mass shaker is capable of producing a maximum

allowable force of 8,000 lbs. Figure 3-5 presents the inner workings of the eccentric-mass shaker. The counter rotating weights and shafts are protected by a thick aluminum housing and have been adjusted to induce a purely horizontal force.

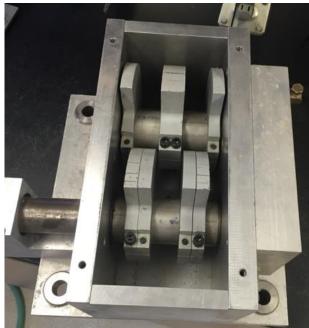


Figure 3-5: ANCO Eccentric-Mass Shaker

The intent in utilizing the eccentric-mass shaker was to produce more consistent input motions and thus reliable experimental results. Upon implementation, it was noted that the mass shaker was unable to induce liquefaction in the soil container at full capacity (2 feet of soil as presented in Figure 3-1). Therefore, the soil model was reduced by half to be able to induce liquefaction. As a result the soil model consisted of two 0.5 foot thick liquefiable and non-liquefiable layers.

3.3.3 Earthquake Engineering Laboratory (EEL)

The University of Nevada, Reno is home to one the largest full scale earthquake simulation laboratories in the world. The new building was opened in the summer of 2014 and includes a 10,000 square foot facility that hosts three-biaxial shake tables and one 6-degree-of-freedom-shake table

(http://www.unr.edu/cceer/facilities-and-equipment/earthquake-laboratory). One experimental evaluation was completed using one of the biaxial shake tables located in the EEL and is presented in Figure 3-6. Each biaxial table has the dimensions of 14 feet x 14.5 feet and is capable of displacing a 50-ton payload to a peak acceleration of 1g. Each table is operated by a series of hydraulic actuators with operating frequencies ranging from 0 - 50 Hz.

Figure 3-6: Biaxial Shake Table with Soil Container Located in EEL.

3.4 Liquefaction Testing Medium

The experimental evaluation utilized a fine to medium grained, poorly graded sand as our testing medium ($D_{50} \approx 0.32$ mm, $C_u \approx 1.75$, $C_c \approx 1.04$, $e_{min} \approx 0.73$, $e_{max} \approx 1.01$). The locally sourced material, Sierra Silica #60 Mesh, was purchased from Basalite located in Sparks, Nevada. Figure 3-7 presents the dry material ready for placement in the soil container. Figure 3-8 presents the average grain size characteristics of Sierra Silica #60Mesh.

Figure 3-7: Sierra Silica #60 Mesh in Storage Container

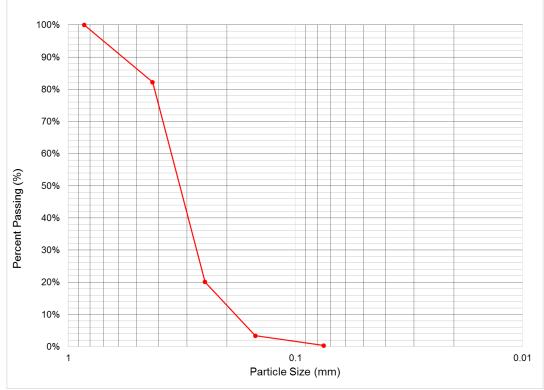


Figure 3-8: Average Grain-Size Distribution of Sierra Silica #60 Mesh

3.5 Construction of Liquefaction Evaluation Model

Each test was prepared by first constructing a moisture conditioned nonliquefiable layer. The non-liquefiable layer was conditioned to 5% moisture and then compacted in lifts within the base of the transparent soil box to a uniform thickness of 1.0 foot as presented in Figure 3-9.

Figure 3-9: Preparation of Non-Liquefiable Layer

Saturation of the non-liquefiable layer was then completed through use of a spigot located at the base of the soil box. Water was slowly introduced into the box, thus saturating the soil from the bottom up. Saturation continued until a sufficient height of standing water resided over the non-liquefiable layer, typically 0.5 feet or half the model liquefiable stratum thickness. The liquefiable layer was

then constructed by means of dry pluviation. The sand was poured over a fine mesh screen situated over the transparent box assisting in uniform deposition and complete saturation of the liquefiable layer through the standing water. The phreatic surface, in each test, was located at the surface of the liquefiable layer. Figure 3-10 presents the soil model with the dense layer constructed and saturation completed and prior to construction of the liquefiable layer by means of pluviation through water.

Figure 3-10: Soil Tank with Prepared Saturated Dense Layer Prior to Placement of Liquefiable Layer.

3.6 Instrumentation

Each experiment utilized a combination of instrumentation to assess behavior in ground acceleration, generation of excess pore water pressures and settlement behavior of model buildings. Table 3-1 summarizes the type, model number and quantity of instrumentation used during the final configuration of the experimental evaluations. Input and model accelerations were measured using a single-axis

accelerometer capable of accelerations of up to 4g. Porewater pressure was measured using a pressure sensor cell modified to withstand submersed conditions. The pressure cell was housed in a plastic cylinder and waterproofed using a clear silicon glue. As an additional precaution, each sensor was then inserted into a thin membrane finger-cot. Displacement of model structures during testing was measured using a LVDT and is capable of measuring displacements up to approximately 4 inches. Figures 3-11 through 3-13 present the instrumentation used in the experimental evaluations and summarized in Table 3-1.

Instrument Type	Make	Model No.	Quantity
Accelerometers	Memsic	CXL04GP1	6
LVDT	Novotechnik	TR-0100	3
Pressure Cells	Baystar Electrument	BH19MM	4

Table 3-1: Instrumentation used in Experimental Evaluation

Figure 3-11: Memsic Accelerometers used in Experimental Evaluations.

Figure 3-12: Pressure Sensor Cells used in Experimental Evaluations.

Figure 3-13: Typical LVDT used in Experimental Evaluations.

The following schematic presented in Figure 3-14 shows the orientation of each instrument for each experimental configuration. The schematic includes two

distinct soil layers differentiated by relative density and two model footings on either end with the free-field condition located at the center.

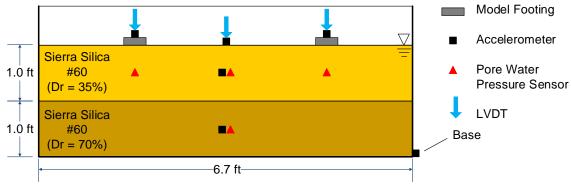


Figure 3-14: Schematic of Soil Profile and Instrumentation Layout

3.6 Foundation Models

3.6.1 Model Rigid Shallow Foundations

The model structures used in each experiment consisted of circular concrete footings of an equivalent approximate contact pressure of 12.5 psf. Model contact pressures were based on the average loading combinations (dead and live load) for a single family residence of approximately 125psf (Perko, 2009). Further discussion on scale of the model contact pressure was discussed in chapter 2 under similitude and further in Chapter 4. These footings represented the model buildings for two scenarios (1) unsupported rigid mat foundation (2) rigid mat foundation supported on helical piles. Figure 3-15 presents the range in foundation model sizes utilized in the experiments. Foundation model sizes included in the experimental evaluations were 3, 4.5, 6, 8 and 10-inch in diameter. The models supported by helical piles are aligned along the bottom portion of the figure. To maintain consistent measurement of building settlement, each model was marked to note north, east, south and west corners. In addition, one model was embedded with steel spacers which allowed each model to be supported on helical piles which are discussed in the following section. One accelerometer was secured to each footing in addition to a frictionless plate used to accommodate the needle on the displacement transducer.

Figure 3-15: Foundation Models Utilized in the Experiments

3.6.2 Model Helical Pile Foundations

Some experiments evaluated settlement of model structures founded on helical piles. Helical piles consist of a slender shaft and contain a helix at the tip. These piles are advanced into the ground by application of torque to a target depth, usually a more competent bearing layer. Figure 3-16 presents the model helical piles used in our experiments. Each helix was constructed using a 3-dimensional (3D) printer located at the University of Nevada, De La Mare Library. Use of a 3D printer ensured fabrication of true helices. These helices were secured to a solid

aluminum shaft using a heavy grade clear epoxy capable of withstanding saturated conditions. Each helical pier was advanced to target depth into the model subsurface using a drill set to a nominal torque setting. The model footing with steel sleeves could then be placed over the aluminum shafts. Small rubber O-rings were placed over each shaft and used to secure the model structure to each shaft. Each helical pile was 22 inches in length to accommodate different bearing depths based on liquefiable layer thickness and was equipped with a single 1.2-inch diameter helix at the tip.

Figure 3-16: Model Helical Pile Foundations Utilized in the Experiments

3.6.3 Model Similitude

Our model was configured using the similitude laws defined by lai (1989) and presented in Chapter 2. Each experiment assumed a scaled factor of similitude equal to 10. Our scaled model factors are presented below in Table 3-2.

Variable		Model	Prototype
Length	x	$^{1/\lambda}$	1
Density of Soil/Water	ρ	1	1
Strain of Soil	3	$1/_{\lambda 0.5}$	1
Time	t	$1/_{\lambda 0.75}$	1
Total and Effective	σ	$1/\lambda$	1
Stress	σ'		
Pore-Water pressure	р	$^{1}/_{\lambda}$	1
Acceleration	ü	1	1
Flexural Rigidity	EI	$^{1}/_{\lambda 3.5}$	1
Longitudinal Rigidity	EA	$^{1}/_{\lambda 1.5}$	1

Table 3-2: Similitude Laws for 1-g Shake Table Tests (λ = 10, scaling ratio in this study)

Table 3-3 presents the similitude for material properties used to construct the helical piles and implemented in the experimental evaluations. Solid aluminum rods were chosen in lieu of aluminum tubing to more closely match flexural and longitudinal rigidity in similitude.

Material	Aluminum	
Height (in)	22	
Diameter (in)	0.375	
E (ksi)	10,000	
l (in⁴)	0.00097	

Table 3-3: Material Properties of Helical Pile Foundation

Material properties for the helices on each helical pile are not presented. Specific material properties of the plastic used to print each 3D helix were not known and thus similitude could not be determined.

3.6.4 Model Static Bearing Capacity

Bearing capacity was determined for our benchmark model foundation. The benchmark foundation was 6-inches in diameter. Our calculation used the following equation 3.1 suggested by Meyerhof in determination of the general bearing capacity (Das 2015).

$$q_{u} = c'(Nc)Fcs(Fcd)Fci + q(Nq)Fqs(Fqd)Fqi + \left(\frac{1}{2}\right)\gamma(B)N\gamma(F\gamma s)F\gamma d(F\gamma i)$$
(3.1)

c' = cohesion q' = effective stress at the level of the bottom of the foundation γ = unit weight of soil B = width of foundation (or diameter for a circular foundation) Fcs, Fqs, F γ s = foundation shape factors Fcd, Fqd, F γ d = foundation depth factors Fci, Fqi, F γ i = foundation inclination factors Nc, Nq, N γ = bearing capacity factors Our calculation assumed the footing was founded directly on the ground surface with no depth of embedment. It also assumed that the water table was located at the surface. An angle of internal friction for the cohesionless sand in our model was assumed to be 30 degrees.

The ultimate static bearing capacity of our benchmark model was determined to be approximately 180 psf. A factor of safety of 3 was used to determine an allowable bearing capacity. The allowable bearing capacity is 60 psf, which is greater than our model footing contact pressure.

3.7 Experimental Testing Input Motions

In addition to all instrumentation, all testing was documented by means of photographs and video. Initial and final conditions of each test included photos in profile and plan view as well as video in profile and plan view.

3.7.1 Manual Shaking

Experimental evaluations #1 through 9 and #30 through 52 were conducted using input motions generated by means of manual shaking. Each experiment completed using methods of manual shaking had a predominant frequency that ranged between 3-4 Hz.

3.7.2 Eccentric Mass Shaker

Experimental evaluations #10 through 29 were conducted using input motions generated by the eccentric mass shaker. Each experiment completed using the eccentric-mass shaker had a predominant frequency that ranged between 4-5 Hz.

3.7.3 Earthquake Engineering Laboratory (EEL)

Experimental evaluation #53 was conducted using input motions generated by the biaxial shake table located in the EEL. The biaxial shake table utilized a historic earthquake record, commonly used in seismic testing and evaluations. We used the EI Centro 1979 record and scaled it to 0.25g. It is important to note that because we only performed one test on the biaxial shake table, we were not able to calibrate the table to achieve a perfectly scale input motion. As a result our input motion was slightly larger.

Chapter 4 Experimental Program

4.1 Model Configuration and Preparation

Our initial model configuration was derived from a project located in South Lake Tahoe, Nevada (Figure 4-1). Project specific information was provided by the local foundation design company VersaGrade (a subsidiary of RamJack) and is located in Sparks, Nevada. The Landing Resort and Spa (formerly the Edge Resort and Spa) was undergoing facility upgrades and facility improvements to existing structures. These upgrades consisted of construction of a new one-totwo story resort administration building and an additional two story maintenance building. In the project geotechnical report, completed by HEM Consulting, LLC., liquefaction susceptible soils were identified within the project footprint. Subsurface investigations noted considerable clean deposits of loose coarse grained sand with a relatively shallow water table (approximately 2.5ft below ground surface). Using the boring logs and subsurface conditions encountered, we created a generalized geologic profile. The profile was used to identify a probable "worst case condition" of liquefaction susceptibility consisting of a loose, saturated ten-foot thick deposit of coarse sands. As a result, our model configuration adopted a basic profile consisting of similar conditions, however for simplicity the water table was located at the ground surface. For simplicity we assumed a ten-foot thick liquefiable layer over an equal non-liquefiable layer. Figure 4-2 presents the configuration of our soil model used for 1-g shake table testing. The model utilized a scaled factor of 10 for our experiments. Each experiment was constructed and prepared as described in Chapter 3.

Figure 4-1: Location of "The Landing Resort" Adjacent to Beach in South Lake Tahoe, NV (Google Earth, 2016).

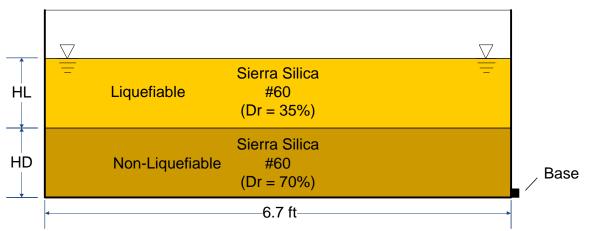


Figure 4-2: Profile View of Soil Model Configuration for 1-g Shake Table Testing

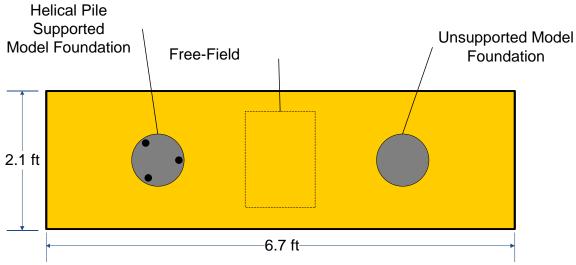


Figure 4-3: Plan View of Soil Model Configuration for 1-g Shake Table Testing

4.2 Phase 1 - Initial Testing and Model Calibration

Initial testing and model calibration consisted first of determining the properties of the Sierra Silica #60 Mesh and selecting relative densities that were representative of loose and dense sands for our liquefiable and non-liquefiable soils. Typically, liquefaction susceptibility increases as the relative density decreases in granular (cohesionless) soils.

For our liquefiable soil, we chose a target relative density of 35% and for our nonliquefiable soil we chose a target relative density of 70%. Table 4-1 presents the general variation of relative density compared to denseness of soils. Based on Table 4-1, our liquefiable layer ranged from loose to medium and our nonliquefiable layer was considered dense.

Relative Density, Dr (%)	Description
0-15	Very Loose
15-35	Loose
35-65	Medium
65-85	Dense
85-100	Very Dense

Table 4-1: Denseness of Granular Soil (Das 2015)

Relative Density

$$Dr(\%) = \frac{emax - e}{emax - emin}$$
(4.1)

Dry Unit Weight

$$\gamma d = \frac{Gs * \gamma w}{1 + e} \tag{4.2}$$

Saturated Unit Weight

$$\gamma sat = \frac{(Gs+e)*\gamma w}{1+e} \tag{4.3}$$

Equation 4-1 was used to determine the approximate void ratio of our testing medium for each target relative density of 35% and 70%. For our calculations we utilized the e_{max} and e_{min} presented in Chapter 3. Each corresponding void ratio could then be used to determine the dry unit weight of each model layer within the configuration (equation 4.2). Equation 4.3 was utilized when calculating the

effective stress parameters to use for estimation of pore pressure ratios (Ru) equation 4.4.

Pore Pressure Ratio

$$Ru = \frac{\sigma'(excess_pwp)}{\sigma'}$$
(4.4)

Table 4-2 presents the estimated void ratio, relative density, saturated and dry unit weights of sand utilized to construct the model layers.

Relative Density	Void Ratio	γsat	۲d	
(D _r)	(e)	(pcf)	(pcf)	
25%	0.940	115.47	85.24	
35%	0.912	116.25	86.58	
45%	0.884	117.05	87.77	
55%	0.856	117.87	89.09	
70%	0.814	119.16	91.16	

Table 4-2: Soil Model Properties

Note: Relative Densities and subsequent void ratios based on $e_{max} = 1.01$ and $e_{min} = 0.73$.

Our initial model evaluations #1 through 9, were conducted to develop experimental methods that were both consistent and repeatable. Each model evaluation consisted of a one-foot thick non-liquefiable layer overlain by a onefoot thick liquefiable layer. Only accelerometers were utilized during the first series of tests. The first series of tests included rough model buildings and excluded the use of helical piles. Figure 4-4 is a typical representation of our series of calibration models (Tests 1 through 9). The figure includes a model building (background) and free-field area (forefront), each equipped with an accelerometer.

The initial phase of our testing posed three significant challenges to overcome. The first became evident during the saturation portion of constructing the liquefiable layer. As water inundated the soil tank, the water began to creep between the lexan walls and rub sheets creating a large void of water between the rub sheet and lexan wall. When shaking commenced, the void collapsed, thus generating the large cracks in the soil surface as seen in Figure 4-4. This issue was remedied by placing multiple rows of clear double sided tape in between the lexan walls and rub sheets. The second issue observed were large deformations generated on either side of the soil tank. These deformations were a result of boundary effects generated by the direction of excitation and lack of damping at either end of the tank. These effects can also be seen in Figure 4-4. The boundary effects were reduced by placing 3-inch thick high density foam pads along the entire space of the soil tank at each end (Figure 4-5). Lastly, the gridlines observed on the soil tank in profile were intended to use as guides in creating a visual representation of the soil profile as it deformed during seismic induced liquefaction. Numerous attempts were made to create those grids within the soil profile using a colored sand of the same gradation. It was nearly impossible to place the colored sand below the water table in a clean orderly fashion thus matching the existing gridlines or baselines. All attempts to locate a

matching colored sand or produce a colored sand of equal gradation fell short of the goal. Attempts at implementing colored sand delineators are presented in Figure 4-6. As a result, only the surface of the model was noted, before and after testing, depicting degree of settlement using dry erase markers.

Figure 4-4: Phase 1 Boundary Effect Model Deformations

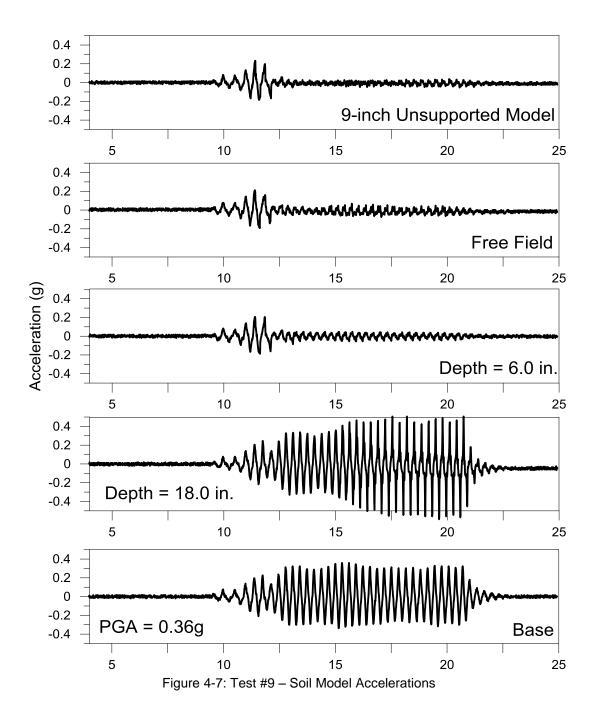


Figure 4-5: High Density Foam for Boundary Effect Reduction

Figure 4-6: Phase 1 Typical Soil Tank Profile with Colored Sand Delineators

Figures 4-7 through 4-8 present the typical measured soil model accelerations and liquefaction-induced settlement for Phase 1 testing. Each experiment included accelerometers at the base of the model, center of each layer (liquefiable and non-liquefiable) as well as the surface (model building and freefield.) Each record is labeled according to their respective soil model depth.

The hand measured surficial settlements are presented below in Figure 4-8. Each experiment included manual measurement of the settlement using a fixed reference point to the surface of the soil model. Measurements were made using

a grid pattern across the plan of the soil model before model excitation and postliquefaction.

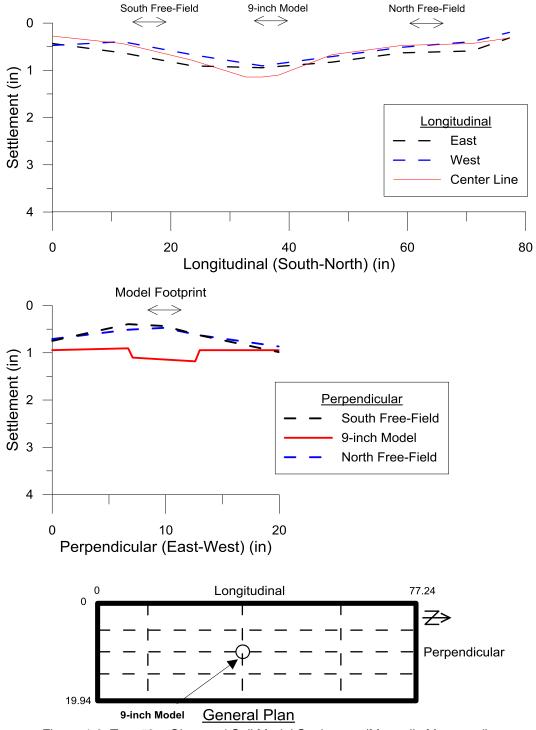


Table 4-3 is a summary of the Phase 1 testing and includes basic model information regarding configuration parameters of each model. Appendix A presents plots of measured data for all experiments. A more comprehensive summary Table of all experiments is presented in Appendix B.

Test	Date	Base PGA	Relative Density of Liquefiable	HL / HD	Foundation Diameter	Accelerometers	Pressure Sensors	LVDT
#	(m/d/yr)	(g)	(D _r)	(ft)	(ft)	No.	No.	No.
1	8/12/15	0.23	35	1/1	0.75			
2	8/20/15	0.22	35	1/1	0.75			
3	8/25/15	0.44	35	1/1				
4	9/4/15	0.03	35	1/1				
5	9/18/15	0.36	35	1/1	0.5	4		
6	9/25/15	0.40	35	1/1	0.5	5		
7	10/2/15	0.44	35	1/1	0.5	5		
8	10/7/15	0.38	35	1/1	0.5	5		
9	10/30/15	0.36	35	1/1	0.75	5		

Table 4-3: Summary of Phase 1 Experimental Program

4.3 Phase 2 - Eccentric Mass Vibrator Testing

Eccentric Mass Vibrator Testing was utilized in an effort to produce consistent repeatable results. However, limitations in the peak horizontal force the shaker could induce prevented us from conducting experiments using thicker 1 foot liquefiable and non-liquefiable layers. As a result, we decreased the thickness of the model layers to 0.5 foot in thickness. Testing included the use of model buildings more representative of a 1-2 story home and began to incorporate the

use of a pressure sensor to monitor behavior of pore water pressure. Helical piles were not utilized during this series of testing. Figures 4-9 and 4-10 presents a typical model profile of our evaluations that utilized an eccentric mass shaker. Note the high density foam pads on each end of the soil tank to reduce boundary effects. All testing was performed using layers that were 0.5-feet in thickness. Locations of buried instrumentation are marked on the face of the soil tank and are denoted using the symbol "x" while horizontal lines symbolize both the non-liquefiable and liquefiable layers. Figure 4-9 shows a similar model configuration to Phase 1 with one model structure and accelerometer to monitor behavior in the free-field. Note the strings across the top portion of the soil tank in Figure 4-10. These strings were used in every model configuration and served as the grid pattern for manual measurement of liquefaction-induced settlement.

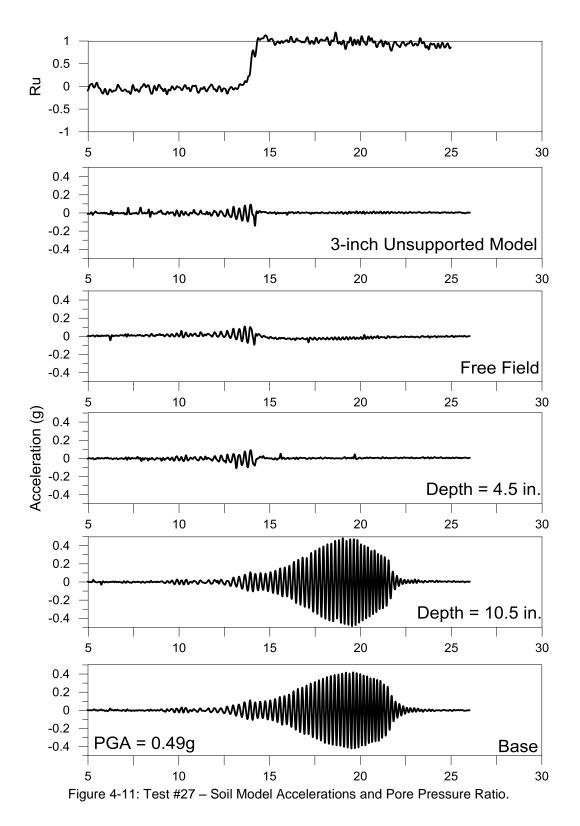

Figure 4-11 presents the measured soil model accelerations and includes the pore pressure ratio at the center of the liquefiable layer in the free-field environment. Figure 4-12 presents the results of the hand measured liquefaction-induced settlements for both free-field and model building foundation. Figure 4-13 presents the estimated spectral accelerations determined from filtered data using the Seismic analysis software Seismosignal. Tests 10 through 29 were performed using an eccentric-mass shaker and a summary of each configuration is presented in Table 4-4.

Figure 4-9: Test #24 Prior to Shaking

Figure 4-10: Test #24 prior to Shaking

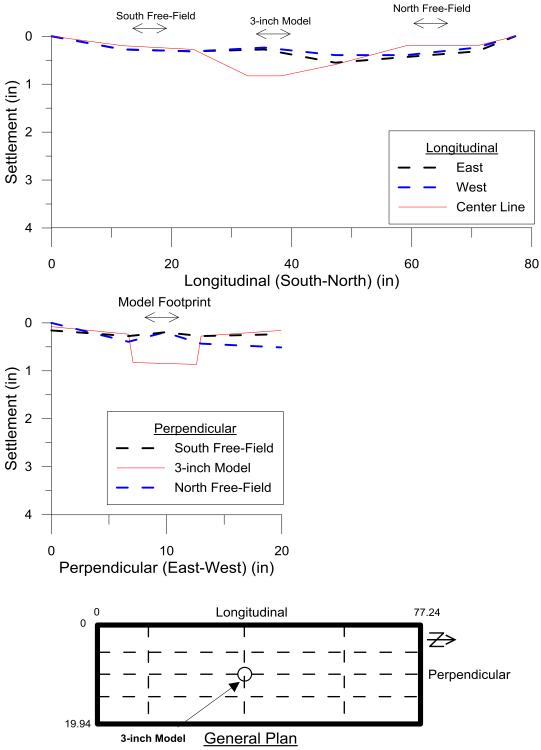


Figure 4-12: Test #27 – Observed Soil Model Settlement (Manually Measured)

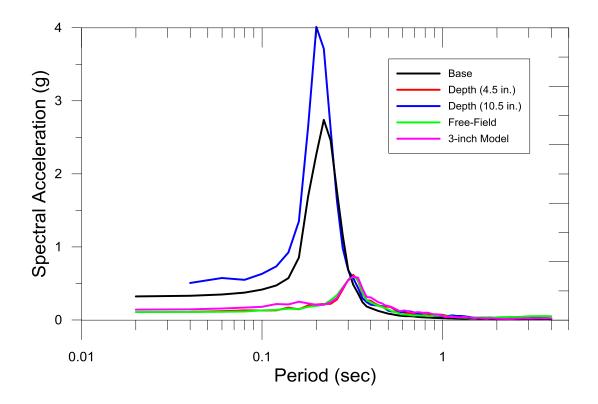


Figure 4-13: Test #27 – Estimated Spectral Accelerations

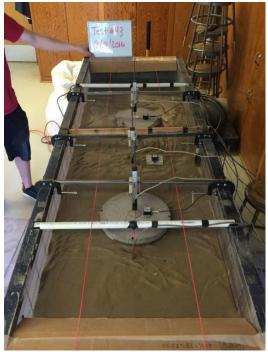
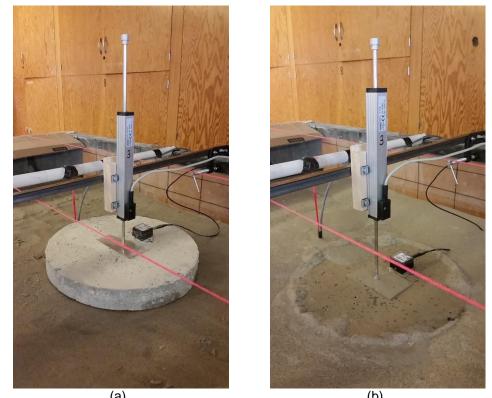
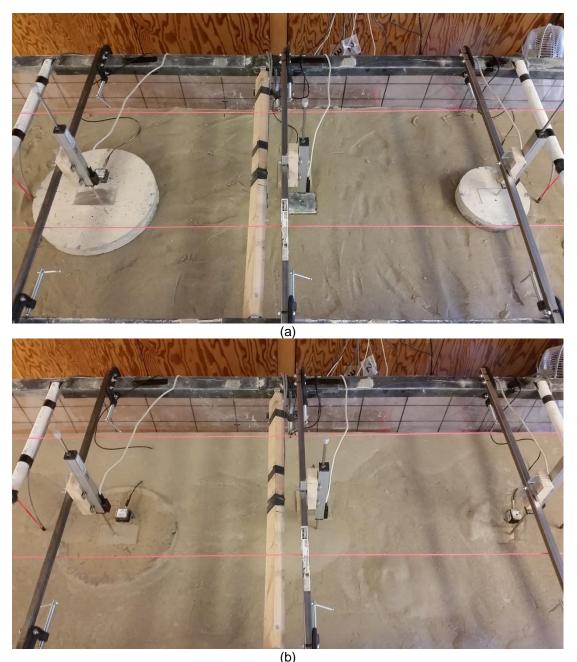
Test	Date	Base PGA	Relative Density of Liquefiable	HL / HD	Foundation Diameter	Accelerometers	Pressure Sensors	LVDT
#	(m/d/yr)	(g)	(D _r)	(ft)	(ft)	No.	No.	No.
10	11/6/15	0.31	35	1/1	0.5	5		
11	11/13/15	0.30	35	0.5 / 0.5	0.5	5		
12	11/20/15	0.33	35	0.5 / 0.5	0.5	5		
13	12/1/15	0.30	35	0.5 / 0.5	0.5	5	1	
14	12/8/15	0.20	35	0.5 / 0.5	0.5	5	1	
15	12/11/15	0.16	35	0.5 / 0.5	0.5	5		
16	12/15/15	0.17	35	0.5 / 0.5	0.5	5		
17	12/18/15	0.17	35	0.5 / 0.5	0.5	5		
18	1/5/16	0.39	35	0.5 / 0.5	0.5	5		
19	1/8/16	0.37	35	0.5 / 0.5	0.5	5		
19.1	1/22/16	0.36	35	0.5 / 0.5	0.5	5		
19.2	2/5/16	0.34	35	0.5 / 0.5	0.5	5	1	
20	1/12/16	0.36	35	0.5 / 0.5	0.5	5		
21	1/14/16	0.37	35	0.5 / 0.5	0.5	5		
22	1/20/16	0.34	35	0.5 / 0.5	0.67	5		
22	2/12/16	0.34	35	0.5 / 0.5	0.67	5	1	
23	2/19/16	0.33	35	0.5 / 0.5	0.83	5	1	
24	2/26/16	0.34	35	0.5 / 0.5	1	5	1	
25	3/1/16	0.33	35	0.5 / 0.5	0.25	5	1	
26	3/9/16	0.37	35	0.5 / 0.5	0.375	5	1	
27	3/16/16	0.49	35	0.75 / 0.25	0.25	5	1	
28	3/18/16	0.44	35	0.75 / 0.25	0.375	5	1	
29	3/24/16	0.5	35	0.75 / 0.25	0.5	5	1	

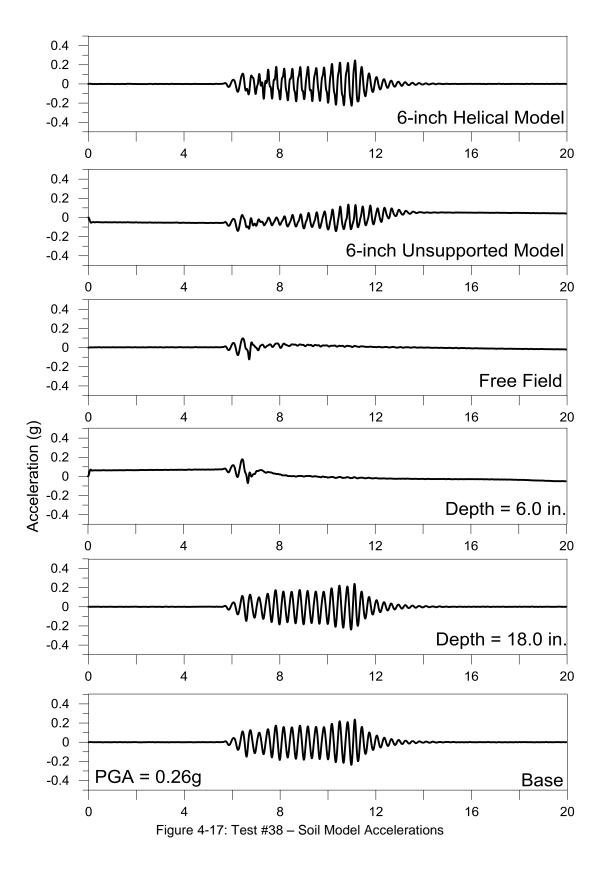
Table 4-4: Summary of Phase 2 Experimental Program

4.4 Phase 3 - Manual Shaking Testing Results

Because of the limitations of the eccentric-mass shaker, testing reverted back to using the manual shaking method. This series of testing incorporated the final

suite of instrumentation that included the use of 6-accelerometers, 4-pressure sensor cells and 3-LVDT's as defined in the previous Chapter in Table 3-1. In addition, this series of testing utilized two model buildings; one unsupported rigid shallow foundation and one rigid shallow foundation supported on three-helical piles. Each model foundation was approximately equal in contact pressure. Tests #30 to 47 were performed using the helical pile and unsupported foundation configuration. Once it was established that helical piles provided a significant reduction in liquefaction-induced settlement, the use of helical piles was discontinued. The remaining Tests #47 through 52 were completed using unsupported model foundations of varying diameter. These tests were completed to better establish the relationship that foundation width has on degree of settlement. Figure 4-14 shows the final configuration of foundation models and instrumentation prior to testing for Phase 3. Figures 4-15 and 4-16 show the typical settlement observed during liquefaction evaluations. Figure 4-17 presents the soil model accelerations for Phase 3 experiments. Phase 3 include accelerometers on each model building foundation including the free-field environment. Figure 4-18 presents the pore pressure ratios located at the center of the non-liquefiable layer, and center of liquefiable layer located beneath each model building foundation and free-field environment. Figure 4-19 presents the estimate spectral accelerations and recorded model building settlement from LVDT's. Figure 4-20 presents the manually measured settlements. Table 4-5 provides a summary of all Phase 3 experiments.


Figure 4-14: Test #43 Prior to Shaking

(a) (b) Figure 4-15: Test #52 Depiction of Settlement Resulting from Liquefaction (a) before and (b) after shaking.

(b) Figure 4-16: Test #52 Plan View of Settlement Resulting from Liquefaction for both Model Foundations (a) before and (b) after shaking.

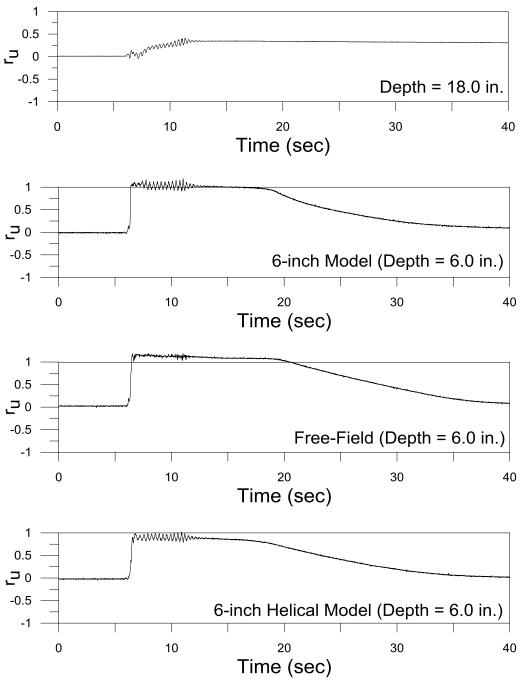


Figure 4-18: Test #38 – Observed Pore Pressure Ratios

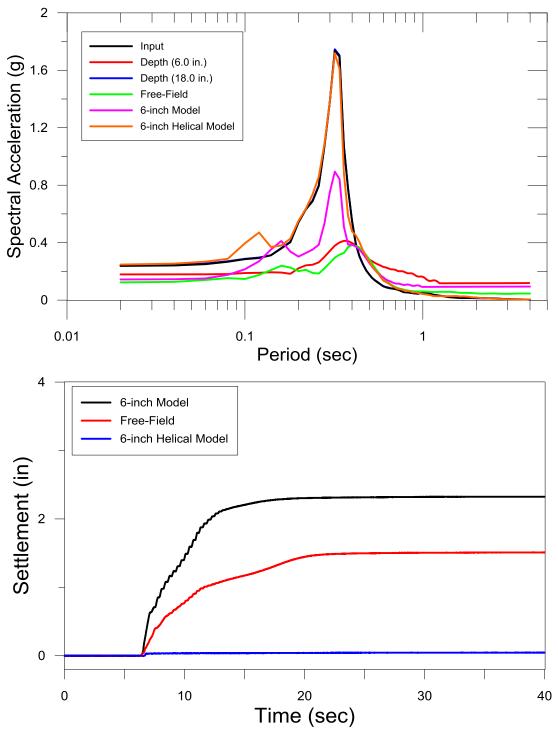


Figure 4-19: Test #38 – Estimated Model Spectra and Measured LVDT.

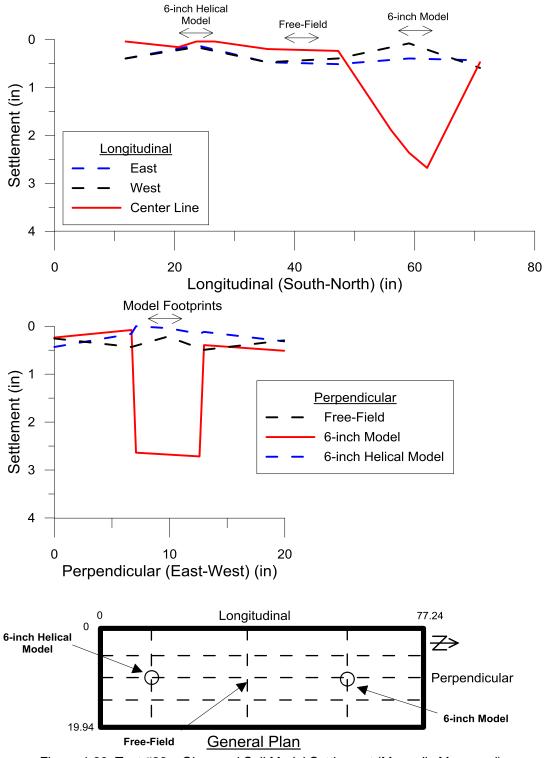


Figure 4-20: Test #38 – Observed Soil Model Settlement (Manually Measured)

Test	Date	Base PGA	Relative Density of Liquefiable	HL / HD	Foundation Diameter	Accelerometers	Pressure Sensors	LVDT
#	(m/d/yr)	(g)	(D _r)	(ft)	(ft)	No.	No.	No.
30	4/1/16	0.3	35	1/1	0.25	5	1	
31	4/20/16	-	35	1/1	0.5	6	1	
32	5/12/16	0.33	35	1/1	0.5	6	1	
33	6/15/16	0.18	35	1/1	0.5	6	1	
34	6/22/16	0.26	35	1/1	0.5	6	1	1
35	7/1/16	0.14	35	1/1	0.5	6	4	3
36	7/15/16	0.25	35	1/1	0.5	6	4	3
37	7/22/16	0.2	35	1/1	0.5	6	4	3
38	7/27/16	0.26	35	1/1	0.5	6	4	3
39	8/4/16	0.29	35	1/1	0.75	6	4	3
40	8/9/16	0.279	35	1/1	0.25	6	4	3
41	8/17/16	0.335	35	1/1	0.36	6	4	3
42	8/27/16	0.276	35	1/1	0.67	6	4	3
43	9/9/16	0.259	35	1/1	0.83	6	4	3
44	9/16/16	0.234	25	1/1	0.5	6	4	3
45	9/19/16	0.298	45	1/1	0.5	6	4	3
46	9/23/16	0.318	55	1/1	0.5	6	4	3
47	9/26/16	0.356	35	1.25 / 0.75	0.5	6	4	3
48	9/30/16	0.306	35	1.5 / 0.5	0.5 / 0.83	6	4	3
49	10/5/16	0.393	35	1.67 / 0.33	0.5 / 0.83	6	4	3
50	10/14/16	0.248	35	1/1	0.5 / 0.83	6	4	3
51	10/21/16	0.254	35	1/1	0.5 / 0.83	6	4	3
52	10/24/16	0.205	35	1/1	0.5 / 0.83	6	4	3

Table 4-5: Summary of Phase 3 Experimental Program

4.5 Phase 4 - EEL Validation (El Centro Input Record)

The final experiment was conducted on the biaxial shake table located in the EEL. Special care was taken to protect the large hydraulic actuators on the

shake table from sand particulates by draping plastic sheeting over the areas where the actuators were exposed. The soil tank was lifted to the table surface and secured using dunnage that was anchored to the table surface. All instrumentation was channeled using the data acquisition system provided by the EEL. The model and placement of instrumentation was constructed using the same configuration as Tests #47 through 52. The EEL equipped the soil tank with GoPro cameras located at each condition representing foundations and free-field environment. An additional camera was placed at a distance away from the shake table to record performance of all the foundations in profile during excitation. Figure 4-21 presents Test #53 on the biaxial shake table prior to excitation. Figure 4-22 is a plan view of test #53 showing model building foundations situated on top of the liquefiable layer before testing.

Figure 4-21: Test #53 Positioned on Biaxial Shaking Table

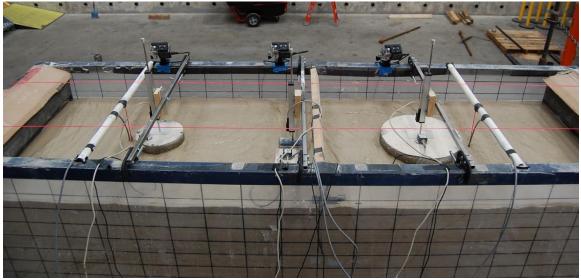
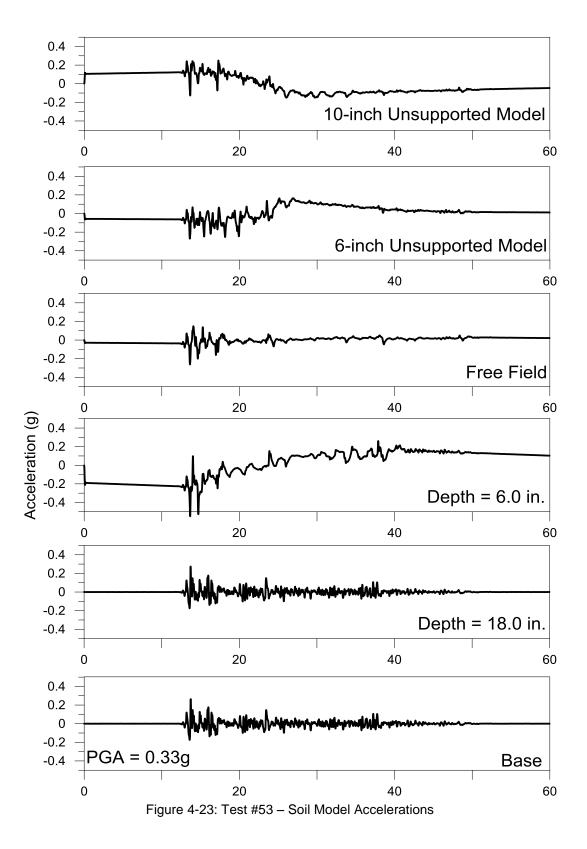
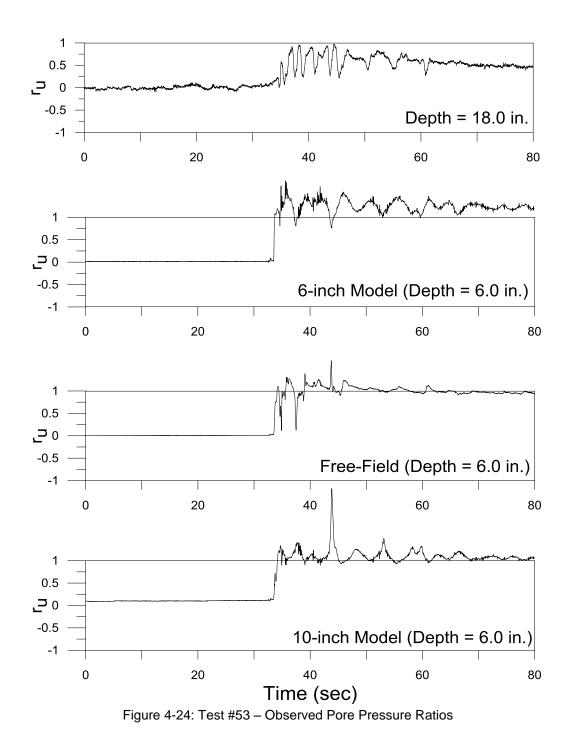
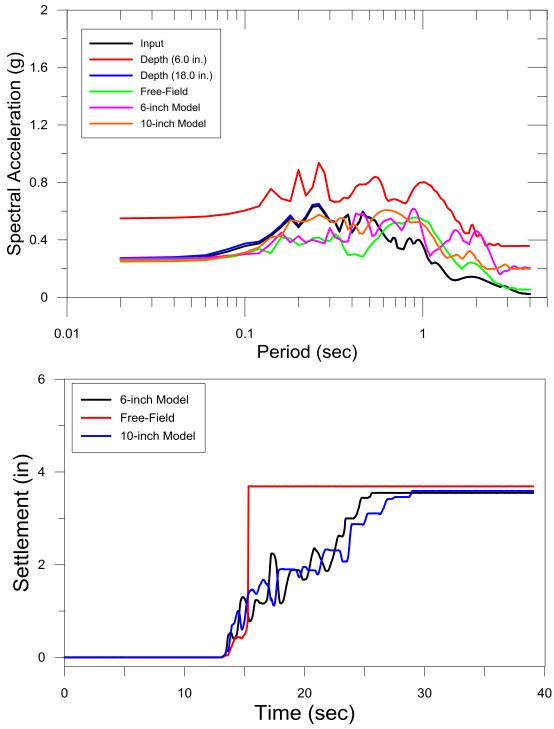





Figure 4-22: Test #53 Prior to Shaking

Figures 4-23 through 4-26 present the typical measured and observed recording similar to those presented for Phase 3 testing. Because of the characteristics of the input motion, including the ground motion duration, settlement was considerably greater than those observed during Phase 3 evaluations. Settlements recorded using the LVDT's do not present an accurate record of settlement. Settlement was so great during model excitation that the model building foundations settled beyond the limits of the LVDT's. In addition, at the beginning of ground motion input, the LVDT pin lost contact with the platform used to monitor free-field settlement and subsequently provided an exaggerated degree of settlement as shown in Figure 4-25. A summary of the model configuration is presented in Table 4-6.

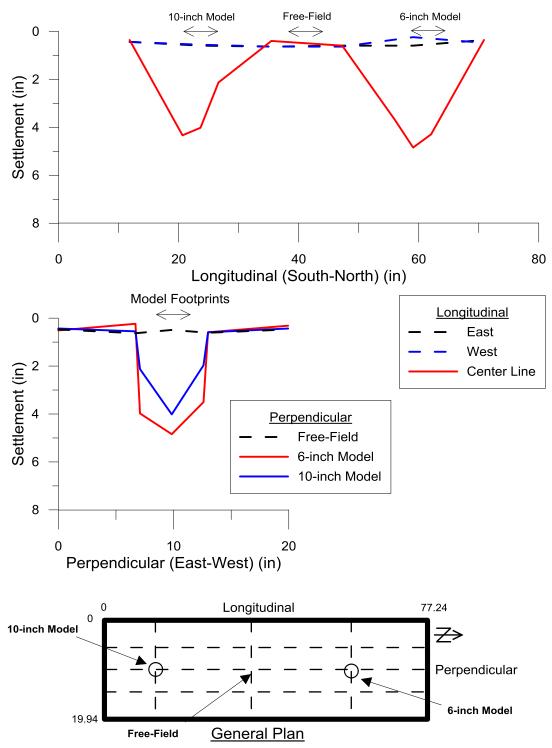


Figure 4-26: Test #53 – Observed Soil Model Settlement (Manually Measured)

Test	Date	Base PGA	Relative Density of Liquefiable	HL / HD	Foundation Diameter	Accelerometers	Pressure Sensors	LVDT
#	(m/d/yr)	(g)	(D _r)	(ft)	(ft)	No.	No.	No.
53	10/31/16	0.33	35	1 / 1	0.5 / 0.83	6	4	3

Table 4-6: Summary of Phase 4 Experimental Program

4.6 Semi-Empirical Estimation of Liquefaction-Induced Settlement

As discussed in Chapter 2, semi-empirical methods are often used to evaluate the settlement of saturated clean sands in the free-field environment. There are currently no methods that exist to provide an accurate estimation of liquefactioninduced building settlement. Each experiment in Phases 3 and 4 recorded the settlement of each model structure and free-field environment using LVDT's. In addition, to the LVDT's manual measurements were also recorded to document degree of settlement. These measurements were conducted by recording the initial height of the model surface from a known reference point and also immediately after testing. Figure 4-27 depicts the methods used to manually measure the settlement of the model surface for each test in Phases 3 and 4.

Using the semi-empirical methods discussed in Chapter 2 (Tokimatsu and Seed; Ishihara and Yoshimine), estimations of the theoretical settlement were calculated and compared to the actual values measured using the LVDT's. Figure 4-28 presents a comparison of semi-empirical liquefaction settlement estimates with the average measured settlement in the free-field.

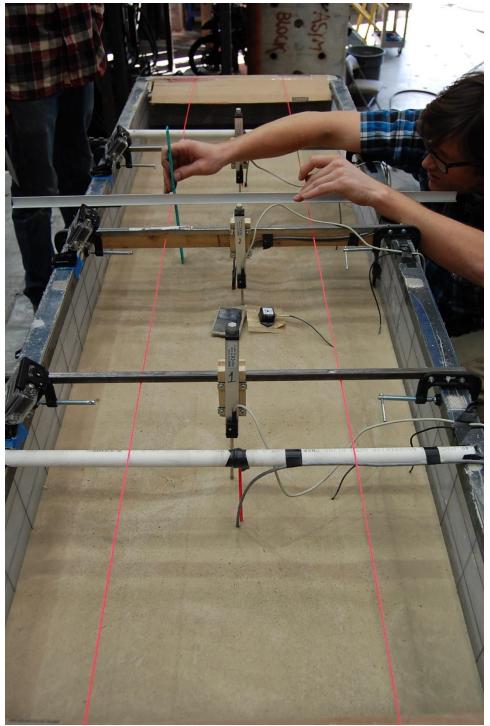
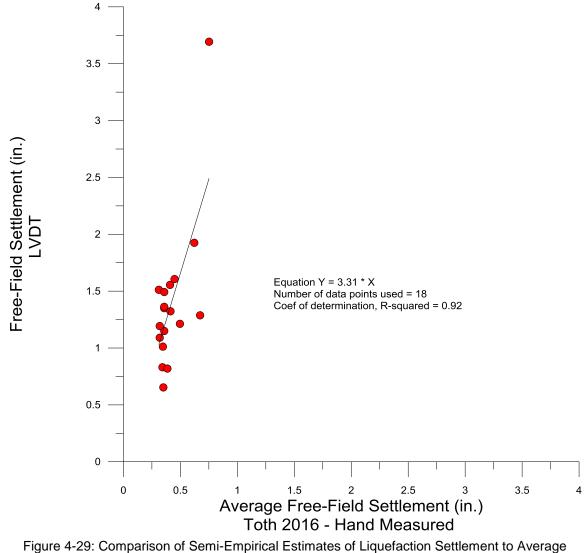



Figure 4-27: Typical Measurement of Settlement upon Completion of Shake Table Testing

A comparison of our results of hand measured settlement values versus the LVDT measurements for free-field conditions are presented in Figure 4-29. Recorded values observed using the LVDT show that the hand measured values are not in agreeance with the LVDT readings. During experimentation, it was noted that the LVDT influenced the values because of the spring loaded pin that measured the subsequent deformation.

Measured Settlement for Free-Field.

4.7 Results and Findings from Parametric Study

The results presented in the following section represent data from benchmark evaluations during our testing. Our series of evaluations considered a range of foundation diameters as well as variations in shaking duration, relative density and thickness of the liquefiable stratum.

4.7.2 Influence of Relative Density

Figures 4-30 and 4-31 present the measured benchmark settlements for both the Free-Field and 6-inch diameter Foundation condition over a range of increasing relative density of the liquefiable soil layer. Each scenario clearly shows that as relative density increases, the measured settlement for a nominal 12-inch thick liquefiable layer decreases. The settlement in the free-field appears more gradual, while the settlement for the benchmark foundation decreases at a greater rate.

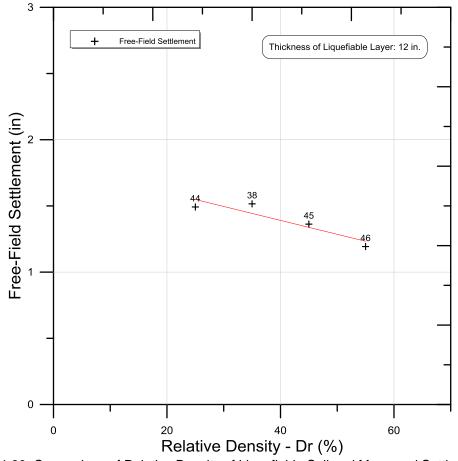


Figure 4-30: Comparison of Relative Density of Liquefiable Soil and Measured Settlement in Free-Field.

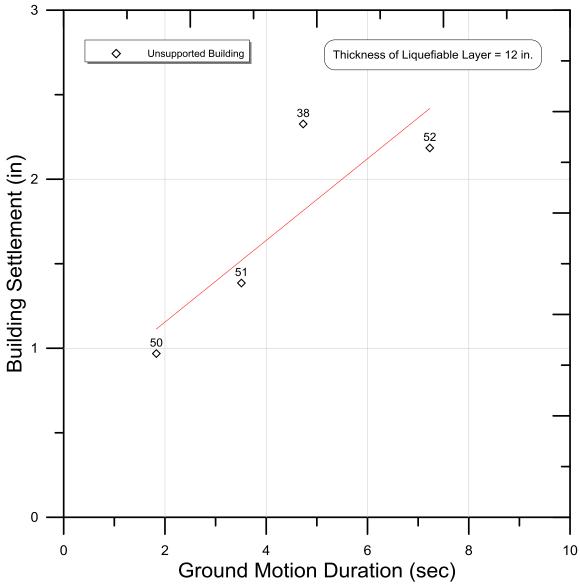


Figure 4-31: Comparison of Relative Density of Liquefiable Soil and Measured Settlement for 6inch Diameter Foundation.

4.7.3 Influence of Foundation Diameter

Figure 4-32 presents the measured settlements over a range of building foundation diameters. For these benchmark evaluations, the relative density was maintained constant at 35% with a liquefiable layer thickness of 12-inches. The

figure suggests that liquefaction-induced settlement decreases with increasing foundation diameter. Dashti et al. (2010a, 2010b) have previously stated that a linear relationship between observed settlement and foundation diameter does not exist, suggesting that there are greater factors influencing the behavior of the settlement. Our results do suggest a linear relationship in settlement behavior in regards to foundation width as well as normalized widths and liquefiable layer thicknesses.

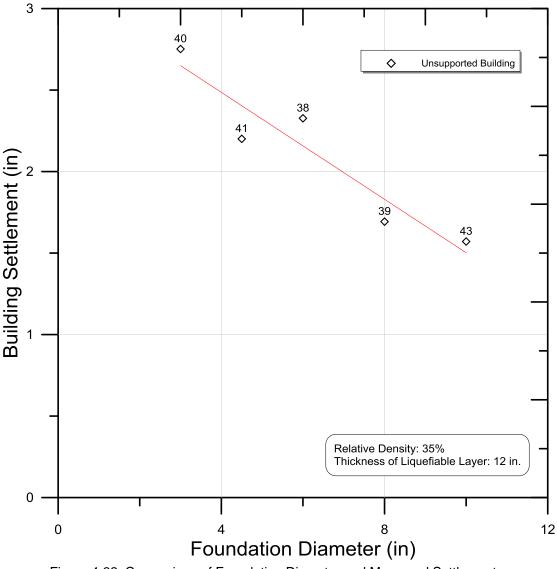


Figure 4-32: Comparison of Foundation Diameter and Measured Settlement.

4.7.4 Influence of Ground Motion Duration

Figures 4-33 and 4-34 present the measured settlement compared to shaking duration. For these benchmark evaluations, the relative density was maintained constant at 35% with a liquefiable layer thickness of 12-inches. The shaking duration was varied between 2, 4, 6 and 8 seconds. The values plotted represent the significant duration of shaking for each evaluation. The significant duration

was estimated using the duration of strong motion for the base acceleration data for the time interval at which 5% and 95% of the recorded strong motion (Kramer, 1996) It is apparent that liquefaction-induced settlement increases with increasing shaking duration for both cases in the free-field and building foundation. Building settlement is observed to increase at a greater rate.

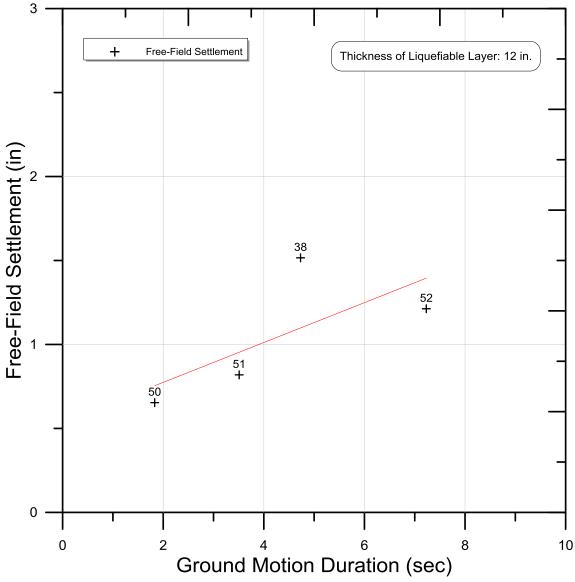


Figure 4-33: Comparison of Ground Motion Duration and Measured Settlement in Free-Field.

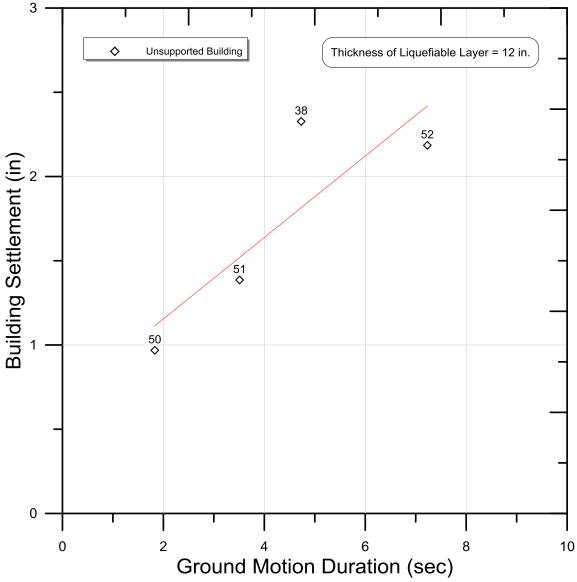


Figure 4-34: Comparison of Ground Motion Duration and Measured Settlement for 6-inch Building Foundation.

4.7.5 Influence of Thickness of Liquefiable Layer

Figures 4-35 and 4-36 present measured settlement in comparison to thickness of liquefiable layer. For these benchmark evaluations, the relative density was maintained constant at 35% and the liquefiable layer thickness was varied from 12-inches to 18-inches. Observed settlements are plotted for each case representing free-field, 6-inch and 10-inch building foundations. Most notable, it is observed that settlement increases with increases thickness of liquefiable layer. Also, it can be seen that increasing foundation diameters show reduced settlements and increase at roughly the same rate with increasing liquefiable layer thickness.

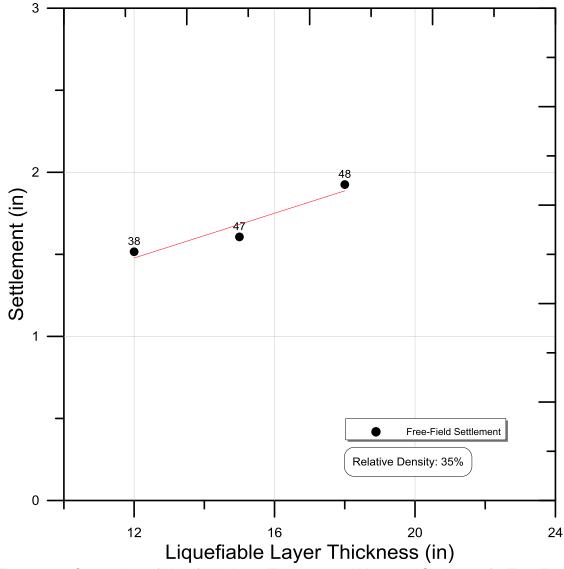


Figure 4-35: Comparison of Liquefiable Layer Thickness and Measured Settlement for Free-Field.

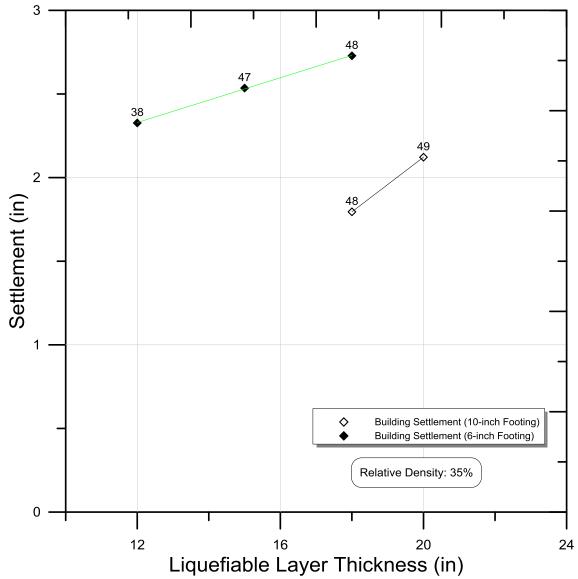


Figure 4-36: Comparison of Liquefiable Layer Thickness and Measured Settlement for 6-inch and 10-inch Building Foundation.

4.7.6 Normalized Settlement

Figures 4-37 and 4-38 present our results in comparison to previous studies of liquefaction-induced settlement for shallow foundations. The plot provides a

normalized comparison of foundation settlement in regards to building width. This

plot was previously presented in Dashti et al. (2010b) and Bray and Dashti (2014) and has been updated to include the results of our experiments. The updated plot is comprised of a series of field observations, centrifuge and shake table studies. The upper and lower bound plots are also based on previous field observations as described in Chapter 2. Liu/Dobry, Hausler, and Dashti plots are based on results from centrifuge testing while the Yoshimi results are based on shake table testing. Results show a similar scatter of data for normalized foundation settlements based on overall sources provided in the plot. It should be noted however, that the Liu/Dobry and Dashti data represent points for foundations of considerable contact pressure (approximately 2000 psf). Our data represented points for foundations with contact pressures closer to 125 psf and are more representative of a lightly loaded 1-to-2 story structure. In addition, the plot also shows that for our evaluations comprising the use of helical piles, a dramatic reduction in settlement is observed.

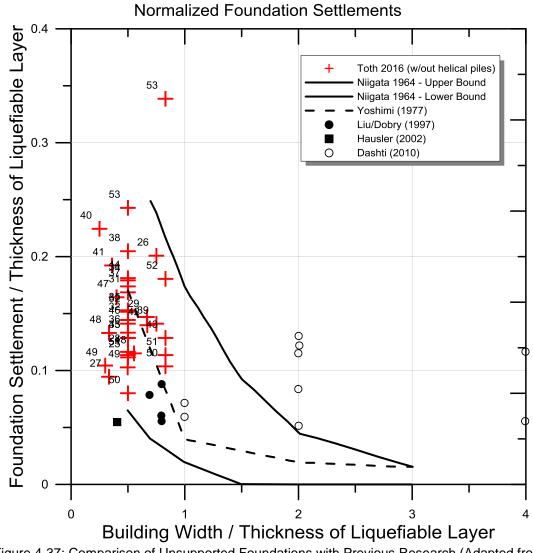


Figure 4-37: Comparison of Unsupported Foundations with Previous Research (Adapted from Dashti et al. 2010b)

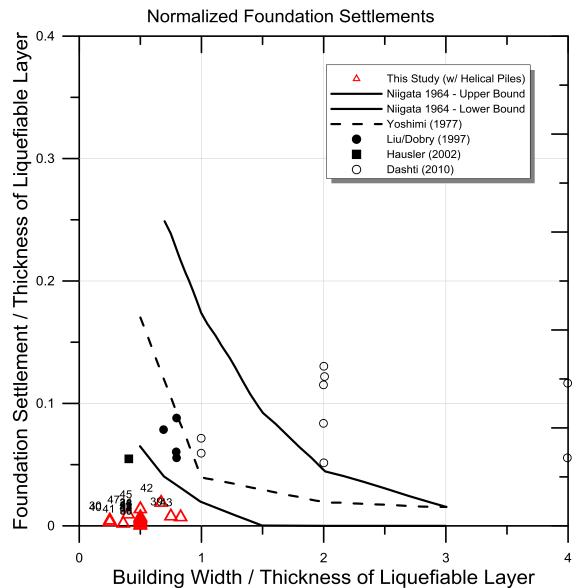


Figure 4-38: Comparison of Helical Pile Supported Foundations with Previous Research (Adapted from Dashti et al. 2010b)

4.7.7 Comparison of Hand Measurements versus LVDT

Settlements for our experiments were plotted comparing free-field with building settlement using both hand measured values and LVDT. Figure 4-39(a) presents the comparison of those results. Hand measured values comparing free-field to building settlements suggest that buildings experience settlement on order approximately 4.6 times greater than in the free-field. Measured values for LVDT show an increase in settlement on the order of 1.6 times greater. Measured values using the LVDT show a greater range in free-field values, suggesting that the LVDT had considerable influence on the degree of free-field settlement measured using LVDT's. Figure 4-39(b) presents a proposed correction factor that could be applied to the results of the LVDT. The figure presents the hand measured free-field settlement values in relation to the ratio of the free-field measurements of hand and LVDT measurements. It was our observation that the spring within the lever pin of the LVDT exaggerated the settlement measured in the free-field. By applying the average of the ratio presented in Figure 4-39(b) to the LVDT values, the exaggeration effect of the spring should be accounted for and thus removed. We estimated an average ratio of approximately 0.33.

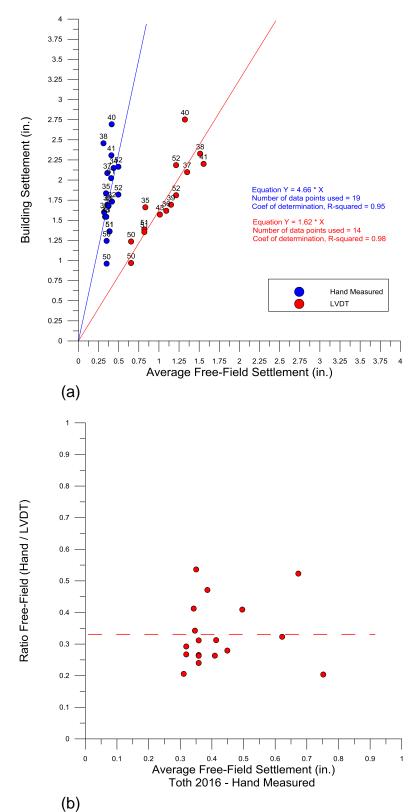


Figure 4-39: (a) Comparison of Free-Field and Building Settlement for Hand Measured and LVDT. (b) Average Proposed Correction Factor for LVDT Measurements in Free-Field.

To further investigate the influence of LVDT's on measured Free-Field settlement, a comparison of measured free-field values and building footprint values were individually plotted using the hand measured and LVDT results. Figure 4-40 is a comparison of hand measured and LVDT values for the free-field. Figure 4-41 is a comparison of hand measured and LVDT values for the building footprint. It is clearly observed in Figure 4-41, that hand measured and LVDT values for the building footprint have an excellent correlation, suggesting consistency in the measured values. However, Figure 4-40 does not show that strong of a correlation. In the free-field case the implementation of the LVDT influenced our results, because of the downward force created by the spring loaded pin. At the moment of liquefaction when the soil lost its strength, the spring loaded pin tended to push the base plate further into the soil.

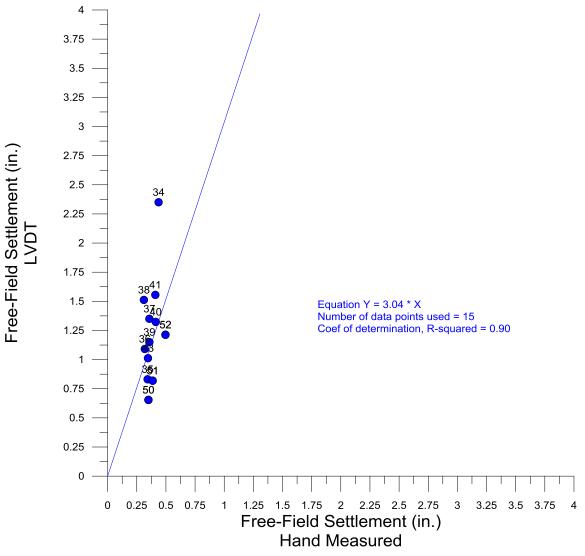


Figure 4-40: Comparison of Hand Measured Values vs LVDT for Free-Field

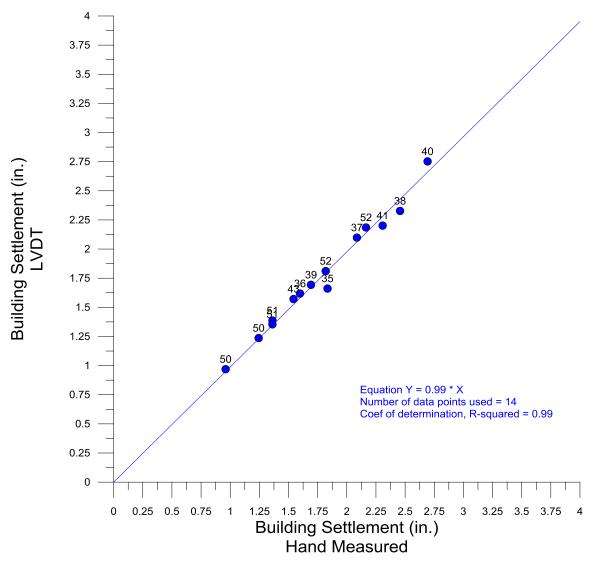


Figure 4-41: Comparison of Hand Measured Values vs LVDT for Building Footprint

4.7.8 Limitations in Scaled Model

Our experiments had certain limitations in regards to model scale. The soil used in each experiment was determined through laboratory testing to be a fine to medium grained, poorly graded sand. The sand had a D₅₀ equal to approximately 0.3mm. D₅₀ represents the corresponding particle size at 50% passing. When considering similitude for our model soil type and applying a similitude factor of

10, the D_{50} grain size in prototype becomes roughly 3mm in particle diameter. This suggest that our soil grain size characteristics in prototype are more representative of a coarse grained sand and possible fine grained gravel.

The dimensions of the soil container used to construct our soil model was limited in lateral extents with dimensions of only 2.1 feet in width. This restricted our experiments in using larger foundation models which would be more representative of a mat foundation. Considering similitude for the dimensions of the model foundations we used, our prototype mat foundation diameters would be more representative of isolated piers and footings. Prototype foundations dimensions based on our model diameters range from 2.5 ft to 8.3 ft.

Limitations were also present in regards to the influence of the footing over the depth of the layers within the soil model. Consideration was given to ensure that model diameters chosen, had a zone of influence that terminated within the soil model. The zone of influence was determined using Schmertmann's method assuming a circular foundation with L/B ratio equal to 1. The maximum zone of influence was calculated by multiplying the diameter of the footing by 2.

Chapter 5 Conclusions and Recommendations

Field observations based on post-earthquake reconnaissance of structures founded over liquefiable soils has provided a trove of data on their performance. Major seismic events in both New Zealand and Japan have shown the high severity and large scale of damage resulting from liquefaction-induced settlement. The Canterbury Earthquake Sequence of 2010-2011 damaged as many as 20,000 homes resulting in enormous recovery costs. In order to limit the scale of damage generated by these events, new understandings and insights on the performance of these foundations would provide considerable benefit and possibly a reduction in costs to mitigate existing structures and to implement new design guidelines for future structures in areas susceptible to the effects of liquefaction.

Current standards of practice are used to estimate settlement of saturated liquefiable soils in the free-field environment. However, these procedures have not been able to account for settlement of structures founded over these soils. As a result, estimation of liquefaction-induced settlement can be considered a large approximation with sizeable uncertainty. In addition, these procedures assume settlement to occur as a result of volumetric strain in post-liquefaction porepressure dissipation. Recent centrifugal testing conducted to evaluate liquefaction-induced settlement has identified that very little settlement occurs in the post-liquefaction state and rather the majority of building and free-field settlements occur during strong ground motion events. Researchers have also identified other key parameters that influence the settlement of these structures. Dashti et al.(2010a and 2010b), surmise based on results of their centrifugal testing that deviatoric strains resulting from ratcheting of building foundations and the shaking intensity rate of the strong ground motion may be a large contributing factor to settlement.

5.1 Summary of Findings

A comprehensive parametric study was conducted to evaluate liquefactioninduced settlement over a range of parameters. These parameters included the following

- a. Relative Density of Liquefiable Layer
- b. Foundation Diameter
- c. Ground Motion Duration
- d. Thickness of Liquefiable Layer

The study was conducted using a simple 1-g shaking table to induce strong ground motions. The experimental evaluations utilized accelerometers to monitor excitation of each soil layer and model structure, pore-pressure sensors to monitor increases in pore-water pressure within each soil layer and beneath each foundation and LVDT's to monitor subsequent settlement of both model structures and free-field environment.

Generally, we observed that in each experiment, settlement of the model building was greater than the free-field environment. In conjunction with previous field reconnaissance observations and research of foundations subjected to liquefaction, current procedures used to predict liquefaction settlement are inadequate.

Influence of Relative Density

Results of benchmark testing were able to identify that liquefaction-induced settlement decreases with increasing soil relative density. It can be also be inferred that building settlement decreases at a greater rate with increasing soil relative density.

Influence of Foundation Diameter

Results have shown that liquefaction-induced settlement decreases with increasing foundation diameter. An approximate 45% reduction in settlement was observed between a 7.62cm foundation versus a 25.4cm foundation.

Influence of Ground Motion Duration

Results have also shown that longer ground motion durations tend to increase liquefaction-induced settlement. The increase in settlement is likely a result of increasing excess pore-water pressures with longer ground motion durations. It was observed during experimentation that the model foundations tilted and swayed when subjected to strong motions. This tilting and swaying can be interpreted as ratcheting of the soil-structure. This effect was likely responsible for the increase in settlement.

Influence of Thickness of Liquefiable Layer

Results of benchmark testing have shown that liquefaction-induced settlement increases with increasing liquefiable layer thickness in both the free-field environment and for model structures.

Normalized Foundation Settlement

Results of Phase 2 through 4 experimental evaluations were normalized in relation to the thickness of liquefiable layer. These results are compared to a previous research comprised of field observations, centrifuge and 1-g shake table evaluations. Overall, our data fit the curves bounded by upper and lower bound Niigata event and also show general agreement with Liu/Dobry, Hausler and a few of the points included by Dashti. Tests 19 through 24 can be seen extending beyond the upper bound of the Niigata event. It is believed that these points are outliers based on the soil model configuration of those experimental evaluations. Test 19 through 24 were performed using a half-scale soil model configuration of 15.24cm in thickness for both the liquefiable and non-liquefiable layers. The foundation diameters ranged from 15.24 to 25.4cm and subsequently created a strain influence factor that extended beyond the soil profile of the model. As a result, the settlements were exaggerated in those cases. It is likely that a similar situation existed for Dashti 2010a.

Our results for cases that implemented helical piles as an underpinning mitigation for rigid shallow foundations were also normalized and plotted in comparison to previous the research. The helical piles show a tight cluster and obvious reduction in liquefaction-induced settlement.

Lastly, the grain size distribution presented limitations within our model when considering the laws of similitude. Based on similitude laws, our soil model was more representative of a coarse grained sand to fine gravel in prototype. The soil container dimensions also presented limitations when considering the width of the model mat foundation.

5.2 Recommendations for Future Research

To continue to improve on our existing experiments and build upon past research we recommend additional experiments. Benchmark testing allowed us to establish a general relationship on settlement of liquefiable soils over influence of parameters such as relative density, foundation diameter, strong motion duration and thickness of liquefiable deposit. To better define the relationship it is important to conduct additional benchmark testing using the same parameters. Doing so would provide confidence in the parametric relationships through repeatability.

Our soil model assumed continuous horizontal liquefiable stratums. Future testing should include spatial variability of liquefiable soil layer on settlement.

Due to time constraints in physical modelling, our parametric study was not able to consider the influence of inertial forces on liquefaction-induced settlement. We recommend conducting experiments that vary the weight of a benchmark model foundation diameter to draw inferences on settlement behavior.

Field reconnaissance and experimental studies have identified that for liquefiable soils that contain a non-liquefiable crust, the initiation of liquefaction is oftentimes delayed, resulting in reduced settlements. Future experiments should evaluate liquefaction settlement with soil models that include a crust of non-liquefiable soil, exhibiting cohesion. Additionally, experiments should evaluate the degree of settlement of with variation in the water table.

Lastly, future experimental studies should include testing on a larger or full-scale shake table using models in prototype or closer to prototype scale.

Chapter 6 References

- Ashford, S.A., Boulanger, R.W., Donahue, J.L., & Stewart, J.P. "Geotechnical Quick Report on the Kanto Plain during the March 11, 2011, Off Pacific Coast of Tohoku Earthquake, Japan. GEER Association Report No. GEER-025a, 2011, pp. 1-20.
- Bray, J.D. "Liquefaction-Induced Building Settlement." Geotechnical Extreme Events Reconnaissance (GEER) – Turning Disaster Into Knowledge, 4 November 2016, Faculty Club, U.C. Berkely, CA.
- 3. Bray, J.D. and Dashti, S. "Liquefaction-induced Building Movements." *Bulletin of Earthquake Engineering,* vol. 12, 2014, pp. 1129-1156.
- Bray, J.D., Markham, C., and Cubrinovski, M., "Liquefaction Assessments in the Central Business District of Christchurch, New Zealand." 6th *International Conference on Earthquake Geotechnical Engineering*, 2015, pp. 1-22.

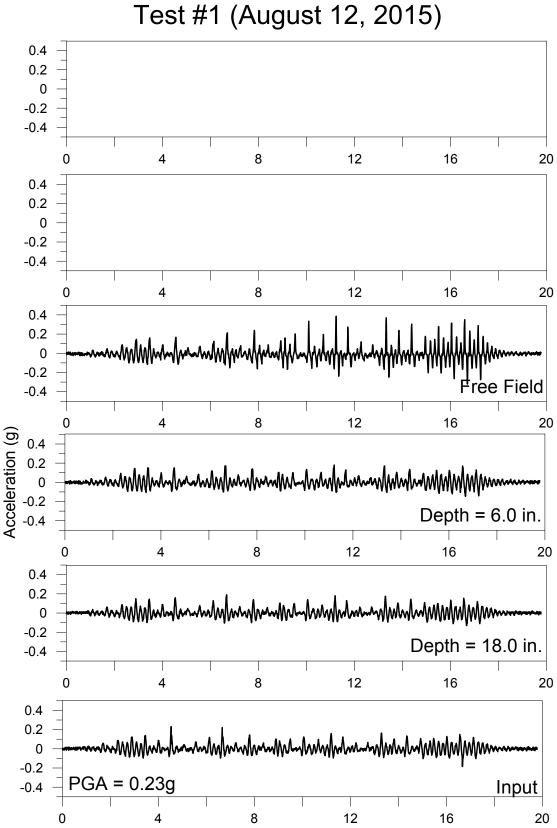
 Das, Braja M. "Principles of Foundation Engineering – 8th Edition." Cengage, 2015.

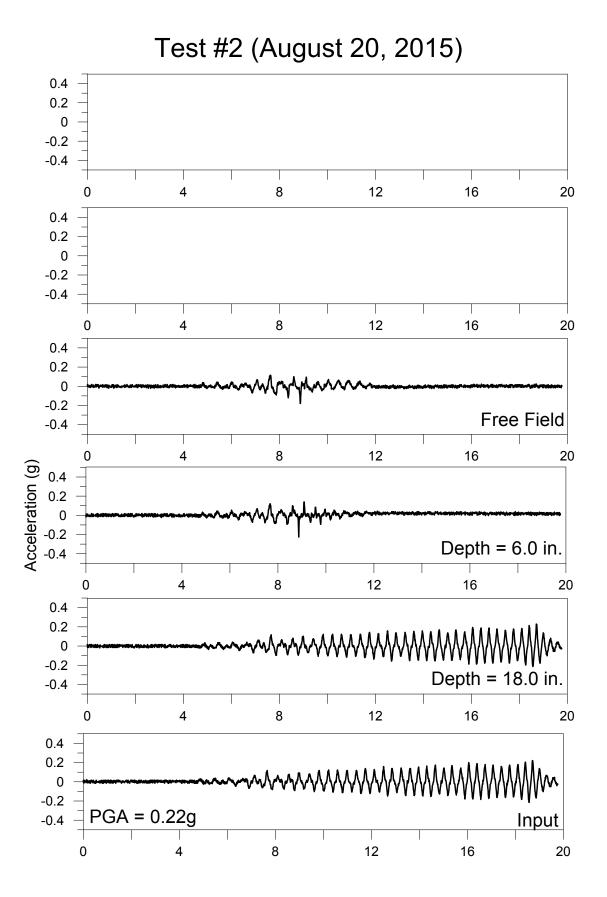
6. Dashti, S., Bray, J.D., Pestana, J. M., Riemer, M., and Wilson, D.

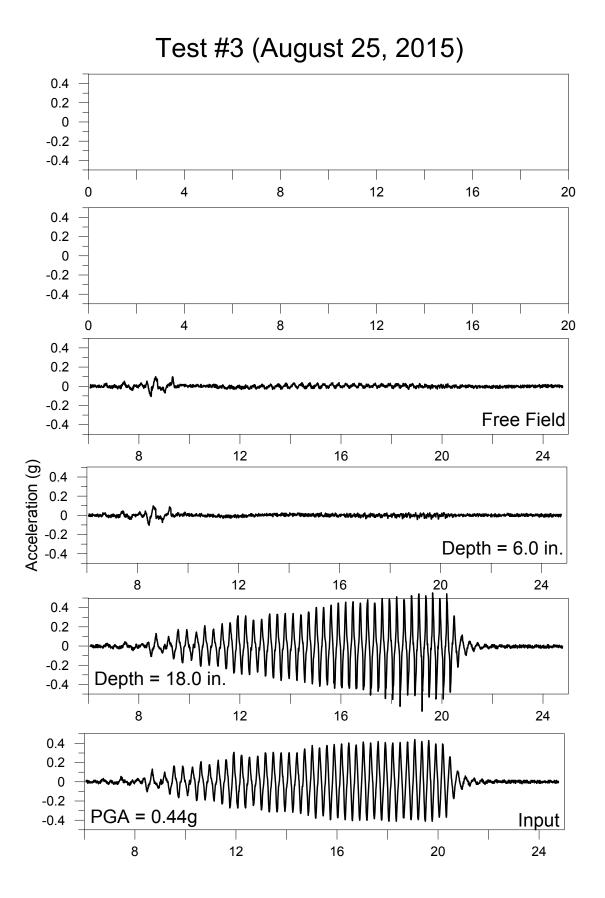
"Mechanisms of Seismically Induced Settlement of Buildings with Shallow

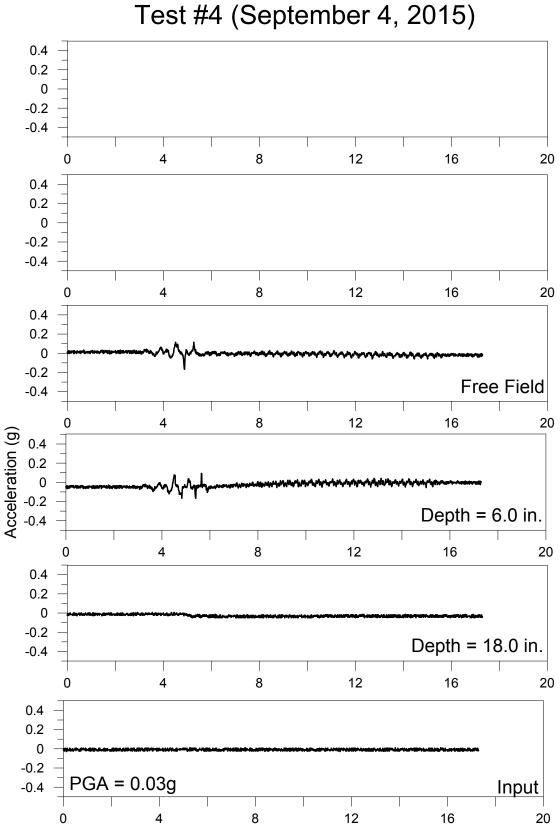
Foundations." *Journal of Geotechnical and Geoenvironmental Engineering*, vol. 136, 2010a, pp.151-164.

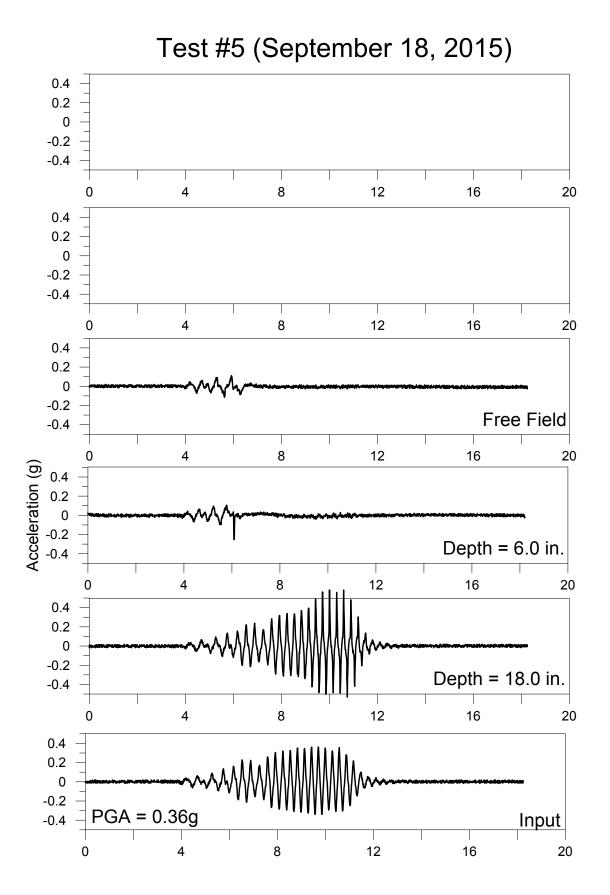
- Dashti, S., Bray, J.D., Pestana, J. M., Riemer, M., and Wilson, D. "Centrifuge Testing to Evaluate and Mitigate Liquefaction-Induced Building Settlement Mechanisms." *Journal of Geotechnical and Geoenvironmental Engineering*, vol. 136, 2010b, pp. 918-929.
- "Earthquake Engineering Laboratory." University of Nevada, Reno. 30, October. 2016, <u>http://www.unr.edu/cceer/facilities-and-</u> <u>equipment/earthquake-laboratory</u>.
- Henderson, D. "The Performance of House Foundations in the Cantebury Earthquakes." (Master's thesis). University of Canterbury, 2013, pp. 1-448. <u>http://ir.canterbury.ac.nz/handle/10092/8741.</u>
- 10. Iai, S. "Similitude for Shaking Table Tests on Soil-Structures-Fluid Model in 1g Gravitational Field." *Soils and Foundations,* vol. 29, 1989, pp. 105-118.
- Idriss, I.M., Boulanger R.W. "Semi-Empirical Procedures for Evaluating Liquefaction Potential During Earthquakes." Soil Dynamics and Earthquake Engineering, vol. 26, 2006, pp. 32-56.

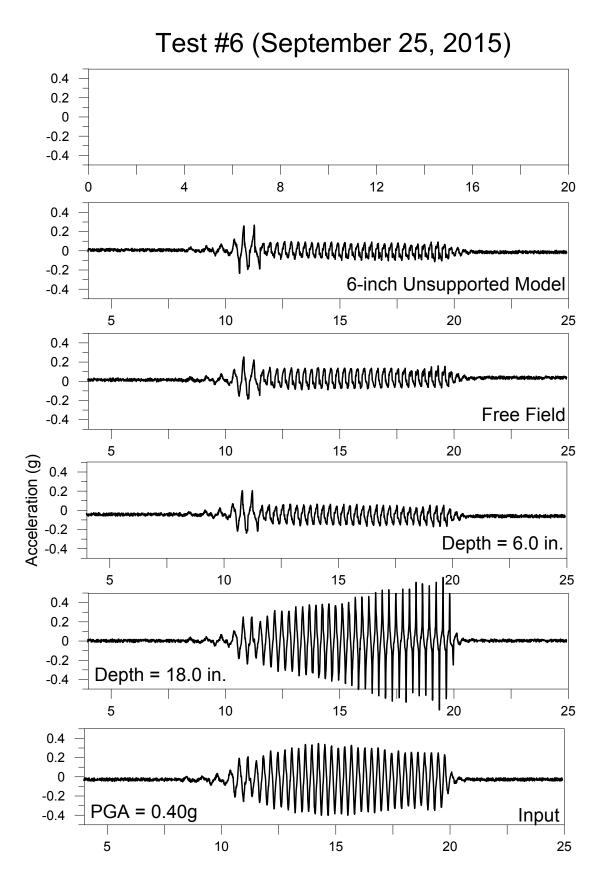

 Ishihara K, Yoshimine, M. "Evaluation of Settlements in Deposits Following Liquefaction during Earthquakes." Soils and Foundations, vol. 32(1), 1992, pp. 173-188.

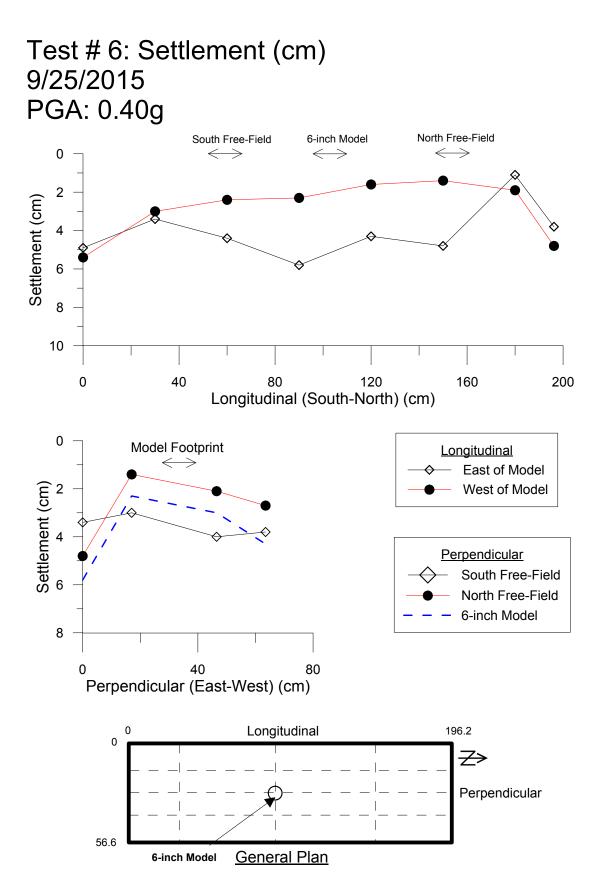

13. Kramer, Steven L. "Geotechnical Earthquake Engineering." Pearson, 1996.

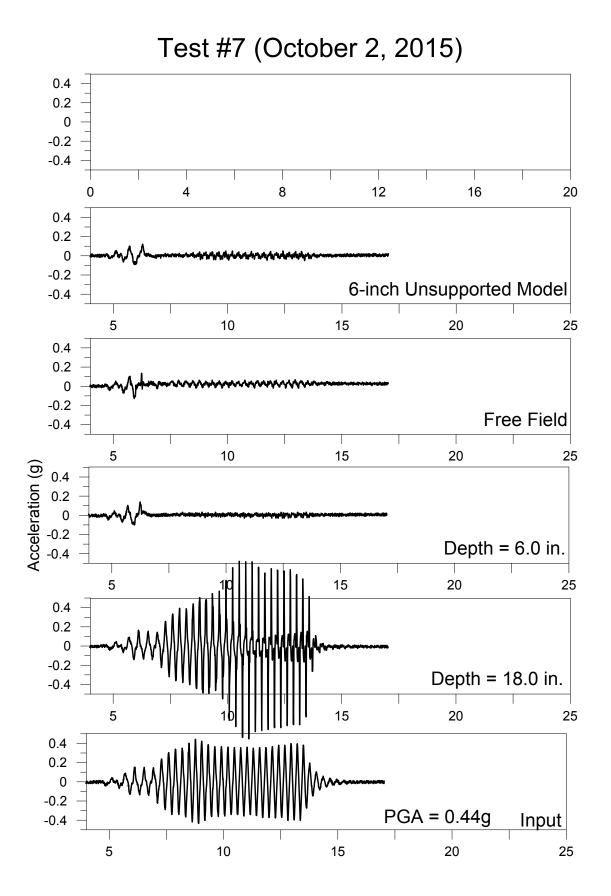

- Liu, L and Dobry, R., "Seismic Response of Shallow Foundation on Liquefiable Sand." *Journal of Geotechnical and Geoenvironmental Engineering*, vol. 123, 1997, pp. 557-567.
- 15. Marin, H.E., "Geotechnical Investigation Report: The Edge Resort and Spa Project – Southeast Corner of Lakeshore Boulevard and Stateline Avenue, South Lake Tahoe in Eldorado County, California." HEM Consulting LLC, dated November 16, 2012, pp. 1-32.
- Perko, Howard A. "Helical Piles A Practical Guide to Design and Installation." John Wiley & Sons Inc, 2009.
- 17. Rasouli, R., Towhata, I., and Hayashida, T. "Mitigation of Seismic Settlement of Light Surface Structures by Installation of Sheet-Pile Walls Around the Foundation." *Soil Dynamics and Earthquake Engineering*, vol. 72, 2015, pp. 108-118.

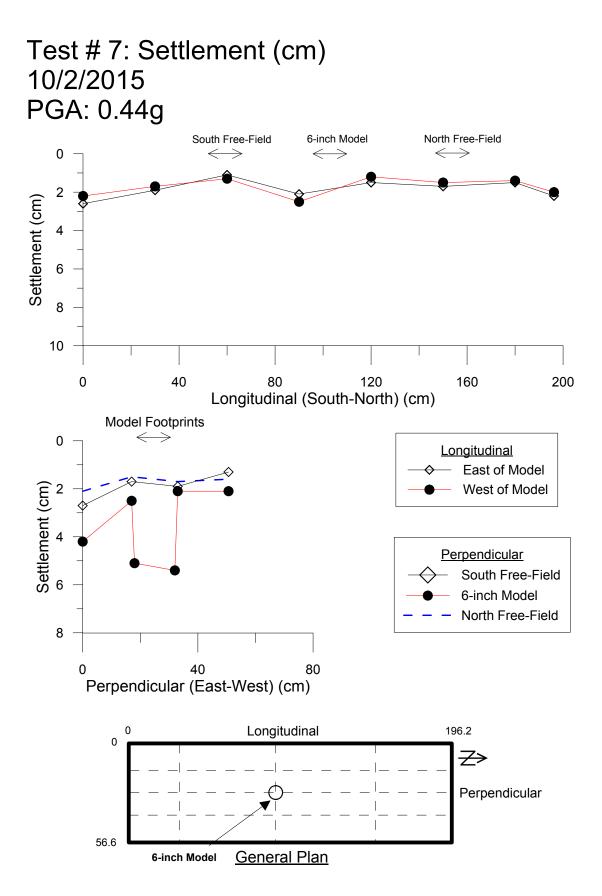

- "The Landing Resort, Stateline, Nevada." 38.960938°lat, -119.0949266°long.
 Google Earth, April, 2015. Accessed December 5, 2016.
- Tokimatsu, K., and Seed, B. "Evaluation of Settlements in Sands Due to Earthquake Shaking." *Journal of Geotechnical Engineering*, vol. 113(8), 1987, pp. 861-878.
- 20. Towhata, Ikuo. "Geotechnical Earthquake Engineering." Springer, 2008.
- 21. Van Ballegooy, S., Malan, P., Lacrosse, V., Jacka, M.E., Cubrinovski, M., Bray, J.D., O'Rourke, T.D., Crawford, S.A., and Cowan, H. "Assessment of Liquefaction-Induced Land Damage for Residential Christchurch." Earthquake Spectra, vol. 30(1), 2014, pp. 31-55.
- Yasuda, S., Harada, K., Ishikawa, K., and Kanemaru, Y. "Characteristics of Liquefaction in Tokyo Bay Area by the 2011 Great East Japan Earthquake." Soils and Foundations, vol. 52(5), 2012, pp. 793-810.
- 23. Youd, T.L., and Idriss, I.M. "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils." Journal of Geotechnical and Geoenvironmental Engineering. vol. 127, 2001, pp. 297-313.

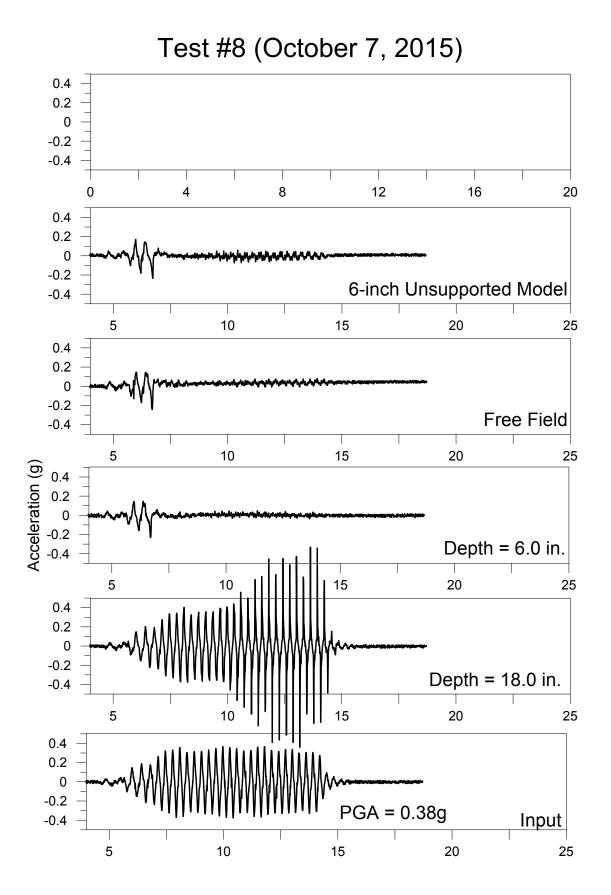

Appendix A – Experimental Results

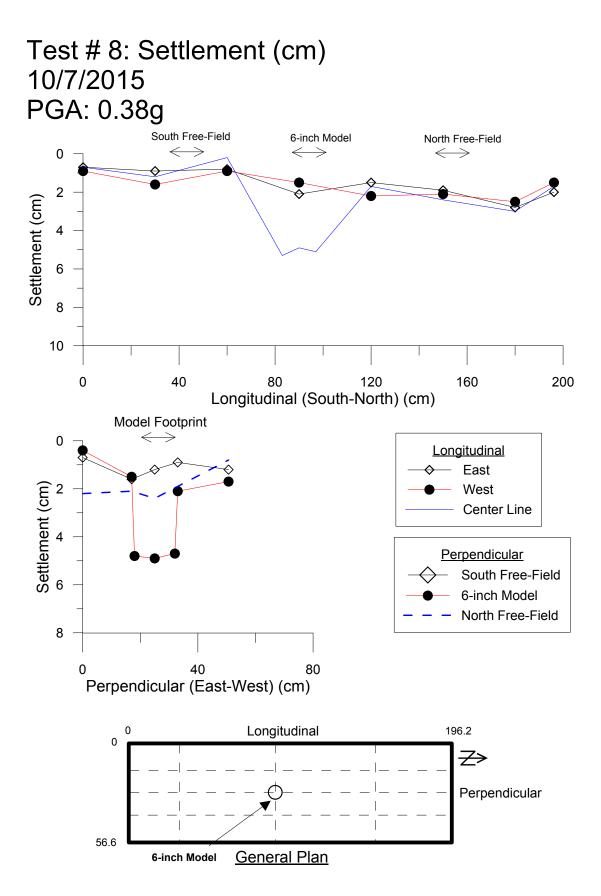


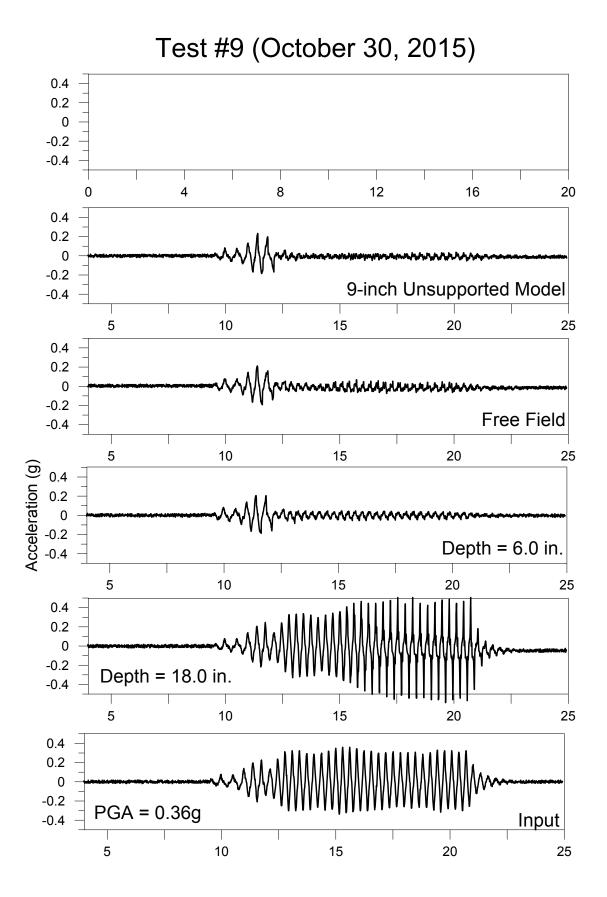


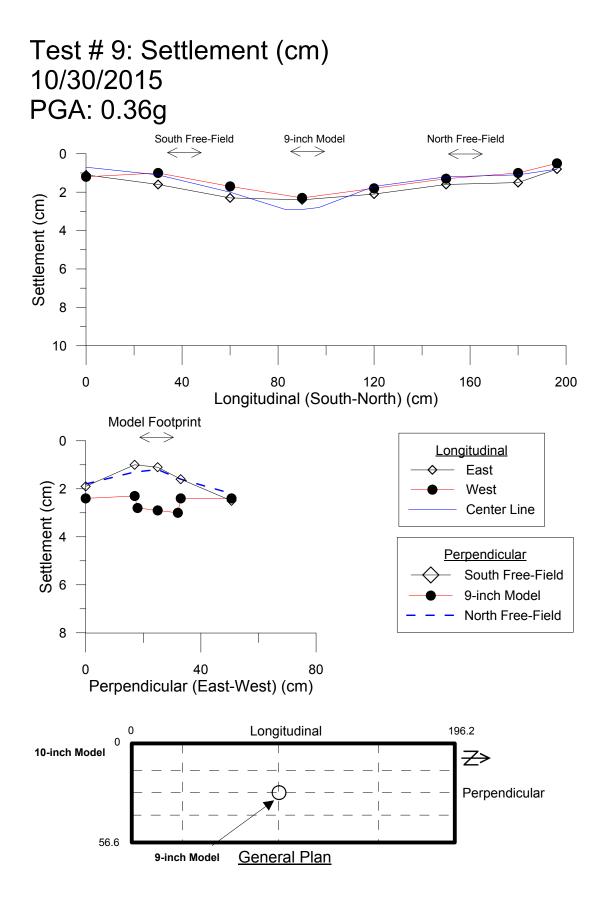


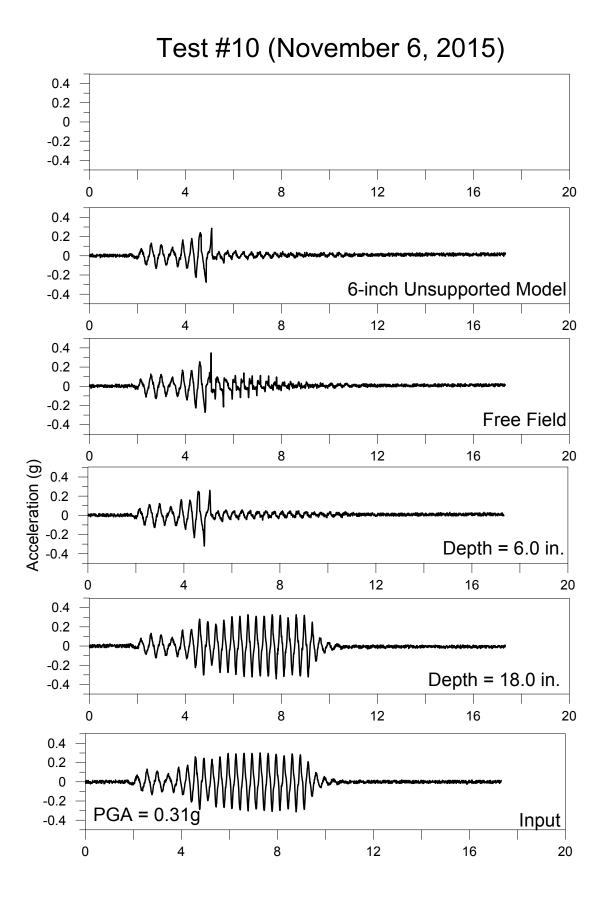


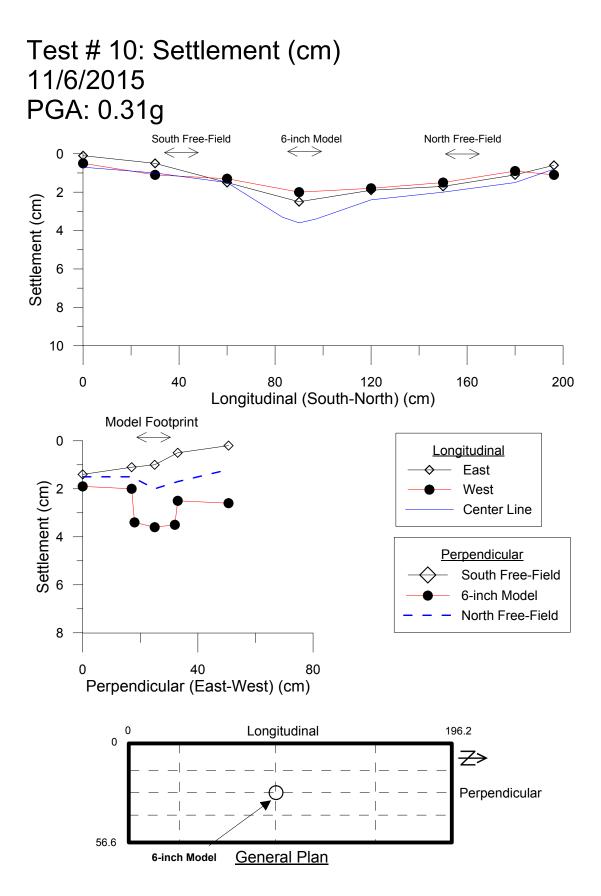


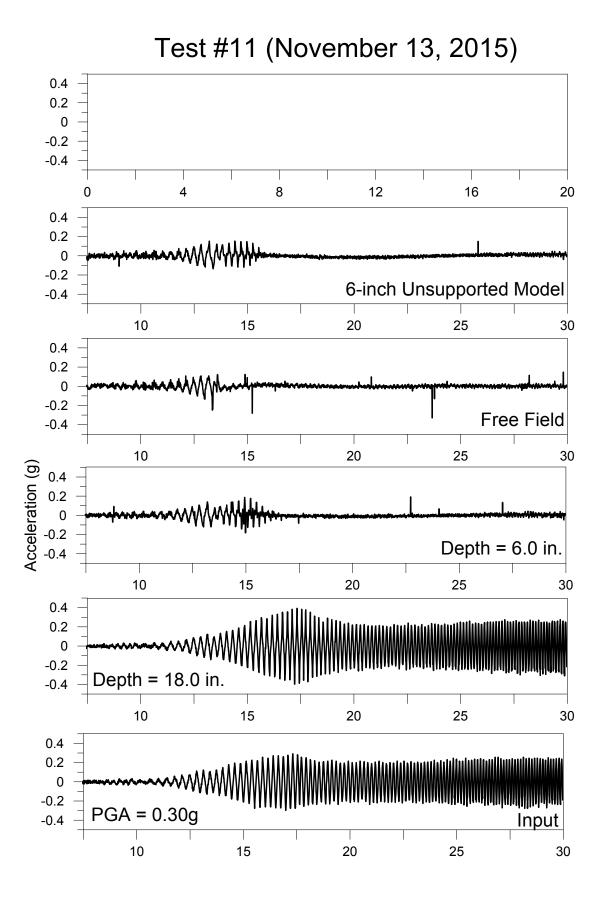


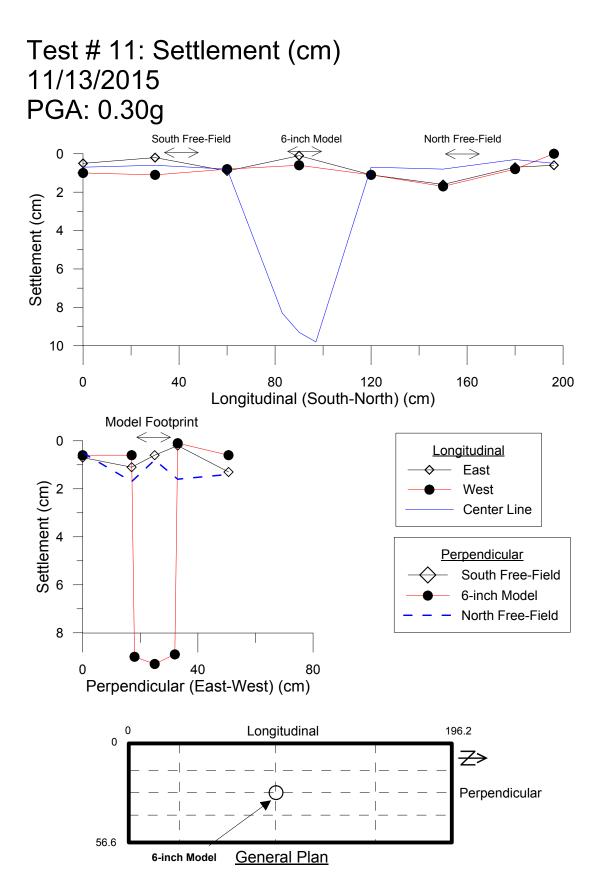


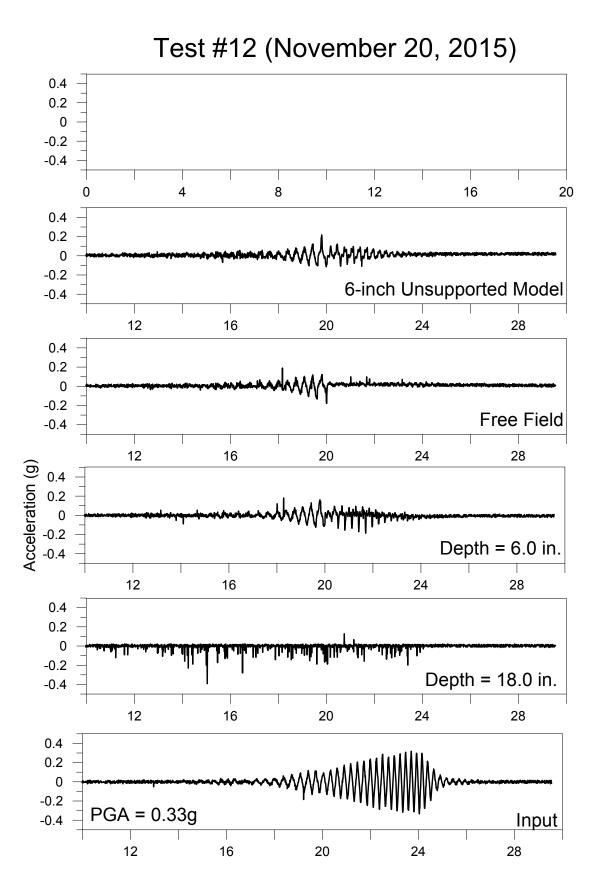


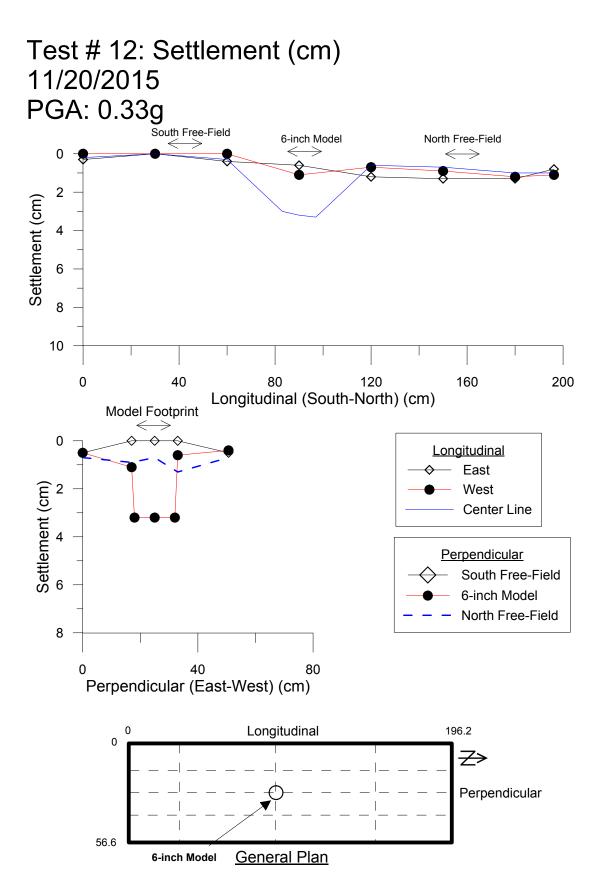


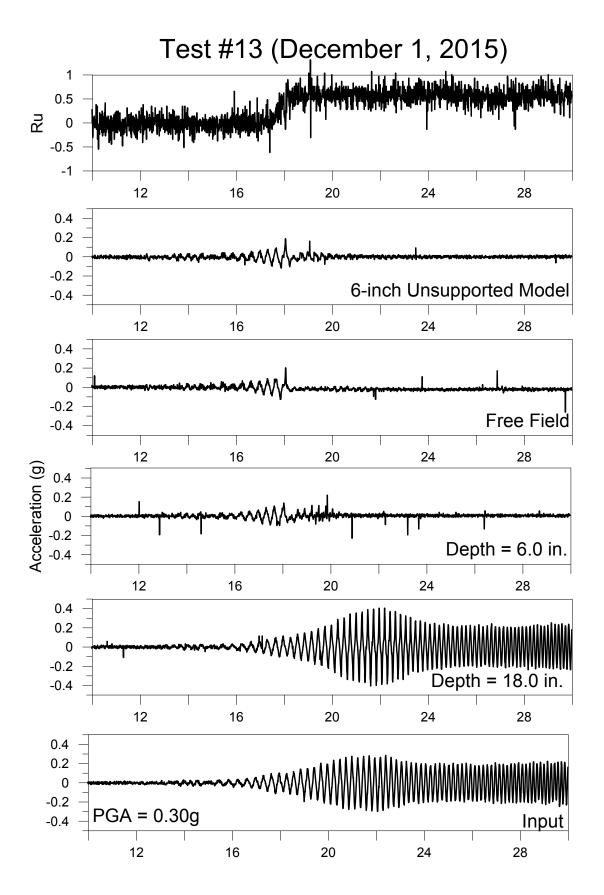


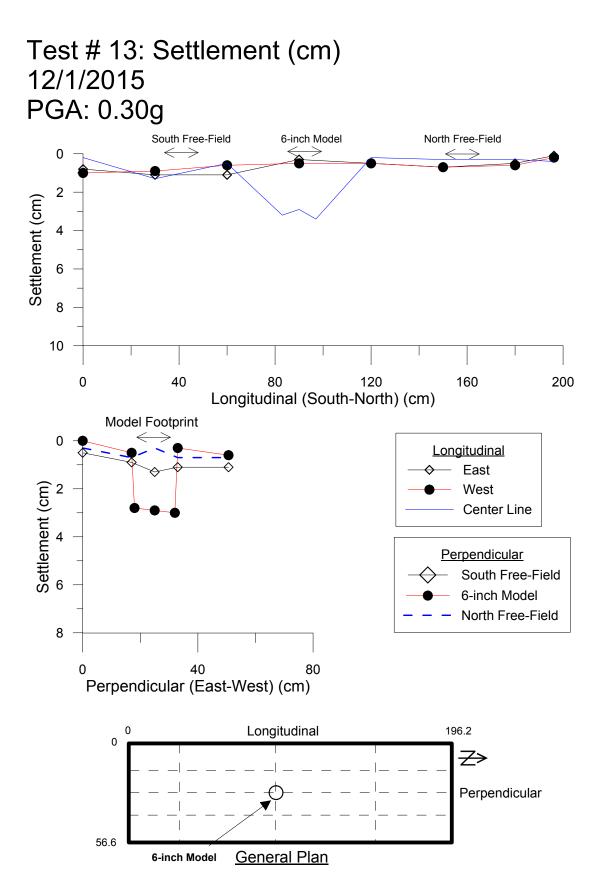


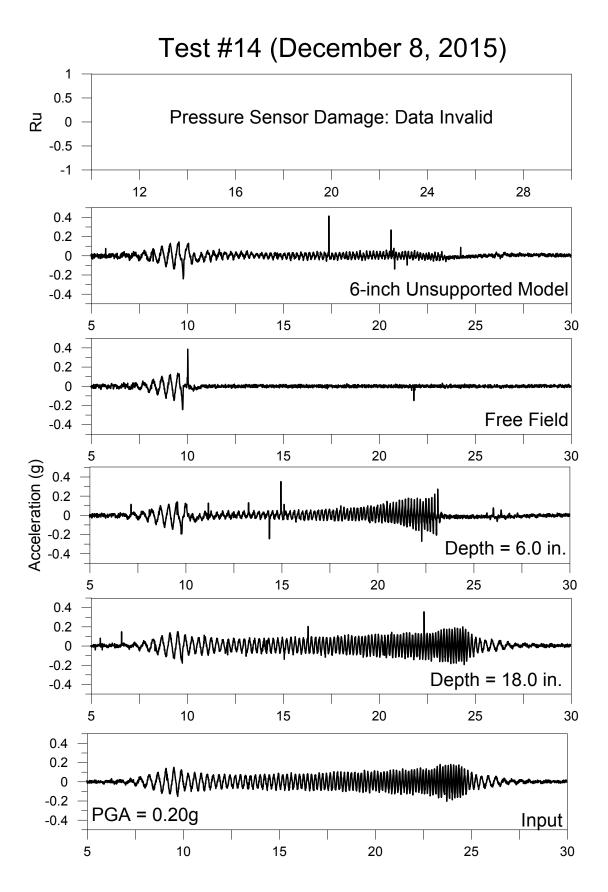


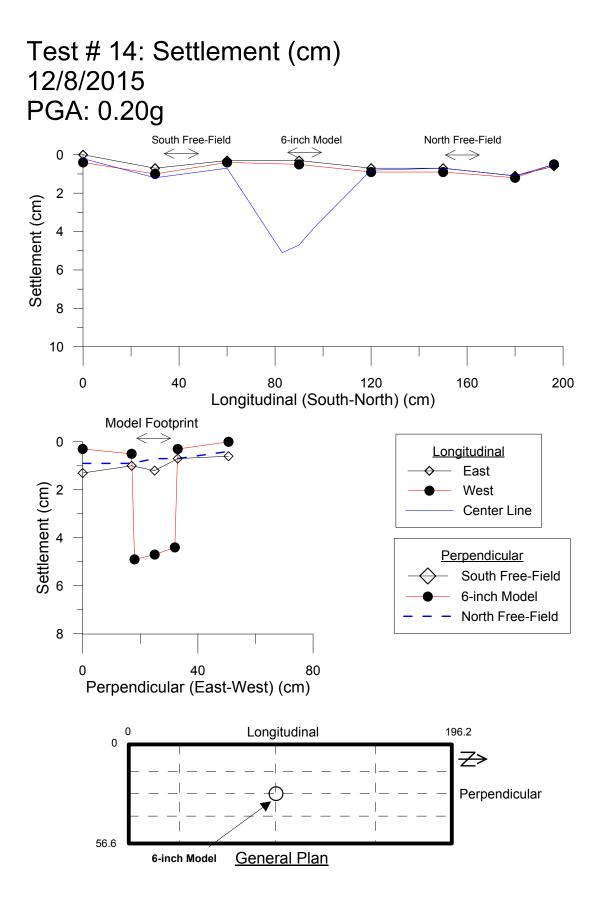


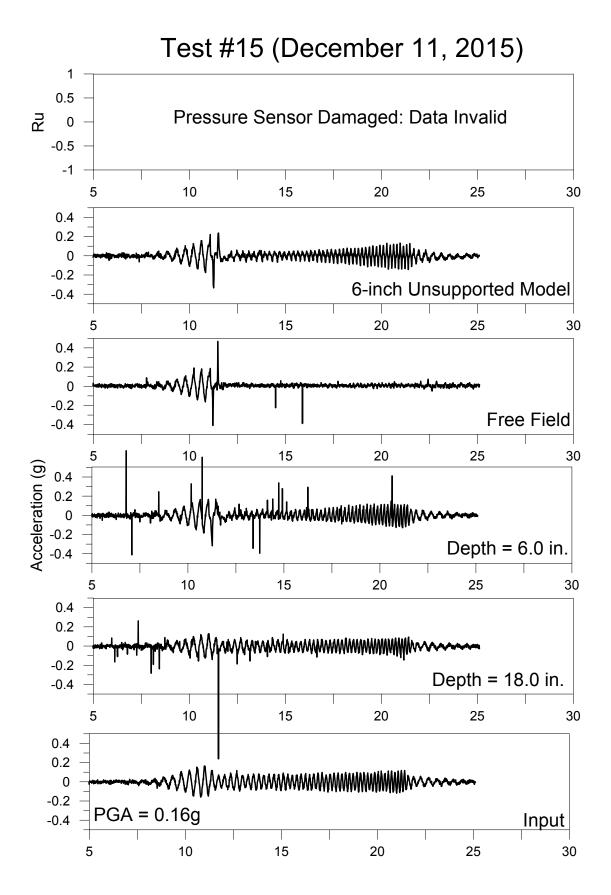


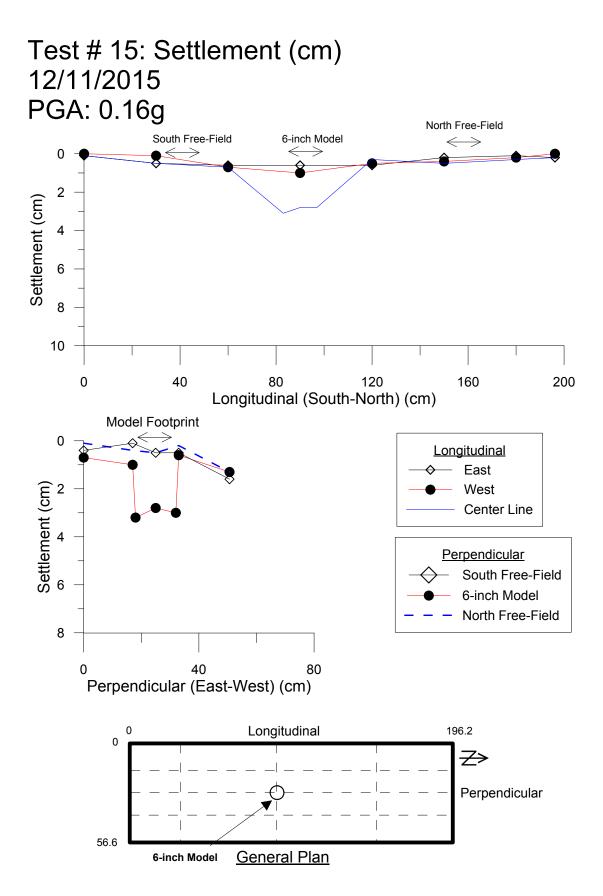


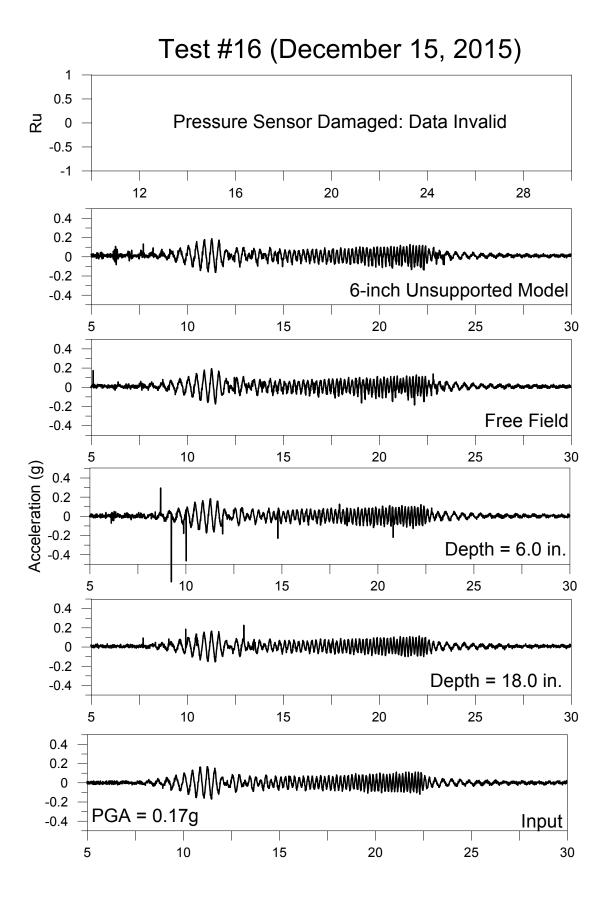


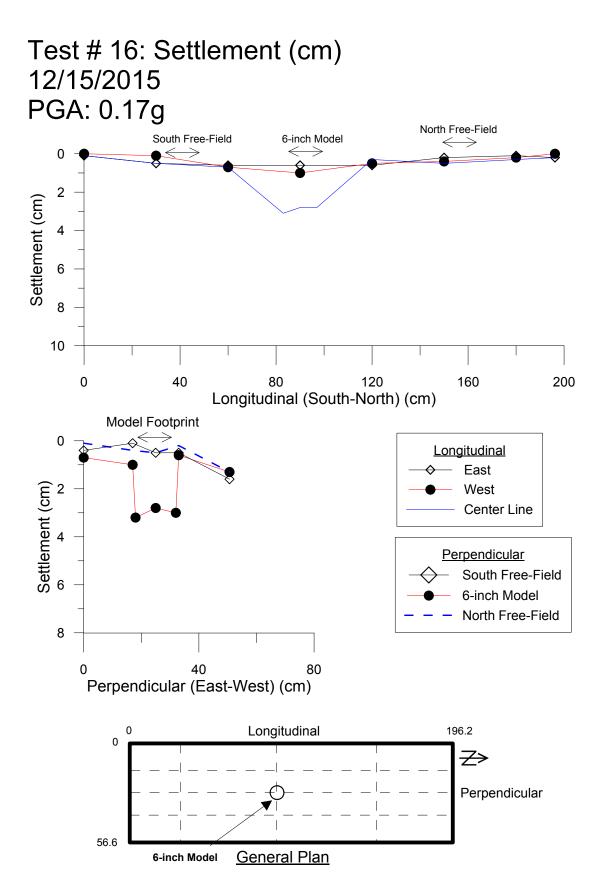


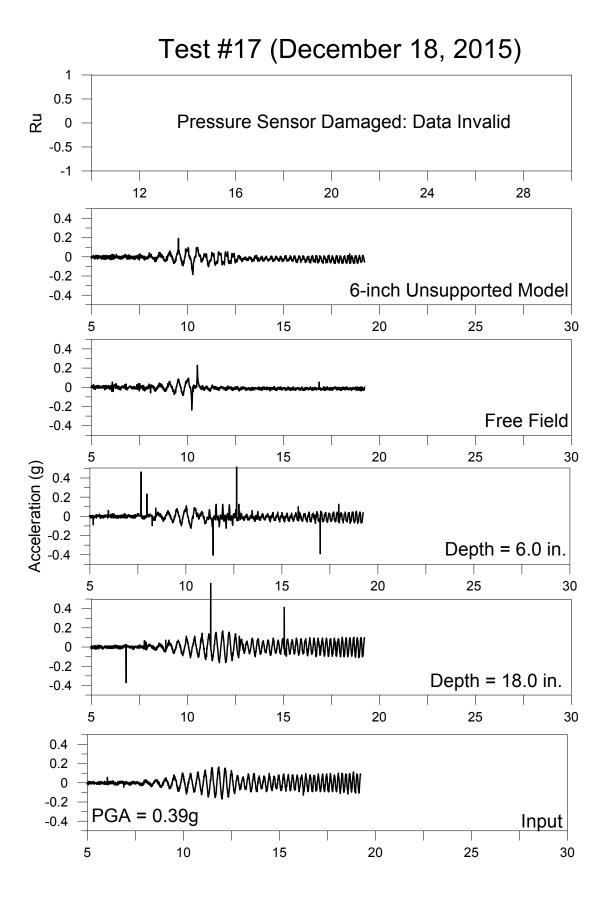


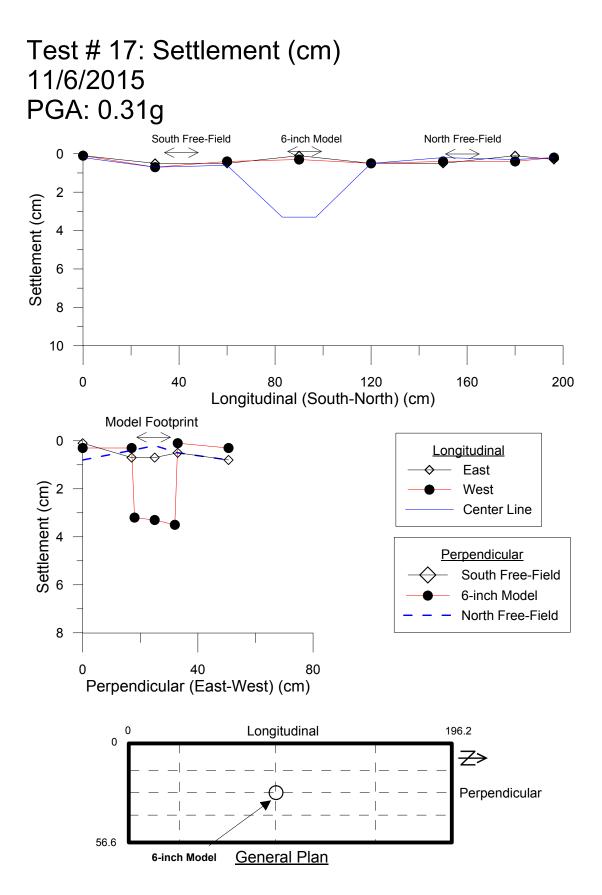


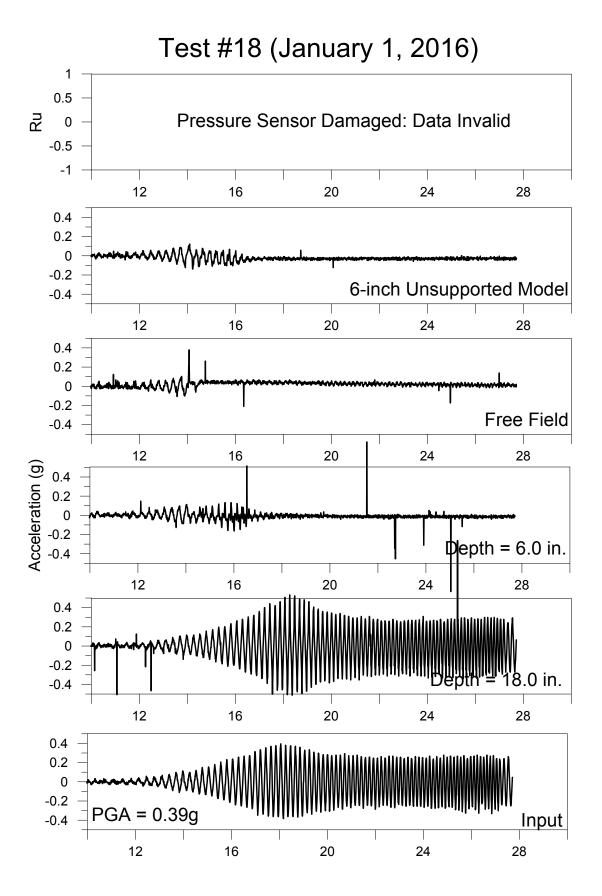


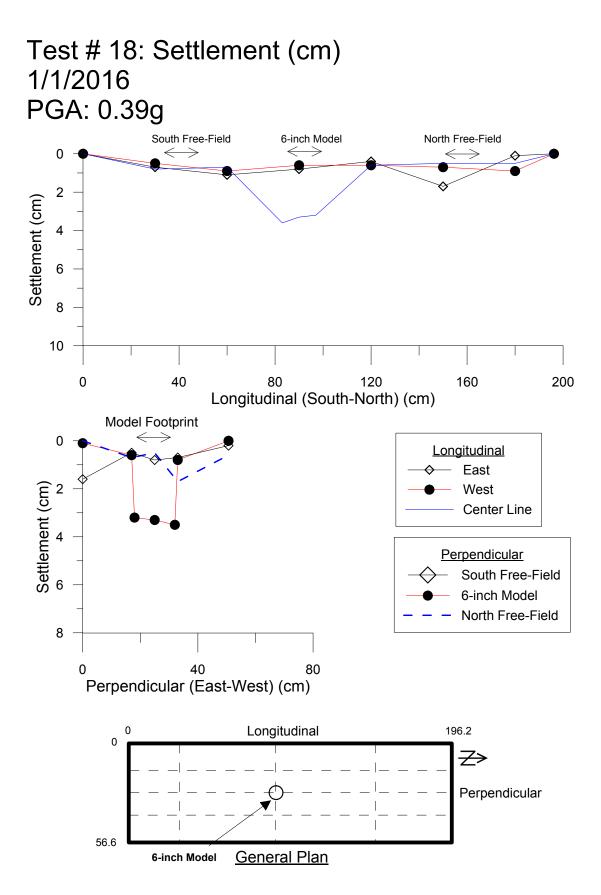


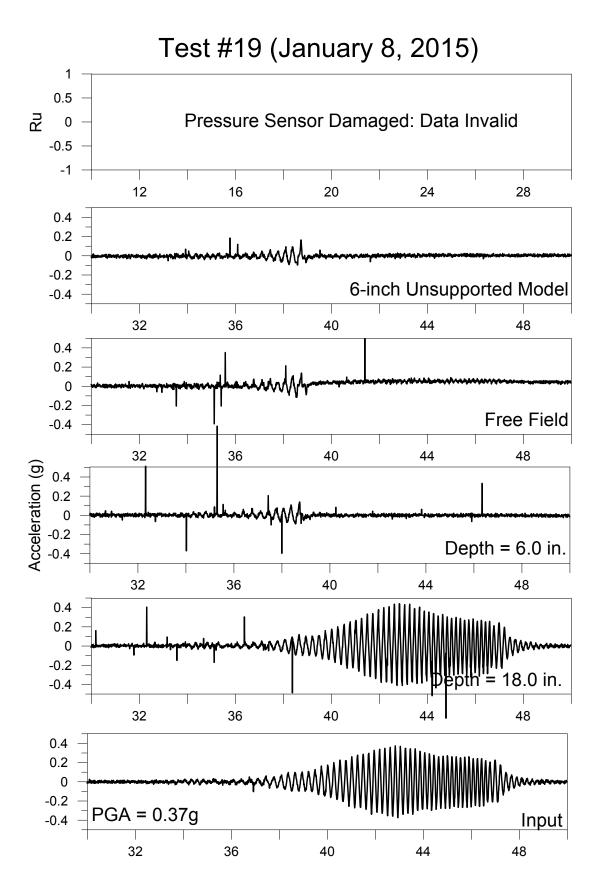


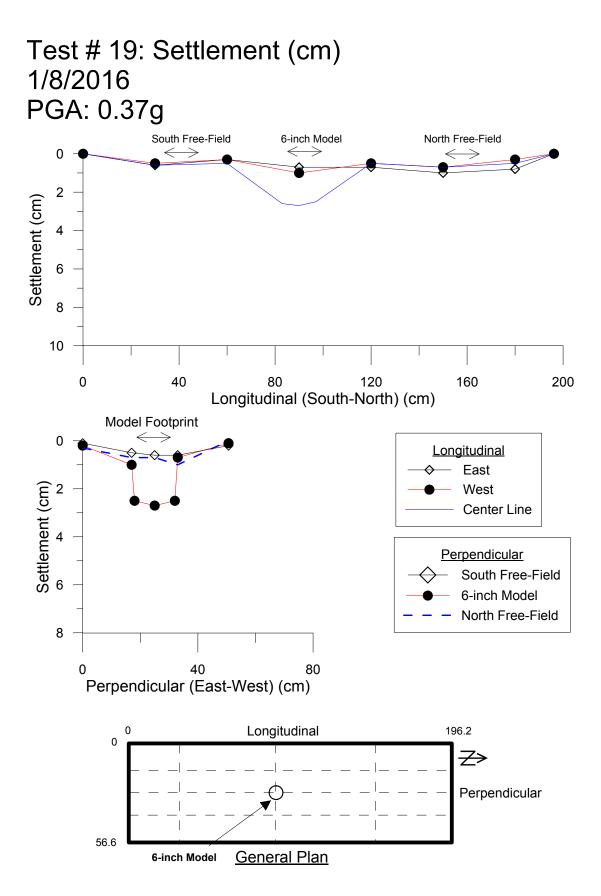


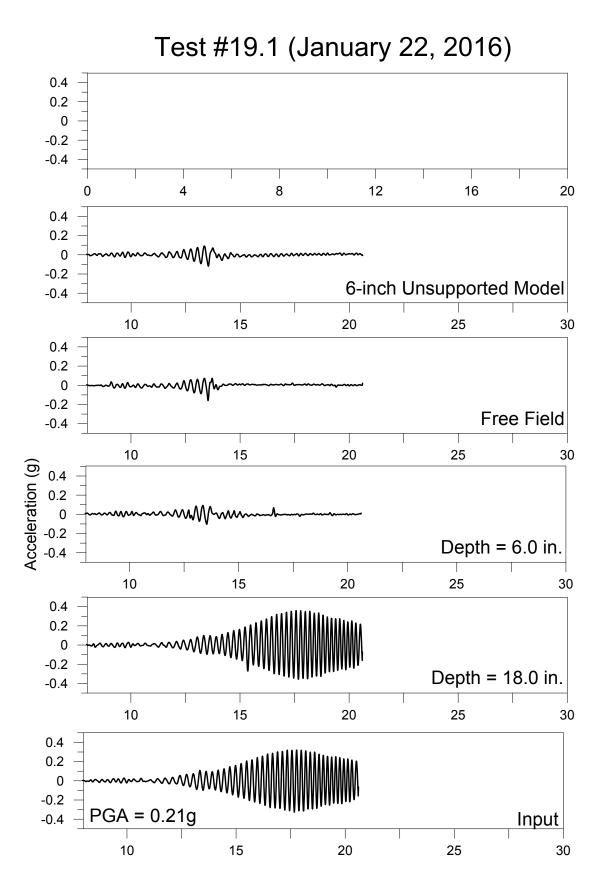


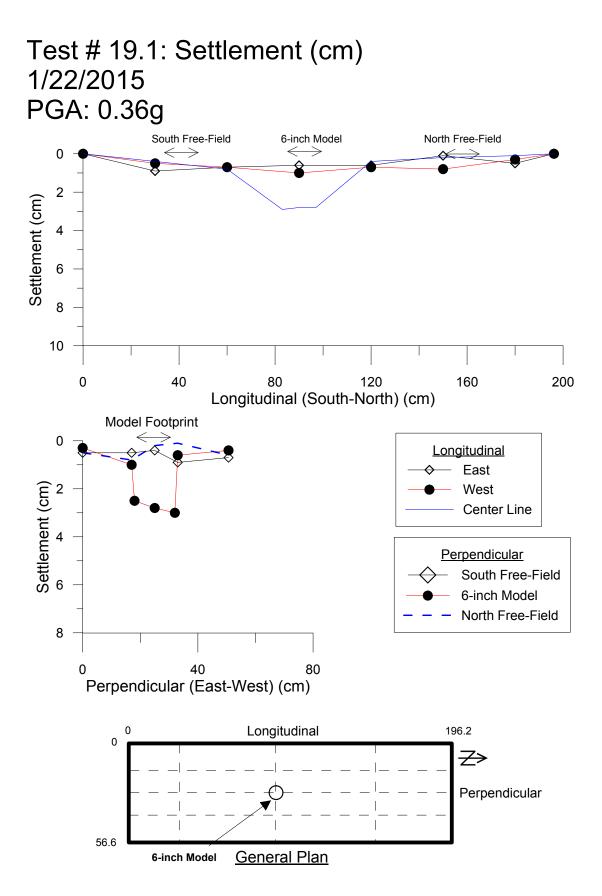


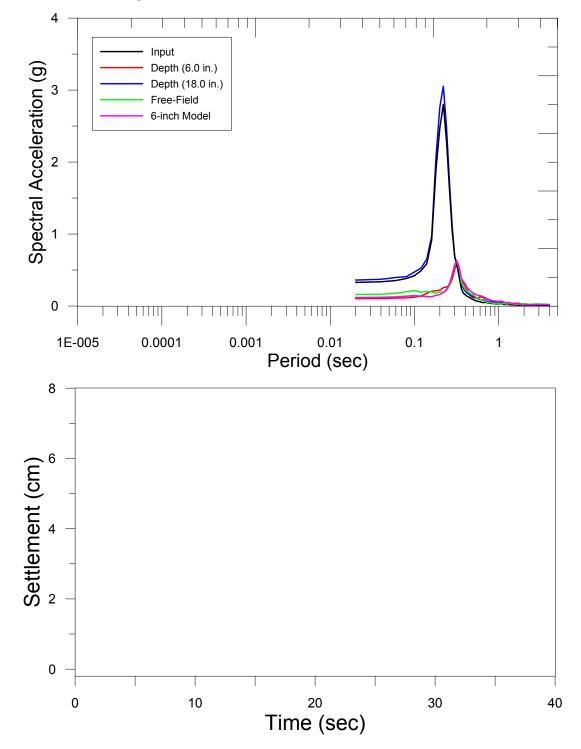


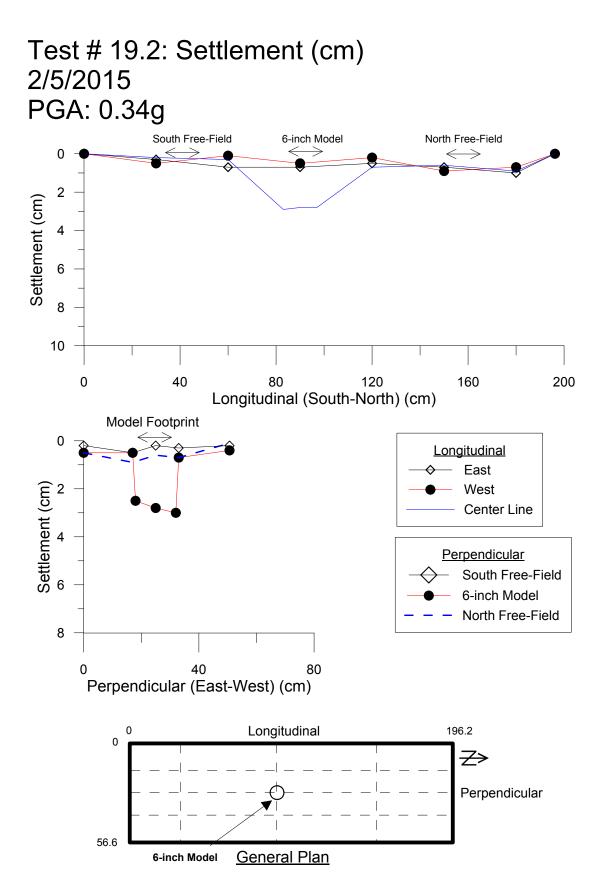


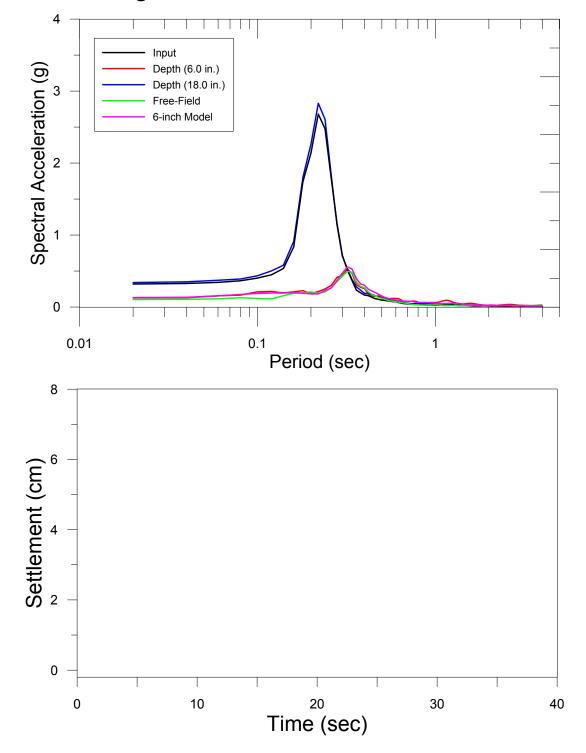


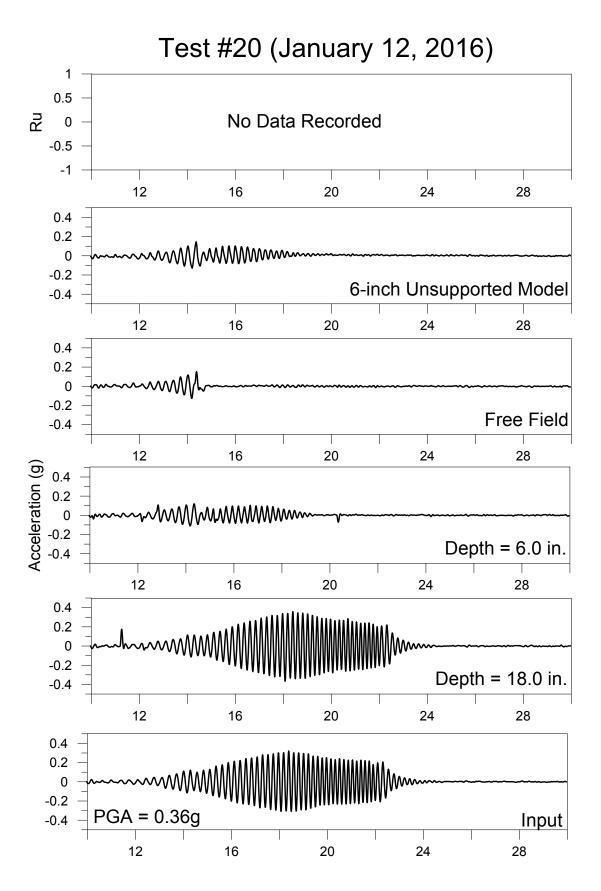


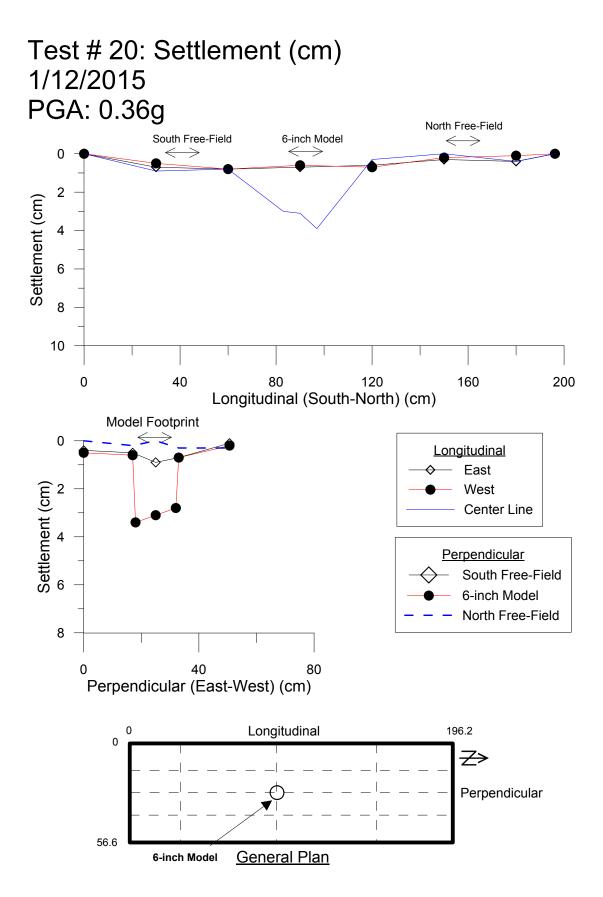


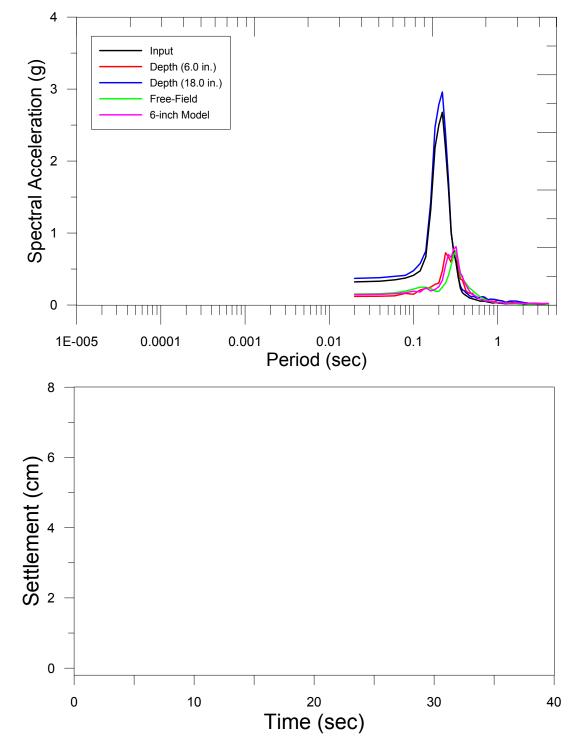


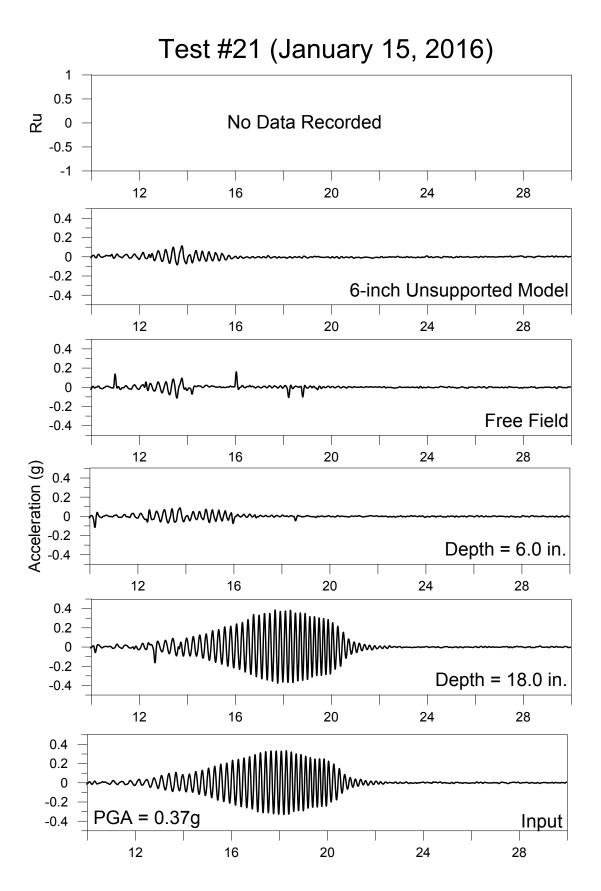


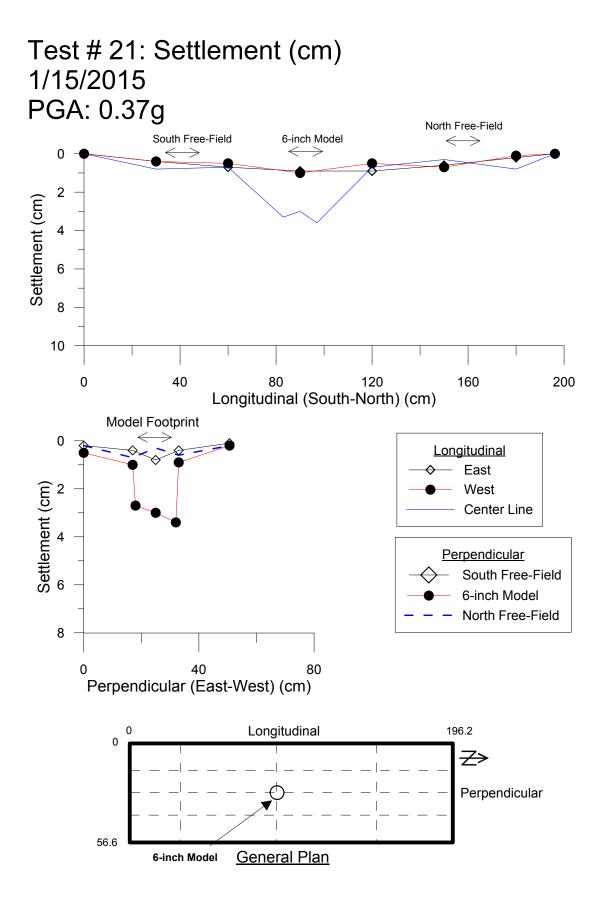

Test # 19.1: Ground Motion Characteristics 1/22/2016 PGA: 0.36g

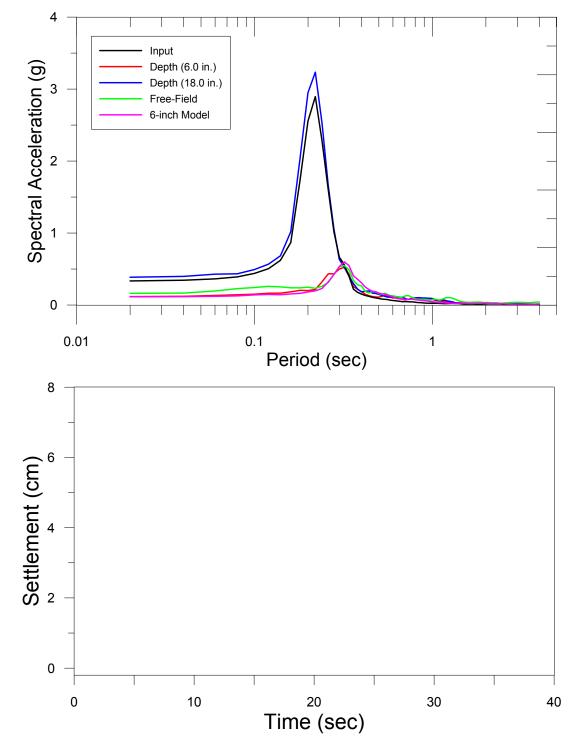


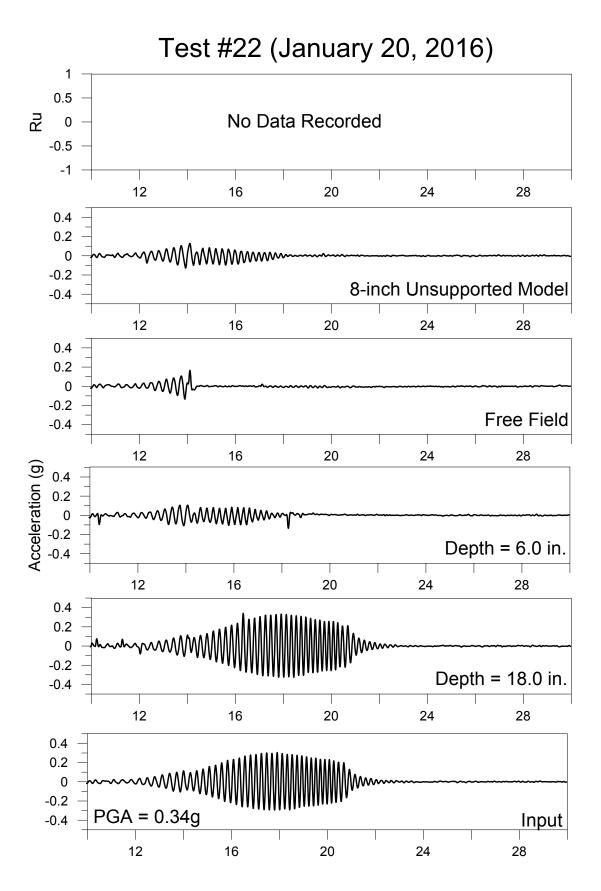


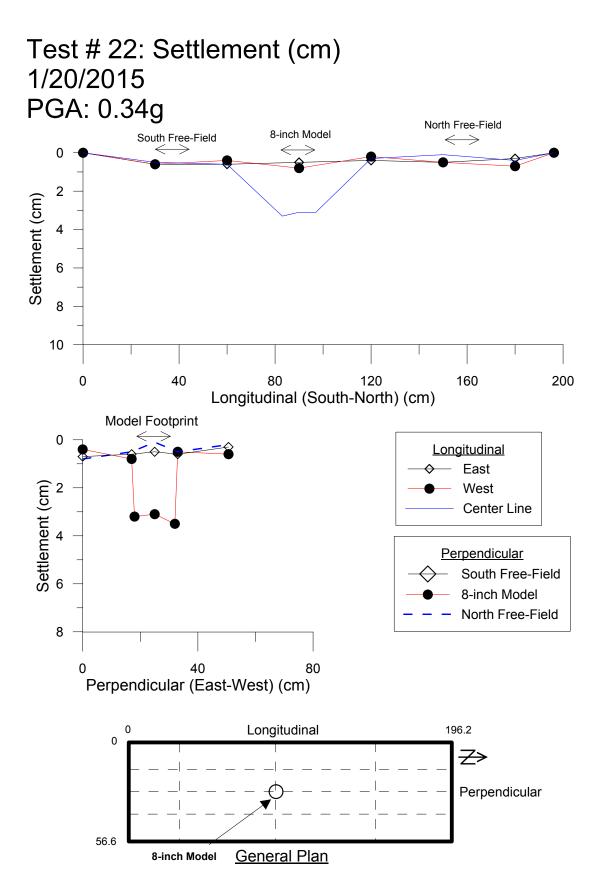

Test # 19.2: Ground Motion Characteristics 2/5/2016 PGA: 0.34g

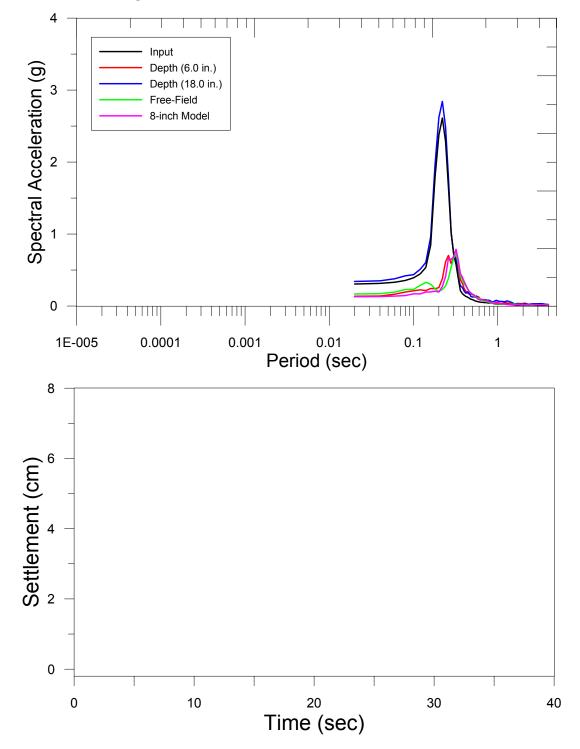


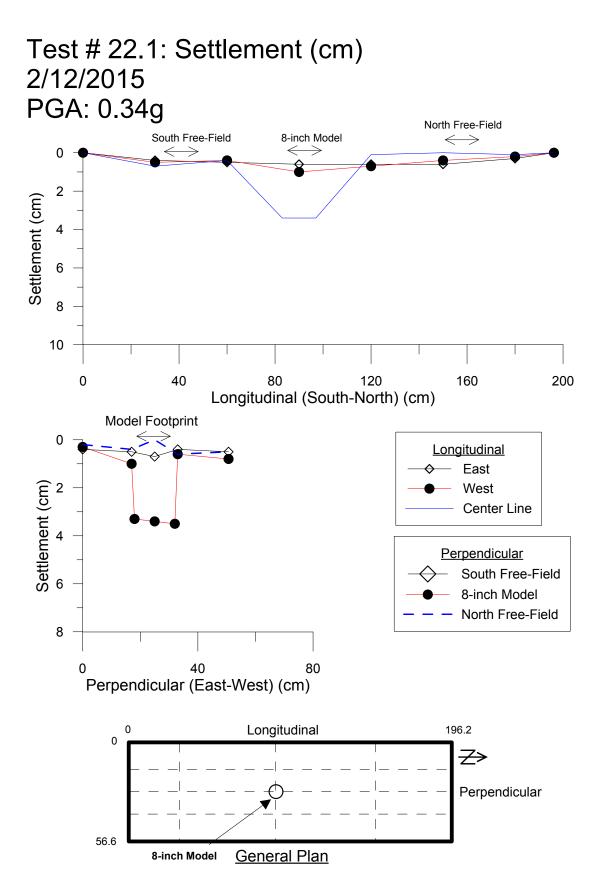


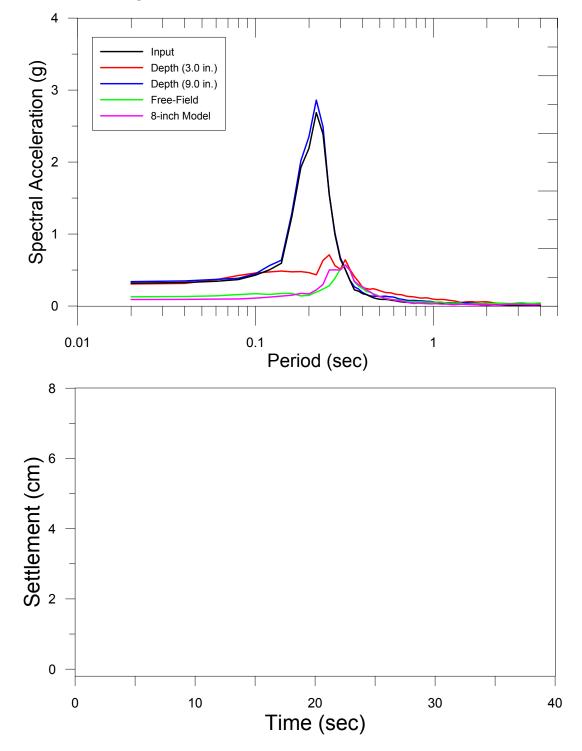

Test # 20: Ground Motion Characteristics 1/12/2016 PGA: 0.36g

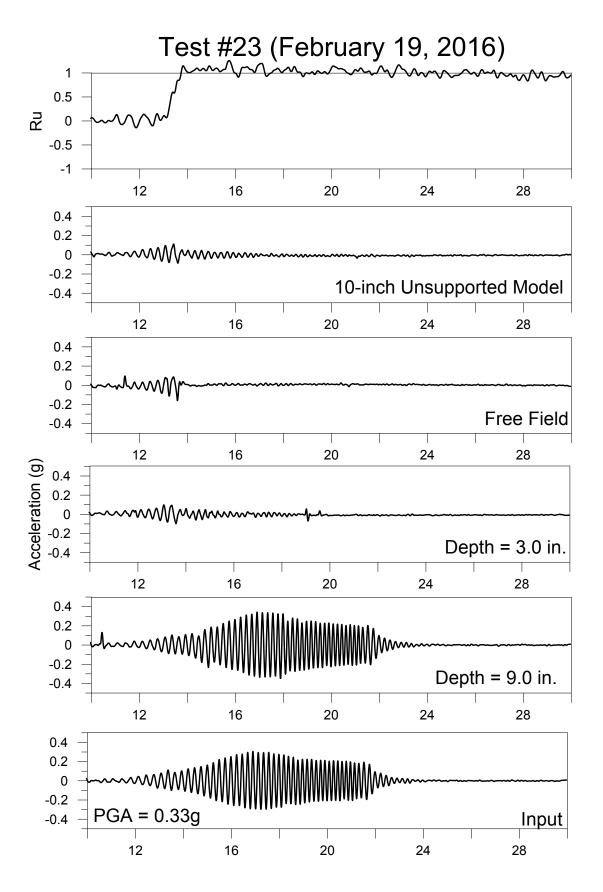


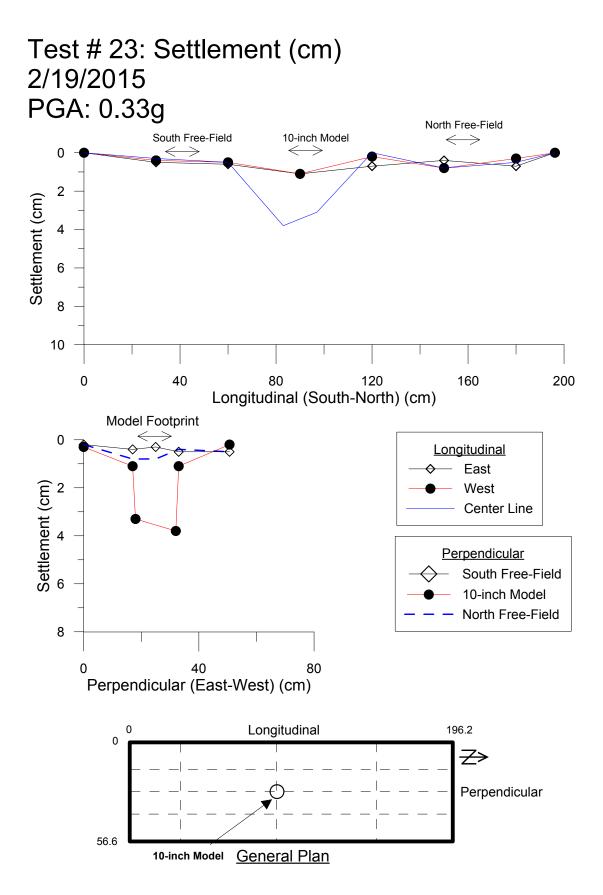


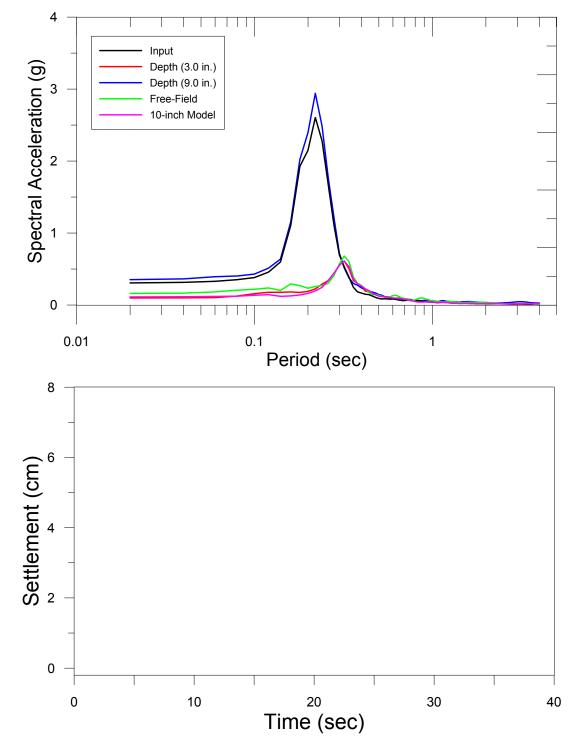

Test # 21: Ground Motion Characteristics 1/15/2016 PGA: 0.37g

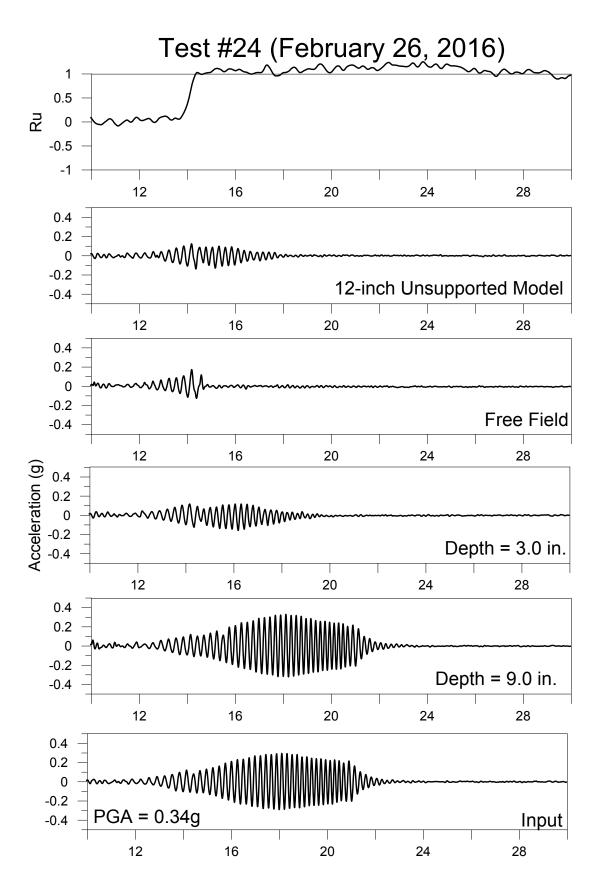


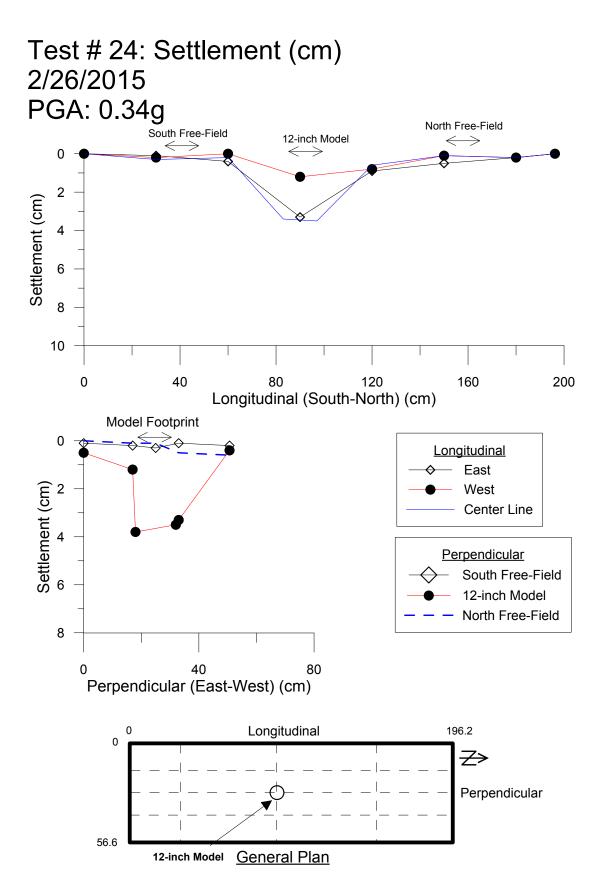


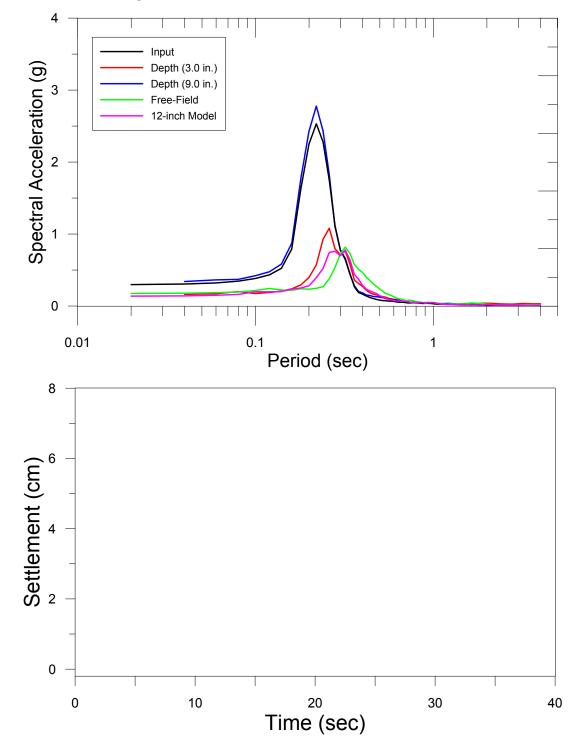

Test # 22: Ground Motion Characteristics 1/20/2016 PGA: 0.34g

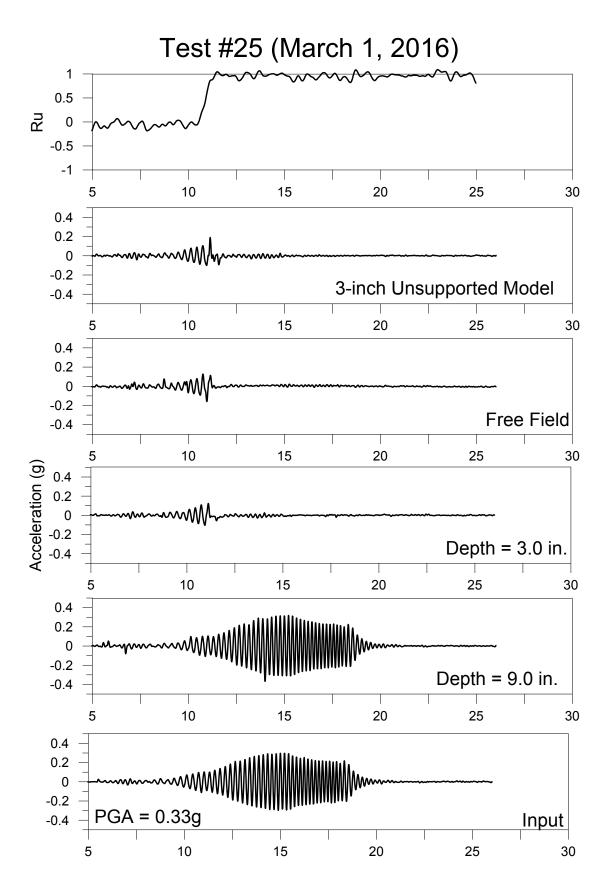


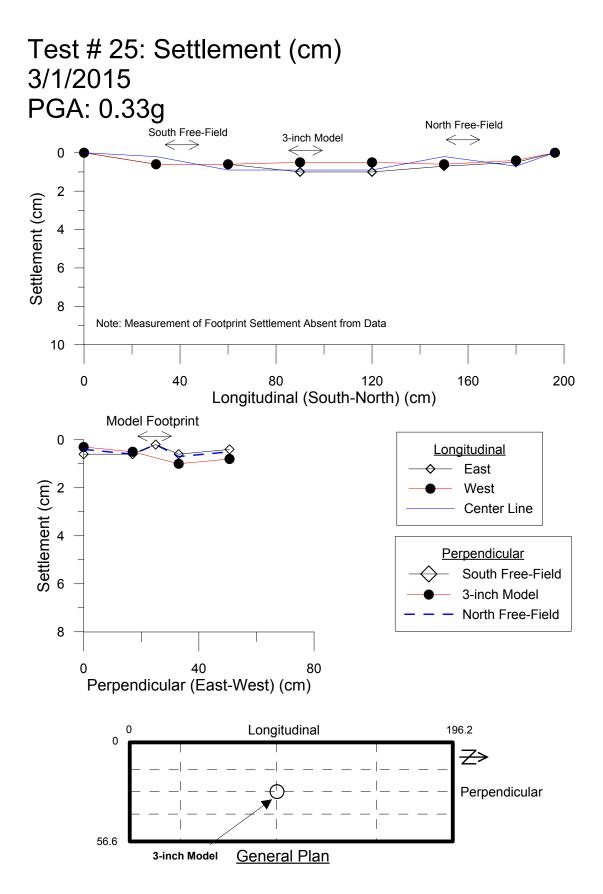

Test # 22.1: Ground Motion Characteristics 2/12/2016 PGA: 0.34g

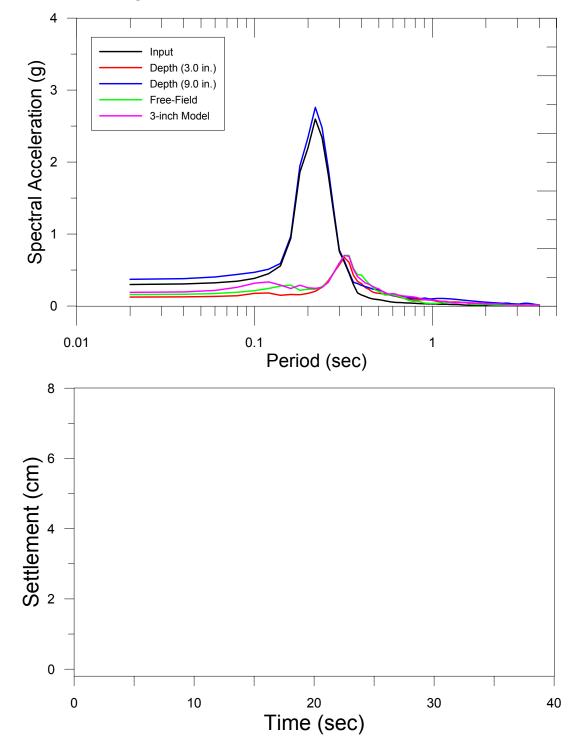


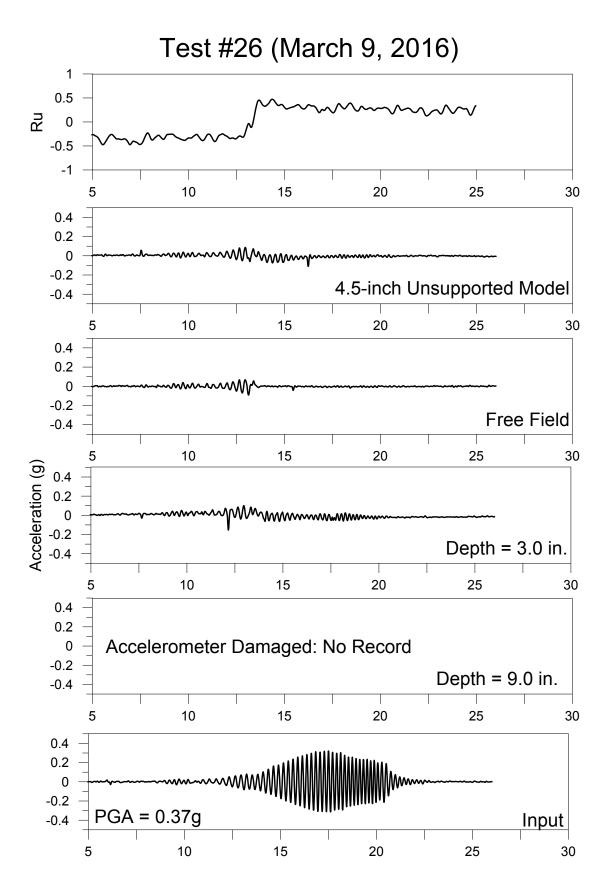


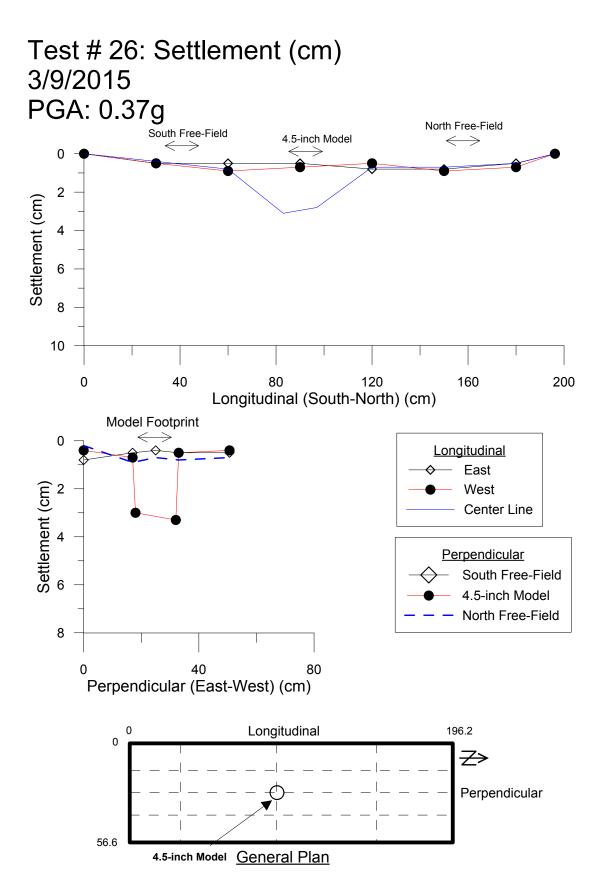

Test # 23: Ground Motion Characteristics 2/19/2016 PGA: 0.33g

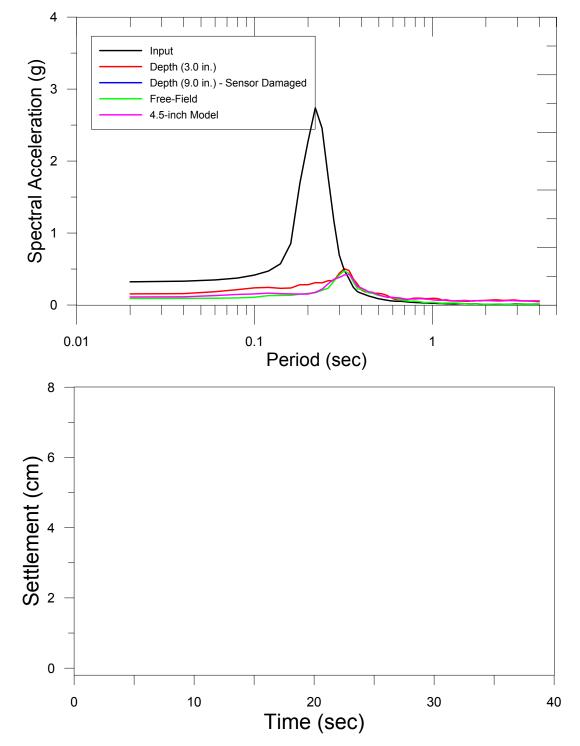


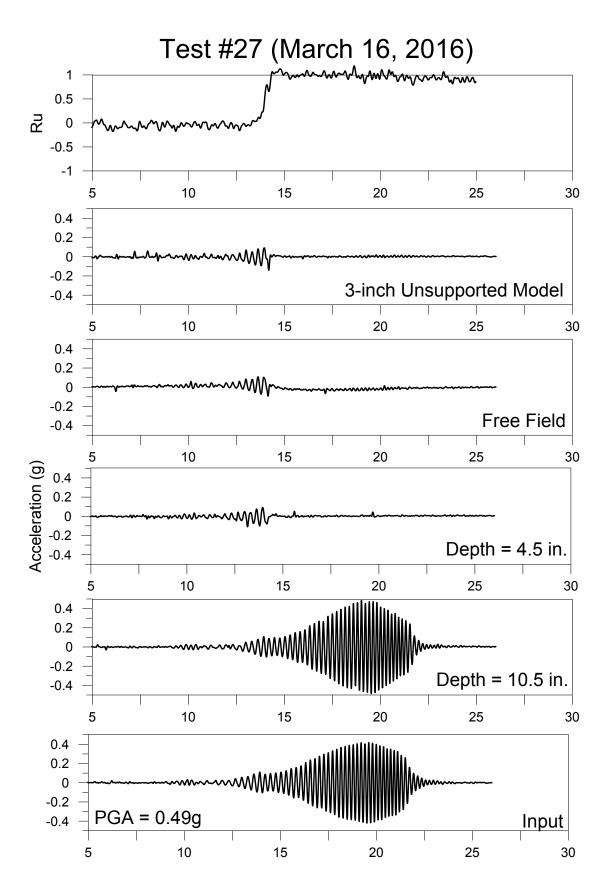


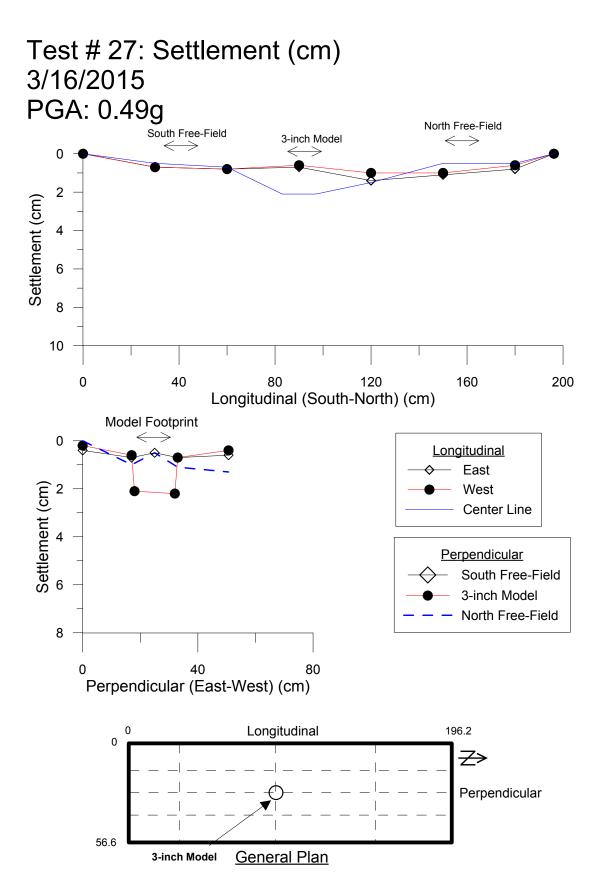

Test # 24: Ground Motion Characteristics 2/26/2016 PGA: 0.34g

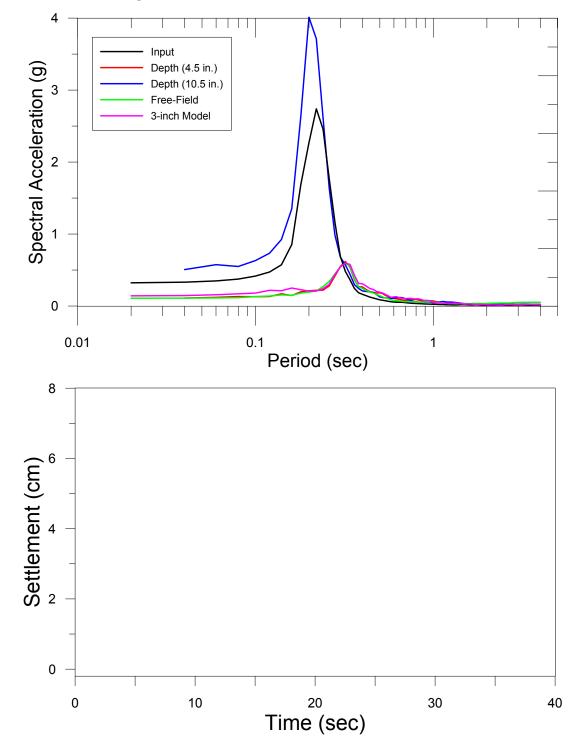


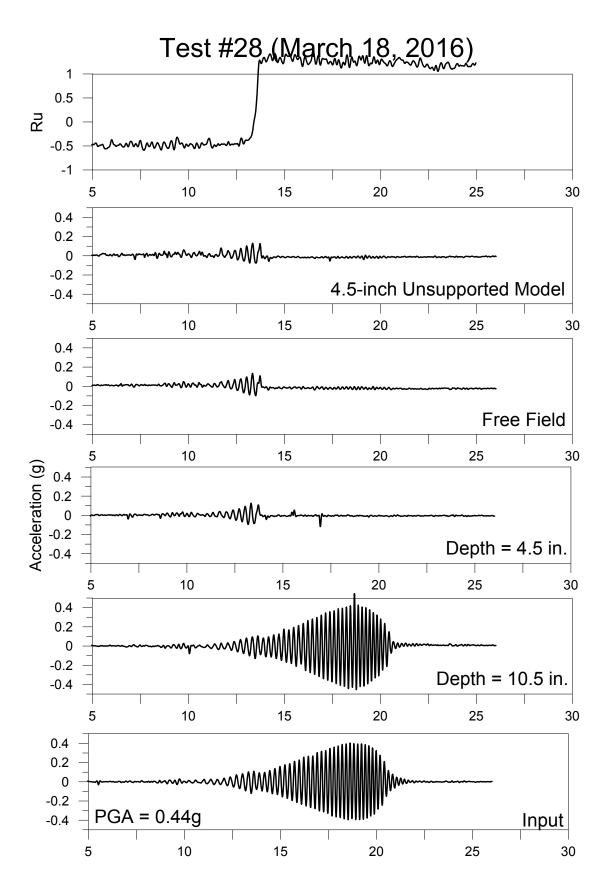


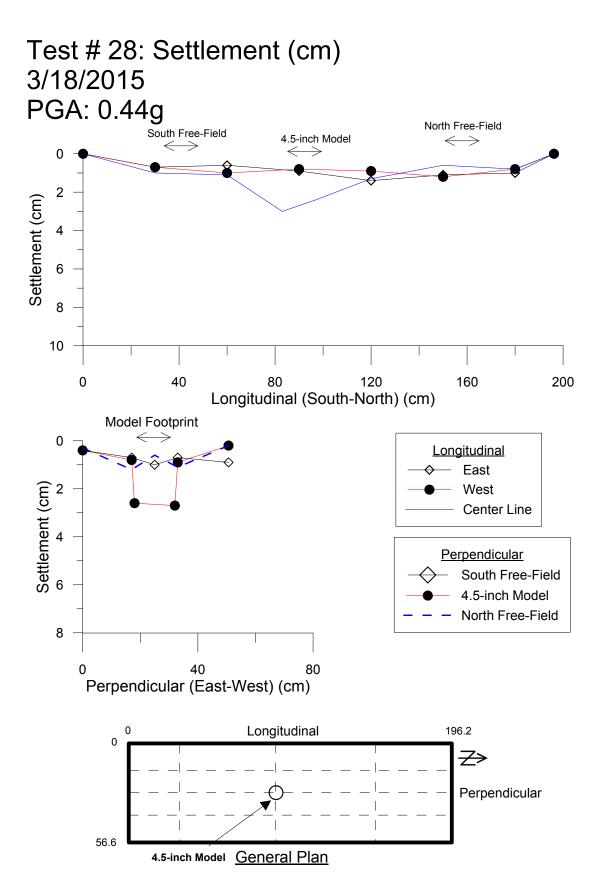

Test # 25: Ground Motion Characteristics 3/1/2016 PGA: 0.33g

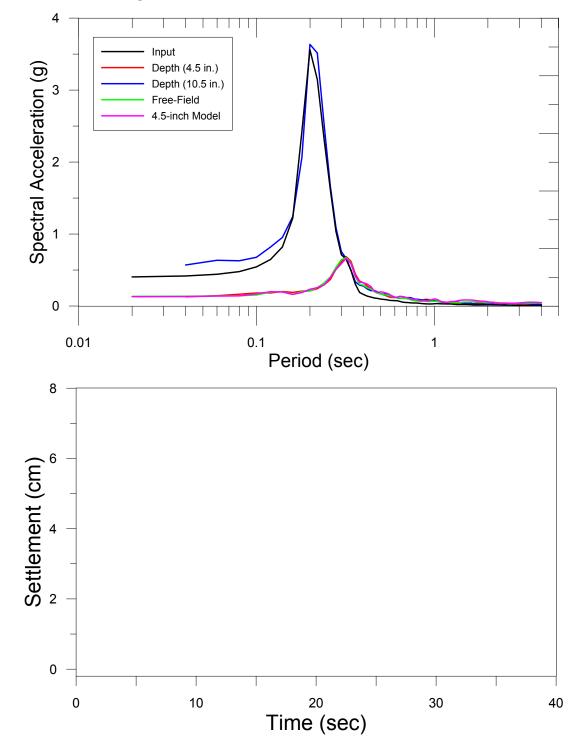


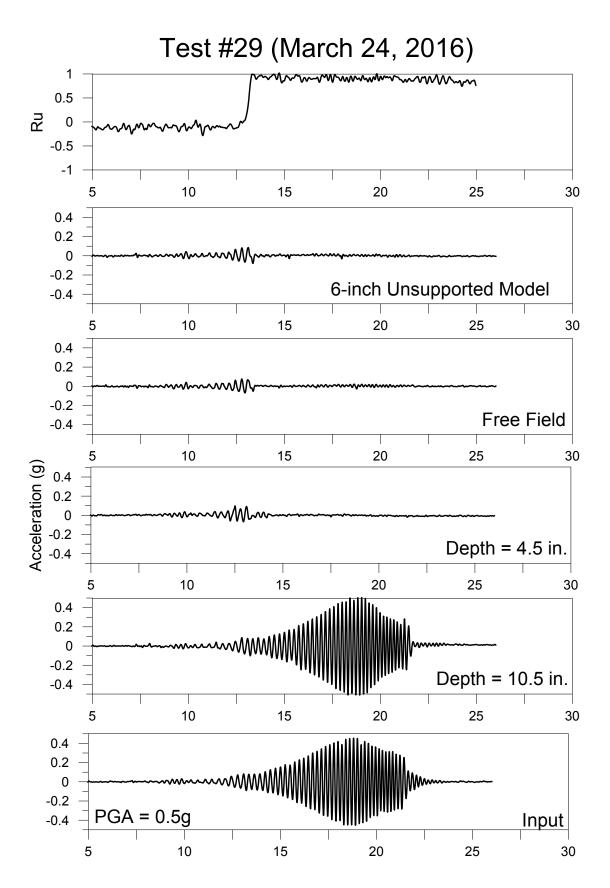


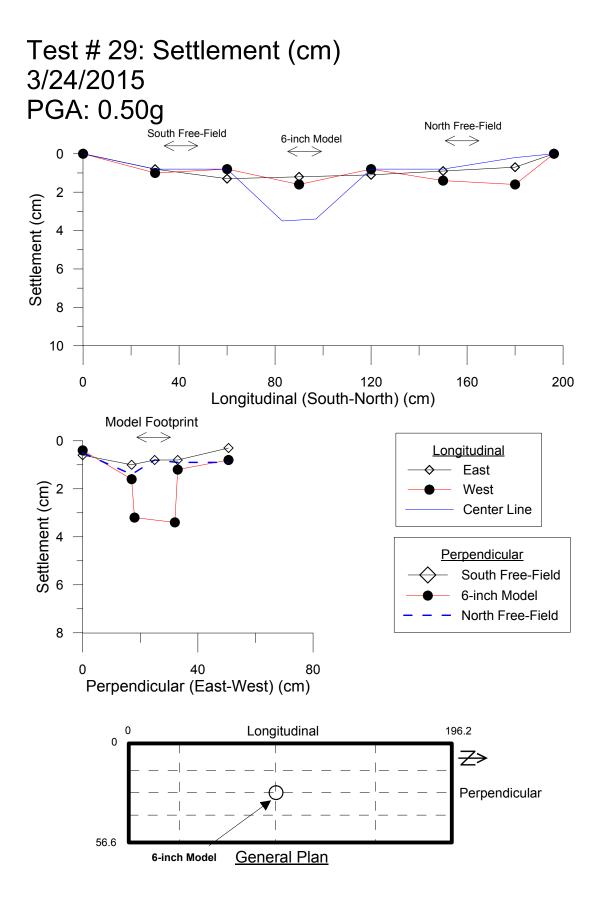

Test # 26: Ground Motion Characteristics 3/9/2016 PGA: 0.37g

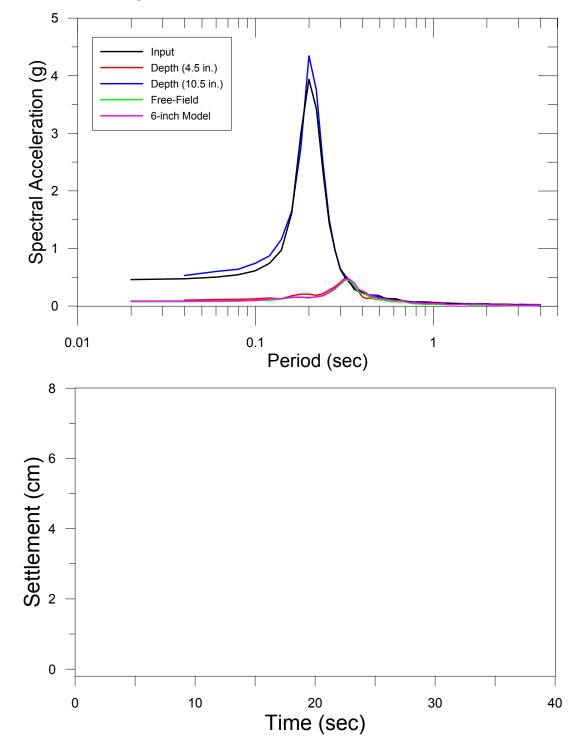


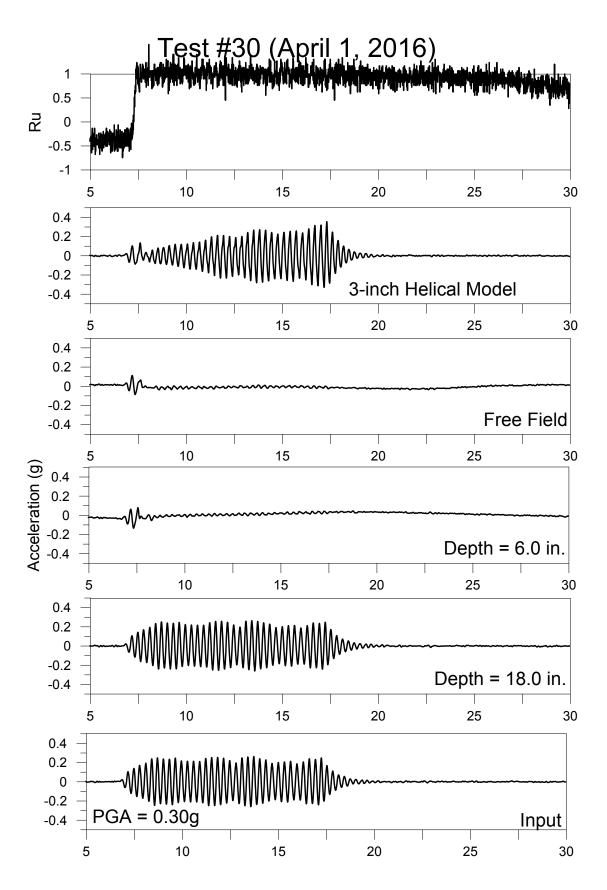


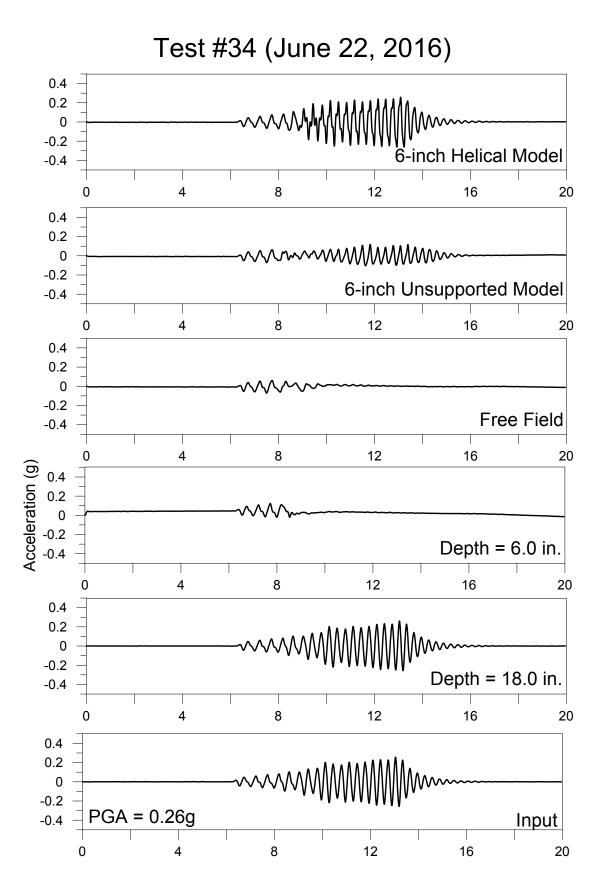

Test # 27: Ground Motion Characteristics 3/16/2016 PGA: 0.49g

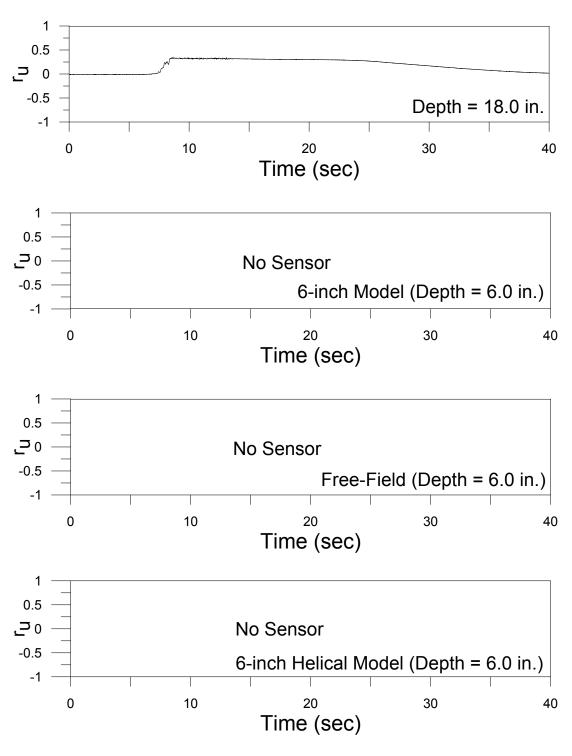


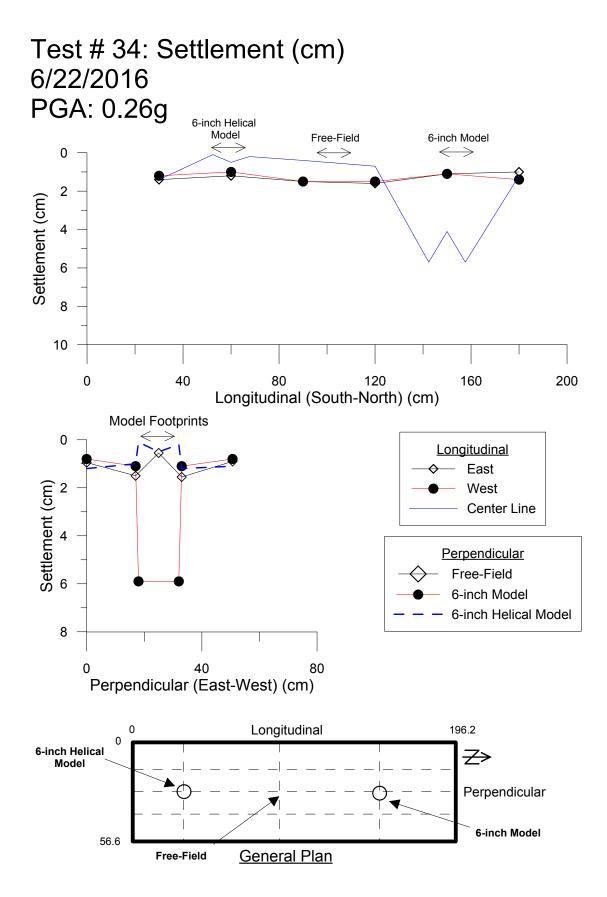


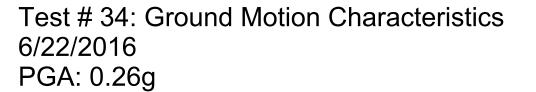

Test # 28: Ground Motion Characteristics 3/18/2016 PGA: 0.44g

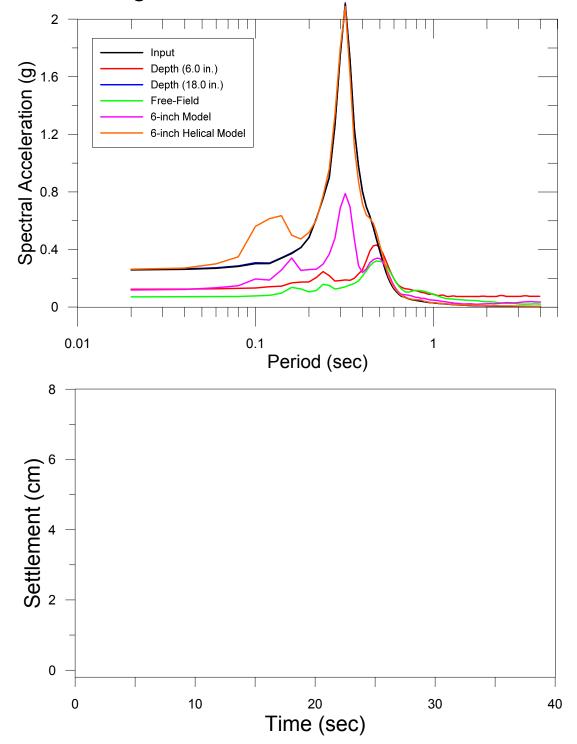


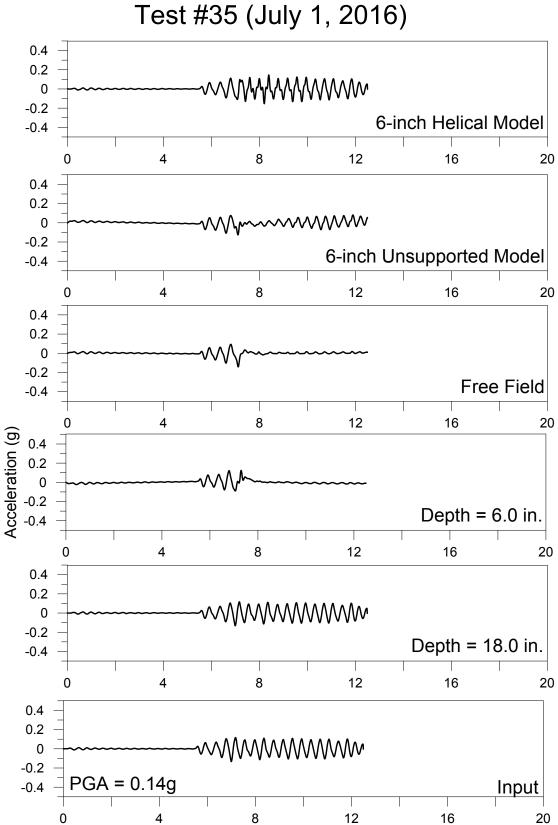



Test # 29: Ground Motion Characteristics 3/24/2016 PGA: 0.50g

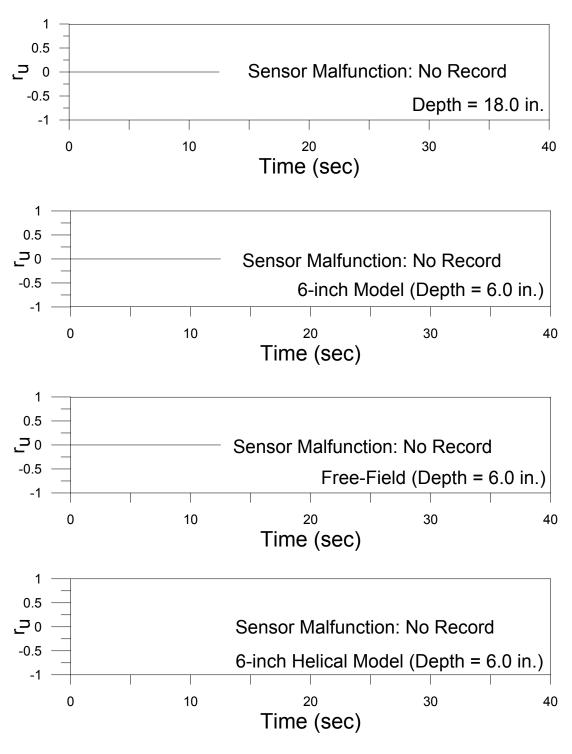


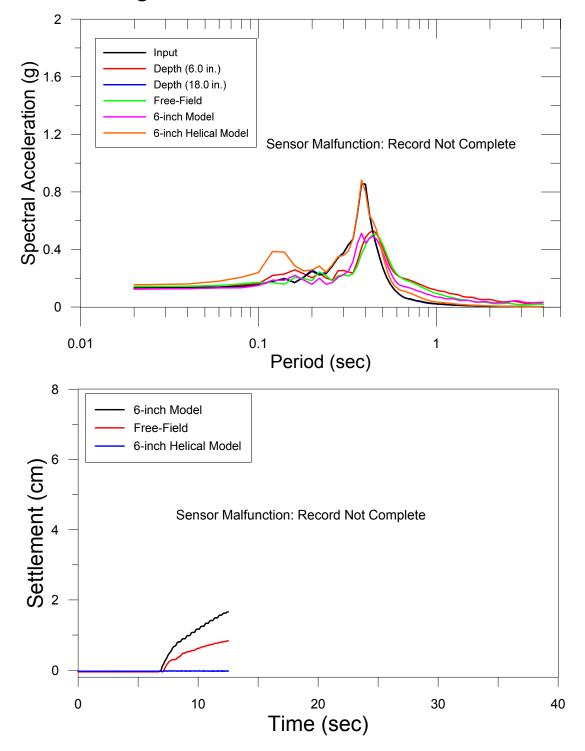


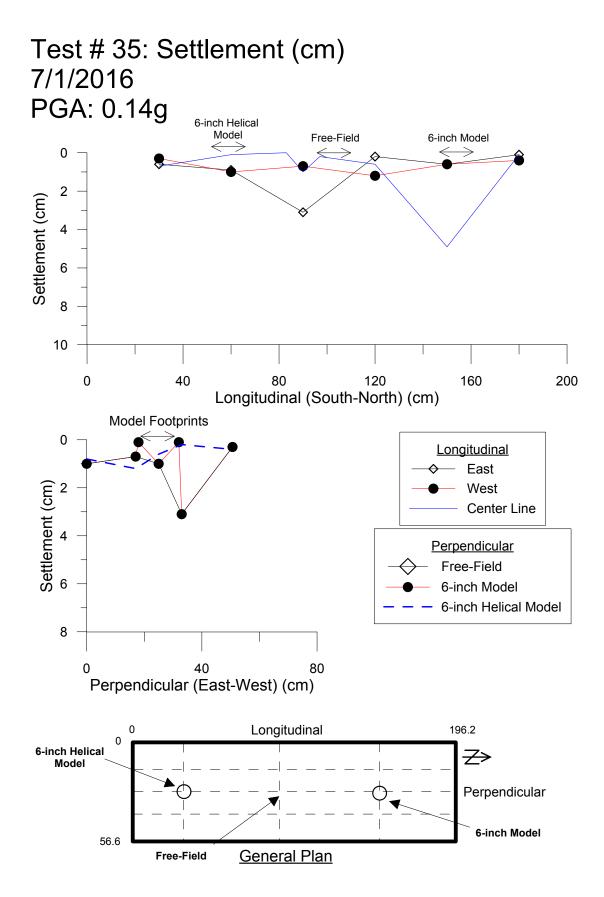

Test #34 (June 22, 2016)

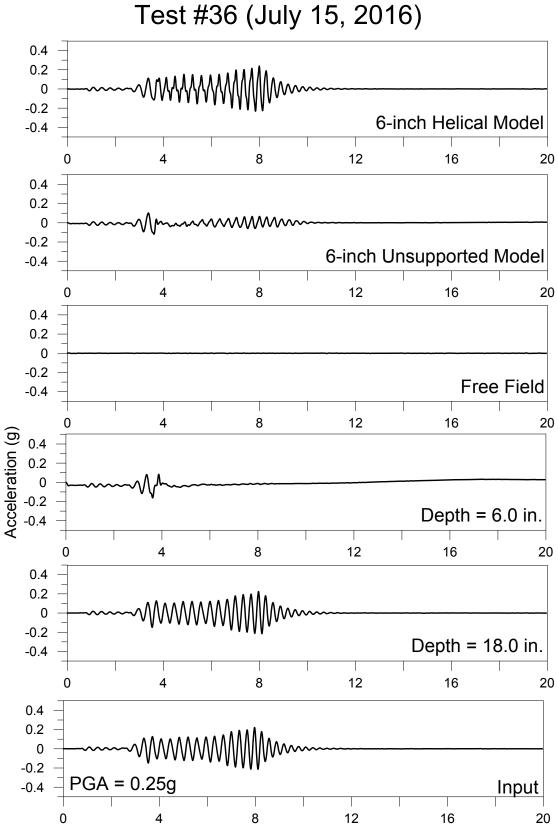


PGA = 0.26g

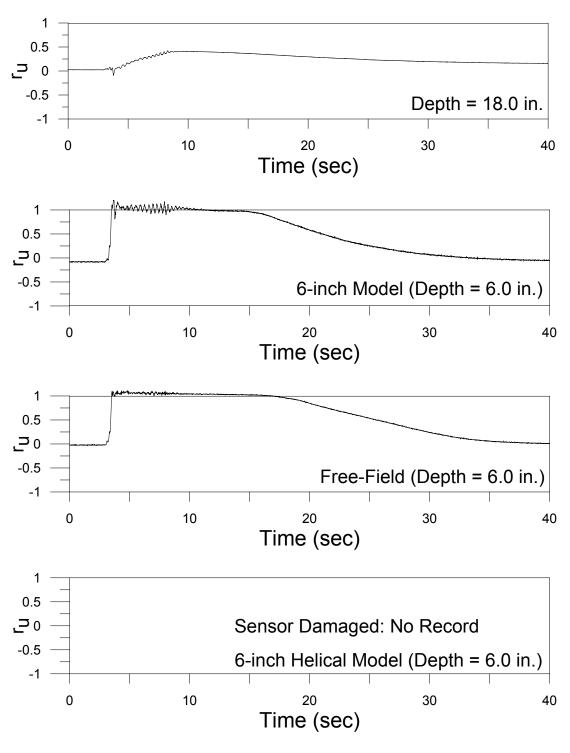


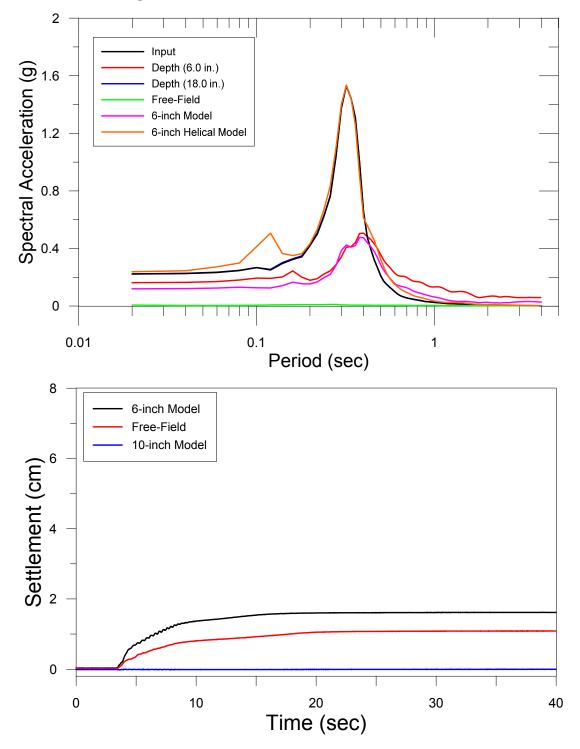


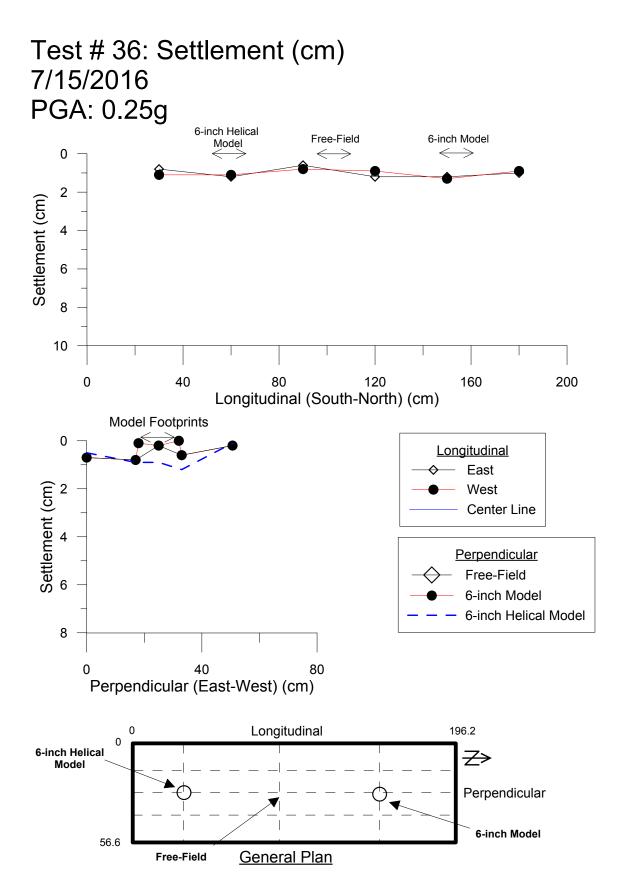

Test #35 (July 1, 2016)

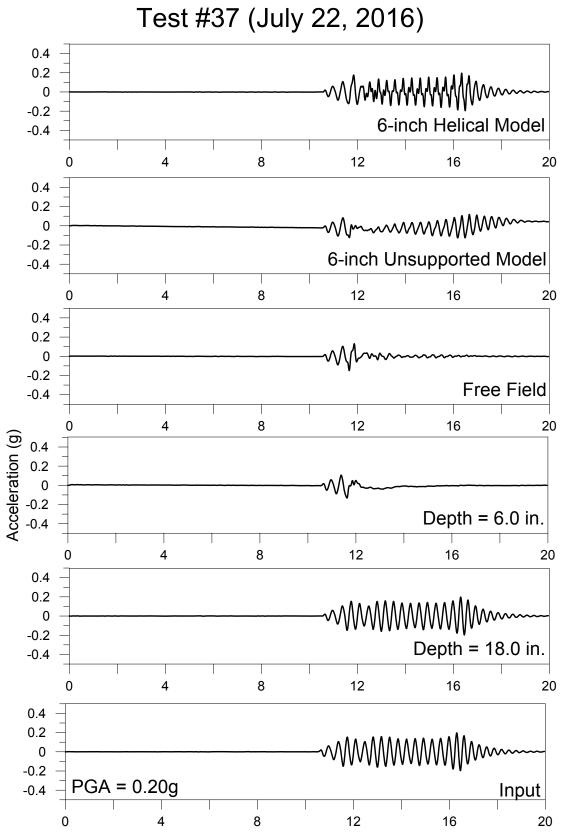


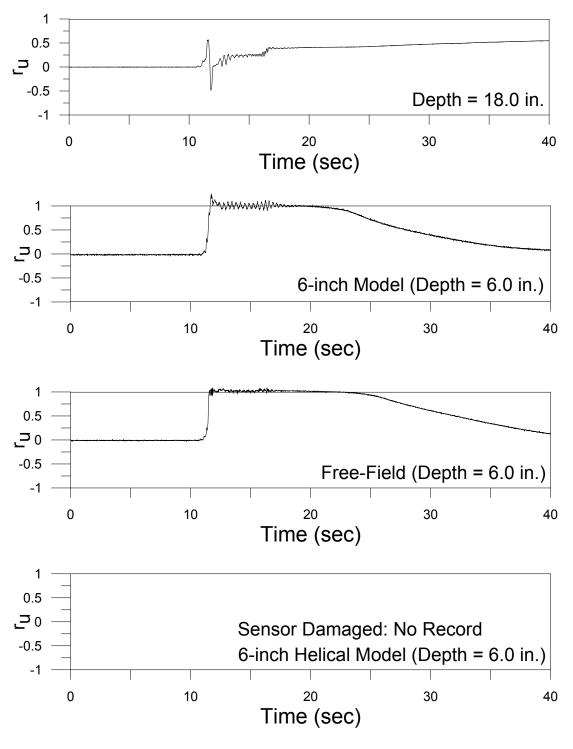
PGA = 0.14g


Test # 35: Ground Motion Characteristics 7/1/2016 PGA: 0.14g

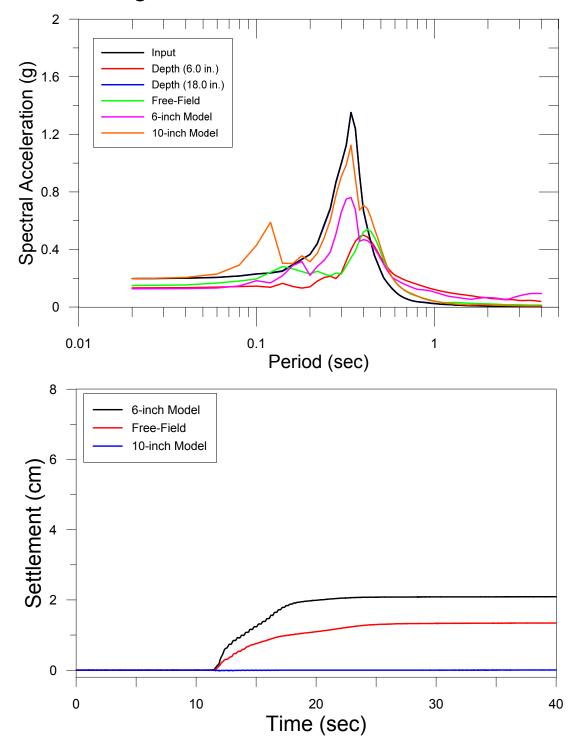


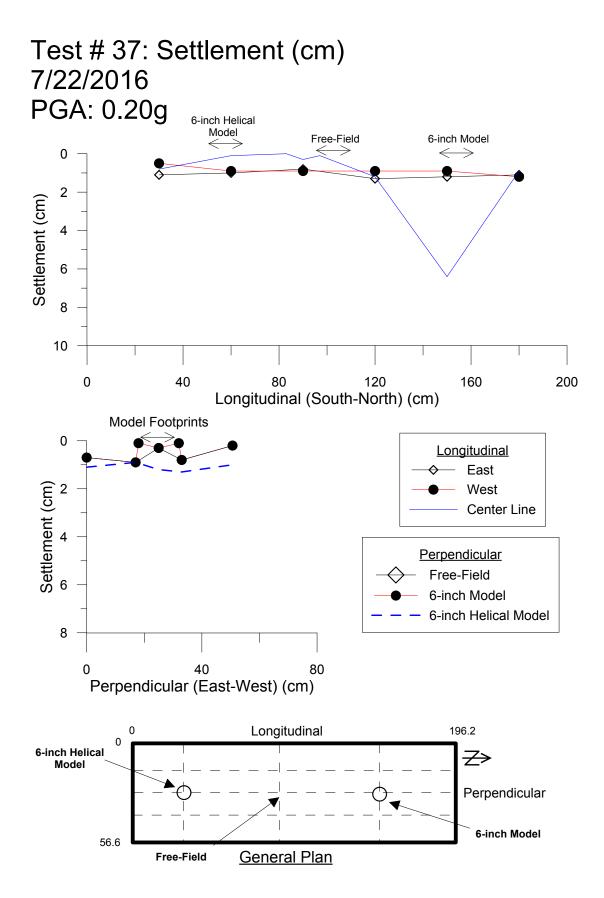

Test #36 (July 15, 2016)

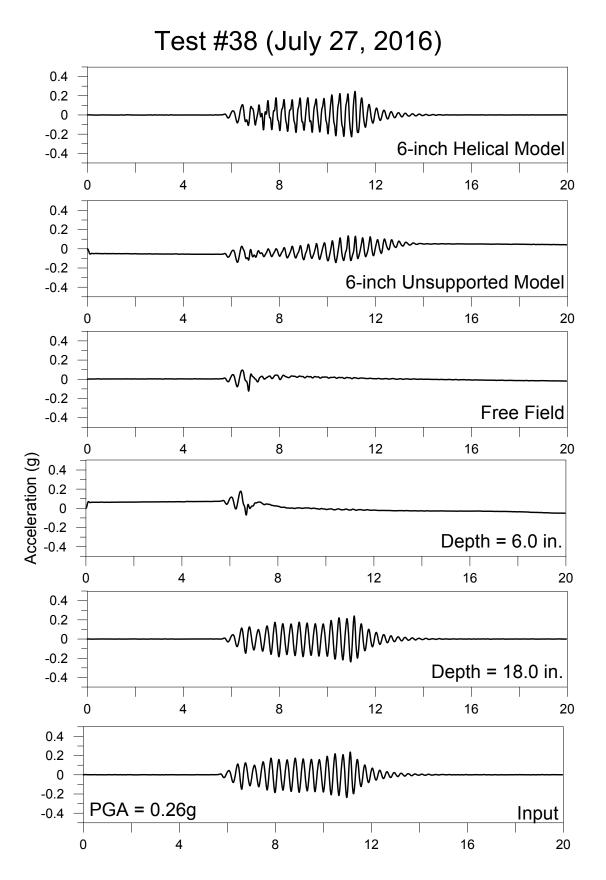



PGA = 0.25g

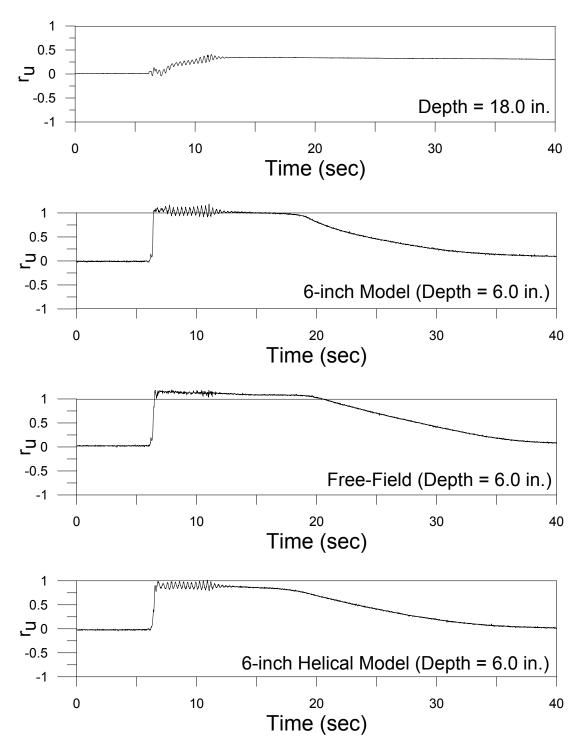
Test # 36: Ground Motion Characteristics 7/15/2016 PGA: 0.25g

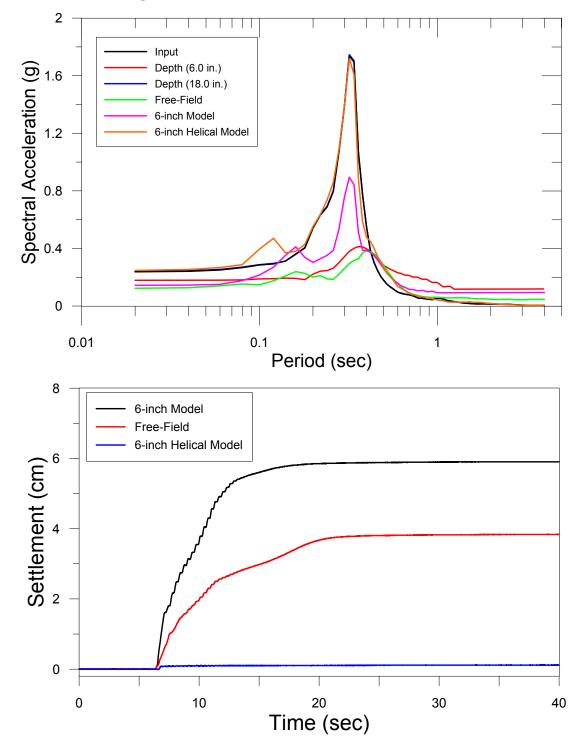


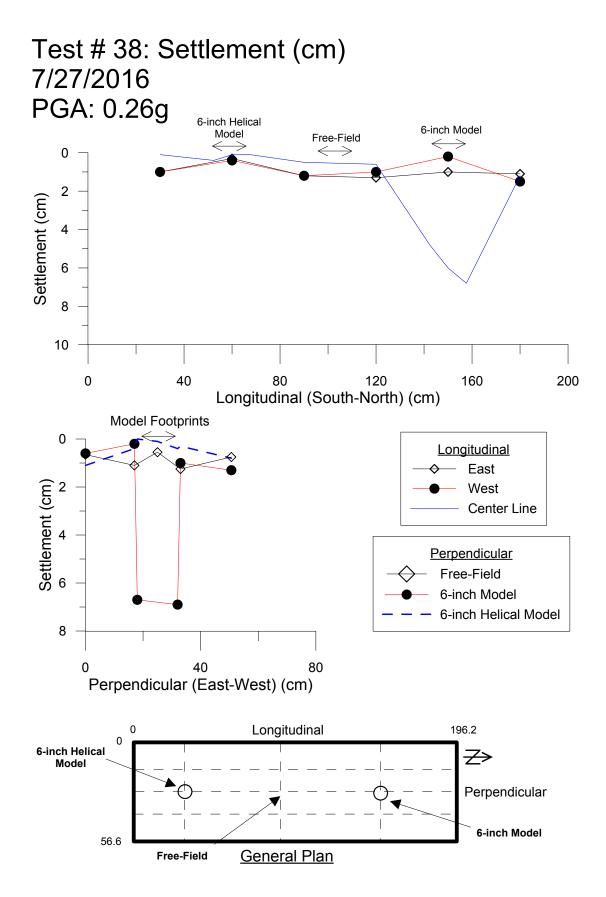


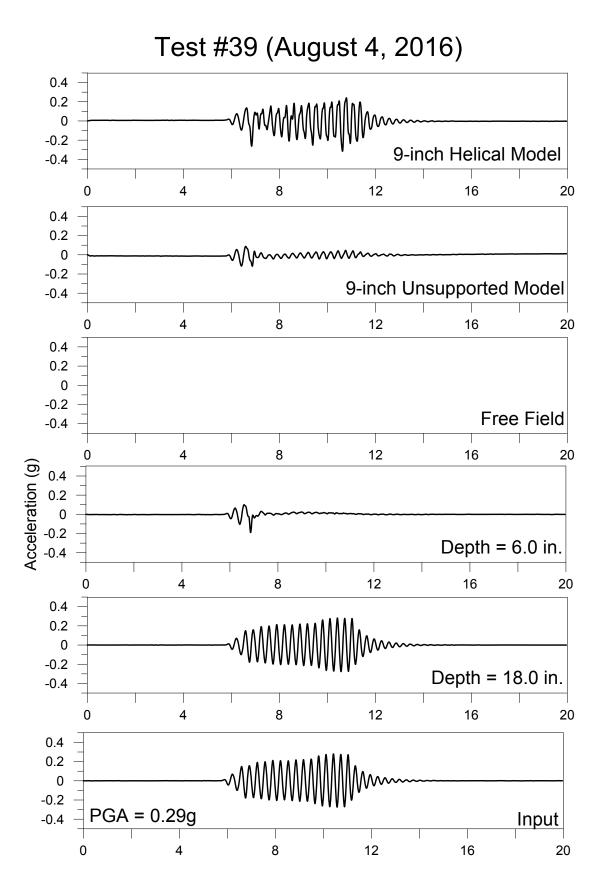


PGA = 0.20g

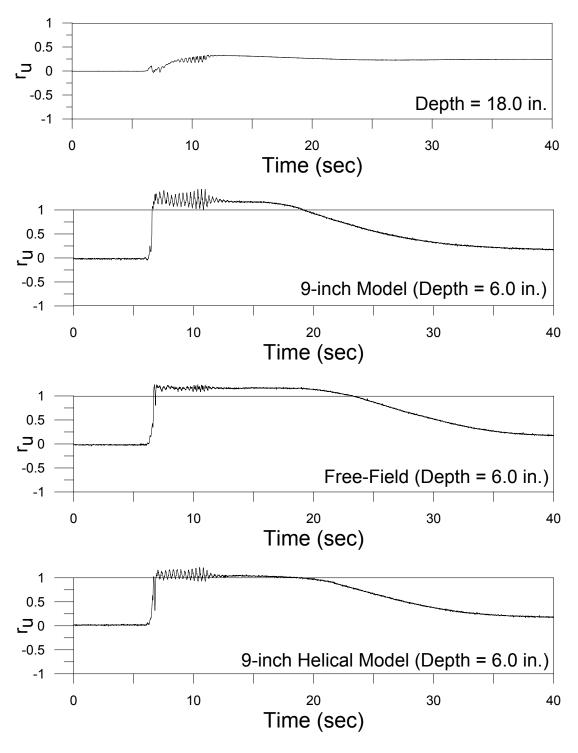

Test # 37: Ground Motion Characteristics 7/22/2016 PGA: 0.20g

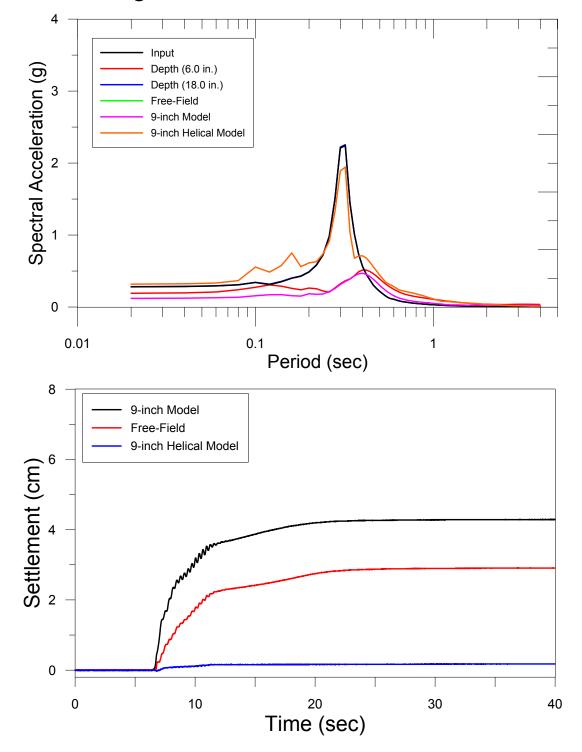


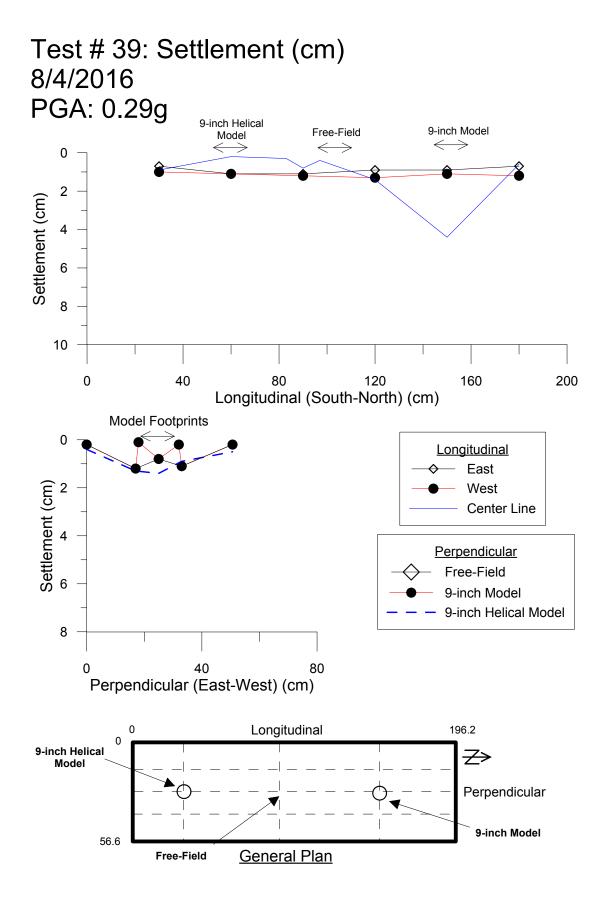

Test #38 (July 22, 2016)

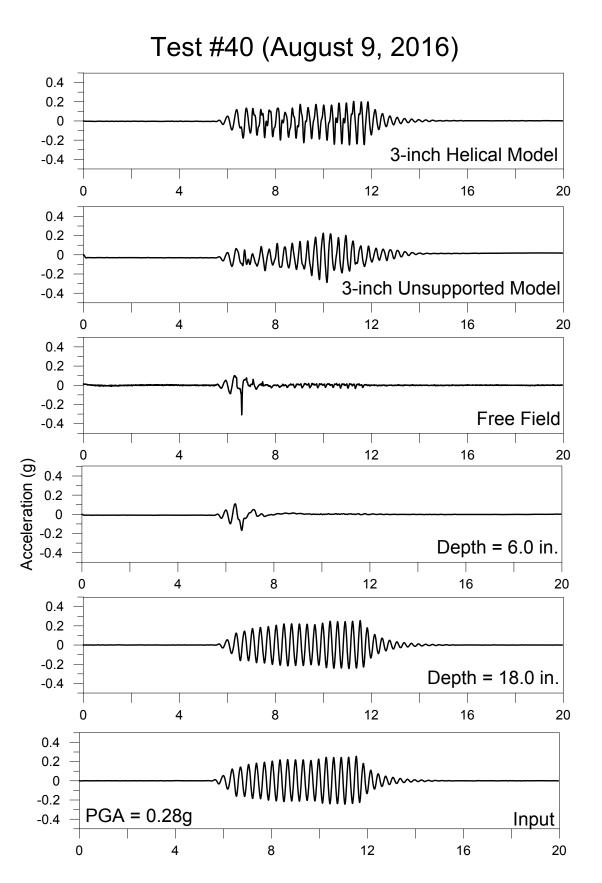


PGA = 0.26g


Test # 38: Ground Motion Characteristics 7/27/2016 PGA: 0.26g

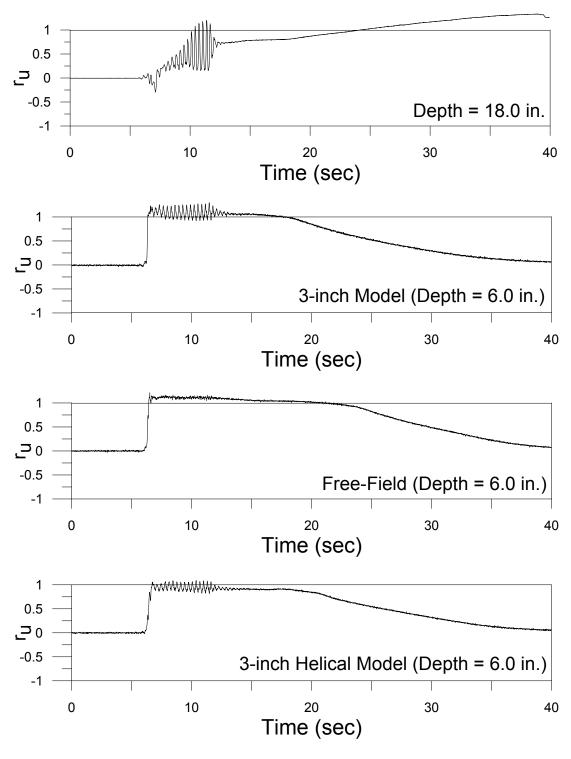


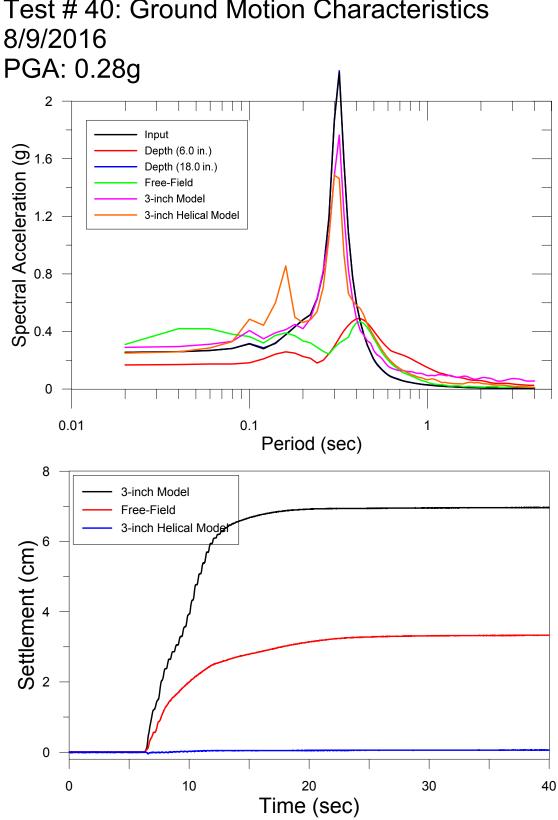

Test #39 (August 4, 2016)



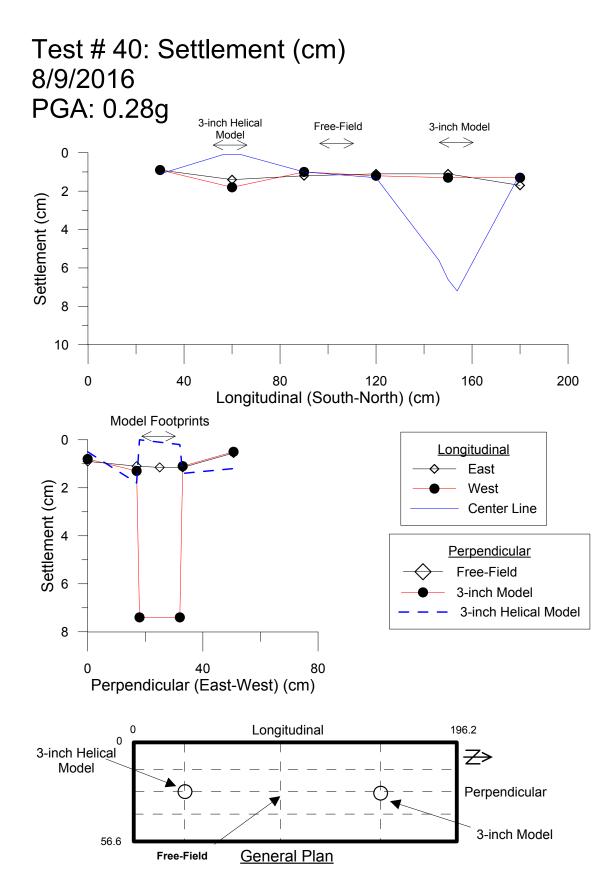
PGA = 0.29g

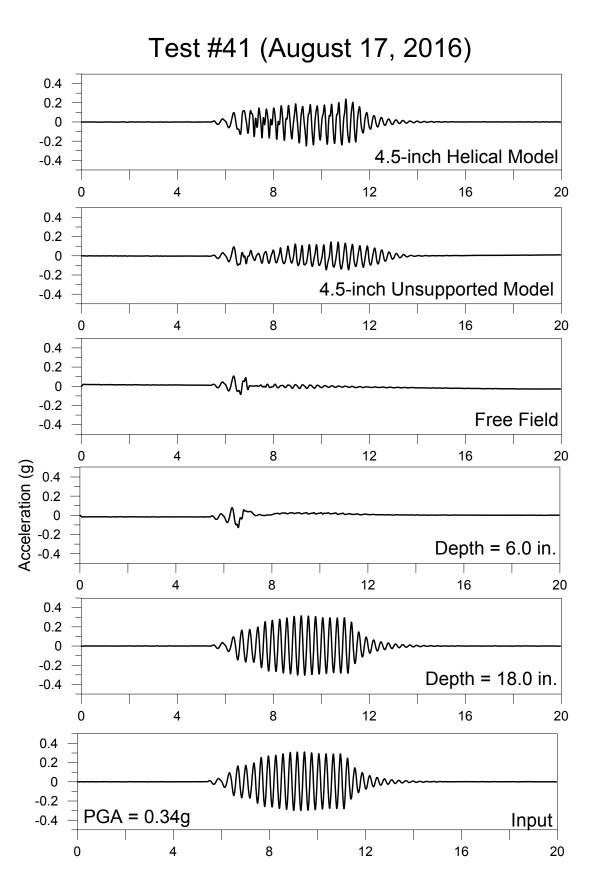
Test # 39: Ground Motion Characteristics 8/4/2016 PGA: 0.29g



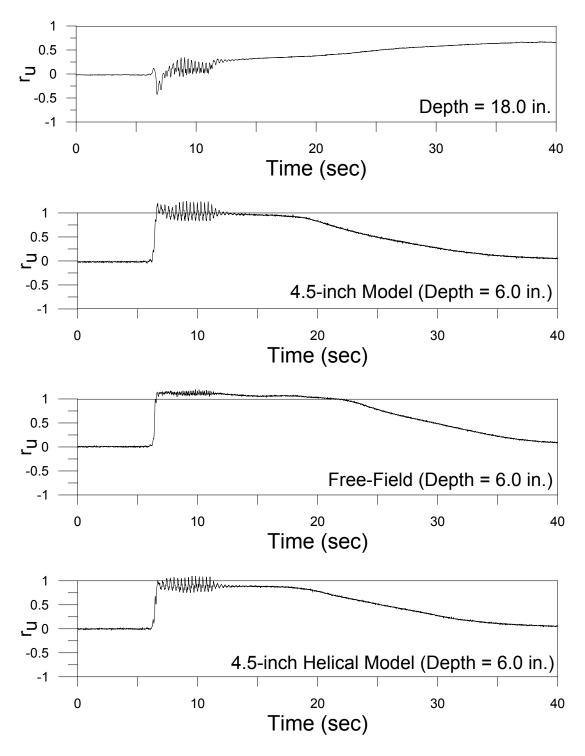


219

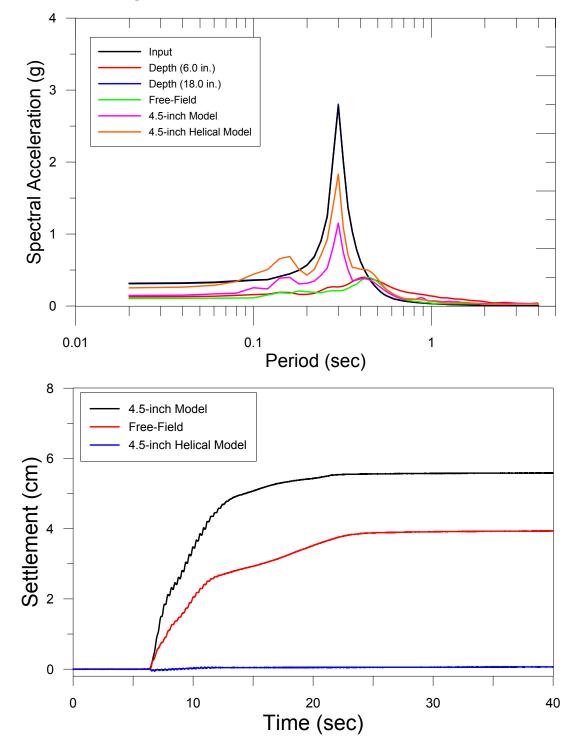

Test #40 (August 9, 2016)

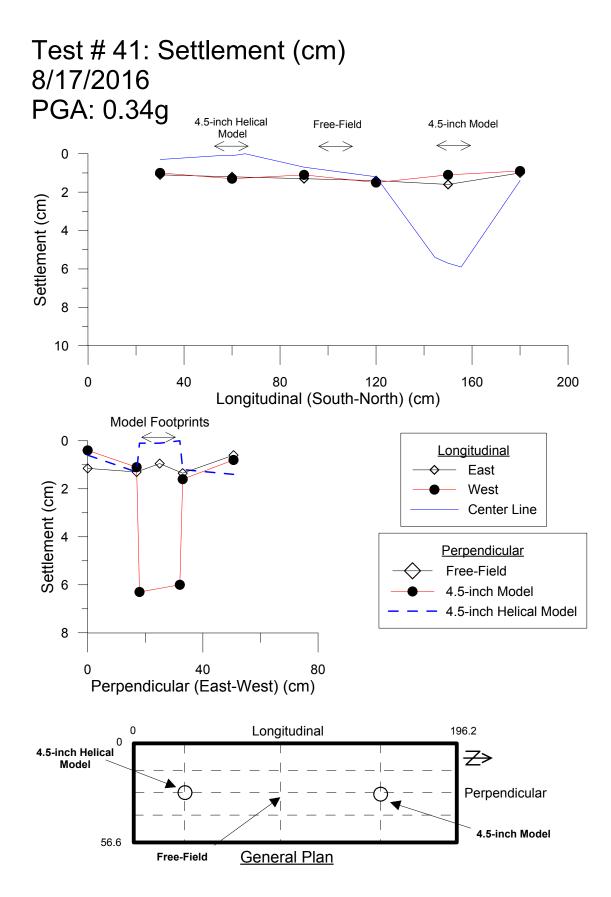


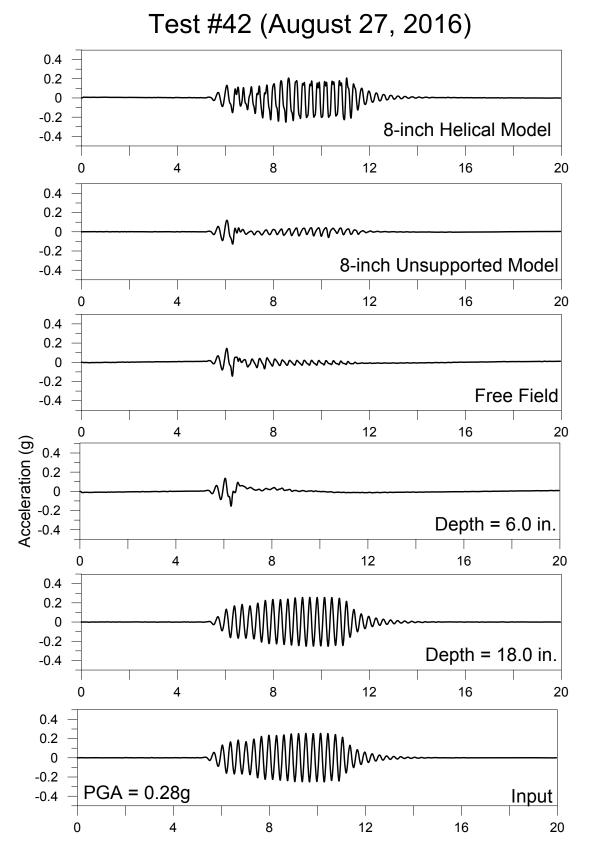
PGA = 0.28g

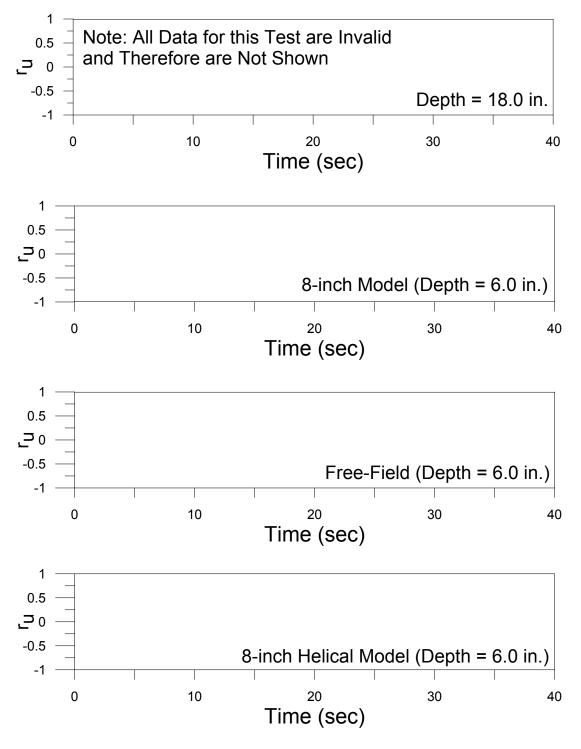


Test # 40: Ground Motion Characteristics

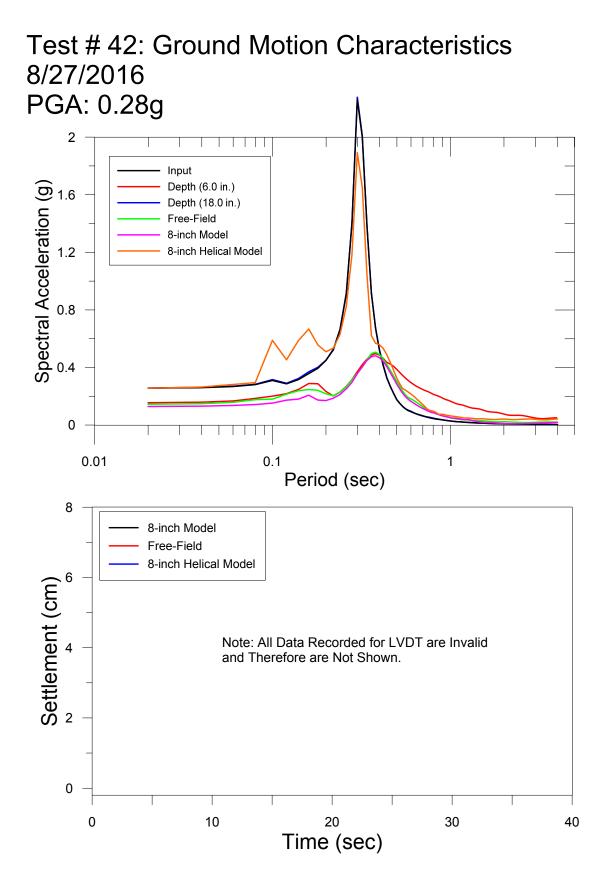


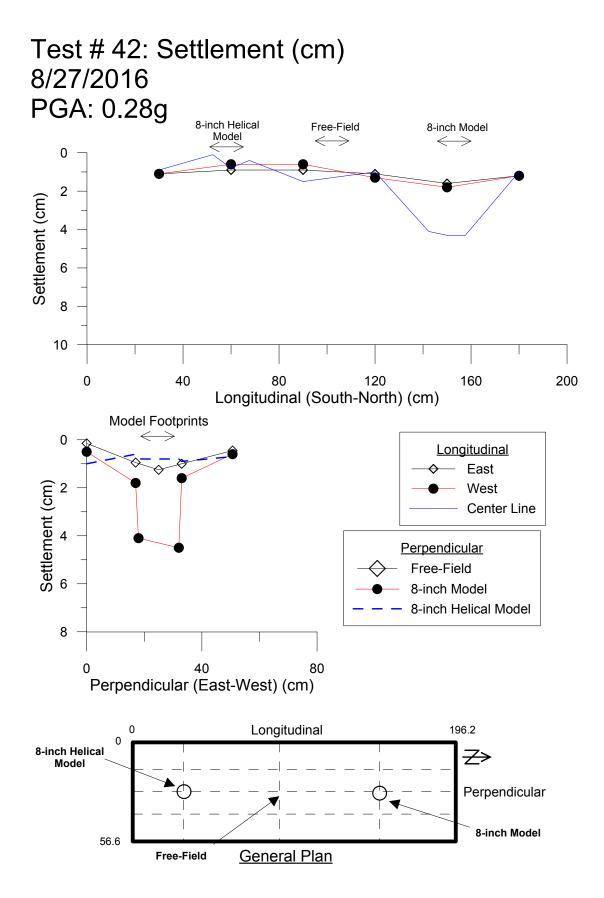

Test #41 (August 17, 2016)

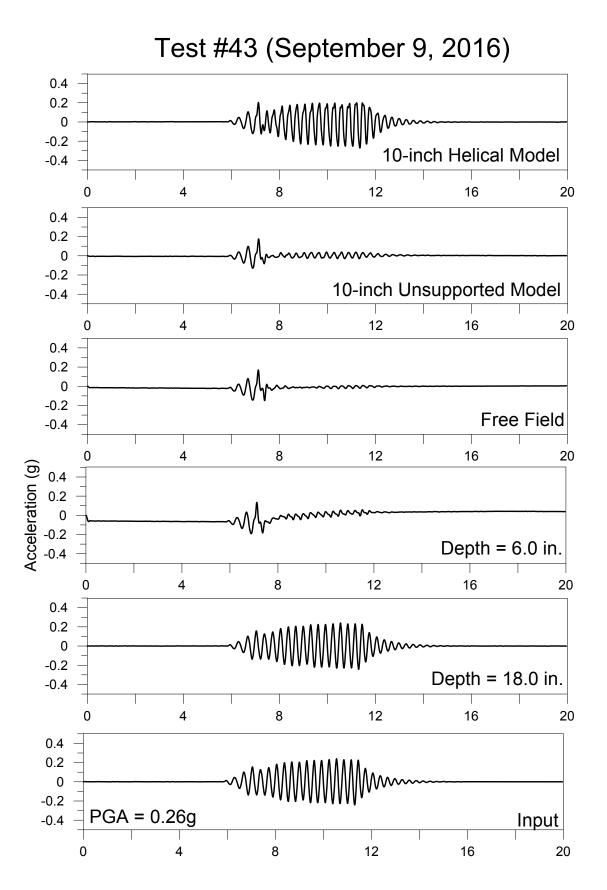


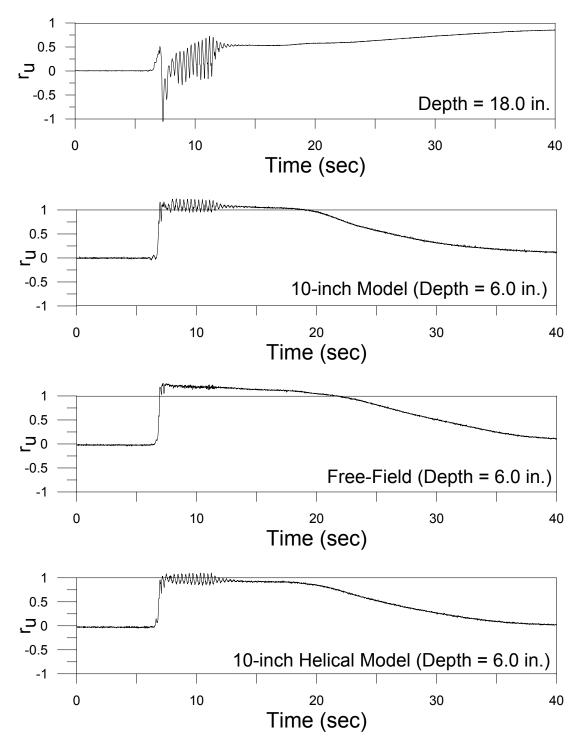

PGA = 0.34g

Test # 41: Ground Motion Characteristics 8/17/2016 PGA: 0.34g

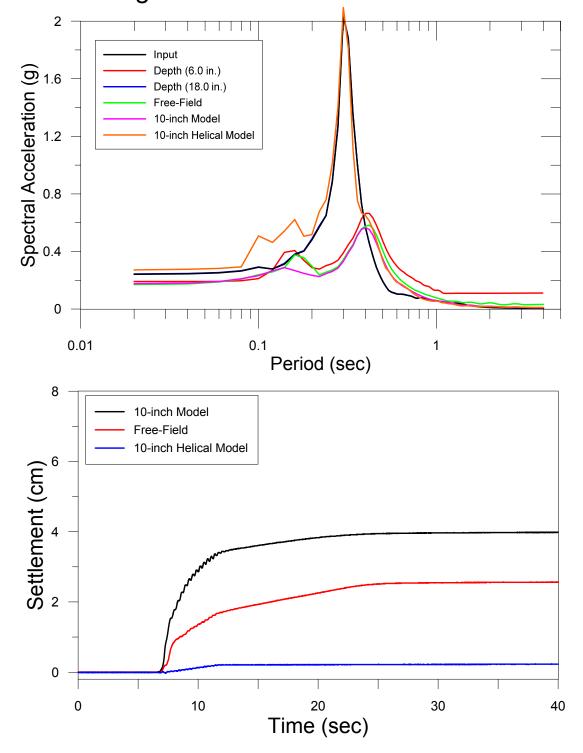


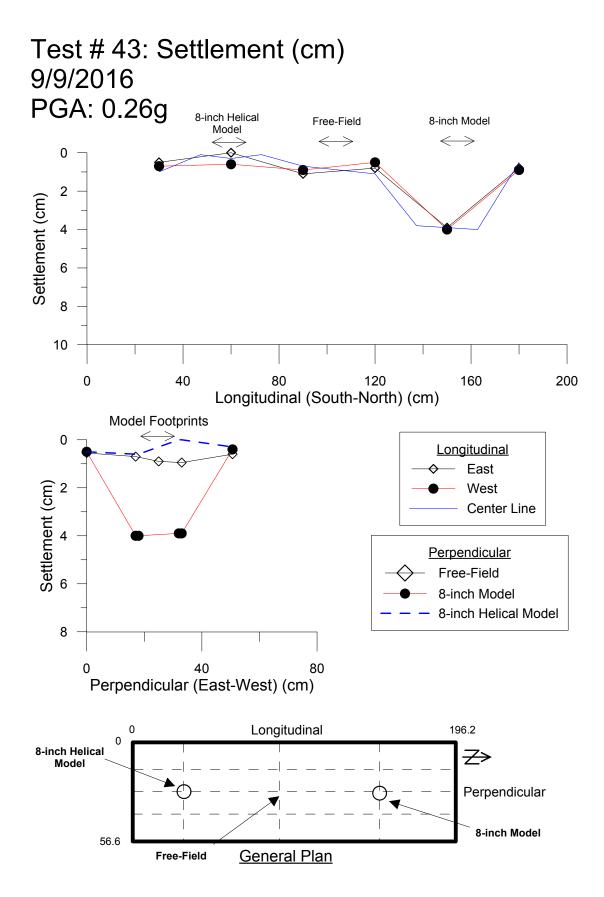


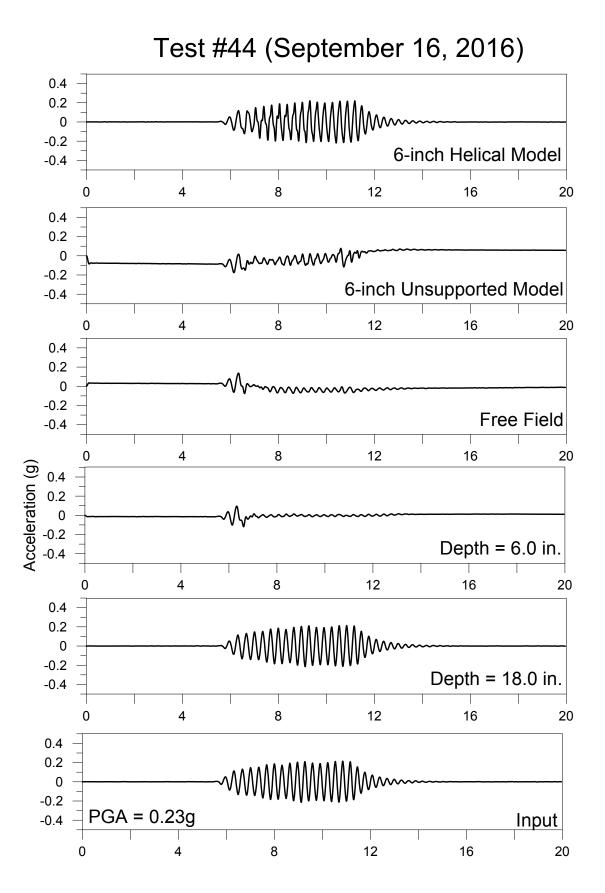




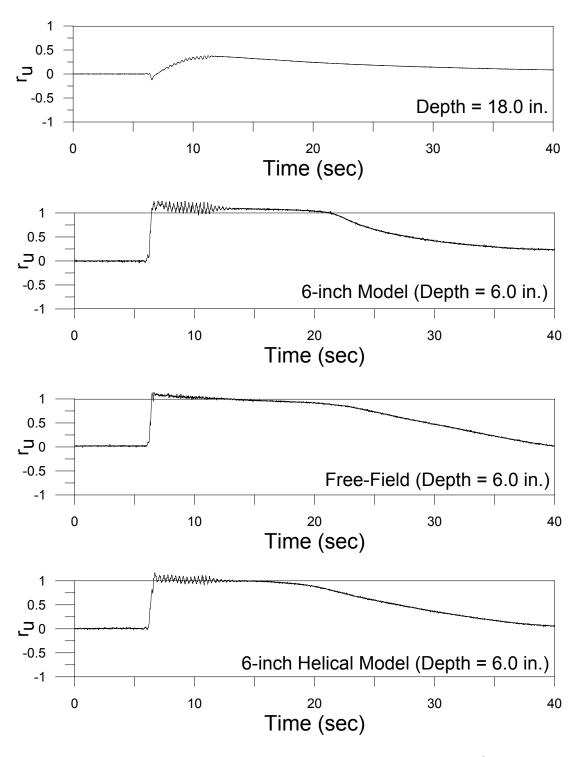
PGA = 0.28g

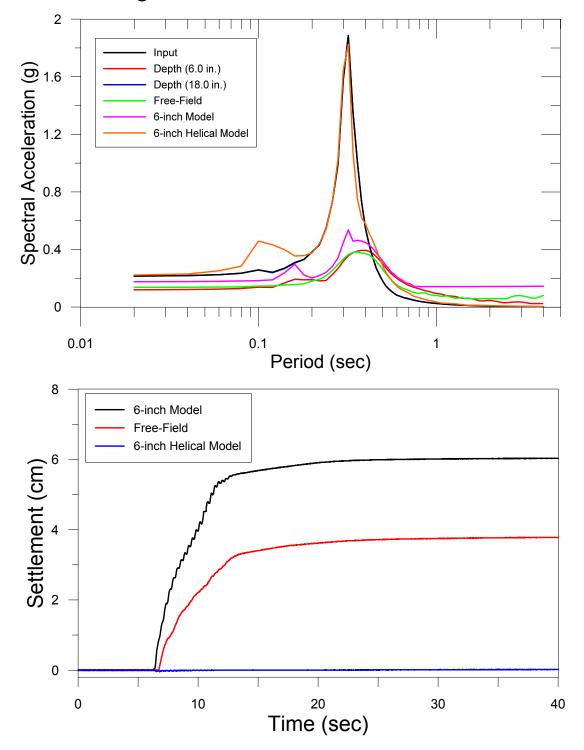


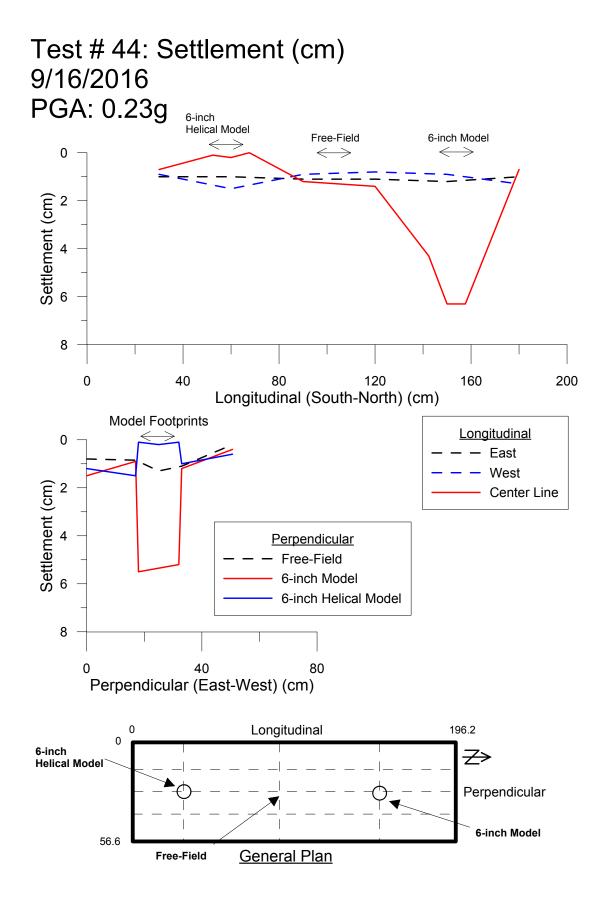


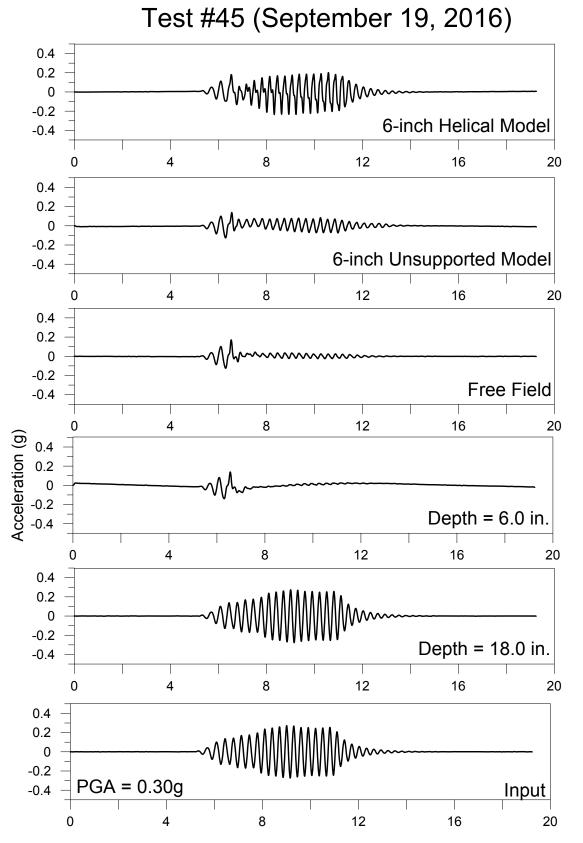


PGA = 0.26g

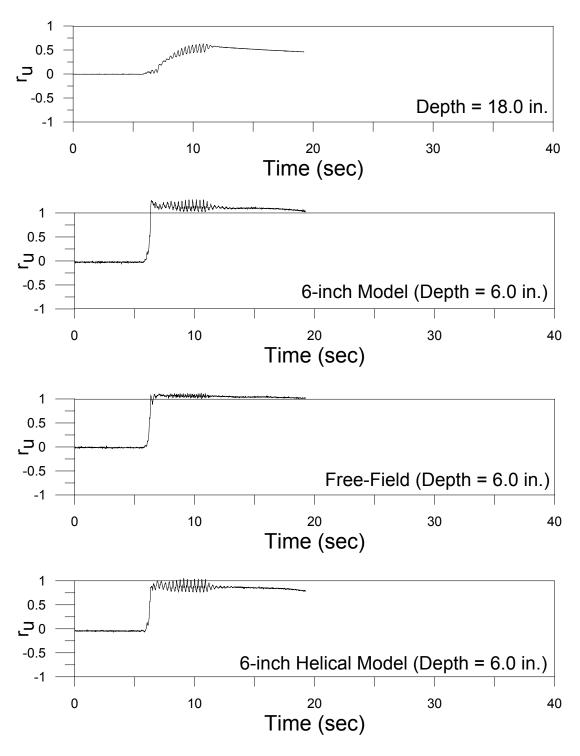

Test # 43: Ground Motion Characteristics 9/9/2016 PGA: 0.26g

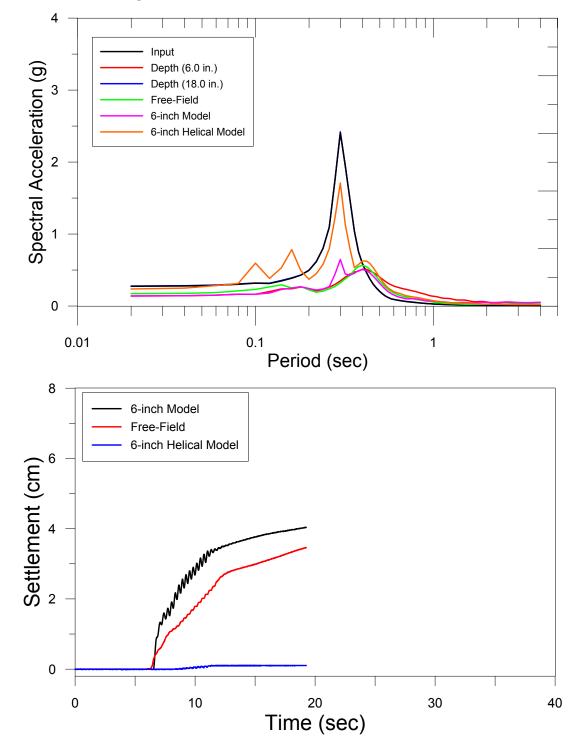


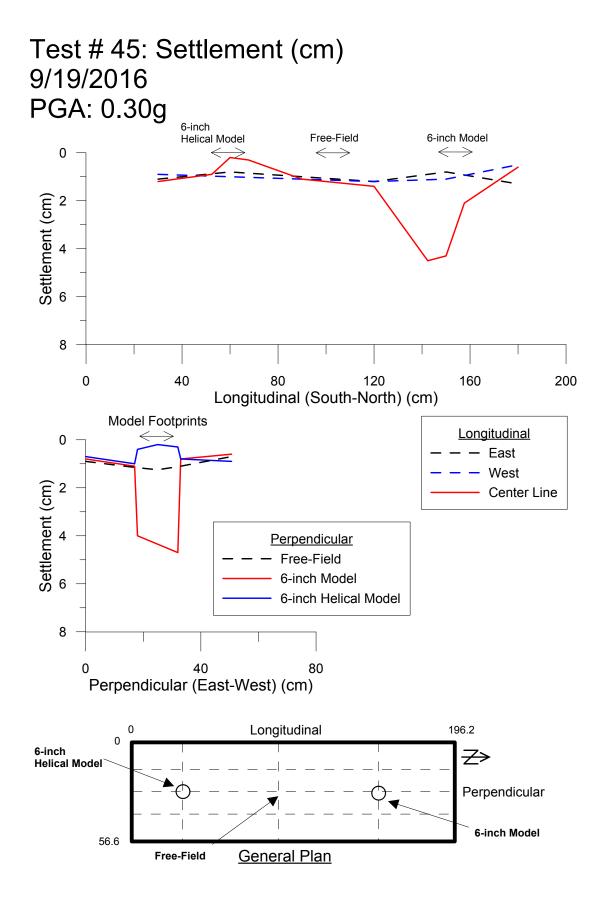

Test #44 (September 16, 2016)

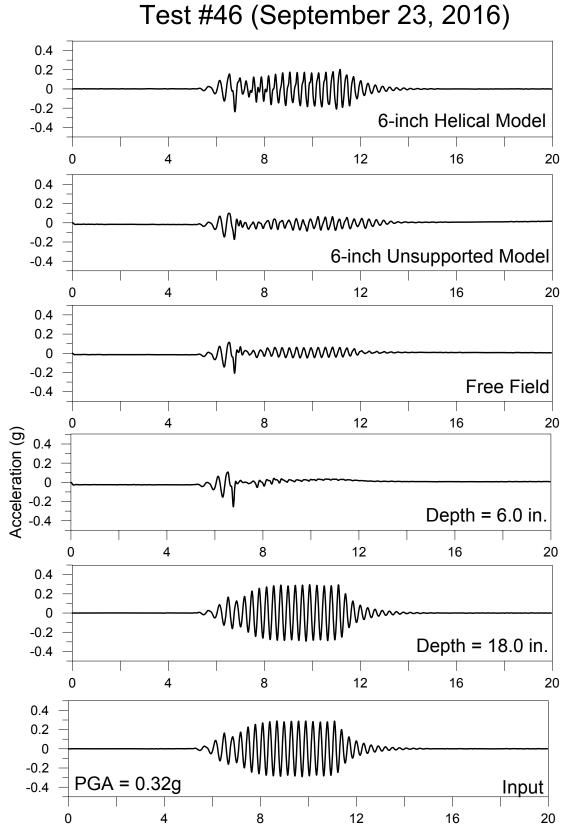


PGA = 0.23g

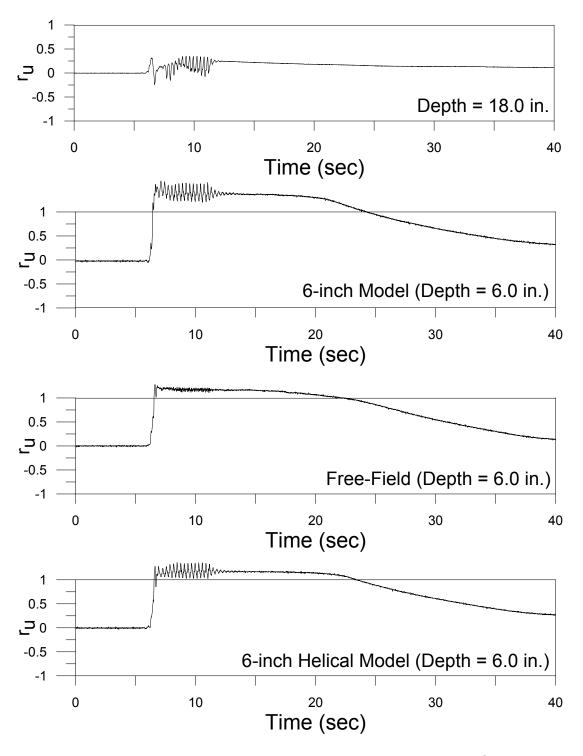

Test # 44: Ground Motion Characteristics 9/16/2016 PGA: 0.23g

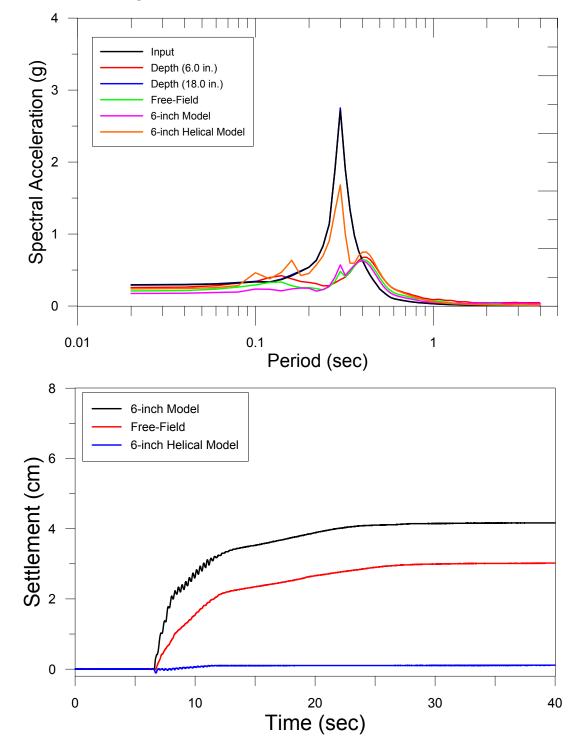


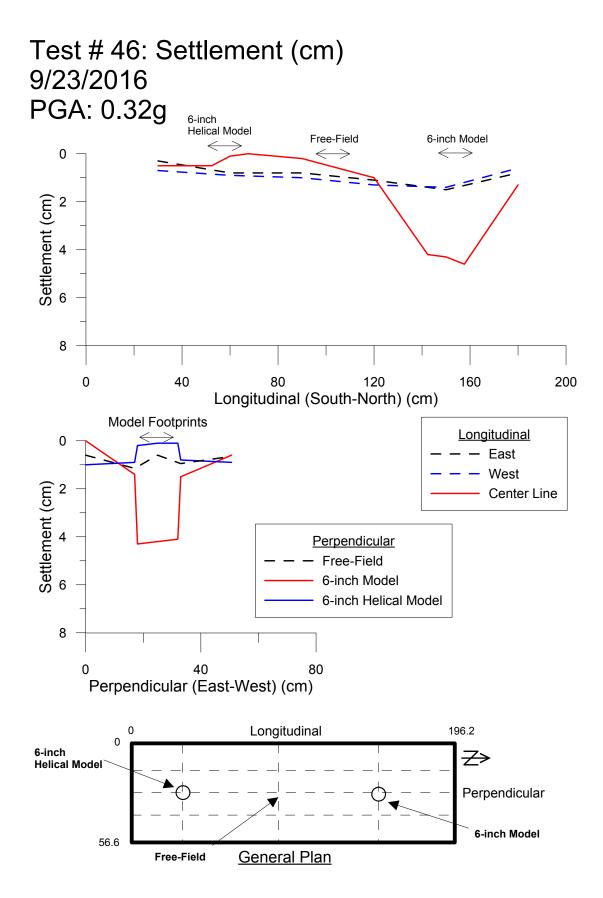

Test #45 (September 19, 2016)

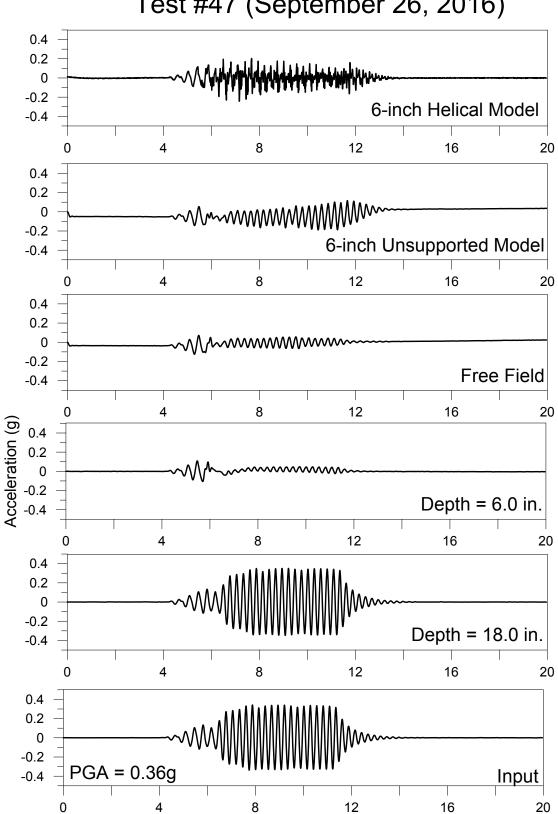


PGA = 0.30g

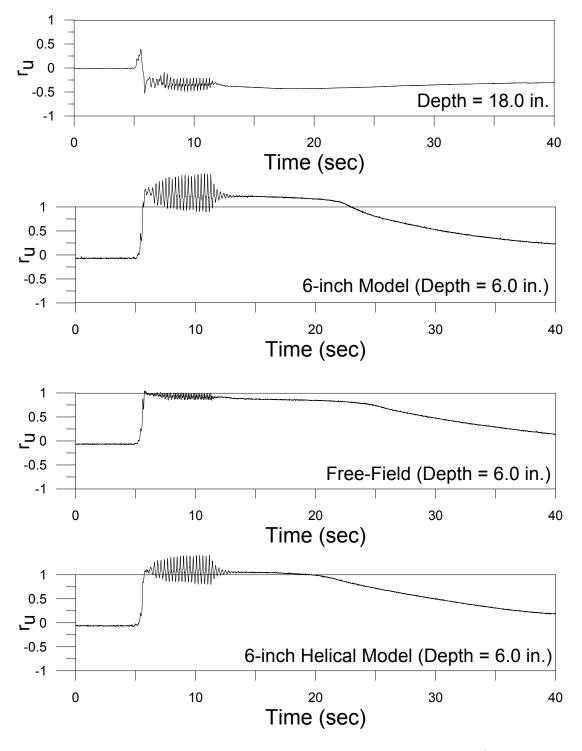

Test # 45: Ground Motion Characteristics 9/19/2016 PGA: 0.30g

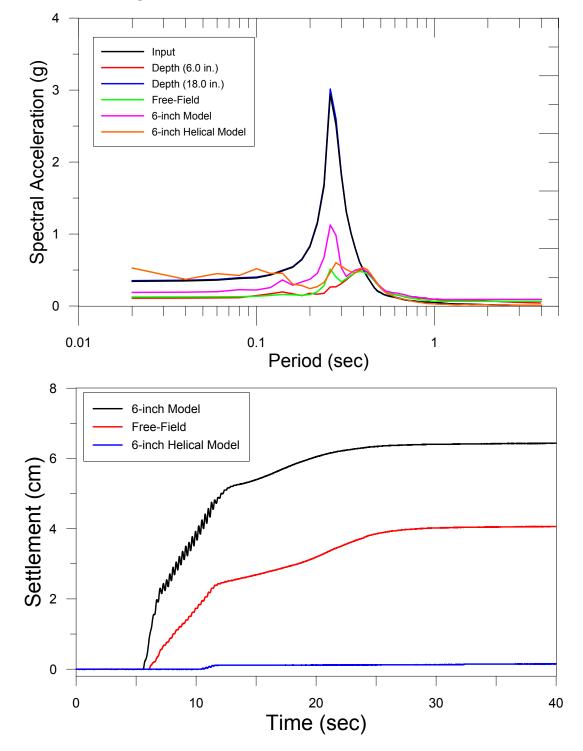


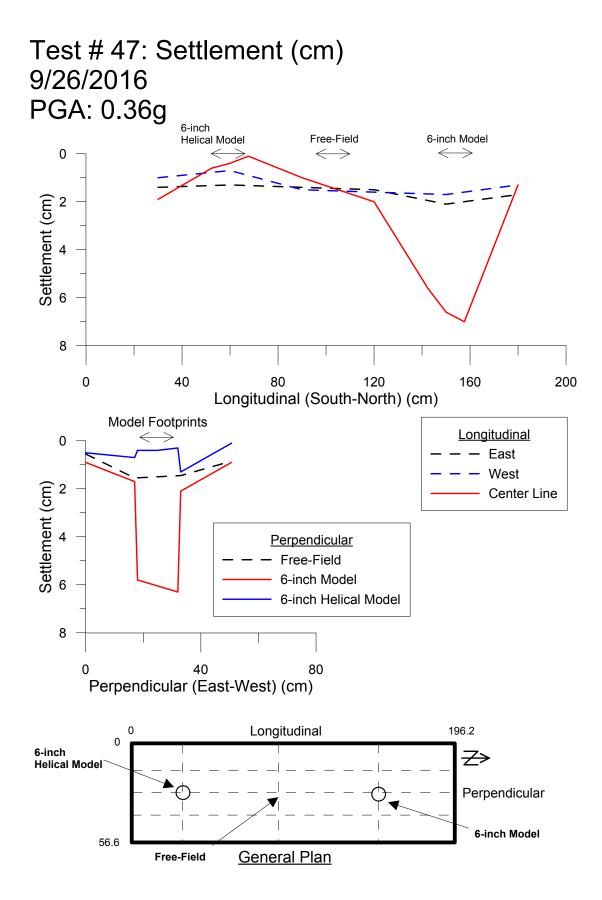

Test #46 (September 23, 2016)

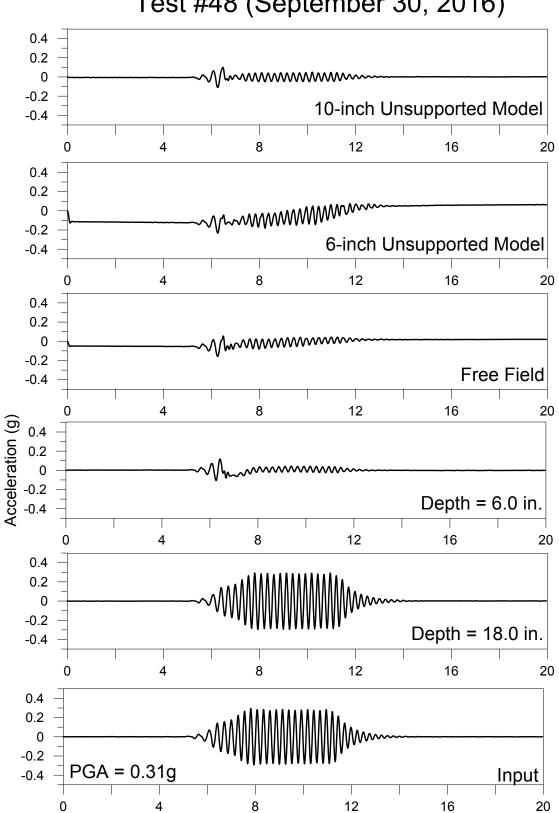


PGA = 0.32g


Test # 46: Ground Motion Characteristics 9/23/2016 PGA: 0.32g

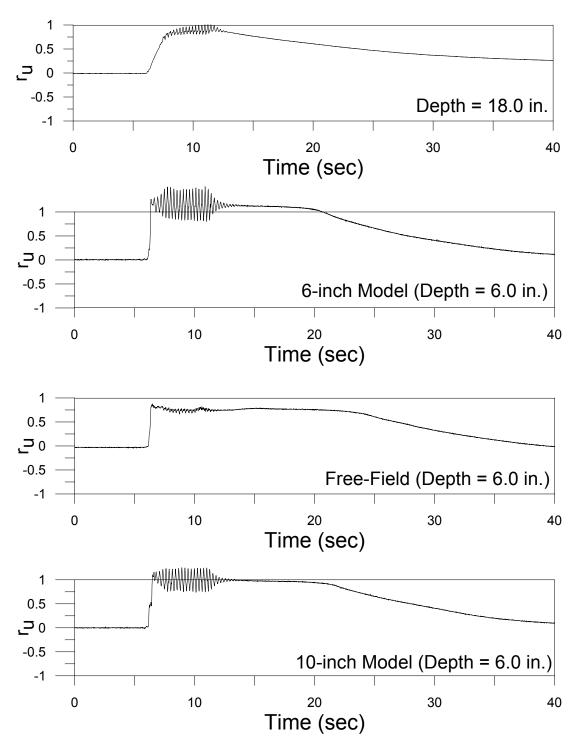


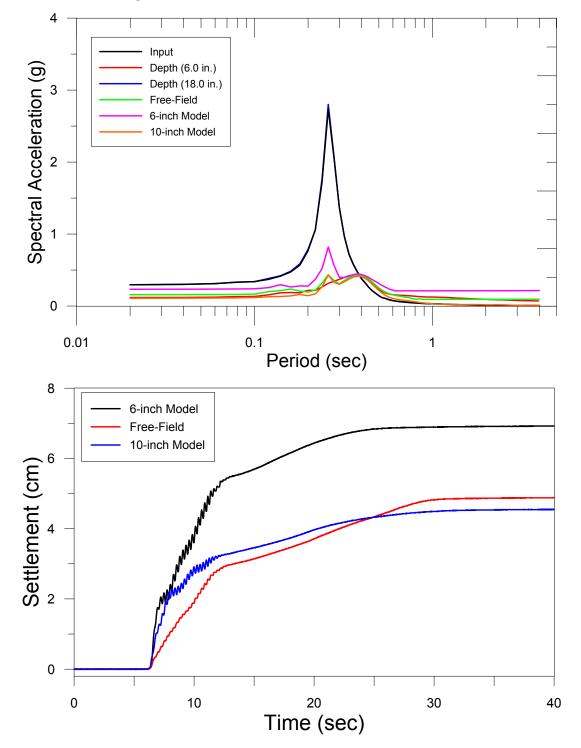

Test #47 (September 26, 2016)

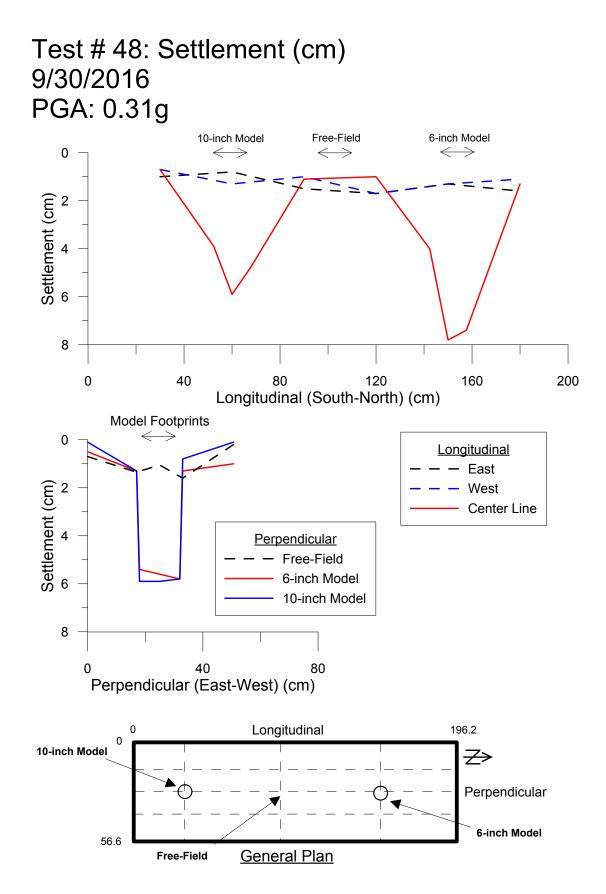


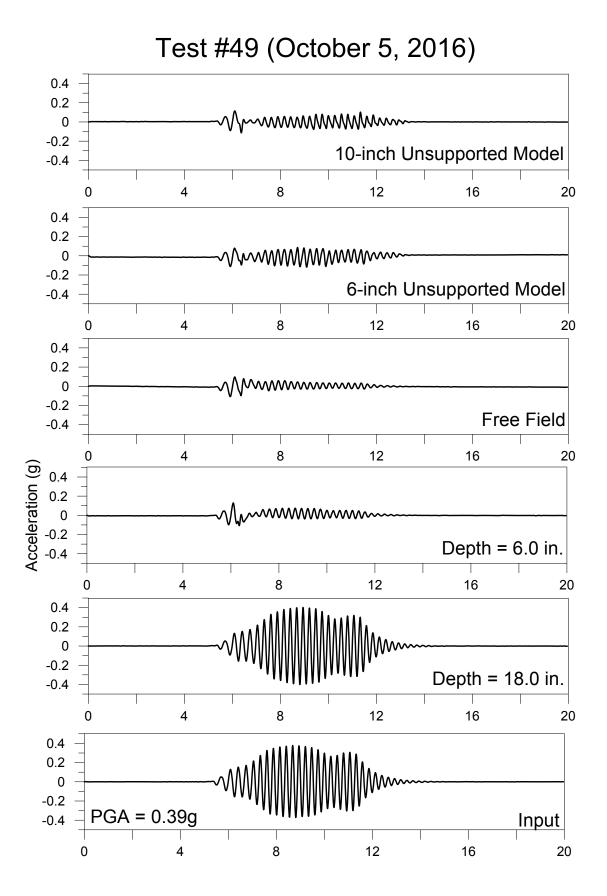
PGA = 0.36g

Test # 47: Ground Motion Characteristics 9/26/2016 PGA: 0.36g

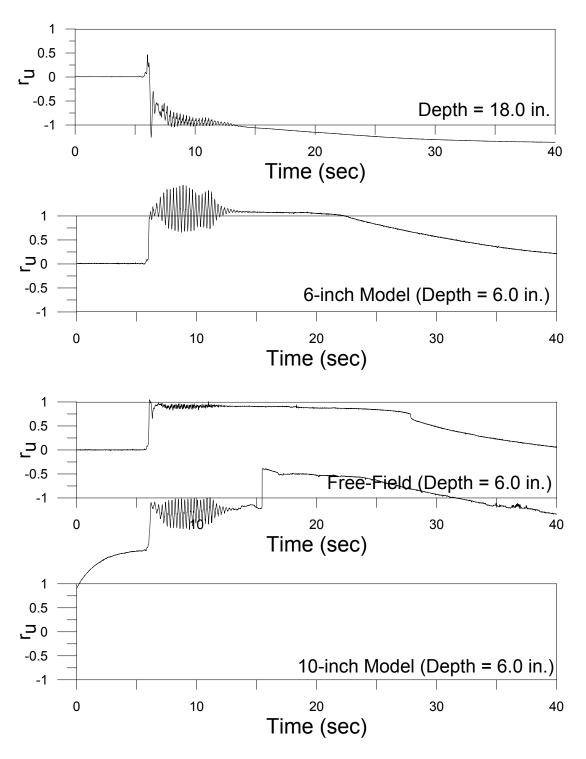


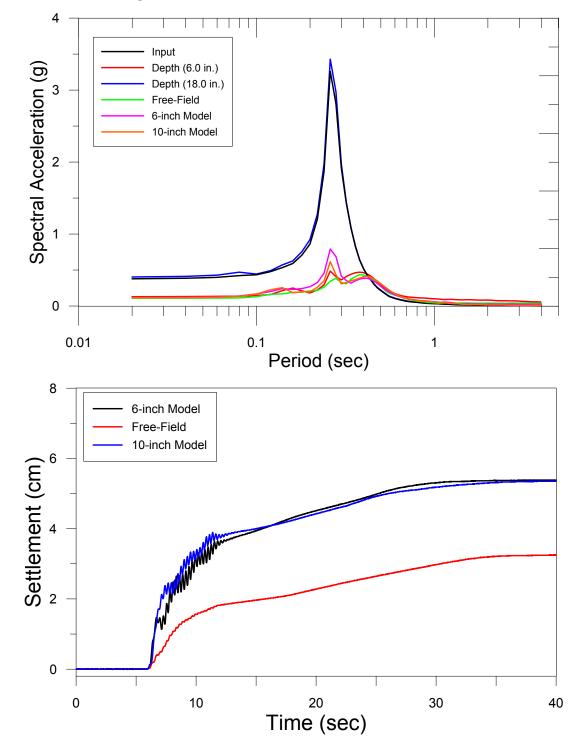

Test #48 (September 30, 2016)

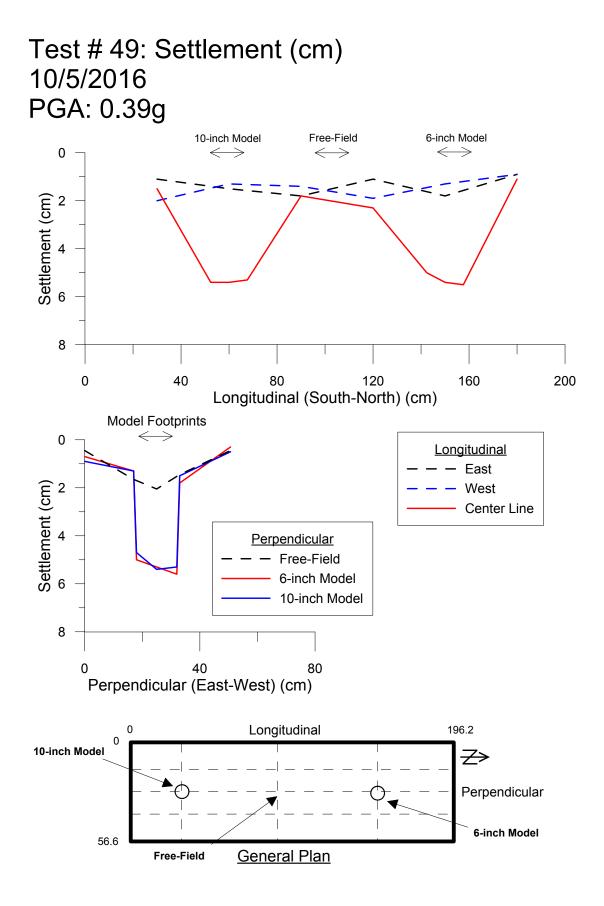

Test #48 (September 30, 2016)



PGA = 0.31g

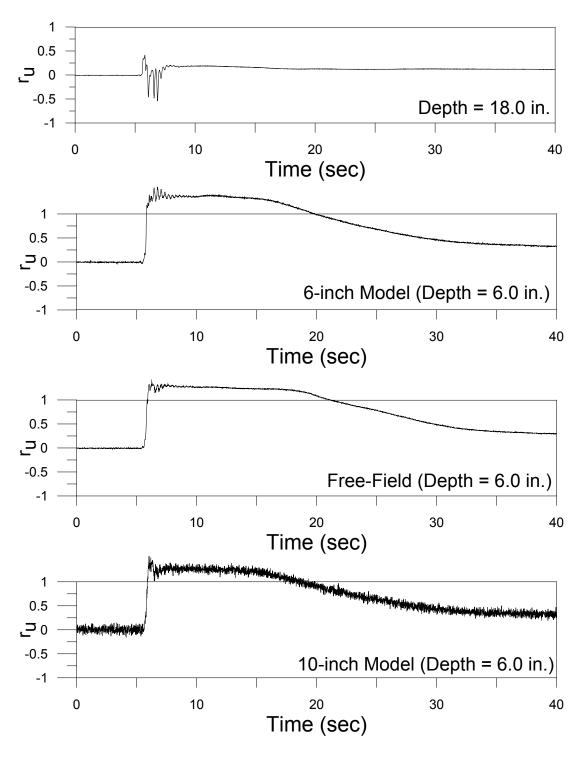

Test # 48: Ground Motion Characteristics 9/30/2016 PGA: 0.31g

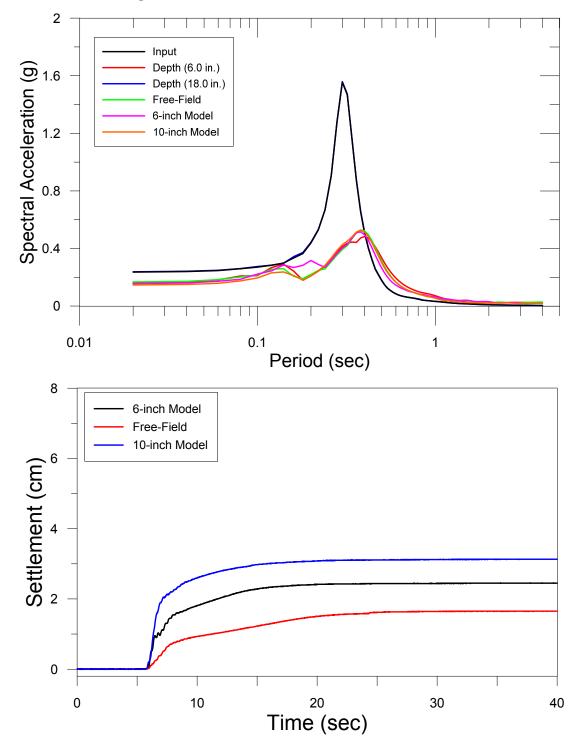


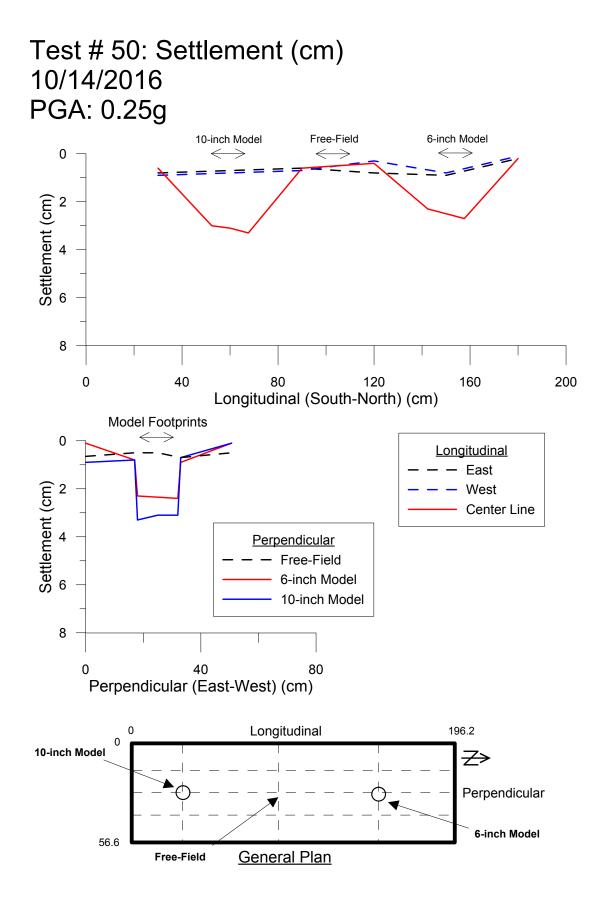

Test #49 (October 5, 2016)

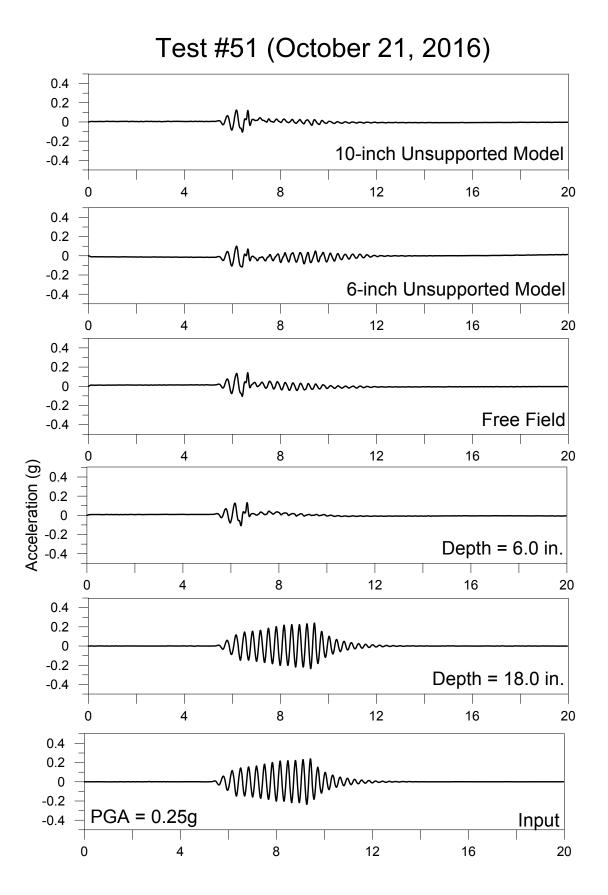
PGA = 0.39g

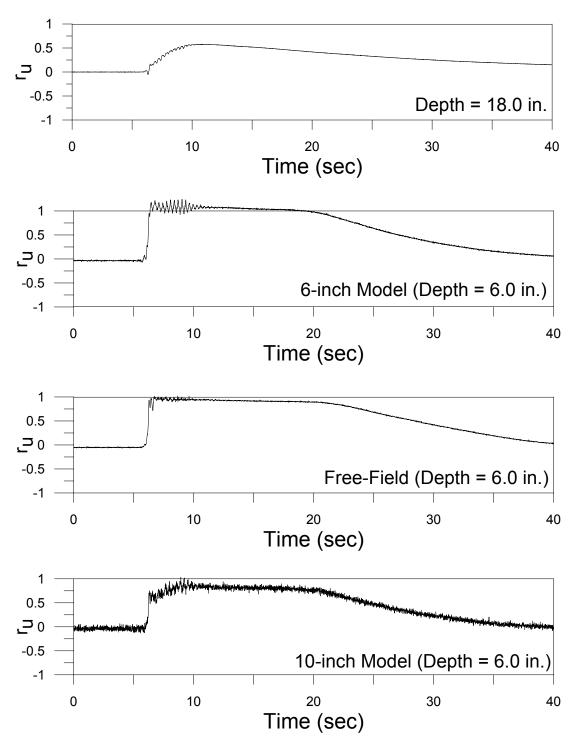
Test # 49: Ground Motion Characteristics 10/5/2016 PGA: 0.39g



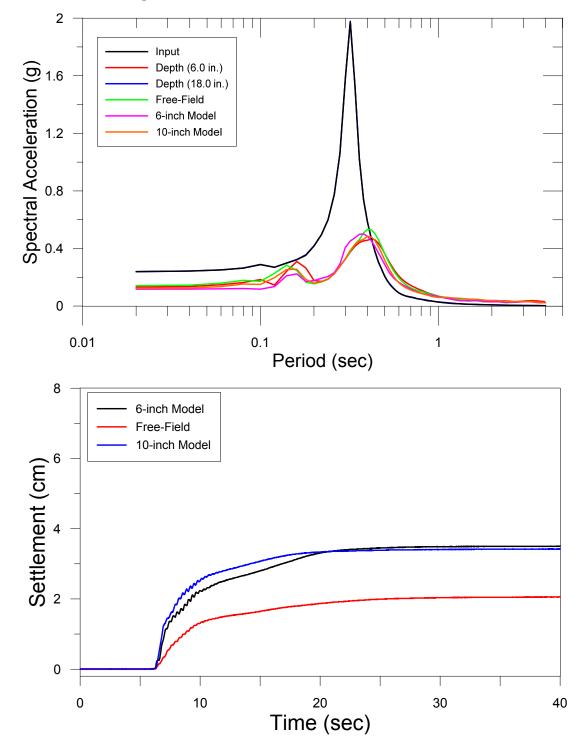

Test #50 (October 14, 2016)

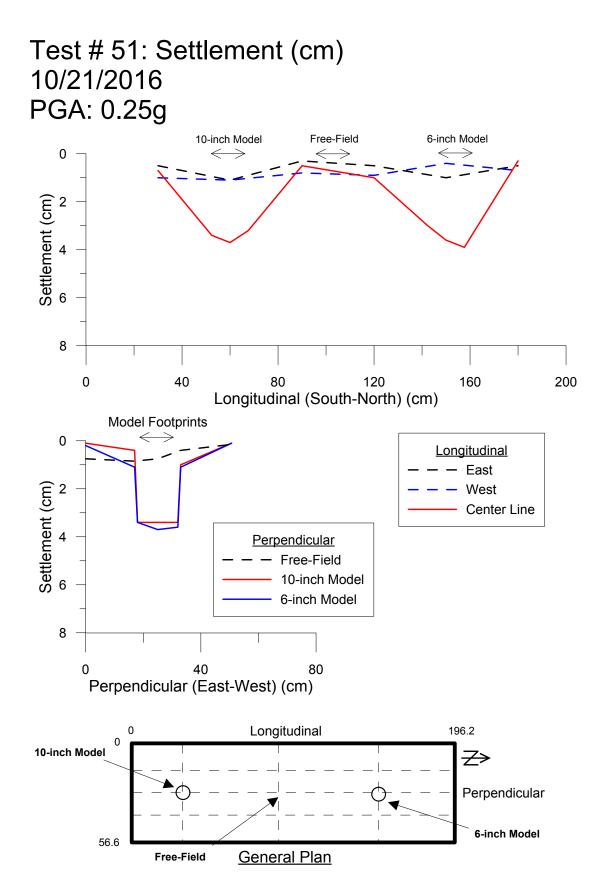

Test #50 (October 14, 2016)

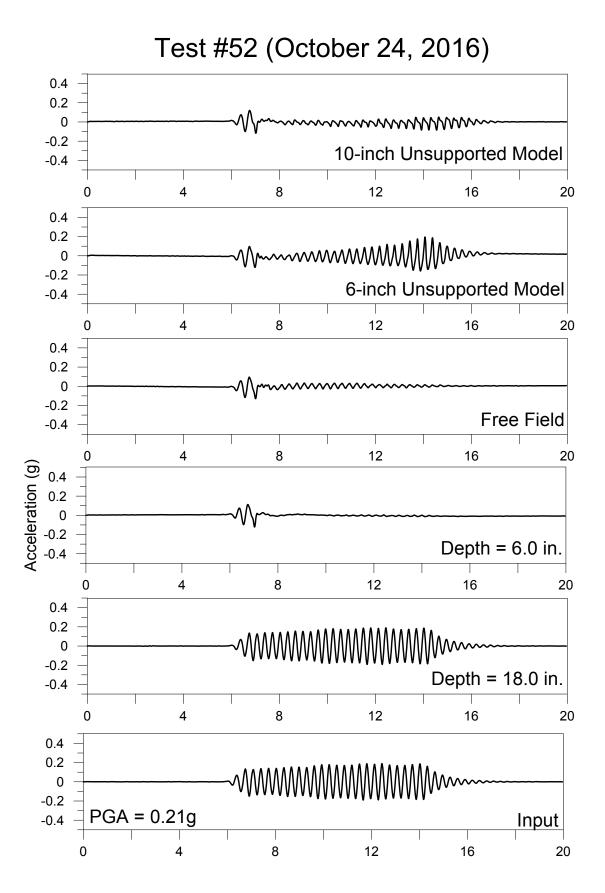


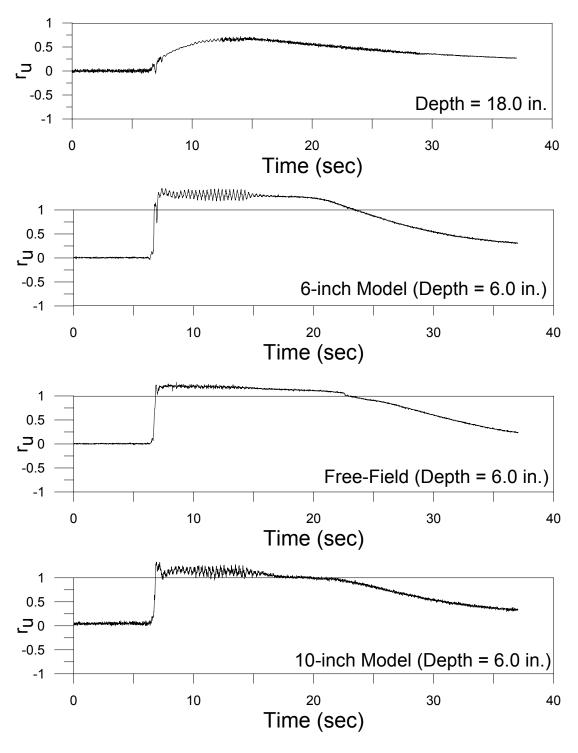

PGA = 0.25g

Test # 50: Ground Motion Characteristics 10/14/2016 PGA: 0.25g

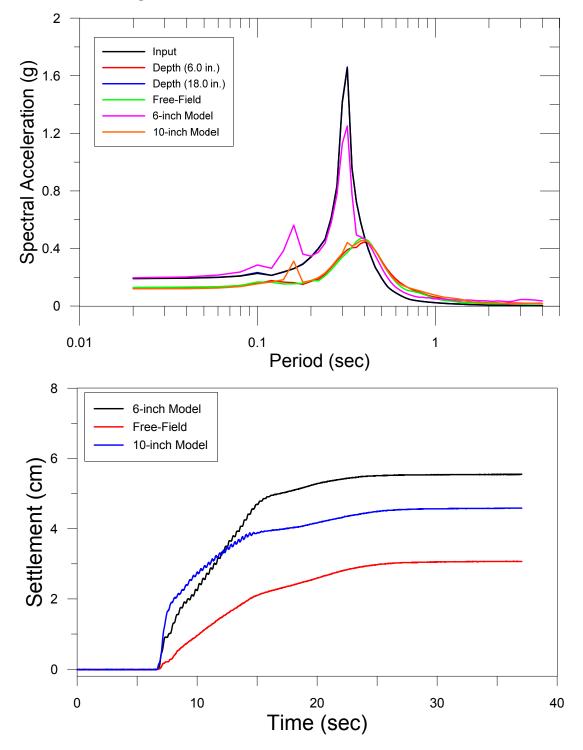


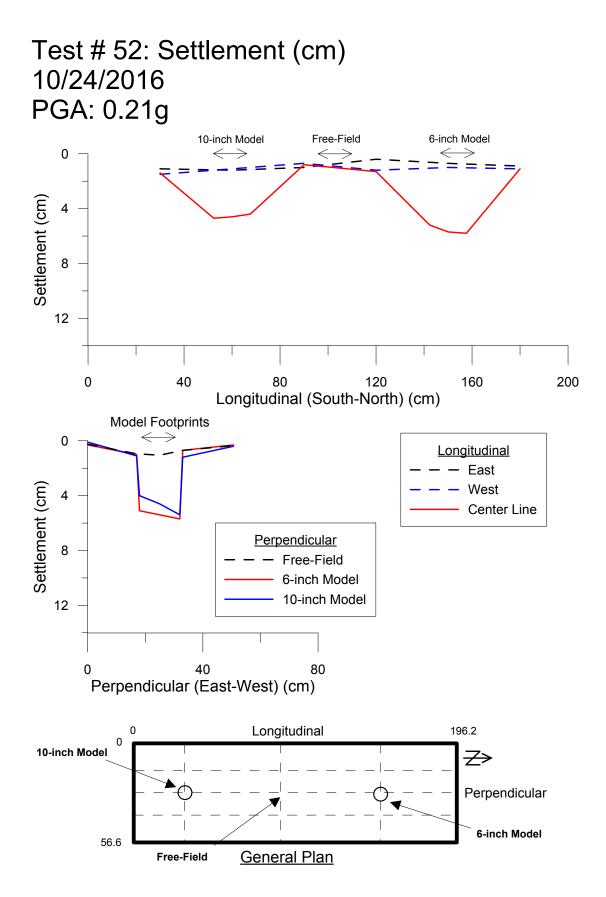


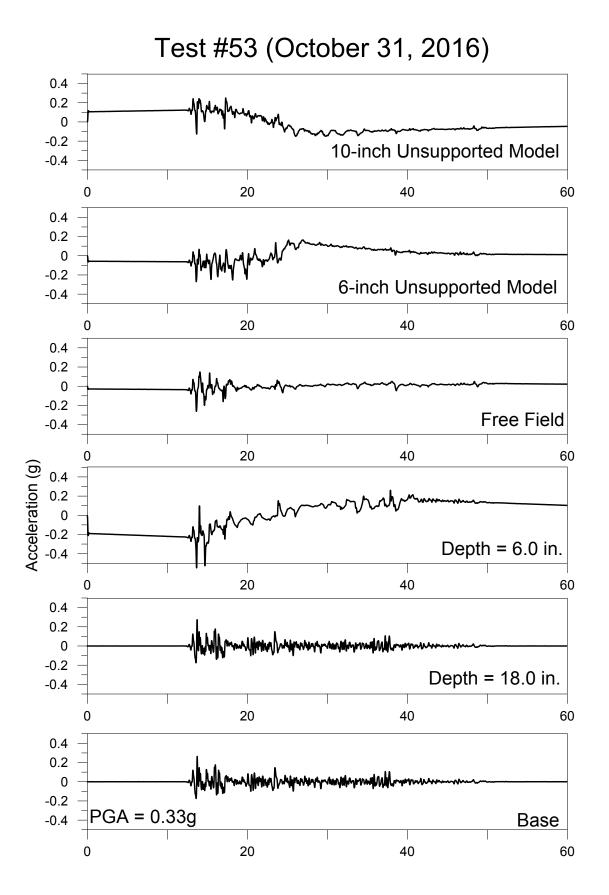



PGA = 0.25g

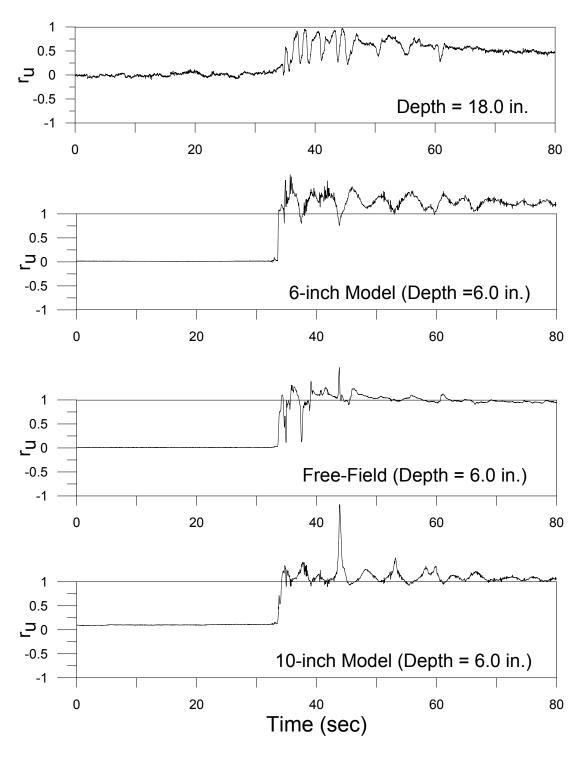
Test # 51: Ground Motion Characteristics 10/24/2016 PGA: 0.25g

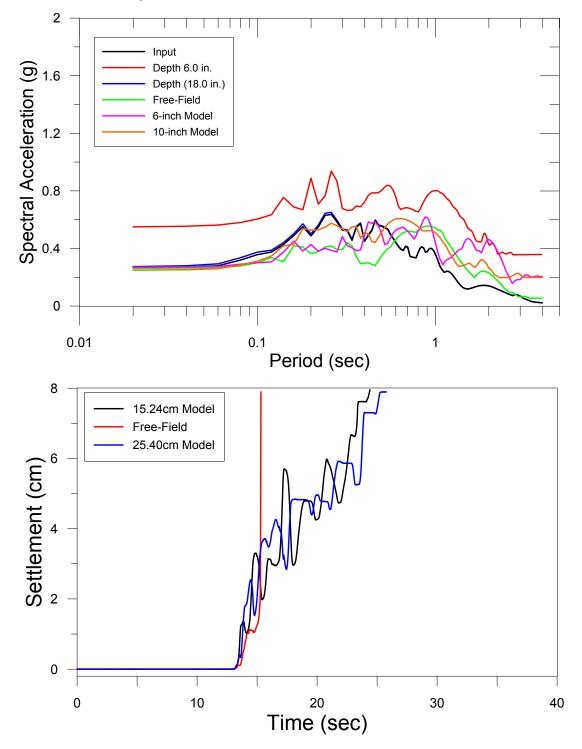


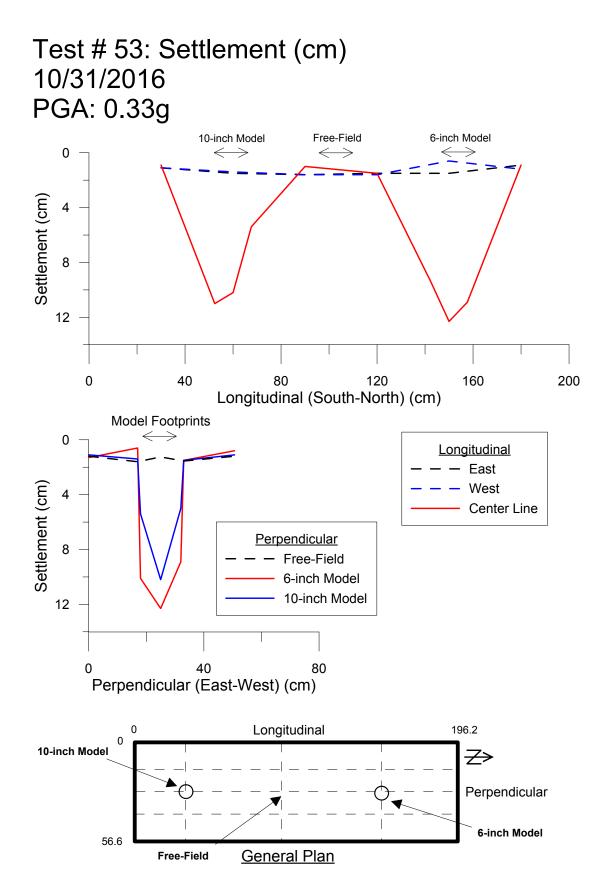




PGA = 0.21g


Test # 52: Ground Motion Characteristics 10/24/2016 PGA: 0.21g





PGA = 0.33g

Test # 53: Ground Motion Characteristics 10/31/2016 PGA: 0.33g

Appendix B – Testing Summary Table

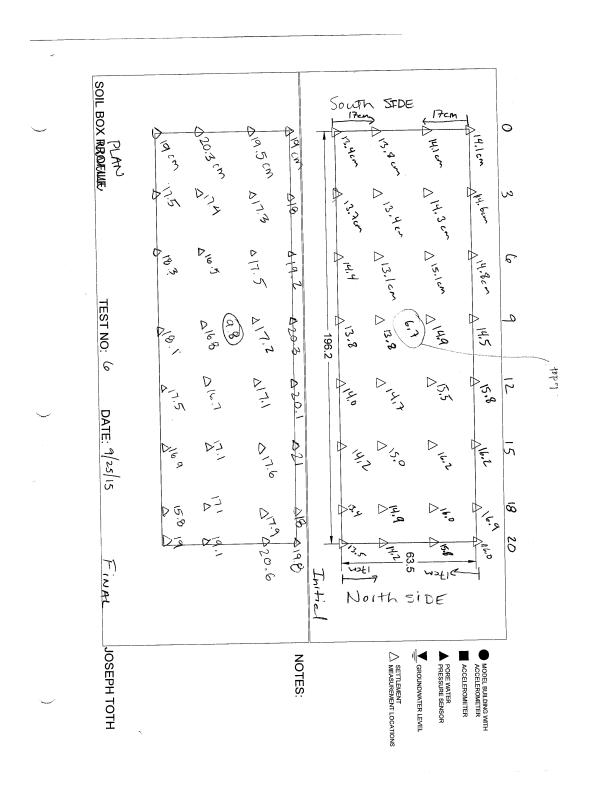
Notes:	Phase 4											F	Pha	ase	ə 3																					F	Pha	se	2												F	Pha	ase	91					Phase	
	53	52	51	50	49	48	47	46	45	£ 7	<u> </u>	43	42	41	40	39	38	37	36	2 2 5 5	34	2.5	32	ა <u>-</u>	3	30	29	28	27	26	25	24	23	22.1	22 !	21	20	10.0	40,4 V	30 81	11	91	15	14 14	13	12	1	10	9	8	7	б	თ.	4	ωι	2 ·	_		Test #	
Dr - Relative Density of Liquefiable Layer	10/31/2016	10/24/2016	10/21/2016	10/14/2016	10/5/2016	9/30/2016	9/26/2016	9/23/2016	9L07/6L/6	0102/01/6	910/3/010	9/9/2016	8/27/2016	8/17/2016	8/9/2016	8/4/2016	7/27/2016	7/22/2016	7/15/2016	7/1/2016	6/22/2016	01.07/91/9	5/12/2016	9102/02/H	A/20/2018	4/1/2016	3/24/2016	3/18/2016	3/16/2016	3/9/2016	3/1/2016	2/26/2016	2/19/2016	2/12/2016	1/20/2016	1/14/2016	1/12/2016	2/5/2016	0102/01	1/5/2016	12/18/2015	12/15/2015	12/11/2015	12/8/2015	12/1/2015	11/20/2015	11/13/2015	11/6/2015	10/30/2015	10/7/2015	10/2/2015	9/25/2015	9/18/2015	9/4/2015	8/25/2015	8/20/2015	8/12/2015		Date	
of Liquefiable	10	10			10	10	10	10	01	50	<u>.</u>	10	10	10	10	10	10	10	10	10					100	10	10	10	10	10					10	10	10	10 2	<u>, </u>	10			****		15					10	10	10	10	10	10	10	10		Model Scale Factor	
Layer	35	35	ယ္ ပ	35	35	35	35	55	45	20	<u>о</u> ло	ယ ၁၁	35	35	35	35	35	35	35	2 35 1 5	35	0 0 1		ა ს ნი ს	Эл С	Л	35	35	35	35	<u>з</u> 5	35	မ္ ဘာ	မ္မာ	သ ပ ၁	ы Л	37	ა Л	3 U 10	2 CC 7 C			ο 1 5	ာ သ ၊ ဘ	35	35	35	35	35	32 25	35 35	ယ္ ပ	မ္မာ	ယ္ ပ	ယ္ ပ	35	дг (70)	(%)	Ðr	S
	-		- - -	د د	1 67	1.50	1.25	-		<u> </u>	<u>۔</u>	_	<u></u>	-	-	-	-	-	-	<u>د</u>	<u>د</u>	·	<u> </u>	× -		_	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5	о лс	о с л	ос л с		0.0 1 0			0.5	0.5	0.5	0.5	0.5	-	-	_	. ا	- -	- - -	. حـ		۔ ا	(II)	(#)	F	oil and
			 -	4	0.33	0.50	0.75	1	_	<u> </u>		<u>ـ</u>	-	-	-	-	-	1	-	. —	<u>د</u>		×	۔ د		<u>ــ</u>	0.25	0.25	0.25	0.5	0.5	0.5	0.5	0.5	0.5	о лс	о о л	о с л с	о с л С	0.5		0.0	0.5	0.5	0.5	0.5	0.5	-	-	-	 .	. د	<u> </u>	. د	. د	۔ د	(II)	Ĩ#	HD	Found
	0.5 (0.83)	0.5 (0.83)	0.5 (0.83)	0.5 (0.83)	0 5 (0 83)	0.5 (0.83)	0.5	0.5	0.5	0.0	ол. Сл	0.83	0.67	0.375		•	l			0.5								0.375			0.25		0.83										0.5	0.5	0.5	0.5	0.5	0.5	0.75	0.5	0.5	0.5	0.5	1	;	0.75	0.75	(#+)	Dŗ	dation Mod
	12.5(12.82)	12.5(12.82)	12.5(12.82)	12 5(12 82)	12 5(12 82)	12.5(12.82)	12.5(11.7)	12.5(11.7)	12.5(11.7)	12.3(11.7)	10 5/11 7)	12.82(12.84)	12.71(12.83)	12.58(12.45)	13.54(13.8)	1	12.5	12.5	12.5	12.5	12.5	c.21	13.2(12.65)	10 0/10 051	12 77/12 (1)	12.2	12.59	12.05	12.5	12.05	11.67	12.92	12.79	12.36	12.36	13 17	13 17	13.17 13.17	10.17	13.17		:		1		1	1	:		1	: {	25		1			 (Isd)	Inefl	Contact Pressure (Unsupported/S upported)	Soil and Foundation Model Configuration
	ł		-	-	-	-	з	3	3	ى د	ມ່	ω	з	ω	з	з	3	3	ω	ω	ω	5	ی د	4 c	-	4	-	-	•	-	-	1	:	1		1		1		1	-	:	-	1		1	1	:	-	1	:	:	-	:			: *	+	Helical Pier	
	6	6	6 0	ם מ	9	თ	6	6	σ	οσ	ה מ	0	6	6	6	6	9	6	ი	6	6	σ	σ	9		תי	5	თ	5	5	5	5	5	σια	ეი	лс	רכ	ס ת	ם ט	σ	יס	י ס	י ס	י ס	5	Б	5	5	5	5	5 0	υ.	4	:			#	ŧ	Accelerometers	Instrum
	4	4	4 -	Δ.	4	4	4	4	4	4 4	> -	4	4	4	4	4	4	4	4	. 4		. –	×	<u>ـ</u> د	-	_	-	-	-	-	-	_	- - -	_	8	•		<u>ا</u> د	1	:	:	:	1		4	1	1	:		1	:	:	1	:			; *	ŧ	Pressure Sensors	Instrumentation
	ω	ω	ω	ہ دن	ິ	ω	ω	З	3	ა ი	ა (ω	ω	ω	ω	З	З	3	ω	ο ω	,						•	•	•	•	•	•	•	•	•	•			•		•		•	•		1	1			•	•	•	•	•	•	•	· ‡	ŧ	LVDT	
	0.329	0.205	0.254	0.000	0.393	0.306	0.356	0.318	867.0	0.234	0.227	0.259	0.276	0.335	0.279	0.29	0.26	0.2	0.25	0.14	0.26	0.18	0.33		(Note 1)	0.3	0.5	0.44	0.49	0.37	0.33	0.34	0.33	0.34	0.34	0.27	0.36	0.30	0.07	0.39	0.17	0.17	0.16	0.20	0.30	0.33	0.30	0.31	0.36	0.38	0.44	0.40	0.36	0.03	0.44	0.22	۲¢ ۱	2	PGA	Param
	24.25	7.23	3.51	1 83	4 49	4.47	4.67	4.31	4.35	4.70	1 78	4.53	4.65	4.25	5.02	4.31	4.73	5.26	4.93	5.54	4.65	5./3	4.46		- -	9 1	5.61	5.11	5.36	5.64	6.45	6.01	6.85	6.96	5.75	л ол	6 75	л 7л	6 7E	20	8.85	0.21 0.21	11.75	15.9	13.5	4.65	14.25	5.3	8.35	6.88	6	7.8	4.6	15.9	8.7	10.05	14 50	(cor)	Shaking Duration	ameters
	0.752	0.496	0.386	0.350	0.673	0.622	0.449	0.319	0.358	0.300	0.010	0.346	0.374	0.409	0.413	0.358	0.311	0.358	0.319	0.343	0.437	0.331	0.417	0.400	0.406	0.476	0.374	0.323	0.299	0.248	0.220	0.173	0.209	0.185	0.193	0.170	0.173	0.224	0.210	162.0 L62.0	0.789	0.008	0.201	0.307	0.280	0.248	0.370	0.531	0.657	0.638	0.602	0.961	1	:	-			(in)	Free-Field (avg.)	
	4.063(2.913)***	2.165(1.819)***	1.362(1.362)***	0 961(1 244)***	2 087(2 055)***	2.394(2.071)***	2.465(0.142)**	1.693(0.071)**	1.543(0.165)	2.1/3(U.U39)	3 173/0 030/**	1.543(0.087)**	1.677(0.228)**	2.307(0.024)**	2.693(0.039)**	1.693(0.094)**	2.457(0.079)**	2.087(0.031)**	1.598(0.016)**	1.835(0.039)**	2.150(0.087)**	1.543(0.004)""	1./32(0.055)	1 700/0 0EE/**	2 024/0 055)**	0 055-Helical	1.323*	1.047*	0.85*	1.205*	0.669*	1.402*	1.362*	1.339*	1.276*	1 26*	1 276*	1 102*	1 1000	1.3231	1.3231	0.0397	1.173*	1.795*	1.205*	1.252*	3.567*	1.354*	1.134*	1.953*	2.087*	1.22*	•	:			(111)	lin	Model Building	Observed Settle
	(3.551 / 3.693 / 3.591)**	(2.185 / 1.213 / 1.811)**	(1.386 / 0.819 / 1.354)**	(0 969 / 0 654 / 1 236)**	1 287 /	/ 1.925	/ 1.606	(1.642 / 1.193 / 0.047)*	1.362	1.492	1 702	(1.571/1.012/0.094)*	(Note 2)	(2.201 / 1.555 / 0.024)*	(2.752 / 1.323 / 0.035)*	(1.693 / 1.150 / 0.075)*	(2.327 / 1.512 / 0.047)*	(2.098 / 1.350 / 0.008)*	(1.618 / 1.091 / 0.008)*	(1.661 / 0.831 / 0.004)*	2.35-F.F.		1			1		1				ł	8	1				8 8		1		1	–	1		ł	ł	:	-	1	1	:	-	1				(in)	LVDT (#1, #2, #3)	Settlement
	0.630	0.600									0 729	0.618	0.618			0.624				0.492		0.600	0.630	0	0.047	0 624	0.399	0.399	0.399	0.318	0.315	0.315	0.315	0.315	0.315	0.318	0.318	0.010	0.010	0.318	0.246	0.246	0.246	0.300	0.312	0.315	0.312	0.624	0.636	0.636	0.636	0.636	0.636	0.492	0.636	0.612	0.612	(in)	Tokimatsu and Seed (1987)	(Free-
	0.752	0.750	0.852	0 852	1 099	1.050	0.975	0.672	0.780	0.900	0.000	0.858	0.900	0.900	0.900	0.900	0.858	0.750	0.852	0.600	0.858	0.600	0.900			000 0	0.525	0.525	0.525	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.400	0 450	0.435	0.300	0.300	0.300	0.375	0.435	0.435	0.435	0.870	0.870	0.870	0.870	0.870	0.870	0.600	0.870	0.810	0.810	(in)	Ishihara and Yoshimine (1992)	-Field)

HD - Thickness of Non-Liquefiable Layer
D_F - Diameter of Model Foudation
Dus ported Foundation, ** Unsupported Foundation(Helical Supported Foundation), *** 0.5ft Unsupported Foundation(0.83ft Unsupported Foundation)
Observed Building Settlement - * (Unsupported Foundation / Free-Field / Helical Supported Foundation), **(0.5ft Unsupported Foundation / Free-Field / Observed LVDT Settlement - *(Unsupported Foundation / Free-Field / Helical Supported Foundation), **(0.5ft Unsupported Foundation / Free-Field / 0.83ft Unsupported Foundation)
Note (1) - Data Acquisition Malfunction - No Instrument Data Recorded for Test #31, Only Manual Measurements.
Note (2) - Data Acquisition Malfunction - PWP and LVDT lost power to DAQ during testing, Data not Valid, Only Manual Measurements.

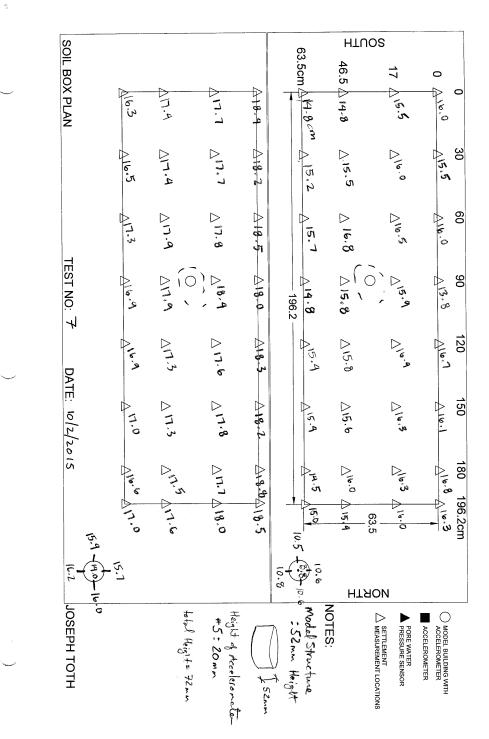
Appendix C – Laboratory Notes and Measurements

ç						775-815
			SUBJEC	T:		1 Arri
		Golder Ssociates RENG, NEVADA	Trial	Test#1 5	PREPARED BY:	
		Golder			PREPARED BY:	B/11/15
\sim		SSOCIALES RENO, NEVADA	PHASE:		CHK/RVW BY:	SHEET of
	1:ft #1	(~ Dr 60. * assume sand	1.) nee.	1 10751bs	-w(ws)	
		* assume sand.	is initial	dry	マ= 57	
		5) Tare +		W~ (16:	-)	
	lare (1	s) lare T	10 <u>5 (105)</u>			
	1. 0-	33.324		1.666	λ	
	2. -O -	22,311		1.666		
	3. —	33.079		1.654 1,637		
	4.	32.743				
	5	32.888		1.644 0,274		
	6.	<i>5.48</i> 5 33.487		1.674		
	8 +	29,435-1.533	= 27.902	1.395		
	9	33.728		1.686		
	10	4.818		0,2409		
	U,	31,799		1,589		4EO 20
	12.	34.8is		1.740		· · · · · · · · · · · · · · · · · · ·
	13. 14	34.951 1.567		1,748 0.078		
	15.	33.032		1,652		
	16	32,745		1.637		
	17.	31.183		1.559		
	<i>IB</i> .	34.464		1.723		
	19.	33.626		1.6813	/	
	20	32.639		1.632		
	21.	3.130		0.1565	/	
	22. 23 .			e in horsele in pro-	/	
	24.	29,330				
	25.	34.346				
	26.	34.645		1		
	27.	2.374		5.0		
	28.	33.519		- T -		
	29.	34.249 28.(55		4.8		
	30. V	30.968		1.0		
		34,701				
		27.250		4.65		
		33.406		Ť		
-		34,293				
\sim		30.661		, j		
		9.731		5.4		
		29.122 32.786				· · · · · · · · · · · · · · · · · · ·
	<u> </u>	33.824 4,9 78	<u> </u>		in in the last of the second s	89.539
		1000		5.0		

Con Go Reno, Lignofiskle laye		SUBJECT: Trial Test#1	Shake Table	
Go	lder	PROJECT No .:	Shake Table PREPARED BY: 5.7572 CHK/RWW BY:	DATE: 8/12/1.
	NEVADA	PHASE:	CHK/RVW BY:	SHEET
1. helde	21.548		26,988 lbs	
Liguen la sale	28.764		32,930	
(ange	24.151		33.644	
	34,969		4,213	
	29.852		33.326	
	31.589		32. 785 34. 590 33. 702 33. 702 33. 839 32. 541 31. 767	
	31,822		34.590	
	31,713		33.702	
	27.895		33,839	
	27,895 29,70		32.541	
	34,680		31.767	
	32,705		39,701	
	29.181		34.040	
	27.62		34.544	
	27.513		30.981	
	28.688		32.375	
			12.718	
			32.696	
			30:791 34.56 Z	
field camero	- a tri-pod		34.562	-
Pipe SM	alldianeter		30.662	
respirat	a & extra N	29 free Losto	61.078	
			34,424	_ 704.10
			27.074 33.120	
			33, 120	
¥ 1/16 plates 0 files from Co	nder from MSM	(3 total)	30,470	
			25.356	
files from Co	npeter		33.554	
	<u>I</u>		33.551	
			3,938	
			28.707	
			29,438	
			33.410	
	AND AND A COMPANY OF ANY ADDRESS OF A DECEMPTOR			
1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /				
		FLahrie	w	
		Latrie	edan.	-

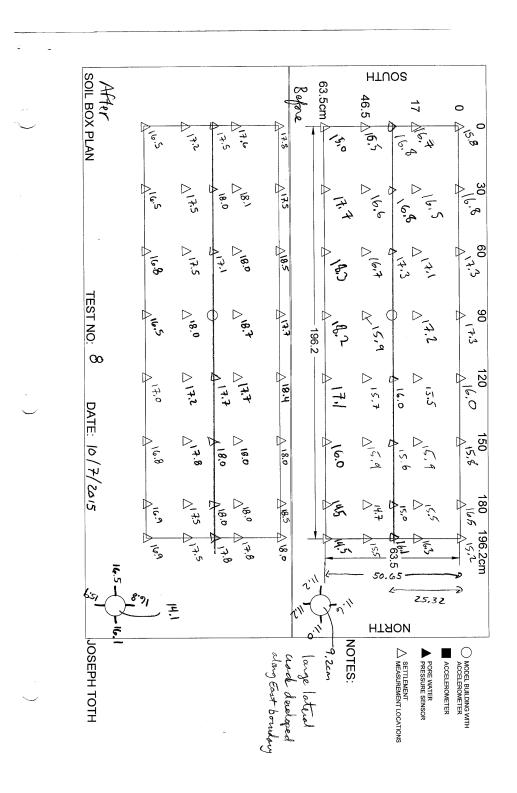

Shakle Tabl Date: 8/ #	9/15	e Layer (10751b3)	Joseph Toth Liquefiable Layer (۲۵۲۵-۱۵۵)
ne 1.674/k	25 WT Dense - Ws (lbs)	Ww (lbs)	Ws (lbs) fere 1.6
9 24 1/ 1	34.071	<i> </i>	1 34.888
	2 31.935	Ð	2 <u>33.408</u>
1	3 33.403	<i>Ф</i>	3 <u>33.535</u>
1	4 29.207	<i>e</i> -	4 31.885
1	5 32.039	ð	5 34,923
	6 33.616	Ð	6 29.146
1.	7 34.148	Ð	7 <u>34,704</u>
	8 28.37 8		8 <u>34.735</u>
1	9 32.896	Ð	9 B (33.205
	0 100 lb sade dry	- 0 -	10 12.037
	1 32.876	0	11 32.461
	2 31.197	0	12 34.612
	3 32.957	<u>Ф</u>	13 <u>34.449</u>
1	14 34.119	Ð	14 34,476
	15 33 . <i>44</i>	Ð	15 30.620
	16 32.431	-0-	16 3 <i>3. 8</i> 71
	17 33.872		17 32.407
	18 34.800		18 32.017
	19 33.575		19 <i>34.291</i>
	20 31.475	6.686 lbs	20 34.628
	21 34.886		21 34.619
	22 34.208		22 34.053
	23 34.513		23 29,286
	24 29.686	\$ 6.661bs	24 <i>3</i> 3,357
	25 34.495	1	25 34,99.3
	26 34. /70		26 32,907
	27 33.766		27 34.163
	28 32.598	6.75 lbs	28 31.827
	29 33 . 656		29 33.819
	30 32.707	3.3 lbs	30 32.665
NOTES:			

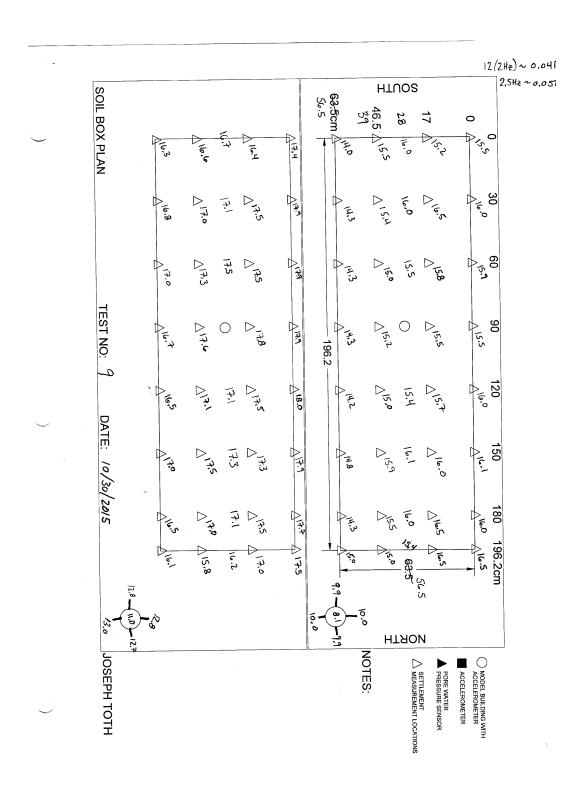
Date: 8	25/2015		Liquefiable Layer					
	De	nse Layer	Liquefiable Ws (lbs)	Layer fore = 1.66				
	Ws (lbs)	Ww (lbs)	1 34,939 5	tanget = 102. fn.Dr~30				
. 0			2 34.047	fn.Dr~30				
			3 34.119	16.810				
m test#2			4 34.443	32,970				
			5 34.890	31.498				
			6 33,942					
	6	an an that the terms of the state	7 34,298	1				
	7		8 34.554					
			9 34.646					
			10 74 576					
			11 22 200					
			11 <u>39.583</u> 12 34.558					
			13 34.385					
			- 22 (- 29					
<i></i>								
<u> </u>				i				
			10 21 021					
			19 33.124					
			20 33.314					
			20 33.317 21 33,765					
			0.1.20-					
			07479					
			26 3 3.094					
			27 <u>33.949</u>					
	28			<u>```</u>				
	29		29 <i>33,304</i>					
	30		30 28.809					
NOTE	S: dense layer	vashed out because ple	kiglors rub steet corres	for seal.				
				·				
848-09			4 1 T					


ute. /	1/4/2015	ense Layer	Liquefiable Lay	/er
	Ws (lbs)	Ww (lbs)	Ws (lbs)	
/-	1 49.7	2.485	1 51.7	
	2 54.5	2,725	2 <u>53.8</u>	
dy	3 52.0	2.6 165	3 44.0	_
-	4 54,2	2.71	4 11.3	_
	5 55.9	2.795	5 <u>55.8</u>	
1.61bs	6 58.4	2.92	6 10.4	
	7 59,2	2.96	7 54.6	_
	8 55,7	2.785	8 44.6	
	9 61.2	3.06	9 59.5	
	10 60.2	3.01	10 44.4	
	11 <i>58.</i> 6	2,93	11 5Z.B	
	12 59,6	2.98	12 <u>50.</u> 1	
	13 (02.0	3-1	13 50.7	583.
	14 59,7	2.985	14 51.6	
	15 61.0	3.05	15 <u>49.9</u>	
	16 59.8	2.985	16 <u>63</u> .0	
	17 59,0	2.95	17 57.5	
	18 56,6	2.83	18 39,9	
	19 54.9	2.745	19 54.8	
	20 finished		20 99.9	
	21		21 54.7	
	22		- 22 43.8	
	23		23 <u>51.8</u>	515.9
	24		24 35.0-6.3=	109
	25		25	
	26		26	
	27		27	
	28		28	
	29		29	
	30		30	

Shakle Table Test # 5			Joseph Toth
Date: 9/17/2015	1	Liquefiable I	aver
Dense Ws (lbs)	Ww (lbs)	Ws (lbs)	P= 3.21bs
olbs 1 44.9		1 40.S	P + Leed to
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 45.5	P deduct P
ed 3 50,3		3 45.8	P from WS
visture 4 45.9		4 41.5	p
hoge 5 51.6		5 43,2	٩
6 56.3 300,4		6 38.8	P
7 52.6		7 <u>43,6</u>	P
8 57.1	1	8 42.9	P
9 57.9		9 <u>41,4</u>	P
10 52.3		10 <u>40,9</u>	P
11 (d.9		11 <u>42.8</u>	P
12 57.7		12 <u>43,5</u>	P
13 <u>56.0 394.5</u>		13 44. [P
		14 36,8	P
15 54.0		15 34, D	Р
16 <u>51,3</u>		16 <u>44</u> ,0	P 669.3.
902.3 17 5.5 207.4		17 <u>54,3</u>	= = [18.1 ws
60.7		18 54.2	
19 54.5		19 49,2	
20 <u>56.9</u>		20 Ulis	
21 49.1		21 40.4	
8 63 22 53.7		22 40,9	
1. Jul 23		23 59.1	
24		24 61.5	
25		25 28.1-3.9	Total
26		- 26	= 1043,1
27		A	
م ^{۲۱} 28		28	
29		²⁹	
30		30 /	
NOTES:			

Shakle	Table Test # 6			Joseph Toth
Date:	9/24/2015 Dens	e Layer	Liquefiable L	ayer
~	Ws (lbs)	Ww (lbs)	Ws (lbs)	1
uned	1 35 lbs e 57.	pisture	1 58.1	
reput 51m	isture 2 42.1	2.1	2 54.8	
for	3 52,2	2.6	3 56,9	
	4 53.7	27 2.68	4 59.4	
	5 42.2	2,098	5 58,2	
	6 44,3	2,2	6 59.8	
316.8	7 50,3	2.509	7 61.7	
~	8 52/1	2,605	8 61.9	
	9 47.01	2,35	9 62.9	53416
	10 55.7	2,78	10 61.6	
	11 47.5	2,38	11 58.1	
	12 49,5	2.5	12 61.0	4
31 299.5		2.4	13 <u>60.0</u>	
,	/14 52.3-3.3=49	-	14 62.1	
	15 48.9-3,4= 45.5	-) at 101, noist.	15 57,2	894
290.9	16 46.2-3.3= 42.9	- (diy Ws=209.9	16 <u>56,5</u>	
\smile	17 50,7-3,3=47.4		17 56.4	
	18 49,4-3.3=46.1	- /	18 18, 4	
	19 56.5	2,825	19	
	20 59.7	2.985	20	
	21 53,5	2.675	21	
	22 59.01		22	
1055			23	
			24	1
	1		25	
	26		26	
			27	
	27 28		28	
ъ.	29		29	
	30		30	
NO		Scale zero w/bucket, & tare	and the second	······································
<u> </u>				×
\smile	, 			
				area a


Shakle Table Test # 7			Joseph Toth
Date: 10/2/2015	nse Layer	Liquefiable La	yer
Ws (lbs)	Ww (lbs)	Ws (lbs)	-7
- 1 45.8 - 3.3 =		1 49.7	
125.2 2 48.6 - 3.3 =	- 116 dry	2 47,7	
el· 3 40.7 - 3.3 =	1-7	3 48.9 48,2	
116 4 47.5	2.4163	4 43.8	
5 57.4	2,88 16	5 48.3	
6 53,7		6 50.0	
7 49,0	2.68 Z.45	7 58.0	
8 52,6	2.63	8 51.5	
	2.62	9 <u>53.4</u>	
9 <u>57,3</u> 10 <u>54.8</u>	2.74	10 51.0	
307	2.66	11 55,2	
11 53.2	2.76	12 50.5	
12 55,2	2.63	13 59,4	
13 52.5	2.6	14 <i>54, 8</i>	721,5
14 52.1	2.65	15 56.5	
15 <u>53.0</u> 318.9 16 52.9	2.65	16 57.4	8354
318.9 16 52.9 17 76 5 3.1	2.655	17 54.5	
	2.52	18 46.3	
18 50.3	2,59	19 53.4	9 09 1
$19 \overline{51.8}$	2.57	20 35.7	101,6
2066 20 51.4	2.73	21 <i>18</i> ,5	1017
21 54.5	0.71	22	-
22 14.2	0.7]	23	
077.71b5 23		24	
24			
25		25	
26		26 27	
27	1		
28			
29		- 29	
30		30	
NOTES:	а.,-	an a	
· 8.			


Shakle Table Test	# <i>B</i>			Joseph Toth
Date: $10/7/2$				
Date: 10/7/2		e Layer	Liquefiable Lay	rer (John
	Ws (lbs)	Ww (lbs)	Ws (lbs)	fore = 1.71b
		st#7	1 46.0	
			2 48.9	
			3 45.1	
			4 45.5	
			5 45,9	
5			6 51.4	
6				i
7			7 43,3	
			8 42.0	
			9 71.0	{
			10 52.5	
			11 46.0	
		i	12 52.1	
			12 4 7.7	
			11/197	
			15 53 2	
15			16 46.3	
16			17 52.9	811.6
17				
18			18_51.9	
			19 56.3	
			20 44,7	
			21 14.0	
		1	$\gamma $	1025 1b
			23	
			24	1
25				1
26			26	
27	*****		27	i
28			28	
29			29	
			30	
NOTES:	large tensele	crack developed alo	ng east side of container of	lue to
	pwp b/w les	kan and rubsleets	uoo ka na razintu(nin an	
-				
-				

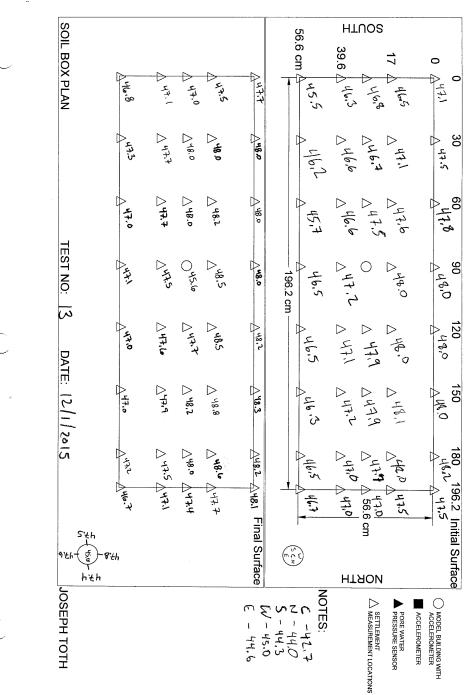
Date: 10/29/2015		Liquefiable Lay	er
Dei Ws (lbs)	nse Layer Ww (lbs)	Ws (lbs)	7
1 55,3	2.77	1 61.5	
2 50.6	2.53	2 60,7	
	2.66	3 61.6	
3 <u>53.2</u> 4 49,1	2.46	4 63.3	
5 51.6	2.58	5 61.3	
	7.83	6 63.7	
6 <u>56.6</u> 7 5 1.8	2.59	7 61,6	433,716s
8 53,2	2.66	8 61.4	
	2.74	9 59.5	
9 55.1	2.82	10 61,6	
10 56.5	2,69	11 62.6	678.8
11 <u>53,9</u>	206 2.7	12 63.2	
12 <u>53.8</u> 695. 8 13 53.1	2.76	13 61.8	
	2.79	14 62.2	
14 55.8	2,71	15 64,2	
15 <u>54.1</u> 16 <u>51.1</u>	2.60.	16 14.1	
911. <u>5 17 53.9</u>	2.7	17 944,3 total	
911, <u>5 17 55,7</u> 18 54,5	2,73	18	
19 29.8	1,5	19	
20 Total 995.81bs		20	
		21	
		22	
		23	
		24	
		25	
25		26	process for a
		27	
27		28	
28		29	
29		30	
	fouriered be red on form	used to dampen soil motion bou	rday effects
NOTES: $Target WeightsDr = 60% - 99$	95 lbs	an a	~
Dr=301> 9	44 lbs.		

.

Date:	11/5/2015		Liquefiable Layer	
	De Ws (lbs)	ense Layer Ww (lbs)	Ws (lbs)	
	1 57.9	2.9	1 41,2	
	2 <u>58.8</u>	2.94	2 38.4	
	3 60.3	3.07	3 39.6	
	4 62.7	3.09	4 39.8	
	5 60.6	3.07	5 41.1	
	6 62.6	3.16	6 37.0	
	7 <u>61,4</u>	3.13	7 39.0	
	8 63.2	3.19	8 37.\	
	9 62.0	3.14	9 39.6	
	10 60.7	3.05	10 37.3	
e71.6	11 61.4	3.04	11 <u>36.9</u>	
	12 62.0	3.2	12 37.1	(2) (03
7	13 61.5	3-09	13 37.2	
Z95,/~	14 53.9	2.78	1438.1	
	15 <u>53</u> .8	2.64	15 38.1	
	16 53.3	2.76	16 37.1	
	17 <u>38.9</u>	2.09	17 39.5	654.1
			18 38,6	
			19 35.6	
			20 36.9	
			21 37.3	- 802 5
			22 39.5	
			23 42.6	- 884,6
			24 34.9	- 919.5
			25 24.6	•
			26 tota 994.1	-
			27	-
	28		28	-
	29		29	-
	30		30	
NO		1951bs)	an a	

SO						ç	Ŋ.	LΗ	nos	3		
SOIL BOX PLAN	A15.7	15.4	A 15.6	A 15.9	A 16.8		63 5cm 14.9	46.5 15.5	A 14.9	17 15.4	0 415.6	0
	A 15.3	$\Delta 15.9$	016.3	16.5	A16.2		A15.1	15.4	Δ15.3	△ 15,4	A 19.8	30
	A15-7	116.2	D16.51	6.5	<u>∆16,</u> 7		14.2	Δ 19.7	A 15.0 q	15.2	∆15.4	60
TEST NO: (o	⊿16,5	\triangle 16.2 \triangle 16.8 \triangle	1.3 100 € - 12 J	۲۰۱° ۱۳°۱	<u> </u>	196.2 -	A13,9	⊵!ન.૩	△ 15.0 9.0 - 00 - 9.3	q.4 15-1	A15,0	90
	∆16,0	∆ 16,Z	D 16.9	∆ 10.9	<u>A</u> 1⁄⊎.6		△ 14.0	△ 14.3	14.5	15.1	A 19.9	120
DATE: 11/5/2015	0-14	∆1b.3	∆ 14.0	8-9\ ∑	A 16.9		A 14.8	14.6	A 12.0	△ 15.3	<u>∆ 15.4</u>	150
2015	<u>A14.6</u> 15.4	115.5 14.7	016.1015.5	∆16.0 A 15,9	<u>∆l6.2</u> Å lb.6		A14.5 14.5 9.0-	VHY VHY	~	15.1 14.8 Day 50.65	A15,3 A 15.4	<u>د </u>
						8 8 1		F	тяс			
JOSEPH TOTH								NOTES:	A MEASUREMENT LOCATION	PORE WATER PRESSURE SENSOR SETTLEMENT	ACCELEROMETER)

akle Table Test # (ate: / Z / 2015			lor.
Den	se Layer	Liquefiable Lay Ws (lbs)	
Ws (lbs)	Ww (lbs)	1 41.6	1
1 55,9	2.87	2 45,2	
2 60.4	3.11	3 40.8	1
3 55.4	2.71		
4 59.2	2.93	4 <u>41,2</u> 5 37.1	168.8
91.4 5 60.5	3.09		
353.6 6 62.2	3.10	6 43.2	
7 52.6	2.55	7 37.9	
8 62,8	3.14	8 39,2	
9		9 40,3	i
10 469 total		-	409.6
11		11 35.4	
		12 445 lbs total	
		13	1
		16	
		17	
		10	
		10	
		20	
		21	
		່າງ	
		22	
		2/	
		25	
		26	
		27	
		28	
29		29	
30		30	
NOTES: Dense - 469	Ibs	and the second	
Loose - 445	51bs	an a suite an suite ann an suite	


SO						56.6		.nos	;		
L BOX						6 cm /	39.6	~	17 /	0	~
SOIL BOX PLAN	A47.0	47.0	∆ 41.1	47.5	47.9	56.6 cm 46.5	39.6 🛆 46.5	46.9	A6.5	A45.9	0
	17.5	△ 48.0	∆ 48.0	∆ 4୫.3	<u> </u>	A96.2	△ 47.8	△ 47.4	1.1 م	A 97.5	30
_	<u>⊿</u> 97.4	∆ 48.1	∆48.0 50	∆48.5	<u> </u>	146.2	∆47.Հ	∆ 47.2 م2	Д47.1	∆47.7	60
TEST NO: 1	∆97. <u>9</u>	51.0 ∆47.7	△48.0 50.3- 69.5-51.3 △48.1	51.2	<u>∆48.</u> €	<u>46,8</u> 196.2 cm	△47.8	△ 47.2 42.0- 0.1-41.5	∆97.9 42.2	∆48.0	06
	△ 47.4	\triangle 48.1	∆48.1	∆4 4,5	∆48.5	A 46.4	∆ 47.0	∆ 47.4	A71.5	∆47·8	071
DATE: 11/13/2015	A 47.4	1-14 ∆	∆45-4	∆ 48.7	∆48. o	A 46.0	∆46-3	∆ 44.6	∆47.0	A47.5	
1 20 15	A47.2 Aqu, 6	1 1 1 46.9	∆av.0 Aq7,0	A48.5 A71.5	<u>∕</u> 484 /	A5.9	∆A1.0 ∆A0-3		CAN'		100 190.2 IIIliai Suitace
	a, 9 8	46.9	0,17	A7.5	<u> </u>	0.50	ېم ن	∆ 56.6 cm	A. J. S.		
					Surface	\bigcirc	H	тяо	N		oundee
JOSEPH TOTH							NOTES:	△ MEASUREMENT LOCATIONS	► PORE WATER PRESSURE SENSOR	ACCELEROMETER	

Shakle Table Test # / Z Date: 11/20/2015			
•	nse Layer	Liquefiable Layer	
Ws (lbs)	Ww (lbs)	Ws (lbs)	
1 35,6	1.79	1 39.5	
2 34,1	1.71	2 30.1	
3 36.7	1.84	3 37.1	
4 37.7	1.89	4 35.7	
5 38,5	1,93	5 34.2	
6 36.5	1.93	6 36.1	
7 37.5	1.88	7 37.5	
8 35,2	1,76	8 35.9	
9 37,0	1,85	9 36 4	
10 33,7	1,69	10 37.6	
<u>3 97.1 11</u> 32.4	1.63	11 36.7	- 3
12 37.6	[.88	12 6.3	
13 34.3		13 41.9	
		14	
	·	15	
15		16	
1		17	
		10	
		10	
		20	
		21	
		22	
		22	
		24	
		27 28	
28		²⁸ 29	
29			
30		30	<u> </u>
NOTES: Dense = 410916 Loose = 44516	<u>></u>	an an an an the applicance and	
	.		

SOIL BO		56.6 cm	HTUO2 36 11 12	0
X PLAN	∆47. <i>></i> ∆47. <i>3</i> ∆47.1	41.5	∆47.3 ∆47.1 ∆47.1	0
	∆48.0 ∆47.9 ∆47.6 ∆47.5	∆47.0 ∆વષ.0	∆46.0 ∆47.9 ∆47.6	30 ∆41.5
	∆48.0 ∆48.°ab.° ∆47.8 ∆47.5	<u></u>	∆48,0 ∆47.7 43,' ∆47.4	60 ∆48.2
	∆48.5 41,3 46,4 46,4 ∆47,5	∆47.0 — 196.2 cm ∆48.0	△ 47,4 44,1 12,7 44,2 46.9	90 ∆41-5
	∆48.4 5 ∆48.1 ∆47.7 ∆47.7	A48.9	∆471-7 ∆47 <i>,5</i> ∆46-5	120 רי-ר
"E: II/2 <i>о</i> [г	∆48.4 ∆45.4 ∆47.7 ∆47.2	∆ 46.5 ∆4 8. 4	∆47.5 ∆44.7 ∆46.4	150 ∆4)•7
2015	A41.0 A41.5 A41.5	A48.3	∆410.8 ∆46.8 ∆46.2	180 19
	A6.8	196.01 [A7-5 Final	46.0 46.0	196.2 Initial Surface
		Surface	НТЯОИ	Surface
JOSEPH TOTH		Service 2 in derve large possibly dameged.	► PORES WALEX PRESENTE SENSOR SETTLEMENT MEASUREMENT LOCATIONS NOTES:	ACCELEROMETER
	SOIL BOX PLAN TEST NO: /2 DATE: 11/20/2015 JOSEPH TOTH	$ \Delta 48.0 \Delta 48.0 \Delta 48.5 \Delta 48.4 \Delta 49.4 \Delta 49.4 \Delta 49.2 \Delta 47.5 \Delta 47.4 \Delta 49.4 \Delta 49.2 \Delta 47.5 \Delta 49.4 $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Table Test # 13 12/1/2015		Liquefiable	aver
		ense Layer Ww (lbs)	Ws (ibs)	
	Ws (lbs)		1 <u>31.0</u>	
	1 <u>36,3</u>	1.82	233,8	
	2 37.0	1.85	3 32,8	
	3 34,3	1.72	4 37.0	
	4 25.8	1.29		
	5 36.5	1.83	5 <u>34,3</u> 632,3	{
۹	6 37.0	1.85		
	7 37,7	1.89	8 34,5	236,9
	8 <u>39.9</u>	2.0		
	9 34,9	1,75	9 <u>42.6</u>	
2 -	10 34. 8	1,74	10 38.5	
	11 39.8	2.0	11 36,6	
	12 34.0	1,7	12 36.1	
28	13 33. 8	1.7	13 18:1	
	14 7.2	0.4	14 5.4	
			15	
			16	
			17	
			18	
			19	
			20	1
			21	
			22	
			23	
			24	
			25	
			26	
			27	
			28	
			29	
	29		30	
NO	30 DES: <u>Dense - 469</u>	The matter test of	d additional Yincles to Liqueto	ble largers
140	Loose - 4451		rt frequencies.	
			~	

Shakle	Table Test # / பு			Joseph Toth
	12/8/2015			
	De	nse Layer	Liquefiable Laye	er
	Ws (lbs)	Ww (lbs)	Ws (lbs)	l .
	1 39.7	1.99	1 20.8	
	2 35.5	1.78	2 43.0	
	3 39,7	1.99	3 37,2	1 4 4 4
	4 40,5	2.03	4 42.5	143,5
155.4 -	5 36.7			
	6 36.5	1.82	6 41.4	
_	7 43.7	2.19	7 23.1	
272,3 -	8 40.0	2.0		
	9 38,5	1,93	9 34.6	293.1
	10_37.2	1.86	10 36.3	
88.0	11_41.6	2.08	-	
	12 43.Z	2.16		_ 202 /
472.8 -	13 36.7		13 33.9] - 373.(
	14 /6.D	0.8		4527
	***********	25		
			10 1198 5+1	
			17	
		·····	18	1
			19	1
			20	1
				1
			24	
			25 26	
			30	
NO	30	i line	50	
	Loose - 498.		a a chuir an tha an tao an	

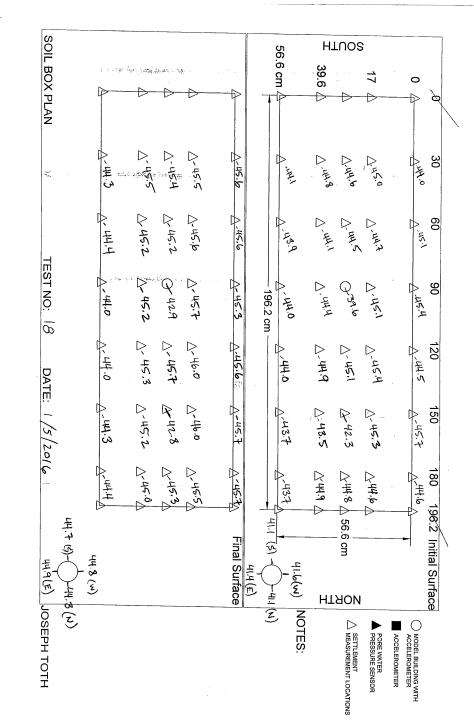
A											
_	SOIL BOX PLAN						56.6 cm	l€+w	nos ²#		o
	X PLAN	A.I.P.	11.5	A,11.8	A 43.8	A43.9	41.5	42.5	a. Thy a	oi th	0,5 ¹
		A43.0	∆43.5	[∠] rsh	∆uu.0	A.H.1.2	A47.4	∆ 42.8	^{∆42.5}	∆43.0	30 D _{ul.9}
		A 43.3	5.⊱√∑	0,44 ∑	ا.µ	A44.3	A42.5	∆43,2	[∠] 43.3	⁴ . ⁵ ^µ ∆	00 ₽ ^{µ4,0}
	TEST NO: 14	A42.8	∆43,5	Ohre	∆44.0	∆મ્પ.3		Z'13'5	O37.9	∆ ^{43,5}	00 ⁴ ⁴
		0.5h	43,7	∆ 44.0	⊿ષય,ષ	∆ પય, ઽ	лт Дчг.5	∆43.0	∆ 43.2	∆43.5	120 ⊿ ^{43,6}
	DATE: 12/8/2015	42.9	∆ષ3.3	¢43.	∆u4.4	Дин.н	A 41.5	م.12 ما2.60	<u>∩</u> 42.7	5، 3µ	150 ⊿ч3.5
	2015	A43.0	<u></u> ∆43.5 /	<u> </u>	<u></u> ∠44.1	A44.3	A 41,0	△ 42.4 △42.2	∆42.7 /	<u>_</u> 42.9 <u>_</u> 43.0	180 1
		412.7	42.8	∆43°0	1 A43.5	Auu,3 Fir	3	42,2	\triangle 42.7 42.5 42.5 56.6 cm	0.54	196.2 Ini
	44.5 44.4 44.5	45.0				40.0 Final Surface	8.18 - (1.5 - h.18		е ИОВ.		Initial Surface
	JOSEPH TOTH								\triangle measurement locations		ACCELEROMETER

)

Shakle Table Test # 15			Joseph Toth
Date: 12/11/2015	1	Liquefiable Lay	er
Ws (lbs)	Dense Layer Ww (lbs)	Ws (lbs)	_
1 42.8	2.14	1 /2.6	
		2 37.5	
2 36.6		3 38,4	
3 41.7	1,94	4 40,3	
59.8 <u>4 38.7</u>	178		- 166.5
5 35.6		6 39,3	
6 <u>43.5</u>	2.18	7 39,8	
7 38,2	1.91	8 37.8	-1
13.4	1.82		
9 38,8		10 <u>40.5</u>	
10 40.8	2.04		1
434 <u>11 41.0</u>	2.05	11 40.6	-1-399,7
12 39.6		12 35.3	
506.5 13 32.9	1.65		
14 19.1	0,96	14 27.1	
15 total 525.6		15 total 498.5 -	
16			1
17			1
18		18	1
19		19	
		20	
		21	
		22	
		22	
		24	
		25	
		26	
		27	
		28	
29		29	
30		30	
NOTES: Losse - 498.	.5 lbs		
Denze - 525		an a	
	•		

an est														
	SOIL BOX PLAN	A 47.4	↓ 43.0	+3.0 ↓ ↓ ↓	∆43.5	a.cr		56.6 cm	H 39.6 ∆u ^{2,%}		17		^{ما ډله} 0	0
	PGA=0.158	A 44.2	هابلا √	D 44 9	_\\Sh	1		A 42.6	∆ પ્પ.ા	∆ 44.4	∆us:3		∆u5.1	30
		44,5	∆ 4 4.8	∆45.1	∆45.2	C h []		A 43.0	△ 44,2	ע, אין ∆	∆મ્ <mark>ય</mark> .ઽ		لي بابا م	60
	FEST NO: IS	ך איזיי איזיי	∑ 44.8	O 42.5	∆45.5	A 42,7		A 43.1	∆ 44.2	O 39.7	D 44,5	• .	A45.0	90
\bigcirc		A44,2	∆ 45.0	145.4	∆45,5	or ch √		A42.6	∆ ષ્ષ.ધ	_ 451	igtriangleup 45.0		∆42.¢	120
	DATE: 12/11/2015	A44.3	△ 45.0	∆u2.8	∆ 45.4	J.cr	;	<u>_</u> 43.0	∆ મધ,8	∆ 42.3	∆ us.o		9,5h∀ 100	150
	-siz	A 43.5 A 42.0	J. 44. ↓ 44.2	A45,0 A44,3	0.54 4.54 □			A43.5 42.3	0'HH S HH D	∆ ^{44,} 7* ∆ 44,5 56.6 cm	∆45.5 Å45.0		2	180 106 2 1
I	14.7 44.7 44.2	N.					, 	41.8 41.8	HT	ё лов.				196.2 Initial Surface
	JOSEPH TOTH							NOTES:			PORE WATER	ACCELEROMETER	MODEL BUILDING WITH	

	D	ense Layer	Liquefiable La	yer
	Ws (lbs)	Ww (lbs)	Ws (lbs)	
	1 40,5	2.03	1 36.8	
	2 34.1	1,71	2 39.7	
	3 38, 8	1,94	3 <u>36</u> ,6	
50,5 -	4 37.1	1.86		
20.2 -	5 36,3	1.82	5 26.3	
	6 <i>38</i> , <u>3</u>	1.92	6 41.0	
	7 43.7	2.19	7 <u>38.6</u>	- 256.5
310.3	8 41.5	2.08	8 39.5	
21012	9 38.8	1,94	9 41,7	
	10 37.6	1,88	10_38,9	
	11 38,9	1.95	11 41,9	
467.4	12 41,8	2.09		1
	13 42,6	2.13		
510	14 15.6	0.8		
	15 525.6 total		15	
	16		16	
				1
			18	
			19	
			20	
			24	
	25		- 25	
	26		26	
			27	
			28	
	29		29	
	30 525.6 tot	al	30 498.5 total	
NOTE				

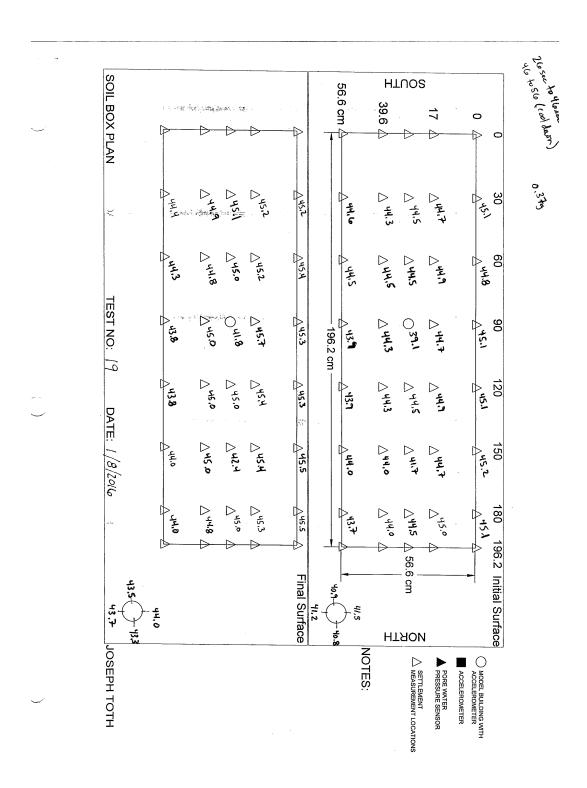

.

	SOIL BOX PLAN
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$
	$\begin{array}{c} 60\\ A 42.1\\ A 42.1\\ A 44.5\\ A 4$
	90 A 14.6 A 14.6 A 14.7 A 14.3 A 14.3
\sim	120 Δ 45.1 Δ 45.1 Δ 44.4 Δ 44.4
	$\begin{array}{c c} 150 \\ & A^{H4.8} \\ & A^{H4.8} \\ & A^{H2.4} \\ & A^{H2.3} \\ & A^{H2.5} \\ $
	880 Aus.c Aus.c Aus.c Aus.r Aus.r Aus.r Aus.r Aus.r Aus.r Aus.r Aus.r Aus.r Aus.r Aus.r Aus.r Aus.r
	5 Final Surfa
	face ∩ MODEL BULLONG WITH ACCELEROWETR → PORE WATER → PRESSURE SENSOR → MEASUREMENT LOCATIONS HLL NOTES:

Shakle Table Test #)	7		Joseph Toth	
Date: 12/18/2015	Prove lanan	Liquefiable La	ver	
14	Dense Layer /s (lbs) Ww (lbs)	Ws (lbs)	Liquefiable Layer Ws (lbs)	
1 35.7				
2 35.6	1,79 1,78			
108.0 3 36.7	1, 84 -		1	
4 <u>37.0</u> 537.1	1.86 -			
221,2 6 39.1	1.96 -			
7 37.6				
8 <u>34,3</u>				
329,9 9 36.8			- 331.8	
10 <u>36.2</u>				
402.3 11 36.2	1.81 -			
12 34,9	1,75 — 1,80 —	12 33,8		
13 35.9		13 35.0	471.2	
511.5 14 38.4	1,92 -	14 27,3		
15 14-1	0.71		1	
	total		i	
			1	
20			1	
21		21		
22		22	1	
23		23		
		24		
		27	i	
28		28		
29		29		
30 <u>525</u>	. Gelbs	30 498.51bs		
NOTES:		an a sin to the state of the st		
	· · · · · · · · · · · · · · · · · · ·			
		i.		

, s	r=			anun
	SOIL BOX PLAN	A 43.7 43.7 43.7 43.7 44.7 47.7	6.6 cr	.005 17 17 14.1 17 14.1 17
),	D +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4	∆ 43.9 A 45.7	30 ∆ 44,8 ∆ 44,8
		∆45.5 ∆45.2 ∆45.0	∆ 44.8 A 45.8	60 ∆44.9 ∆45.1
	TEST NO:	D 43.4 D 43.4 D 44.8	∆ 41.7 	90 0,40.1 0,40.1
	17 DATE:	∆ 45.N ∆ 45.0 ∆ 45.0		120 ⊿ч5.1 ⊿чч.9 ∧чч.9
	<u>-E: /z/18/иот</u>	∆ 45.6 ∆ 42.5 ∆ 45.2	∆44,7 ∆43,7	150 Aus.o ∆us.o Aus.o Aus.o Aus.o
		∠45.5 ↓44, 7 ∠44, 2 √44, 2 √44, 3 √44, 3 √44, 3	∆45.6 A44.0 41.0 44.0 41.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0	180 196.2 Initia
	45,5			S cm Nitial Surface
	JOSEPH TOTH		NOTES:	MODEL BUILDING WITH ACCELEROMETER ACCELEROMETER PROSE WATER PRESSURE SENSOR SETTLEMENT MEASUREMENT LOCATIONS

Date: 1/4/2016 Dense Layer		Liquefiable	Liquefiable Layer	
Ws (lbs)	Ww (lbs)	Ws (lbs)	7	
1 37.2	1.86	1 42.1		
2 <i>38.6</i>	1,93	2 41.6		
3 40, 8	2.04 -	3 <u>38,8</u>		
4 36.4				
5 40,4	2.02 -	5 34,4		
6 36.2	1.81	6 38.8		
65.7 <u>7</u> <u>36-1</u>		7 38.6		
8 36 L	1.82 -	8 37.2	3 05,Z	
302.19 39.0	1.95 -	9 40.2		
10 36.6		10 <u>39,3</u>		
11 <i>35</i> , 7	1.79 -	11 39.3		
12 40.5	2.03 —	12 41.9		
3.9 <u>12</u> 13 32.4	1.62	13 32.6		
14 37.0	1.85	14		
15 2,3	0.12	15 498,5toto	(
16 525. Ce fot	al	16		
		17		
		40		
		10		
		20		
		24		
		22		
		22		
		24		
		25		
		26		
		27		
		28	i	
29		29		
30 525.6 163		30 498,5 lbs		
NOTES:		an a star a star a star a star		
- <u></u>				



 \smile

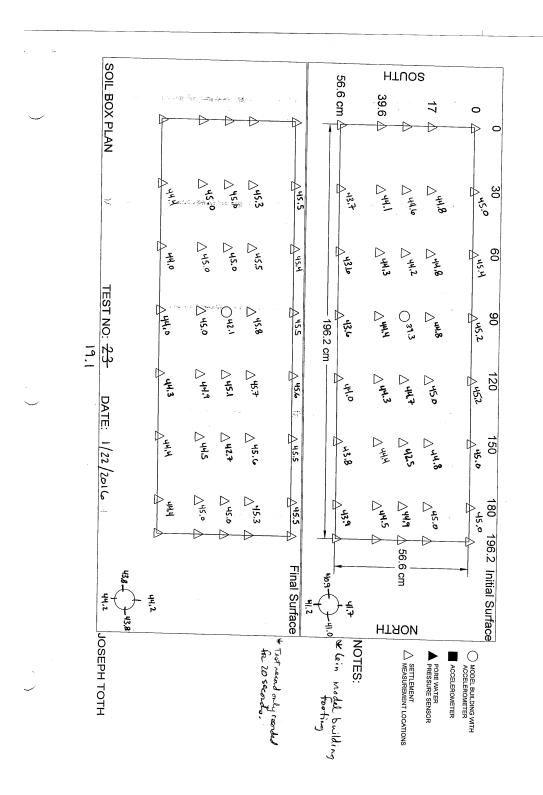
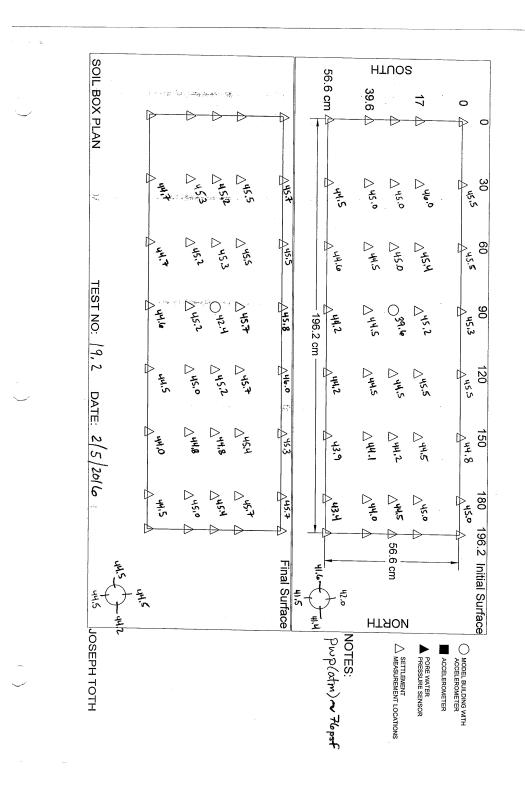
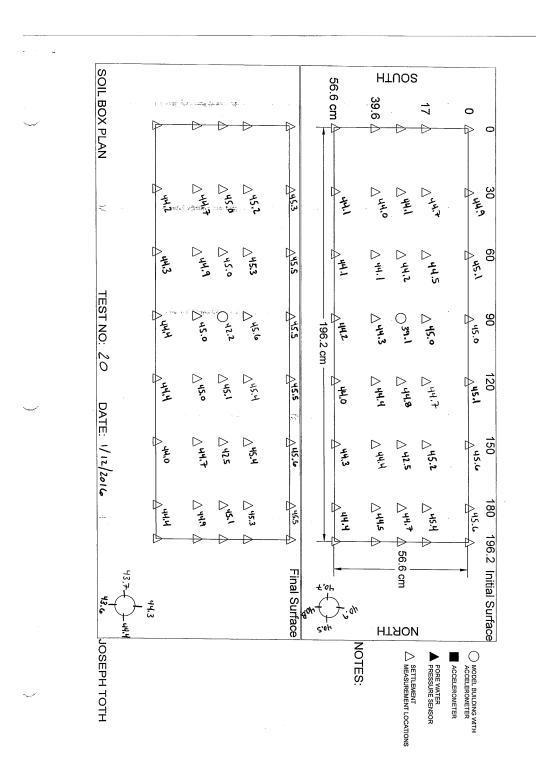

-

	Table Test # 19 1/8/2015	SF=20, lein layer, lei	- footing	Joseph Toth		
	1/0/00/5	Dense Layer	Liquefiable Lay	ver		
	Ws (lbs)	Ww (lbs)	Ws (lbs)	Ws (lbs)		
	1 30,8	1.54	1 35.7	-		
	2 31.7	1.59.	2 39,0			
	3 30.5	1,53	3 38.6			
	4 33.4	1.67	4 38.2			
	5 35.0	1.75 •	5 37.4			
	6 37.3	1,87	6 <u>38.0</u>	-		
	7 31.8	1,59 •	7 <u>33.8</u>			
	8 32.1	1.61	8 35.9			
	9 36.8		9 39,6	- 336,21		
	10 37.0	1.85 •	10 37.3			
36.4 -	11 37.1	1.96 •	11 <i>38.</i> 2			
	12 30.7	1.54 *	12 <u>37, y</u>	LUU9 I		
	13 28.6	1.43 •	13 <u>37.8</u>	77/,		
	14 39.0	1.95				
473.8	15 29.0	1,45 •	15 topl			
62.8 -	16 ZZ.8			1		
			17			
			18			
		1	19			
			20			
		•	21	1		
				1		
			<u></u>			
			24	1		
			- 25			
	25		26			
			27			
			28			
	29 <u>525,6165</u>		29 498.5 lbs			
	30		30			
NOT	TES: SF-20					
	le in footing (13)	5psf)	a a ser an			
	No pup senso					

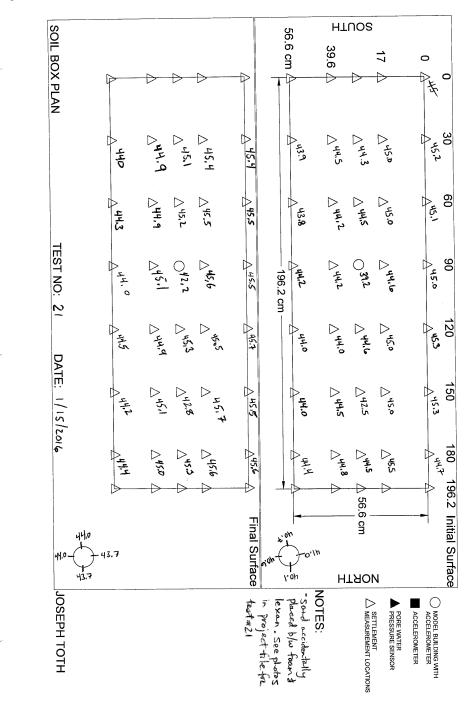
.



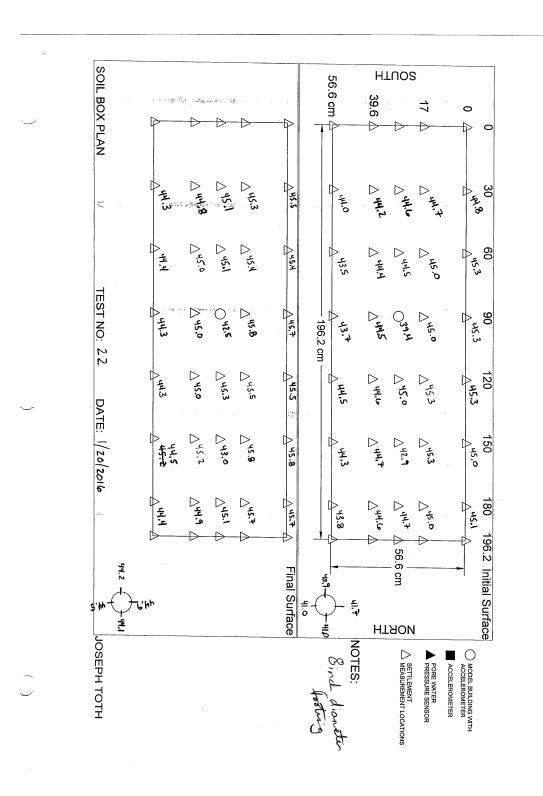
Date: I	/22/2016		1 * · · · · · · · · · · · · · · · · · ·	
	L Ws (lbs)	Dense Layer Ww (lbs)	Liquefiable Ws (Ibs)	Layer
	1 43.8	2.19	1 45.2	
	2 39.5	1.98 -	2 35,5	
	3 42.0	2.1	3 42.2	
	4 39.6	1.98	4 32.3	
	5 40,6	2,03	5 39,7	
	6 39.6	1.98	6 40,4	
	7 39.6	1.98 -	7 42.1	
	8 39.7	190 /	- 14 G	
324,4	9 43.0	2.15	9 41.3	
	10 38 .9	1.95 ~	10 37 2	
	11 44.8	2.24 -	11 39.2	395 .9
	12 40.6	2.03 -	- 20 G	
491.7-	1333,9	1.70 -	13 23.5	475.0
	14 525.6 to		14 4985 total	
			15	
	4.5		16	
			17	
			18	
	19		19	
	20		20	
			21	
			22	
	24		24	
			26	
			27	
	28		28	
	29 525.6 lbs		29 498.5 lbs	
	30		30	
NOTES	5:		a the state of the second second	
		····		



	2/5/2016	Dense Layer	Liquefiable La	aver		
	Ws (lbs)	Ww (lbs)	Ws (lbs)			
	1 36.7	1.84	1 41,9			
	2 43.9	2.20	2 44.8			
	3 43,7	2.19	3 44.1			
	4 3 8.9	1.95	4 42.5			
204.5 -	5 41.3	2.07	5 30,6			
- 67.3	6 42. 8	2.14	с <u>ЧГ</u> Ч			
	7 37.9	1,90 🗸	7 42,2			
	8 42.8	2.14 🗸	8 40.7 40.6			
	9 43.3	2.17	9 40.1			
	10 42,3	2.12 🗸	10 43.1			
	11 43.2	2.16 🗸	11 44.7	"		
456.8	12 40.4	2.02 ✓	12 40,3			
	13 26.1	1.31 🗸	13			
	14		14			
	15 523.3 total		15 496.3 total			
			16			
~			17			
	18		18			
	19		19			
	22		22			
			23			
			24			
	25		25			
	20		26			
	28		28			
	29 523.3165		29 496.3			
	30		30			
NOT	ES:			•		
,	·	· · ·	an a			
-						


	Table Test # 20			Joseph Toth	
Date:	1/12/2016 r	Dense Layer	Liquefiable Layer		
	Ws (lbs)	Ww (lbs)	Ws (lbs)		
	1 41.1	2.10	1 41.8		
	2 34.9	1.75	2 38.0		
	3 41.1	2.10 1	3 39.4		
	4 37,3	1,87 /	4 39.3		
	5 35.8	1.79 1	5 <i>38.7</i>		
	6 <u>40,9</u>	2.05	6 39.2		
	7 41.5	2.08 🗸	7 <u>38,8</u>		
	8 38,7	1.94	8 <u>37.8</u>		
	9 37.5	1.88 🗸	9 37.4		
389.6		2.04 🗸	10 <u>40.2</u>		
307.6	11 36.8	1.84 🗸	11 <u>36.8</u>		
	12 43 0	2.15	1 19	432,3	
469.4	13 39.1	1.96 🗸	13 37.0	1	
	14 17,1	0.86	14 29.2		
	15 525.6	, <u> </u>	15 498.5		
			16		
			17		
			18		
			19		
			20		
	21		21		
			22		
			23		
	24		24		
	25		25		
	26		26		
	27		27		
	28		28		
	29 525,6 165		29 498,5 lbs		
	30		30		
NOT	<u></u>	n 🗸 AL 🖄	a a a a a a a a a a a a a a a a a a a		
	6in footing (13	(15pst)			

Shakle Table Test # 2 Date: 1/15/2016				
• •	ense Layer	Liquefiable Layer		
Ws (lbs)	Ww (lbs)	Ws (lbs)		
1 37,6	1.88 -	1 45.9		
2 39.0	1.95 -	2 32.2		
3 39.0	1.95 -	3 40.0		
4 39.6	1.98 ~	4 36.2		
5 32,5	1.63 -	5 37.7	192.0	
6 40.5	2.03 -	6 33.8		
7 37.8	1.89	7 40.1	265.9	
8 39,7	1.99 -	8 35.7		
9 38.0	1,9 -	9 <u>38.0</u>		
10 37.5	1.88 -	10 <u>39.4</u>	- 379.0	
11 37.9	1.89 -	11 24,(1	
17 77 6	1.89 -	12 37.2		
457.0 <u>12 37.1</u> 13 <u>36.4</u>	1.82 -	13 29.5		
14 32,2	1.61	14 28.7		
		15		
15 575 (16 498.5		
		47		
1		18	i	
		19		
		20		
		21		
		22		
		24		
24		25		
		26	en als all 197 a	
		27		
		20		
28		. <u></u> 28 29		
29		30 498,5 lbs		
30 <u>525.6165</u> NOTES:		30 170,3195	l	
NOTES:				
·				



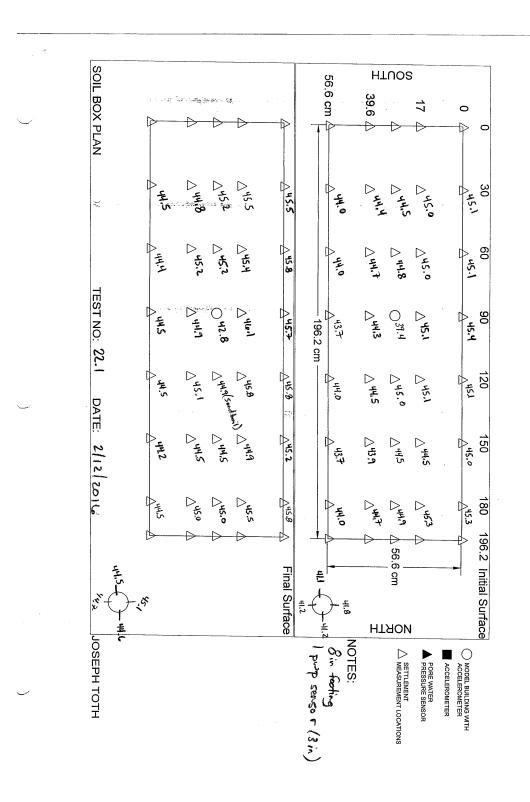
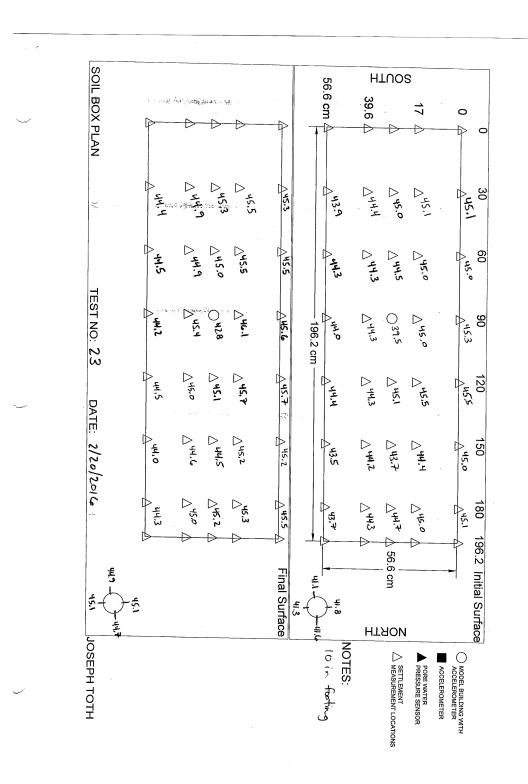
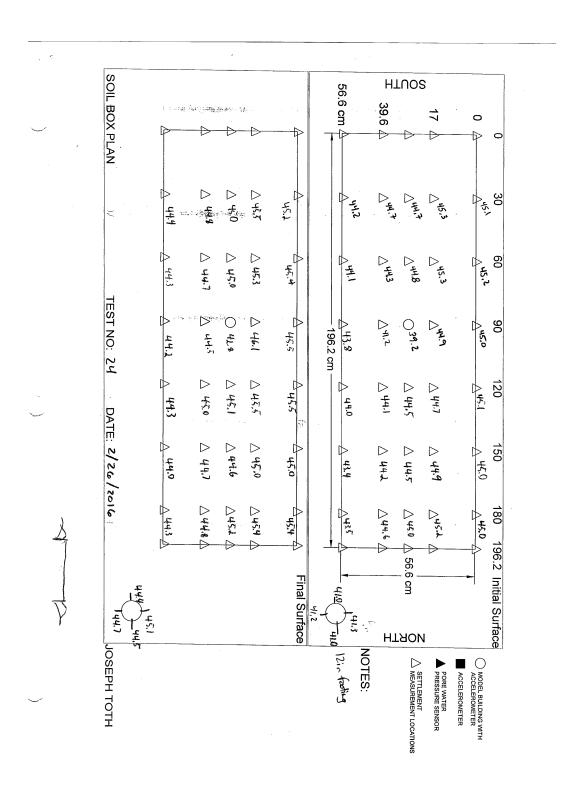

-

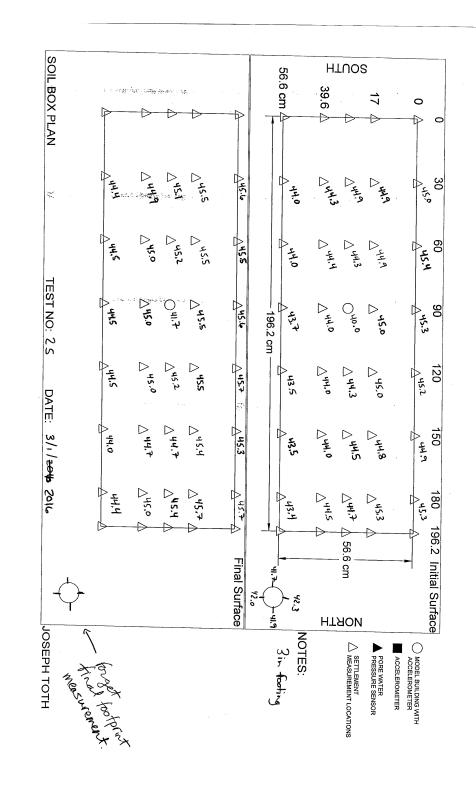
	Table Test # 22			Joseph Toth
		Dense Layer	Liquefiable L	ayer
	Ws (lbs)	, Ww (lbs)	Ws (lbs)	
	1 <u>39,6</u>	1,98	1 28.3	
	2 39.5	1.98 . (2 40.1	
	3 39.7	1.99 (3 37.1	
	4 38.3	1.92 /	4 39.4	
	5 40.3	2.02	5 34.2	
	6 41.3	2,07	6 41,7	
	7 34.0	1.7 /	7 37.0	
	8 <i>38,8</i>	1.94 -	8 42.1	
	9 39.6	1,98 -	9 40.0	
	10 40.2	2.01 /	10 39,7	- 337,7
431.1 —	11 39.8	1.99 /	11 35.4]
10 IA	12 36.2	1.81 ~	12 42.6	
507.8 .	13 40,5	2,03 -	13 29.7	487.3
0 +.8 -	14 17.8	0.89 -	14 11.2	- 1075
	15 525.6 tota	{	15 498.5 total	-
	16		16	
			17	
	18		18	
			19	
	20		20	
			21	
	22		22	
			23	
	24		24	
	25		25	
	26		26	
	27		. 27	
	20		28	
	29		29	
	30 525.6 lbs		30 498.5 lbs	
NOT	ES:	- fort		······································
	Un unmer	~	· · · · · · · · · · · · · · · · · · ·	



— .	Table Test # 22.1			Joseph Toth
		Dense Layer	Liquefiable L	ayer
	Ws (lbs)	Ww (lbs)	Ws (lbs)	7
	1 <u>41.8</u>	2.09	1 43.6	
ŭ	2 44, [2.21	2 44.6	
~	3 43.5	2.18	з <u>43.</u> 7	
	4 43,4	2.17 -	4 42.8	
	5 37.6	1.88 -	5 42.1	
	6 41.7	2.09 -	6 4 <i>0.8</i>	
	7 40.1	2.01 -	7 37,3	
26.0 .	8 33.8	1.69 -	₈ 41.3	
26.0 .	9 40.2	2.01 /	9 46.5	
	10 43.6	2.18 -	10 37.7	
1152 .	11 <i>43</i> ;3	2.17 /	11 39,7	460.1
453.1	12 44.5	2.23 /	12 36,2	960.1
	13 25.7	1,29 /	13	
	14		14	1
			15	
			16	
	17		17	
			18	
	19		19	
	20		20	
			21 496.3 lbs	
			23	
	24		24	
	25		25	
			26	
				1
				1
	29		29	
	30		30	
NOTE	CTH IOUTIN			
	1 prip sera	n(3in)	an an tha an Tha an tha an	



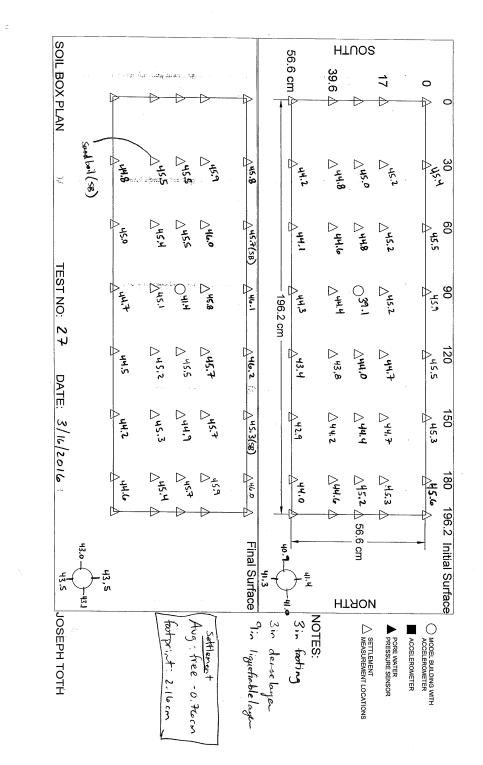
Date: $2/19/2016$ Dense Layer Ww (lbs) 1 - 4/2.0 - 2.1 2 - 4/3.9 - 2.20 - 2 - 40.6 - 3 - 47.6 - 4	Shakle T	Table Test # 23			Joseph Toth
Ws (lbs) Ws (lbs) Ws (lbs) 1 42.0 2.1 1 38.6 2 43.9 2.20 2 40.6 3 44.7 2.24 3 42.6 4 44.4 2.22 4 37.6 5 41.2 2.06 5 40.5 6 42.4 2.17 6 42.8 7 41.9 2.09 8 44.8 9 42.3 2.12 9 42.2 10 33.6 1.48 10 41.1 9 42.3 2.12 9 42.2 10 33.6 1.48 10 41.1 13 40.7 7 43.7 14 $52.3.3$ 11.01 13 15 15 15 15 16 12 20 476.3 155 21 22 23 23 24 22 23 24 24	Date.		Dense Laver	Liquefiable L	aver
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-		aye.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J.	1 42.0	2.1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2 43.9			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				***************************************	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				***************************************	
563.2 12 42.6 2.13 12 40.7 - 496. $13 20.1 1.01 13 13 14 523.3 - 14 496.3 lbs 15 15 15 16 16 16 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19$		11 41.5			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
14 523.3 14 196, 3 /bs 15 15 15 16 16 16 17 17 17 18 18 19 19 19 19 20 523,3 /bs 20 49(6,3 /bs 21 22 22 22 23 23 23 23 24 24 24 24 25 25 26 26 27 27 27 28 29 29 30 30	503.2-			13	496.3
15 15 16 16 17 17 18 18 19 19 20 5 2 3 , 3 /bs 21 20 22 21 23 23 24 24 25 25 26 26 27 27 28 29 30 30					
16 16 17 17 18 18 19 19 20 523.3 /bs 21 21 22 22 23 23 24 24 25 26 26 26 27 27 28 29 30 30					
17 17 18 18 19 19 20 5 2 3 , 3 b s 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 29 30 30		16			
18 18 19 19 20 5 2 3 , 3 bs 21 20 22 21 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30		17			
19 19 20 5 2 3 , 3 16 5 21 21 22 21 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30		18			
20 523,3 16s 20 496,3 16s 21 21 21 22 22 22 23 23 23 24 24 24 25 25 26 26 26 26 27 27 28 29 29 29 30 30 30		19		- 10	
21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30		20 523,3165		20 491, 2 165	
22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30					
23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30		22			
24 24 25 25 26 26 27 27 28 28 29 29 30 30		23			
25 25 26 26 27 27 28 28 29 29 30 30		24		- 20	
26 26 27 27 28 28 29 29 30 30		25			
27 27 28 28 29 29 30 30 NOTES: 10 inch forting		26			
28 28 29 29 30 30		27			
29 29 30 30 NOTES: 10 inch forting		20	i		
30 NOTES: 10 inch Costing					
NOTES: 10 inch footing		30			
	NOTES				
		. J	·····	and the second	
			· · · · · · · · · · · · · · · · · · ·		
			······································		



	kle Table Test # 24 e: 2/26/16			Joseph Toth
	0/20/10	Dense Layer	Liquefiable	Laver
	Ws (lbs)	Ww (lbs)	Ws (lbs)	
é.	1 43.6	2.18	1 42.0	
	2 41.7	2.09.	2 44.8	
	3 37.9	1.90	3 41,0	
	4 38.0	1,9	4 43,2	
	5 43.6	2.18 -	5 45.4	
	6 41.1	2.06 -	6 40.2	······
	7 44.6	2.23	7 4(.(256.6
333.		2.16 -	8 43,3	
203.	9 39.6	1.98 -	9 37.5	
	10 43.9	2.20	10 39.8	378.5
	11 41.5	2.08 -	11 45. 7	
45B.	6 12 36.0	1.8 ~	12 32,3	
	13 2 <i>8</i> ,7	1.44 -	13 496.3	
	14 523,3 -			
			14 15	
	10			
e	17		16	
			17 18	
			10	
	20			
	21		20	
			21 22	
	22 23		22	
	24			
	25		24	
	***************************************		26	
	26 27			
	28 523.3 16 5	VI.(1974)124 1990 (1994)104 (1994)10	27 28 HQ(2 Hz	
	29		28 496.3 lbs	
	30		29 30	
NC	DTES: 12 in footing	400 12.9pst	30	<u> </u>
		· · · · · · · · · · · · · · · · · · ·	a and a start and a start and a start and a start a sta	
	• • • • • • • • • • • • • • • • • • •			

n an ann an Anna an Ann

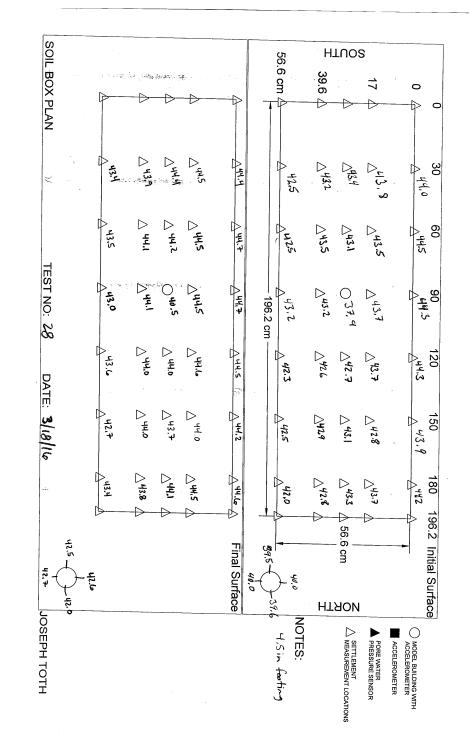
Shakle Table Test # 25			Joseph Totł
Date: 3/2/2016	Dense Layer	Liquefiable L	aver
Ws (1		Ws (lbs)	
1 42,2	2,11	1 // 0	
2 44.5	2.23	2 41.1	
3 41.7	2.09	3 43.6	
4 36.0	1.8	4 43.1	
5 40.2	2.01 -	5 39, 8	
6 37,8	1.89 -	6 3 8.3	
7 44.7	2,24	7 38.0	
8 41. 8	2,09 -	8 44.1	
9 42.2	2.11 /		
10 112 0	2.20 /	10 44.8	
1.1.0	1,65	11 HQ 7	
11 33.0	2.08	11 40.2 12 40.1	456.2
489.612 41.6	1.69 -		1
13 33.7			
14 <u>523.3</u>		14	
		15	
		16	
1/		17	
		18	
23		23	
		24	
25		25	
		26	
27		27	
29 523,3	165	29 496,31bs	
30		30	
NOTES: <u>3in footin</u>	9	and the second and the second	

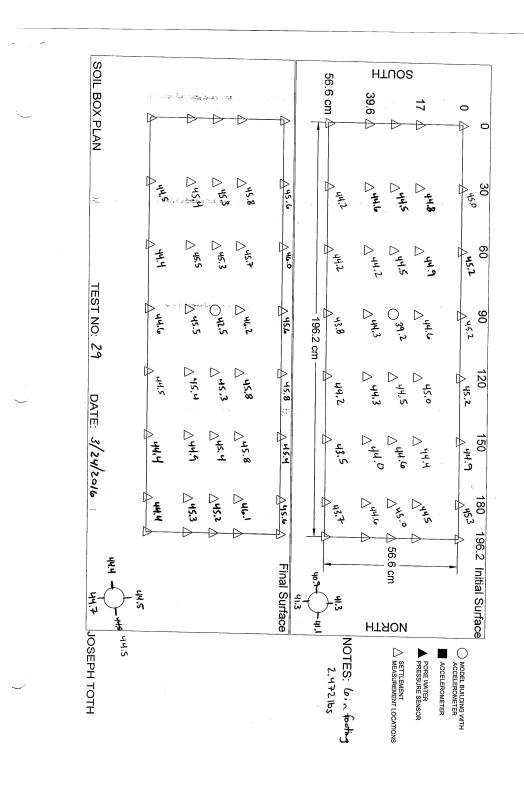


 \sim

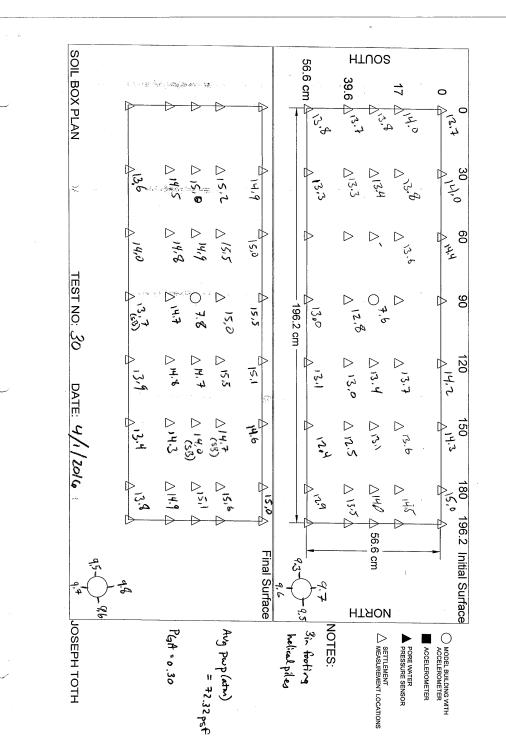
Shakl Date:	e Table Test # 26 3/9/2016			Joseph Toth	
		Dense Layer	Liquefiable Layer		
	Ws (lbs)	Ww (lbs)	Ws (lbs)	-	
É	1 29,0	1.45	1 42.7		
	2 42.9	2.15	2 40.7		
	3 28,2	1,41	3 42.4		
	4 40,5	2.03	4 45.9		
	5 43,5	2.18	5 47.9		
	6 <u>45,S</u>	2,28 -	6 47,1		
	7 42. 8	2.14 1	7 47,0	-	
	8 45 .8	2,29	8 47.8		
	9	2,22 -	9 43,8		
	10 <i>43.</i> 4	2.17 -	10 471		
451.4	<i></i>	2,28 -	11 43.9		
-127.4	12 45.9	2,30 <	12		
	13 26,0	1.3 /	13 496.31bs	-	
	14 523,3 -		1.4	-	
			15		
	16		16	-	
sí			17	-	
	18		18		
	19		19	-	
	20			-	
	21		20		
	22			-	
	23		22		
	24				
	25		25	-	
	25 26		26	-	
	*********************		27 49 6.3 <i>Ibs</i>		
			20		
	29		- ²⁸ 29		
	30		- 29		
NOT					
			and the second		
ť.					
	······································	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

SOIL BOX PLAN	r e real Arty same			56.6 cm	HTUO8	°° 17 ∆	0
i. A	A deo	√ 46.5 √ 46.5	£ 911 V	A 44.7	√42:2 V 42:8	D46.0	30 ⊿ ^{45,4}
<u>–</u>	∆45.9	√46.6 √46.6	46.5	A 45.0	_ 45.4 _ 45.2	A45.7	90 ^ط اکنط 09
TEST NO: 26	45.7 ₩5.7	<u>∆</u> 46.4 ⊖43.3	<u></u> 46,4		⊙40.1 ∆45.2	4.5hV	a'9 ⁴ ∀ 06
	∆46.0	∆46.6 ∆46.1	∆yb:5 fa	1 0,2 4 5,0	\\ 45.2 \\ \\	1.94	120 ∆46.2
DATE: 3/9/2016	∆ 45.7 ∆ 45.0	∆46.4 ∆45.7	0.94	A 443	√ 44'a √ 42'0	∆45.5	150 ∆ ^{45.8}
6	$\Delta 45.7$ Δ		A467	hii e	∆45.2 Å 56.6 cm	D45.8 A	180 196.2
1:3h			ہر. Final Surface	41.3 41.3	6 m		.2 Initial Surface
JOSEPH TOTH			ice	NOTES: 4.5in Footing	HTA V REVENUENT LOCATIONS		


Date:	Table Test # 27 3/15/2016			
		Dense Layer	Liquefiable Lay	/er
	Ws (lbs)	Ww (lbs)	Ws (lbs)	
/	1	2.19	1 37.6	
	2 43.6	2-18	2 <u>37.8</u>	
	3 <u>38.6</u>	1.93	3 43 .8	
	4 43.0	2.15	4 38.4	
	5 44.5	2.23	5 40,2	
	6 43.1	2.16	6 41.6	
	7 5.1		7 40.1	
			8 41.6	
			9 42.1	
			10 42-1	
			11 37.8	
			12 <u>43.4</u>	
			13 41,9	
			14 42.7	
	******************		4F UU 2	
			16 39.6	615.4
			47 U2G	
	10		18 37.4	
	10			
			19 <u>9.</u> Z	
			20	
	$\frac{21}{2}$		21	
			23	
	24		24 744.51bs	
	25			
			27	
			28	
	29		29	
NOT	30		30	
NUI			and the suggestion of the	
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	Harton			

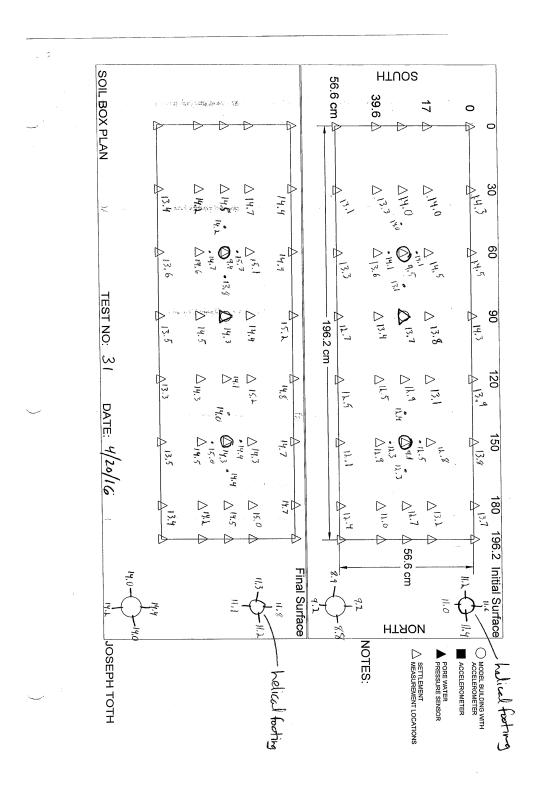

 $\overline{}$

Date:	3/18		ense Layer	Liquefiable Layer	
		Ws (lbs)	Ww (lbs)	Ws (lbs)	
/	1	42.1	2.11	1 45.)	
		39.9	1.99		
	3		2.11	2 47 1	
		42.7	2.14	A 44 2	
		40.0	2.0	5 41 (2	
250.3		43,4	2.17	6 41.6	
		11.3	0.57	7 44.1	
	8		-	8 37,1	
	9			9 40.0	
				10 44.2	
				12 209	
					- 463.0
	 14				
	 15			15 38.4	
				10 42	
					618.2
				10 20 3	
					- 698.7
	24			24	
	25			25	
	26			26	
	27	261,6 -		27 744,5	
	28			28	
	29			29	
	30_			30	
NOT	ES:	4. Sin fauting			
	-	Tin Lig. Lay	e	and the second	
	-				
	-				



Ľ.

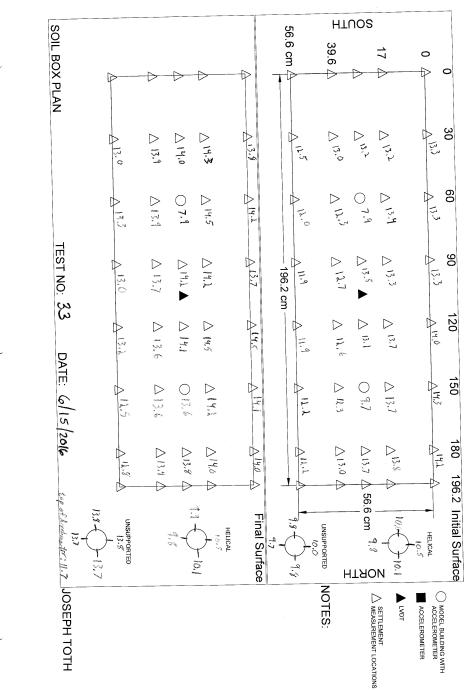
24	$1 \frac{29.7}{2 \frac{40.8}{3 \frac{44.4}{45.3}}}$ $3 \frac{44.4}{45.3}$ $5 \frac{43.6}{6 \frac{41.1}{7 \frac{6.8}{8 \frac{6}{41.4}}}}$	Dens /s (lbs)	e Layer Ww (lbs) 1,49 2.04 2,22 2.27 2.18 2.06	² ³ ⁴	Liquefiable Ws (lbs) 38.3 42.1 44.6	
24	$1 \frac{29.7}{2 \frac{40.8}{3 \frac{44.4}{45.3}}}$ $3 \frac{44.4}{45.3}$ $5 \frac{43.6}{6 \frac{41.1}{7 \frac{6.8}{8 \frac{6}{41.4}}}}$	/s (lbs)	1,49 2.04. 2,22 2.27 2.18	² ³ ⁴	3 8,3 42,1 44.6	
24	2 <u>40.8</u> 3 <u>44.4</u> 4 <u>45.3</u> 5 <u>43.6</u> 1.9 <u>6</u> <u>41.1</u> 7 <u>16.8</u> 8		2.04 2.22 2.27 2.18	² ³ ⁴	42.1 44.6	
24	3 <u>44.4</u> 4 <u>45.3</u> 5 <u>43.6</u> 1.9 <u>6</u> <u>41.1</u> 7 <u>16.8</u> 8		2,22 2.27 2.18	33	44.6	
24	4 <u>45.3</u> 5 <u>43.6</u> 1.9 <u>6</u> <u>41.1</u> 7 <u>16.8</u> 8		2.27 2.18	4		
24	5 <u>43.6</u> 1.9 <u>6</u> <u>41.1</u> 7 <u>16.8</u> 8		2.18	4		
24	1.9 <u>6 41.1</u> 7 <u>16.8</u> 8		7.00	5	44.5	
24	7 <u>16.8</u> 8		7.00		41.]	
24	7 <u>16.8</u> 8			6	43.3	
	8		0.84	·	45.9	
		-0		·	44,3	
				· 9	38.2	
	10	***************			42.9	
					43.8	
	12			· ·-	·····	
					41.9	509.8
	14				45.2	
	15				112 0	
	16					638.9
	17	*********			44.0	
	10				40.9	
	10			. ¹⁸	20,7	
	19					
	20					
	21					
	22			. 22		
	23			. ²³		
	24			. 24		
				. 25		
	26			26		
	27			. 27		
	28 261.7	lbs —		. 28 .	744.5 lbs	
	29			. 29		
	30			30		
N	OTES:	tooting 2.	47216s	1		······································
			· · · · · · · · · · · · · · · · · · ·			



	kle Table Test # 30			Joseph Toth
Date	· · · · · · · · · · · · · · · · · · ·		Liquefiable Laye	r
		ense Layer Ww (lbs)	Ws (lbs)	
1	Ws (lbs)	2.2]	1 40.3	
	1 <u>44.</u>]	2.03	2 36.8	
	2 40.6	2103	3 33,7	
	3 42,4	2.12	4 38.8	
	4 25,8	1,29	5 40.0	
	5 42.4	2.12		
	6 41.9		***************************************	
	7 43.1	2.16	7 44.6	
	8 41.5	2.08	8 42.1	4
	9 39.7	1,99 -	9 40.2	
	10 43,0	2.15 /	10 37.5	-
	11 44.6	2.23 -	11 38.0	-
	12 41,2	2.06	12 40,8	-
	13 41.7	2.09 -	13 40,8	
	14 42.1	2.11 -	14 42.6	
	15 <i>43</i> , 3	2.17 /	15 <u>40,9</u>	
659	15 42.2	2.11	16 40,1	
651	17 41.0	2.05 /	17 43.6	
	18 <u>45.4</u>	2.27 -	18 39.4	
	19 42.2	2-11 -	19 37,8	754,
	20 44.8	2.24 -	20 40.8	
	21 43 .5	2.18 /	21 38.4	
	22 43.5	2.18 -	22 37,9	
	23 40,2	2.01	23 40.2	
	24 45.	2.23 /	24 41.(
	25 41.3	2.07	25 39.6	
1.	046,6	2.01	26	
	26		27	
	27			
	28		28 29	
	29			
,	30 <u>104(e.6.16</u> NOTES: <u>3in Fasting w</u>	helical piles to Itin der	30 992.7 1bs th - single helix 1.2 in (12	
•	W = 0.599 lbs	~ 12.2 psf	1/h - Single Netix 1, cin (10	in prototypeda
		· · · · · · · · · · · · · · · · · · ·		

	e Table Test # 31			Joseph Toth
Date:	4/20/2016	Dense Layer	Liquefiable La	iyer
	Ws (lbs)	Ww (lbs)	Ws (lbs)	
	1 52.9	2.65	1 64.9	
	2 56.2	2,81.	2 59.6	
	3 58.6	2.93	3 <i>55,4</i>	i
	4 61,2	3.06	4 58	1
	5 60.9	3.05	5 35,5	(00.)
	6 61.9	3.09	6 25.6	
	7 61.1	3.05	7 59,8	
		3.05	8 60.3	
473	7 8 60.9	2.99	9 57.4	1
	9 59.7-	3,04	10 53.6	
	10 60.8	2.79	11 58.1	
	11 55.8		12 <u>56.4</u>	
631.	3 12 31,7	1.59	13 56.3	
	3 13 60.8	3.04	14 <u>53.2</u>	
	14 62.0	3.09	15 58.8	
	15 64.0	3.2		
931	3	3.16	17 58.9	
	17 60.3		18 49.6	
1046.0		2,75	19 10.3	982.4
	19		20- 992.7	
		46.6		
			21	i
			23	
			24	
	25		25	
			26	
	28		28	
	29 <u>1046.6 1</u>	05	29 992.7	
-	30 IOTES: (e in footin		30	l
N	lotes: <u>le in footin</u> lein mar		an an an an an tao an tao an	
. /	MIST	Hour Hour Stop		
~				

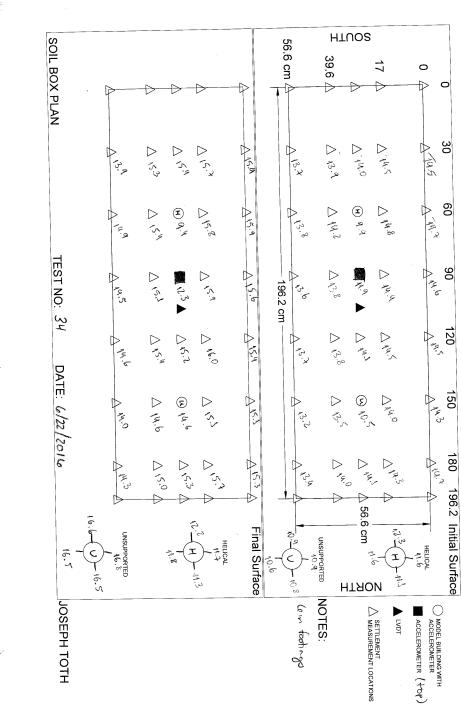
.



Shakle Table Test # 🚊			Joseph Toth
Date: 5/12/2010	lo		
	Dense Layer Ns (lbs) Ww (lbs)	Liquefiable La Ws (lbs)	yer
1_ <u>58,4</u>	1	_	
2 <u>58.4</u> 35 9,3	I		
3 <u> </u>	1		
550			
291.4 5 55.9			
	2.79		
7 <u>55.3</u> 8 <i>5</i> 8.5		7 <u>47.0</u> 8 62.4	
9 52.9			442.6
10 55.0		10 60.9	
11 56.4			
12 38.8	1.94		
13 <u>53,</u>			
771.9 14 53.9			
15 <u>51.0</u>			{
877.7 16 54.8		16 <u>59.5</u>	
17 <u>51.4</u>		17 55.4	919.4
18 52.0		18 49,7	
10 33 51.9		19 22.6	
	0.7		
21		21	
	46.6	22	
		23	
24			
25		25	
		26	
	1	28	
29 <u> 04(</u>	e, 6, 165	29 992.71bs	
30 NOTES:	l	30	
		an a	
-			

.

	[ν. μ.	1 1	1	56.6 -	43 n	5	70 to	14.5	. c	(urband	7	56.6 -	42.5	39 -	28 -	18	c Hr	44 K	- 0 - 0	IESI NO:
	Winsupport = 2.592 lbs = 13, 2psf.	W= 2.282165	sin feating -	13.4	149 -		14.9 4.3	1.7.4	141	14 0 .		1. S.	123		1.1.0 100000	121 0 11		14 2 -	- h'h	5
	2.592 lbs		3 helical	13.7 -	14.8 -		14:5	15.4	15.4	-	8 8 7	1701 -	12.2	13-8 -	1	2	19.4	4.3 -	1	50 75 9
	= 13,2 psf.	Presame =	piero 120-	Ŭ	14.9 15.0	1	14,4 14.9			15.3 15	90	(11)		126 127	-	137 137		14.0 14.1	13.2 14.	90 120
			+	13.5	- 14.8		14.5	- 15.0	- ly, g	- ly	135 150		- 11.6		121	2	- 13,q	- M.O	- 14.4	135 150
		*		1	- 14.g		14.1 15.0	1	- 15.0	- 15	165 180		- 13.5	721		13.4 14.0	1	- 14.5	- 14.7	165
						-	-		L	1	196.2					,	1	-		180 196.2
								CENTER	WEST	SOUTH		NORTH	Figal (cm) BUILD		GENTER	WEST	SOUTH	EAST	NORTH	unitial (cur) BUILD
`								(15.5	14.5	14.5	15.0	SAL (CTT) BUILDING FOOTPRINT HELICAL BUILDING FOOTPRINT				10.4	10.3	10,5	INSTATIC IN BUILDING FOOTPRINT HELICAL BUILDING FOOTPRINT
								9.2	11.5	11.0	11.0	10.8	ICAL BUILDING FO		9.3	11.4	11.0	11.5	11.0	ICAL BUILDING FO


	ble Test # 33			Joseph Toth
Date: (0/15/2016		Liquefiable L	aver M
	De Ws (lbs)	nse Layer Ww (lbs)	Ws (lbs)	-w≃ ∧
	1 59, λ	2.96	1 46.0	
	1 - 510	2.55	2 32,9	
wt.x.U>	2 51.0 3 55,1	1.755		
		2,465		
	4 <u>49,3</u> 553,4	2,67	5 53,8	231
	6 51.7	L, 585		
	7 53.8	2,69		
	8 49.2	2.46	*	
	9 56.	2.81	951,5	
	9 <u>56.1</u> 10 54.3	2.01		464,8
		1.485		
	11 <u>49.7</u>		12 49.3	1
n>	12 49.9	2.70	13 49.2	
105	13 54.0	2.555	14 49,4	
704	14 <u>5[,]</u>	2.555		660.1
181.0	0 15 <u>5].]</u> 16 <u>5</u> 3.)	2,66	16 14,3	
	18 <u>50.9</u>	2.545		
	18 51.4	1.57		795.5
		2,575	19 <i> </i> , <u>2</u>	 1.1.2
	19 <u>5) 5</u> 20 <u>5</u> 3. 7		20 <u>37,4</u>	
			21 32.5	
	21		22 38.9	915,5
			23 <u>57.0</u>	
			24 20.2	
	24			
			26	
			. 27	
	27 28 1046.6.16		28 992.7 lbs	
	29		29	
			30	
NOT	30ES: helical footin	~ (5.875)" W = 2.263	105 -== 12,16 psf	
	unsupported	faoting(Gin) w = 2.472	bs 13.13psf	
		• 		
-				<u>.</u>
	And the second se			

· . 2

.-

Shakle T Date:	able Test # 34 6/22/2016			Joseph Toth
butter		ense Layer	Liquefiable La	yer
	Ws (lbs)	Ww (lbs)	Ws (lbs)	
	1 55.4	2.77		
	2 54,8	2.74	2 41.1	
	3 49.5	2.48	3 <i></i> 3	
	4 52.(2.61	4 43 <i>.</i> 8	
1/7/-	5 56.3	2.82	5 45,7	
267.1 -	6 <i>58.6</i>	2.93	6 42.2	
	7 56.6	2.83	7 39.6	274.7
	8 <u>53.4</u>	2.67	8 40.6	
	9 52.1	2-61	9 39.6	
	10 56.3	2.82	10 59.1	
544.1-	11 53.5	2-675	11 57.7	471.7
~	12 55.5	2.775	12 58.8	
	13 54.4	2.72		
	14 51.6	2.58	14 <u>57.9</u>	645,4
0121	15 53.5	2.675		700.5
812.6	16 53.0	2.65	16 53.7	
_	17 S1.3	2.57	17 <u>52.6</u>	
967.2		Z.52	18 52.3	859.1
	19 53.8	2.69	19 54.9	
1021	20 25.6	1.28	20 47.9	961
			21 30.9	
			23	
	25		25	
			26	
	28		28	
	29 1046.6 lbs		29 992.71bs	
	30		30	
NOT	'ES:		and the second	
\smile	• .			

.

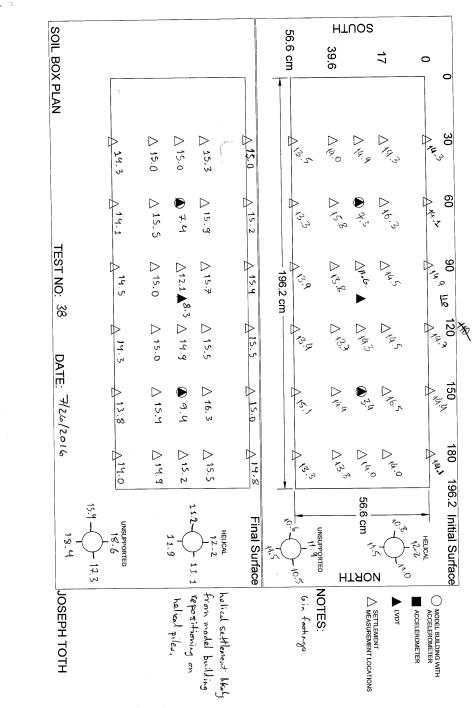
Shakle Table Test # 35 Date: 6/30/2016			Joseph Toth		
•	ense Layer	Liquefiable Layer			
Ws (lbs)	Ww (lbs)	Ws (lbs)	7		
13 8.2	1.91	1 62.3			
2 39,3	1.97.	2 56.7			
3 36.8	1.84	3 61.3			
4 41.3	2.07	4 59.7			
55.6 5 37.4	(. 87	5 <u>59.8</u>			
6 41.9	2.10	6 34.6			
7 38.2	1.91	7 36,9			
8 41.1	2.06	8 38.0	409.3		
9 39.4	1.97	9 39.5			
10 38.9	1.95	10 36.6			
11 36-6	1.82	11 41,0			
12 40.3	2.02	12 39.2			
13 37.7	1.89	13 <i>39.1</i>			
14 36.0	1.80	14 36.3			
15 39.5	1,98	15 38.6			
16 36.7	184	16 38,4			
17_38.6	1,93	17 39.1			
18 39.4	1.97	18 57,0			
19 39.6	1,98	19 57.9			
20 HH 7	2,24	20 57.7			
781.6 - 20 - 44.7 21 - 40.0	2.00	21 55,7			
22 40.1	2.01	22 7.3	105.9		
23 43.2	2.16	23			
24 30 11	1.92	24			
<u>943.3 _2438.9</u> 2536,8	1.84	25			
26 35 8	1.79	26			
1015.9 27 30.7	1.54	27			
28		28			
29		29			
30 1046.61bs		30 992.7 lbs			
NOTES:			i		
		and a second			
····					

a ser a financia del anno any a ser a finanza a provi a manera della managina di sua serie

	SO						ç	ת גר	H	LNOS	S.		
	SOIL BOX PLAN							58 8 cm	39.6		17	-	0
		A 14.0	5 $h_1 \nabla$	∆ l4.7	γ_1, γ_2	A15.1		A13.8	$\Delta 13.9$	0.۱۹∑	Δ 14.5	4	× ۱۹٬۹
		A 13.9	\triangle 16.9	۲. ч	$\Delta 17.5$	∆ ا۲.۹		A 13,0	△ 15.1	() 7.3	$\Delta^{16.5}$	Ľ	∧ 1 ∰3
	TEST NO: 35	$A^{liq.0}$	\triangle 16.5		△ 17.4	A 15.0	196.2 cm	A 13.7	∆ 13. 4	▲ 1 ¹ ¹ ¹	△ 16.7	- C	00 \/ ا
$\overline{}$		the state of the s	$\sum P_{i}$	\triangle 15.1	$\sum 18.5$	A15.1	1	Δ13,8	∆ ۱4,0	\triangle 14.5	∆ ۱۴,3	Ľ	120 ^ (५.५
	DATE: 7/1/2014	13,5	\triangle l 4,0	11,1	\Diamond h	AI6.0		A 14.8	∆13,4	5, ۲	_ ۱۲. ۲	Ĺ	150 ^ 14.5
		A 13.6	$\Delta I_{1,1}$	\triangle 14.3	14.9	15,2		$A^{l''}$	$\Delta 14.1$	\triangle 14 Σ	∆ 14.5		180 19 ∧ <i>Ч</i> .१
	14,7 - 16,0 Unsequenced need Foldelingel failure		k'ni			Final Surface	10.g			בפיפ כש אסן אסן אסן	,	HELICAL	196.2 Initial Surface
<u> </u>	JOSEPH TOTH					only 12 sec. data			NOTES	△ MEASUREMENT LOCATIONS		ACCELEROMETER	MODEL BUILDING WITH

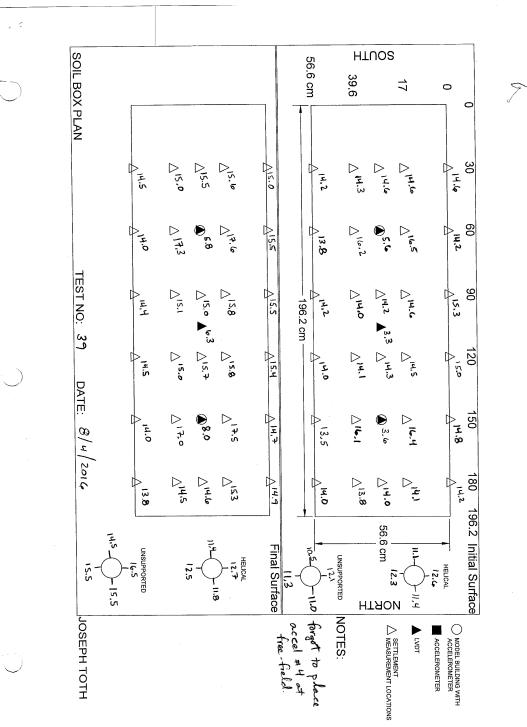
	able Test # 36 7/15/2016			Joseph Toth
Dute.		nse Layer	Liquefiable Lay	/er
1	Ws (lbs)	Ww (lbs)	Ws (lbs)	
I	1 40.5	2.03	1 62.4	
	2 35.7	1.79	2 59.8	
	3 3 <i>8.2</i>	1.91	3 58.3	
	4 36.4	1.82	4 60.5	241.0
	5 ³ 8.7	1.94	5 63.6	
	6 47.8	2.39	6 64.1	
	7 44.0	2.2	7 60.5	
281,3	8 34,6	1,73	8 61.9	
	9 40.4	2.02	9 64.4	491.1
	10 37 , 9	1.90	10 57.6	
	11 40.2	2.01	11 63.2	
	12 39.9	2.0	12 <i>64.6</i>	
	13 35. 3	1,77	13 62.0	790,
	1A HA A	2.0	14 63.9	
549.6	15 38.3	1.92	15 61.4	- 9 . 9 .
	16 39,2	1.96	16 <i>58.5</i>	128.2
	17 35 <i>.0</i>	1.75	17 6.0	
	18 37.7	1.89	18]
	19 40.6	2.03	19	
	20 35.0	1.75	20	
816.7	21 41,3	2.07 -	21	
010.7	22 42.5	2.13 -		
	23 36.9	1.85 -	23	
	24 39.2	1.96 -	24	
0255	25 40.4	2.02	25	
975.7	26 46.9	2.35	26	
	27 24.0	1,2 -	27	
	28		28	
	29		29	
	30 1046.6 lbs	and a second	30 992.7 lbs	1
NOTE	S:			· · · · · · · · · · · · · · · · · · ·
		·	an an tain tain tain tain tain tain tain	

	<u></u>								ЦІ	nos				
SOIL BUX PLAN		[56.6 cm	39.6		17			Ċ
LAN	2 2 2													
		A13.9	∆ ٩٤.0	15.2	13.4	A15.2		A13,8	$\sum j q$, Z	14.2	3 الم. ع	Ľ	<u>∧ 14.4</u>	50
		A 15.5	16.2	13.2	∆ 16,8	∆ 15.0		14. 1 ♦	△ 15.0	● 13.1	△15.7		N 19.5	ç
	TEST NO: 36	A14.0	△ 15-3	V14.2 ▼16	15.7	∆ 15.6		A 14. 2	۶-۲۹ ∑	$\Delta^{14.7}$ $\bigstar^{16.3}$ Δ 14.6	و. او ۷	ľ	A 14.9	00
		A 14.1	△ 15.2	$\triangle^{19.5} \blacktriangle^{19.1} \triangle^{15.5}$	≥ 15 V	∆15.5		A 14.0	D 14.0	0.3 17 19-6	1.4.€	[A 15	i
	DATE: 7/15/2016	A 15.4	∆ 15.6	17.2	∆16.5	A14.9		Δ13.3	∆)બ.બ	13.2	△ 15,2	1	14.4	
-	2016	A14.1	△ 14.5	0.51	∆15.3	A15.4	_	13.3	∆13.5		4.4		14.2	
	14.5		12.7	-C-IL	HELICAL 13.2 13.2	Final Surface) 4 2.	10.3 10.6	m	56.6 cm	¹ - ¹	13 - 1 13 - 1		
	JOSEPH TOTH								NOTES:			ACCELEROMETER	ACCELEROMETER	


	Table Test # 7/21/201	ل		Joseph Toth
Date:	-	ense Layer	Liquefiable	Layer
	Ws (lbs)	Ww (lbs)	Ws (lbs)	
	1 41,0	2.05	1 61.5	
	2 40.6	2.03	2 57.3	
	3 41,4	2.07	3 61.5	
	4 38.1	1.90	4 58.0	
	5 41.6	2.0 <i>8</i>	5 60.9	
	6 37.6	1.88	6 42.6	
	7 34,5	1.73	7 59.7	- 421.5
	8 44.4	2.22	8 54,9	
	9 42.4	2.12	9 55.7	
	10 35.7	1.79	10 56.8	
	11 40.6	2.03	F (1 / 1	
	12 34.9	1.75	12 56,5	
	13 35.3	1.77	- 0 - 7	
	14 32.7	1.64	14 57.5	
	15 41.3	2.07	15 53,8	810.0
	16 <i>41.0</i>	2.05	10 57 0	
	17 42.1	2.11	17 50.0	
303	g 18 <u>38.7</u>	1.94	18 21.9	
705.	19 37, 3	1.87	19	
	20 39.2	1.96	20	
	21 37.4	1.87	21	
	20 9	1.95	22	
856.	6 <u>23</u> 40,2	2.0	23	
		1.90	24	
934.	25 34.3	1.72	25	
	26 7 37.5	1.88	26	
	27 40.1	2.01	27	
	28 1046.6		28 992.7	
	29		29	
	30		30	
N	OTES: (ein footing	·····		
1			a stating a second	
		-		

SOIL BOX PLAN						-	56.6 cm	- 39.6	ΙΤUO	o 17		
	13.8	15,0	∆15.1	∆15.1	∆15, o		2,41		∆ 14,3	D int.€		30 14.4
	A 15.0	^{ه,5} ا	Ф ч.8	∆ \6.3	∆15.0		2.5	$\sum_{i=1}^{i}$	() 4. T	∆15.H		م.µا√ 19
TEST NO: 37	A14.0	∆15,0	<u> <u></u>1^{12,3} , , 7</u>	15.7	∆15.2	196.2 cm	13.8	$\sum_{j=1}^{n-1}$	∆12.0 ▲ 6	۵ یا ۲۲. 8		90 Df
2 ≁ DATE:	A14.3	8 .hi ∏	r ∆15.1	5.5\∆	∆15.8	н	∆13.3	∆ 15.5	△12.0 ▲6.2 △ 13.9	۵ بلا . ۵		120 ج. ا ^ر ل
E: ₹/22/2016	(13.7)	٨.12 μ	10.4	∆ ^{۱6,0}	¢'hI		19.7	∆ 34.Z	0 24:0	$\triangle 15.1$		150 ⊿15.8
2016	A13.6	∆ابا.6	^{∆14,9}	15,3	∆15.4		A13.8	△13,5		△ 14.1		180 19
15,0-16.4	UNSUPPORTED	11,9	11,2-()-11.2		Final Surface	10-5			-1790		12,3	$\frac{190}{2}$
JOSEPH TOTH				fix pup #4	grind down plas to Smaller dismeter	tecting onto holicol ple	problems institling	NOTES:			ACCELEROMETER	MODEL BUILDING WITH

.


 \sim

Dat	e: 7/26/2016	Dense Layer	Liquefiable	laver
· ·	Ws (lbs)	Ww (lbs)	Ws (lbs)	Layer
)	1 39.4	1.97	1 62.6	
	2 36.7	1.84	2 54.8	
	3 41.2	2.06	3 <i>58.7</i>	
	4 38.6	1,93	4 <i>58.3</i>	
	5 37.3	1,87	5 59.0	234,4
	6 33.3	1.67	6 58,4	
	7 43.0	2.15	7 559	
	8 37.9	1.90	8 57.2	407.7
	9 38.4	1.92	9 57.5	464.9
	10 41,6	2.08	10 58.6	
	11 41.1	2.06	11 57.1	
	12 <i>38.</i> 6	1,93		
	13 32.5	1.63	13 56,9	695.9
	14 33,2	1,66	14 58.7	
	15_39.5	(,98	15 <i>58</i> , 2	811.5
\	16 42.7	2.14	16 57,3	
<i>;</i>	17 37.9	1.90	17 62.7	927.0
	18 3 <i>8.9</i>	1.95	18 3.0	
	19 36.4	1.82	19	
	20 38,5	1.93	20	
	21 38.8	1.94	21	
	22 31.0	1,95	22	
	23 36.1	1.81	23	
97	21.5 _24 40.9	2.05	24	
12	25 42.0	2-1	25	
	26 39.7	1.99	26	
	27 36.8	1.84	27	
	28 6.6	0.33	28	
	29		29	
	30 1046.6 lbs		30 992.7 165	
N	NOTES:			
)	te 6 in featin	<i>1</i> 0.	and the second	
		·		

. .

	8/4/2016 De	ense Layer	Liquefiable	Layer
7	Ws (lbs)	Ww (lbs)	Ws (lbs)	
1	1 <u>38,2</u>	1.91	1 34.2	
~	2 41.1	2.05.	2 20.0	
	3 39.8	1.99	3 57.3	
	4 42.7	2.14	4 55.4]
	5 39,3	1.97	5 61.8	
	6 38.4	1.92	6 55. 8	
	7 37.4	1.87	7 56.2	2407
	8 42.5	2.13	8 57.2	- 3 10; 1
	9 36.9	1.85	9 55.6	
	10 40.4	2.02	10 58.9	512.4
	11 40.4	2.02	11 60.2	512.9
	12 3 7. y	1.87	12 62.4	
	13 37.4	1,87	13 50.8	
	14 35.4	1.77	14 56.3	
	15 38.5	1.93	15 56.3	
)	16 37.2	1,86	16 62.0]
·	17 3 8.4	1,92	17 55.0	915.4
	18 40. 8	2.04	18 56.4	
	19 40,2	2.01	19 20.9	
	20 37.9	1.90	20	
	21 43,5	2,18	21	
	22 39.4	1.97	22	
	23 37.9	1.90	23	
939.4	24 38.4	1.92	24	
101	25 32.2	2,0+ 1.61	25	
	26 40.1	2,01	26	
	27 34.9	1.75	27	
	28	2	28	
	29		29	
	30 1046,6		30 992.7	
NO	TES:	P La la	and the second	
)	<u> </u>	ch toothigs	na se	
		~		

Date: 8/9/2016		11	or.
	Dense Layer	Liquefiable Lay Ws (lbs)	er
Ws (lbs)	Ww (lbs)	1 39.7	Ī
1 <u>40.8</u>	2.04	-	
2 41.3	2.07	2 <u>31.7</u> 3 <u>54.9</u>	$4 \rightarrow \pm 1.4$
3 39.1	1.96		
4 41.8	2.09	4 51.4	
5 35.7	1.79	5 61.1	
6 42.2	2.11	6 57,8	
7 41.7	2.09	7 58.7	
8 40.5	2.03	8 61.0	
9 41.0	2.05	9 58.6	
10 42.0	2.10	10 59.6	
11 40.5	2.03	11 57,2	
12 43.5	2.18	12 60.0	
13 39.7	1.99	13 59.2	
14 41.0	2.05	14 58.3	
15 37.2	1.86	15 56.2	
16 38.9	1,95	16 59.4	
17 39.9	2.00	17 59.1	
18 39.8	1.99	18_4 <i>8.8</i>	
19 37.3	1.87	19	
20 41, 4	2.07	20	
71 47 3	2,12	21	
847.6 40.0	2.00	22	
23 38.3	1,92	23	
24 39.0	1,95	24	
25 42.3	2.12,		
26 <u>39.4</u>	1.97	26	
27	<u> </u>	27	
28		28	
29		29	1
30 <u>1046,61</u>	1	30 992.7 <i>1</i> bs	
30 10 46, 6 10 NOTES:	<u> </u>		i
Helical = 0.	679_105 ~ 13.8 Psf	3 Inch footings	
unsupp = a	0,6651bs ≈ 13,54 psf	0	

<u>_____</u>

\supset	X	SOIL BOX PLAN							56.6 cm		Н11 39.6	105	17	0	0
		PLAN	[\square		⊳.			>_	\triangleright	٦.7	△ ^{14, 2}		30
				13.9	∆14:5	اµ,8	⊿15-1	⊿ાય.≄		× 13.6	∆13,4	بر لر	1,2		1.2
			1	NH.3	t , $h_1 \bigtriangledown$	• 4,2	רצ'צ	∆15.0	Ŭ	∧ I3-I	13.3	J.H	$\Delta^{13,7}$	Ľ	60 ۱۹۰۶
		TEST NO: 40		13.9	D'H'∂	N	د.5≀	∆15.3	196.2 cm	13.5	13,7	√ ^{14,0}	ک _{الا} ,5)14,H
\bigcirc				_ <u> </u> 14.2		▲ 8.5 △15.0	∆ 15.4	<u>∖,12'H</u>		13.5	۵.21	▲ ^{5,3} △13,7	14.2	[120 אוייי
		DATE: 8/9		A13.7	∆ાત'ત	10.2	∆ا5.3	₽ الل		A13.2	ا\$.3	ک ^{3.} "	∆ ^{اب} ,٥	I	1.41 0GL
		8/9/2016		⊿13.8	A.H.	م. المار	ا.\$.ا	א אי אי		A12.7	۵۵י∆	∆ ¹ 3.5	⊿'3.8		9'H
		[q]	\$£ → -£,f			0- 0	HELICAL	Final Surface			UNSUPPORTED	56.6 cm	12.9 - 10.5	11,0	
		JOSEPH TOTH						·- ·- ·		3 inch footings	NOTES:			ACCELEROMETER	MODEL BUILDING WITH

____ ._____

_ ÷

1

Date: 8/17			Liquefiable Laye	er
		nse Layer Ww (lbs)	Ws (lbs)	
	Ws (lbs)		1 29.9	
1	32.9	1.65	2 15,0	
2	24.9	1,25.	3 61.4	
3	17.6	0.88	4. 63.4	1
4	<u> </u>	2.00	5 61.9	
Ę	5 41.6	2.08	,	-4
(5 <i>43</i> .5	2.18	6 <u>62.6</u>	
	7 37.3	1.87	7 60.3	-1- 309.5
	8 39.4	1,97	8 61.2	
	9 43.2	2.16	9 62.0	
1	0 42.7	2.14	10 62.8	
1	11 43.0	2,15	11 61.8	
	12 45.1	2.26	12 60.0	
	13 41.3	2.07	13 60.2	
	14 42.4	z .12	14 59.9	
	15 43.4	2.17	15 57.8	
	16 43.9	2.20	16 59.4	
	17 44.7	2,24	17 60.1	
	18 44.0	2,20	18 33.0	
	19 41.6	2.08	19	
	20 42.6	2-13	20	
	21 36.3	1.82	21	
832.5	22 36.9	1.85		
	23 39.8	1,99	23	
	24 36.9	1.85	24	
	25 39.5	1.98	25	
	26 45.8	2,29	26	
1031,4 -	27 15,2	0.76	27	
	28	<u> </u>	28	
	29		29	
		lbs	30 992.71bs	
NOT	ES: 4.325 in	footing helical = 1.267	1bs Unsupp = 1,280lbs	
· · · · ·			4,375	o

JOSEPH TOTH	t*1 	2016	DATE: 8/ 17/2016		TEST NO: 41			SOIL BOX PLAN
	15.9 -0-16.5						1	
	UNSUPPORTED	13.8	Al4.0	4.0	A14.0	A14,5	A13,7	
	Ş	∆14.6	B.µا∆	₽,14.9	8,µ\	اµ,8	∆١4,8	
		15.0	9.5	7.S ∆IS.0	∆ 12.4 ▲ 7.5	€ ų.º	2µ4,3	
	HELICAL 12.6	∆ا\$.2	∆ا۲.5	15:8	⊳ls,s	⊳15:5	15.2	
-	Final Surface	∆15.0	<u>∆</u> 15.0	⊿ 15.3	∆١٤.8	o.5I	8'hI [[]	
	50 			m	196.2 cm			
4.3 in tootings	9.01- 5.01	۹.2	A13.2	13.7	⊿13.1	A13.1	13.4	
NOTES	H	اع.4	∆ا3.2	⊳13.5	∆ا3.≲	∆13.4	13.7	H1 39.6
L MEASUREMENT I	56.6 cm 그성O	∆ا3.6	A 3.8	5.3 ∆I3.8	∆ ^{11,7} ▲3.3	۹.3	0.4\	nos
	12.5 N	∆۱۹,3	اµ,µ	اµ,3	اµ.4	14,2	<u> </u>	17
ACCELEROMETER	12.5]	ľ	Ľ	
ACCELEROMETER	HEIICAL	₽.hl	14.6	14 .5	A 14.3	14.4	4.41	
I	190.2 Initial Surface	100 12		120	90	00	30	С

.

• ÷ †

	kle Table Test # 42			Joseph Toth
Dat	e: 8/27/16 De	nse Layer	Liquefiable L	ayer
	Ws (lbs)	Ww (lbs)	Ws (lbs)	
2	1 39.7	1,99	1 (64,3	
	2 44.4	2,22	2 52.6	
	з <u>ЧІ.8</u>	2.09	3 55.]	
	4 <u>44.8</u>	2,24	4 <u>51.9</u>	
	5 39,7	1,99	5 52.9	
	6 42.7	2.14	6 57,6	
	7 40.6	2.03	7 56.5	Laner
	8 39.2	1,95	8 <u>54.4</u>	
	9 44.4	2.22	9 57.3	
	10 42.4	2.12	10 <u>58.8</u>	561.4
	11 40.9	2.05	11 <u>56.8</u>	
	12 39,5	1,98	12 <u>54 1</u>	
	13 4),3	2.12	13 57.1	
	14 41,5	2.08	14 56.1	
	15 41.1	2.06	15 <u>58,0</u>	- 843.5
	16 43.9	2.20	16 <u>57,3</u>	
À	17 41.1	2.06	17 35,5	
	18 4(1.2	2.01	18 56.1	489.
	19 <u>39</u> .0	1.95	19 3.4	
	20 42.1.	2.11	20	
	21 42,4	2.12	21	
	22 41.6	2.08	22	
	23 43.	2.16		
G	99.3-24 41.1	2.06	24	
/	25 47.3	2.37		
	26		26	
			27	
	28		28	
	29		29	
	30 1046.6		30 992.7	
	NOTES: Sinch foo	tings Helical-4.52	4165 UNSUPP-4.46	3 165
\sim		~		

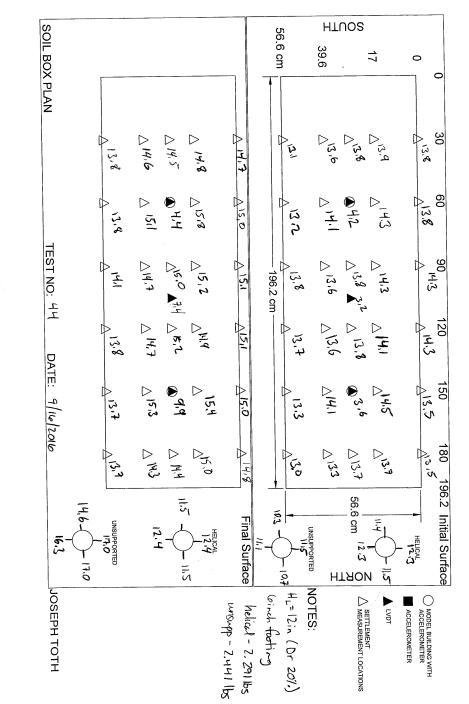
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	SOIL B					56.6 cn			17	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J	OX PLAN										0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			A $1^{2, 4}$	\triangle 15.1	\triangle 15.2 \wedge 14.9	A 14.7	A 13.8	Δ 14.0	14,0	$\land H$		30
120 120 150 $\Delta I50$ $\Delta I5$			<u>∆ 15.4</u>	\bigtriangleup 15.4	∆ 16.X	$A_{16.5}$)	215€	A 15.0	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			A 13.6	11,5 ∆14,7	$\land \land \varsigma$		<u></u> 1 <u>%</u> 0 196.2 ci	△ 13.4	∆ 11,5 ▲ 3,	△ 14.5	A 15.0	06
$ \begin{array}{c c} A & I_{4} & Hellow \\ A & I_{3} & Hellow \\ A & I_{3} & I_{4} & Hellow \\ I_{4} & I_{4} & I_{4} & I_{4} & Hellow \\ I_{4} & I_{4} & I_{4} & I_{4} & Hellow \\ I_{4} & I_{4} & I_{4} & I_{4} & Hellow \\ I_{4} & I_{4} & I_{4} & I_{4} & I_{4} & Hellow \\ I_{4} & I_{4} &$	J.		A 14.5	$\sum i h_i \nabla$	$ \Delta 15.6$ $\Delta 14.8$	A 15.3		$\triangle 1^{3,6}$	L ∆ 13.8	∆ IY,3	A 15.0	120
$ \begin{array}{c c} A & I_{4} & Hellow \\ A & I_{3} & Hellow \\ A & I_{3} & I_{4} & Hellow \\ I_{4} & I_{4} & I_{4} & I_{4} & Hellow \\ I_{4} & I_{4} & I_{4} & I_{4} & Hellow \\ I_{4} & I_{4} & I_{4} & I_{4} & Hellow \\ I_{4} & I_{4} & I_{4} & I_{4} & I_{4} & Hellow \\ I_{4} & I_{4} &$		TE: 8/27/ (4	A 14.3	\triangle 15.2	△ 16.8	A 15.9	A 13,7	∆ 14,0	• 7.7	∆ 15.0	A 15.4	150
			A 13.8	△ 14.5	∆ 15.6 ∆ 14.9			$\Delta l^{3,3}$		△ 14.4	<u> </u>	180 196
			UNSUPPORTED	17.4		Final Surface	10.4 11.0			-0-	HELICAL	196.2 Initial Surface
••	_							NOTES:			ACCELEROMETER ACCELEROMETER)

 \bigcirc

Date: _ 8/28/20	76 9/9/2016 Damas 1	wor	Liquefiable Laye	•
	Dense La Ws (lbs)	Ww (lbs)	Ws (lbs)	
1 53)	2.69	1 36.3	
2 60	· ·	3.05.	2 41.5	
2 <u>00</u> 3 <u>55</u>		2.76	3 39.4	
4 <u>56</u>		2.95	4 39.6	
4 <u>56</u>		3.09	5 <u>38.9</u>	
288.4 - 6 55		2,77	6 33.0	
7 56		2.82	7 38.5	
8 57		2.86	8 42.1	1
9 62		3.((9 43.8	-
		2.82	10 42.9	n an an an an t-
575.5-10-56. 11_55.0	1	2.75	11 41.1	-
12 56.5	i	2,83	12 43.3	-
	8	2.94	13 44.4	
	Q	2.81	14 43,9	
45 54 7		2.74	15 42.7	
856.6 15 <u>54.7</u>	7	2.74	16 42.1	-4
- 17 57	7	2.89	17 43.9	
18 55,		2,76	18 <u>38,9</u>	
	2,4	1,12	19 41.8	
			20 35.5	
		·	21 44.1	
			22 40.2	
			23 40.1	
			24 41.3	
			25 13,5	-992.7
			26	
			27	
			28	
29		70-11	29 Dr = 35 1.	
30	046.6 <u>–</u>		30 992.7	<u> </u>
NOTES:		1 1. 0	n An an an An Star and Angland and Angland	
~~ <u></u>	Oin footing	helical = $7.0051bs$ Unsupp = 6.9951bs		
 ر		Musupp - 0. 113105		

-

SOIL BOX PLAN							56.6 cm	H1 39.6	nos	17	0	0
PLAN												
	A 13.5	\triangle 14.4	$\forall h \bigtriangledown$	\triangle $ 4,9$	A 14,9		A 13.5	\triangle 13.9	\triangle 13.8	△ 14.1	A 14.5	30
	A 13,5	$\bigtriangleup = \mathcal{V}_{\mathcal{V}}$	● Y.1	\triangle 11.1	∆ <i>\</i> 4.8		A 13.2		\$.8	$rac{1}{2}$	$\Delta^{W.S}$	60
TEST NO: 43	A 14.0	$\Delta 14.7$	$\sum V, \gamma = \sum_{i=1}^{n}$	∆ 15, λ	A 15,1		196.2 cm -	∆13.6	$\stackrel{('h)}{\bullet}_{\gamma'h_{1}} \bigtriangledown$	△ 14.3	٨٩./	00
	△ 14.0	∆ IY.S	∆ 15.1	$^{\circ} \Delta 15, 0$	A 15, 1		n A 13.4	\triangle 13.7	∆ 14,0	Σ 'h ∇	A'h'b	120
DATE: 9/9/2016	213,3	\triangle 14,4	۵7.y	\triangle 15,0	A14.5		A 11,9	\triangle 10.5	3 .5	Δ 11.0		150
916	A 13.3	$\Delta H_{1,3}$	\triangle 14.5	$\triangle^{l'l',q}$	<u>الا.1</u>		A 13.0	$\Delta 135$	0 " $ \nabla 0$		A	180 196
14,0 			E- (HELICAL	10.5	10.1 - 10.1		56.6 cm	E	HELICAL	196.2 Initial Surface
JOSEPH TOTH					0		y loinch fating	NOTES:			ACCELEROMETER	


. .

í J

364

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Joseph Toth
Ws (lbs) Ww (lbs) 1 39.9 2.00 2 43.0 2.15 3 41.0 2.05 4 48.1 2.41 5 43.5 2.18 6 44.6 2.23 7 48.1 2.40 8 38.2 1.91 9 42.6 2.13 10 41.7 2.10 11 45.2 2.26 12 42.2 2.11 13 39.7 1.99 14 43.9 2.20 15 41.3 2.07 16 42.1 2.11 17 44.0 2.25 20 42.3 2.12 20 42.3 2.12 20 42.2 2.11 21 37.9 1.90 23 45.6 228 24 42.2 $2.$	Liquefiab	le Laver
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ws (lbs)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 46.4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 45.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 44,1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 47,9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 53,2	
7 - 48.1 2.40 - $8 - 38.2 1.91 - $ $9 - 42.6 2.13 - $ $10 - 41.9 2.10 - $ $11 - 45.2 2.26 - $ $12 - 42.2 2.11 - $ $13 - 39.7 1.99 - $ $14 - 43.9 2.20 - $ $15 - 41.3 2.07 - $ $16 - 42.1 2.11 - $ $17 - 44.0 2.20 - $ $18 - 41.0 2.05 - $ $19 - 41.3 2.07 - $ $20 - 42.3 2.12 - $ $891.7 - 21 - 37.9 1.90 - $ $22 - 41.7 2.09 - $ $23 - 45.6 2.28 - $ $1021.2 - 25.4 1.27 - $ $26 - $ $27 - $ $28 -$	6 42.1	
$8 \frac{38.2}{9 + 2.6} \frac{1.91}{2.13} - \frac{1.91}{10 + 1.9} \frac{1.91}{10 + 1.9} \frac{1.91}{10 + 1.9} \frac{1.91}{10 - 1.0} \frac{1.91}{10 + 1.9} \frac{1.91}{10 - 1.0} \frac{1.91}{10 + 1.9} \frac{1.91}{10 $	7 44.7	
$9 \frac{42.6}{2.13} - \frac{2.13}{10} \frac{41.7}{2.10} \frac{2.10}{2.10} - \frac{2.10}{11} \frac{45.2}{45.6} \frac{2.26}{2.26} - \frac{2.26}{12} \frac{42.2}{12} \frac{2.11}{13} \frac{37.7}{1.799} \frac{1.999}{14} \frac{43.9}{2.20} \frac{2.07}{15} \frac{41.3}{17} \frac{2.07}{16} \frac{2.11}{17} \frac{44.0}{12.20} \frac{2.05}{11} - \frac{11}{17} \frac{44.0}{14.0} \frac{2.05}{2.05} - \frac{19}{19} \frac{41.3}{20} \frac{2.07}{2.05} - \frac{19}{19} \frac{41.3}{2.07} \frac{2.07}{20} \frac{42.3}{2.12} \frac{2.12}{2.12} - \frac{21}{21} \frac{37.9}{2.19} \frac{1.90}{2.2} - \frac{21}{2.19} \frac{45.6}{2.28} \frac{2.28}{2.12} \frac{2.11}{25} \frac{25.4}{25.4} \frac{1.27}{2.127} \frac{26}{25} \frac{25.4}{2.12} \frac{1.27}{25} \frac{25.4}{2.28} \frac{1.27}{25} \frac{2.12}{2.11} \frac{1.27}{25} \frac{2.12}{2.11} \frac{1.27}{25} \frac{1.27}{2.11} \frac{1.27}{25} 1$	8 41.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 46-1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 <i>41.</i> 4	453.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 39, 3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 3 <i>8</i> .2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 37.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 37.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 37.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 29.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 29.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 31.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19 32.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 26.8	792
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21 35.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 30,3	
1021.2 24 42.2 2.11 25 25.4 1.27 26	23 <u>31.3</u>	
1021.2 25 25.4 1.27 26 27 28	24 30.8	
26 27 28	25 29.3	
27 28	26 27.4	
28	27	
29 Dr = 707.	28	4,2
	29 Dr=201	1. 980.5
30 1046.6 bs	30 976,31b	s
NOTES: (ein fastings Dr = 20%) liquetable layer	a Hi=12in	Hp=12 in
\		
· · · · · · · · · · · · · · · · · · ·		

С

	kle Table Test # 44 45 e: 9/19/2016			seph Toth
Dat		ise Layer	Liquefiable Layer	
	Ws (lbs)	Ww (lbs)	Ws (lbs)	
	1 43.3	2.17	1 57.3	
	2 42.1).II.:	2 <u>60.0</u>	
	3 41,3	1.07	3 60.1	
	4 40.2	2.01	4 59.2	
	5 43,0	3.15	5 61.3	
	6 44.0	3.10	6 61.7	
	7 43.6	<u> </u>	7 61.4	
	8 43.1	2,16	8 59.8	
	9 43.3	2.17	9 60.2	
	10 38.6	1.93	10 63.3	- 604.3
	11 38.9	1.95	11 <u>58.1</u>	
	12 43.0	2.15	12 60.4	
	13 40.9	2.05	13_5 8,3	
	14 40.6	2.03	14 61.1	
	15 40.7	2.04	15 59.5	- 901.7
	16 42.4	212	16 60.6	
ł.	17 40.5	2.03	17 45.3	
	18 42.4	2.12	18	
	19 40.3	1,03	19	
	20 <u>39.5</u>	1.98	20	
	21 <i>38,2</i>	1.91	21	
	22 37.8	1.89	22	
	23 40.3	1.02	23	-
	24 41.0	λ.05	24	
	25 <u>1,3</u>	1,07	25	+
	26 <u>36.1</u>	1.81	26	-
	27		27	-
	28 Dr=70	<i>l.</i>	28 Dr= 4024 451.	
	29		29	
	30 1046.6 lbs		30 toro 7.6	<u> </u>
	NOTES: benchmark Co Dr = 407. t	Lin tootings	and the second	
1				
ź				

• •

SOIL BOX PLAN				56.6 cm	39.0	; ; HTUO2	17	0
	A 13.2		$\forall h^{i}$	Α	> D		Δ 13.5	30 ∆ 13,7
	∆ اع,3		$\Delta^{l_{1,3}}$ $\Delta^{l_{5,4}}$	Þ	> 1).¢			60 A 13.6
TEST NO: 14 14 45 DATE: 9/19/2014	►	D.143 D.10 7.3 ►	∆ ₩.7	196.2 cm	∧ı, C	>;: ;: ;: ;: ;: ;: ;: ;:	$\Delta B, \ell$	90 ∂13.8
15 DA:	0,51	\triangle 14.5 \triangle 13.9	∆ 14.3 ∧ 14.7		∧ I. 7		Σ^{13}	120 ∆ ^{13.} %
<u>τε: η/ιη/</u> 2	A 12.9	©7,5 ∆14,1	\triangle 15.1		>	> 13 2 1 2	∆ №.0	150 ⊿ ^{]3, ‡}
916	A 13, 1	\triangle 13. 9 \triangle 13. 8	$\frac{\Delta}{ \eta,o }$		> [> 12.5	gur" Noti Noti	180 196
1			Hinal Surrace	10,6-(10.0		56.6 cm ^{W.7} H11원O	T	196.2 Initial Surface
JOSEPH TOTH	+ settlement likely from broken pile	* helical pile likely broken helix on installation	helical = 2.2711bs Unsupp = 2.441 lbs	Dr & HL= 407. 45%	NOTES: 6 in Fasting benchmarks	MEASUREMENT LOCATIONS		MODEL BUILDING WITH ACCELEROMETER

.

 $\mathbf{\hat{)}}$

, . . . P

 \mathcal{D}

Shakle Ta Date: 9	123/2016			
		nse Layer	Liquefiable L	ayer
-	Ws (lbs)	Ww (lbs)	Ws (lbs)	
~	1 40.8	2.04	1 <u>56.8</u>	
	2 41.9	2.10.	2 62.4	
	3 44,5	2.23 -	3 56.7	
	4 42.2	2.11	4 61.6	
	5 39.3	1.97		299.2
	6 42.2	2.11 -	6 56.4	
	7 38.7	1.94	7 60.9	
	8 46.8	2.34 /	8 60.9	
	9 40 .7	2.04 -	9 57.4	
	10 43.0	2.15	10 57.9	592.7
	11 47.4	2,37	11 58.6	
	12 44.8	2.24 -	12 58.1	
	13 43,2	2.16 -	13 59,7	
	14 40,6	2.03	14 <u>58.9</u>	
	15 41,7	2.09	15 <u>59.</u>]	- 9071
~	16 46.2	2.31	16 60.2	
	17 44.5	2,23	17 60,3	
	18 42.3	2.12	18 14,9	
	19 45.7	2.29	19	
	20 36.2	1.81 -	20	
	21 42.5	2.13	21	
	22 40.3	2.02	22	
		2.23	23	
	23 <u>44.5</u> 24 41.8	2,09	24	
1021.8	24 41.8 25 24.8	1.24	25	
	26		28	
	27		28	
	28		20	
	29		30 1022.5	-
NOT	$\frac{30 1046.6}{\text{ES:} Dr = 70'1.}$		Dr= 50 1022.5	55.1
			and the second	Canada (1997)
1				
~				
		· · · · · · · · · · · · · · · · · · ·	·	

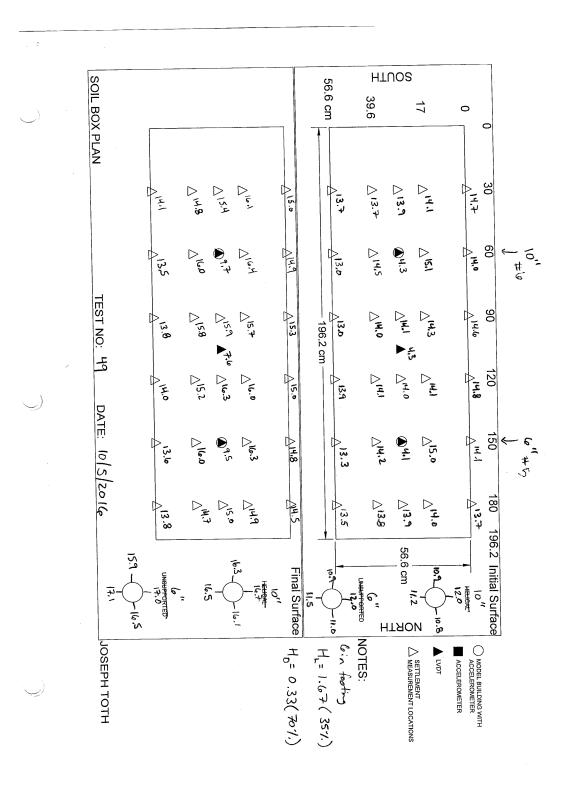
SOIL BOX PLAN		A 133	$\triangle \psi $	$h h \nabla$	\triangle 14.5	0.hl	>		56 6 cm		H1 30 8 / 13.8		17 ∆ ^{13.8}	(H, HI 0
		A 135	1.1 \$ 15.0	4 @3.6	$\Delta 15.4$	0 -14.6	>		e 712.6		.8 _{N14.2}	به 5:5			1
тезт		A12.8		$\sum_{k=1}^{N} \sum_{k=1}^{N}$			>	196.2 cm	A13,5		۲.٤١/				A ^{13.8}
		A 13.0		$\sum u_{i} \in$	0.51 ∑	- 14.6	\geq		ما.3.		∆13,3	4	₹, 8ا		A14.1
DATE: 9/23/2016			$\wedge H$	2.7	∆ 15.3	14.3	>		A 12.5		∆13.3	3 . ²	13.7		4,3 [4,3
2016		A 13, 0	5.7	A state of the sta	<u>∖</u>	5'hI			A12.5		D12.9	^{12,1}	3.8د∖		A13.9
14.8	9'hI 1'EI	UNSUPPORTED	12.5			HELICAL	Final Surface	c. 		UNSUPPORTED	н.	- 56.6 cm	T.)_ <i>ب</i> ر	HELICAL
JOSEPH TOTH								Serve 70.1.		NOTES:				ACCELEROMETER	ACCELEROMETER

. . .

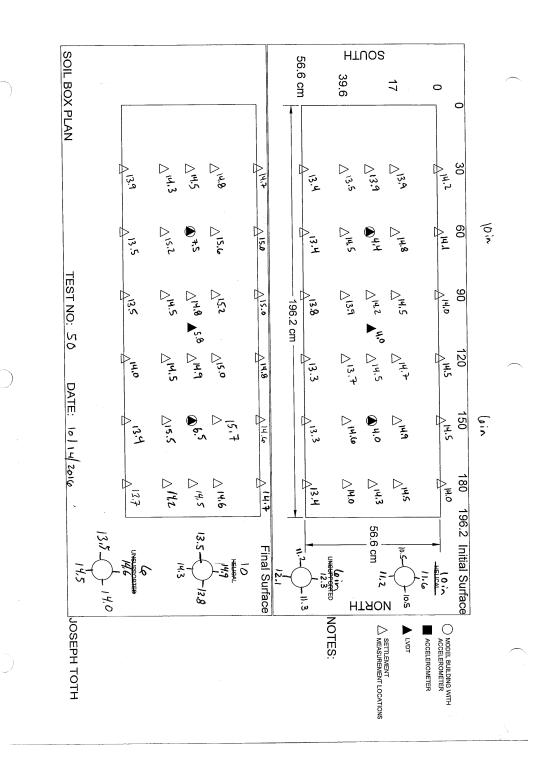
	le Table Test # 47			Joseph Toth
Date	1 9/26/2016	•	Liquefiable	Laver
	De Ws (lbs)	nse Layer Ww (lbs)	Ws (lbs)	
	1 <u>41.2</u>	2.06 -	1 42.0	
	2 <u> </u>	2.40 -	2 22.1	i
		2.23 -	3 42.9	
	3 44.6	2.41	4 40.0	1
	4 48,2	2.30 /	5 43.2	
	5 46.0	2.02 /	6 45.8	
	6 <u>40,3</u> 7 44.0	2.20	7 44.9	- 780.8
	8 46.2	2.31	8 63.5	
				1
	9 <u>43.1</u>	2.16 1.97		
	10 <u>39.4</u>	2,28		
	11 45.6	2,24	12 62.9	:
	12 44.8			580
571	1.5 _ 13 _ 43. 2	2.16 -		
	14 42.8	2.16 -		
	15 43,2	2,35 ′	50 5	
	16 46.9	2.13 -		- 000 .
Ŧ	49.9 <u>17 42.5</u> 18 <u>35-1</u>	1.76	10 50 1	882.1
		\sim	19 55.6	
	19 20		20 62.1	i
			21 59,6	i i
			23 <u>64.2</u>	
	24		24 - 0	
	25 26		26	
	27		27	
	28		28	
	29		29	
	30 785.0 lb	<	30 1240.9 lb	5
	NOTES:			
)			an a	
1	· · · · · · · · · · · · · · · · · · ·			

7										
	SOIL						n 0 0		าดร	
	- BOX						3	39.6	17	0
	SOIL BOX PLAN									
	-	k		$>$ \square	\triangleright	1	5			⇒ 30
		14.7	15.0	\triangle 15.0	, 14.5		13.7	13,6	$\triangle HLO$ $\triangle I2.6$	30 ∆ ^{4,4}
							\triangleright	\triangleright		⊳ 60
		13,7	\triangle 15,5	∆ 15.8	14.6		13.6	△峭.)	S.↓	60 ⊿ ^{14,1}
	TEST	₽	\triangleright	\triangleright	\triangleright			△13.7	° o'hı∇ 0'hI ∇	90 ⊿ !५.५
	TEST NO: 47	A 15. d	△ 15.1	∆ 15,5 7,5	15.1	196.2 cm -	14.0	7.7	$\bigvee_{0'k} 0'k' 0$	<u>Ч.</u> Ч
	47	₽_		$^{15.7}$	15,0		\triangleright	Δ 13.5	∆ 13.5	120 ♪!
_)	DA	14	0'5	5.5	0		13.7	5	3.5	14.6
	DATE: 9/26/2016		$\Delta 15.9$	\triangle 16.1	A 15.0			Δ 13.8	△ 14.5	150 ∆ 4,1
	26/26	3,8	-0		.o		12.9	8	2 5	
	916	A 13.5	D ¹⁶ .0	\triangle 15.1 \triangle 14.8	A ۱۲.5		A 13.2	△13.3	\triangle 13, 8 \triangle 13, 5	180 ∆ ^I ⁴ .3
		in	0			_	~	iv		
		UNSI	- -	- 6'11		i z			56.6 cm	Heucon Heucon 13,2 h.6
	174		12.7		HELICAL HELICAL	2=-(SIPPORTE	<i>h</i> .tl	
		17.1		1.7	ace		5.	H	тяои	
	JOSEPH TOTH				H _L =1,25ff H _D =0,75ff	Derge	aisch	NOTES:	∆ settu Measu	MODEL BUILDING WITH ACCELEROMETER ACCELEROMETER
L)	НТО				0,75.	301. 707.	feeting.	•	EMENT JREMENT L	MODEL BUILDING V ACCELEROMETER ACCELEROMETER
	TH				1 +		U		SETTLEMENT MEASUREMENT LOCATIONS	

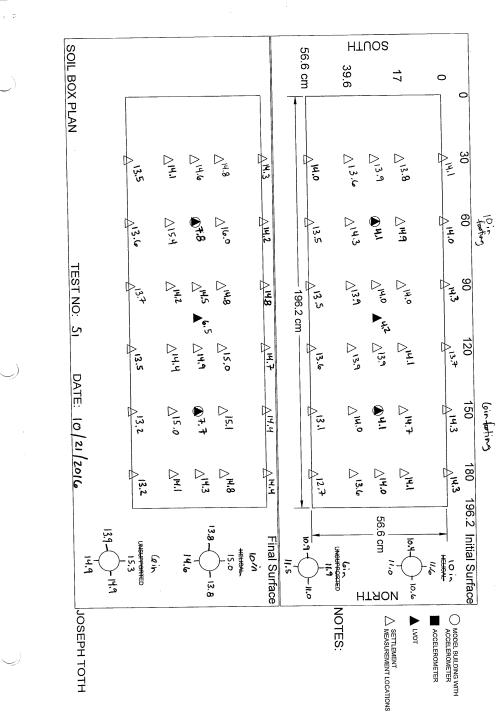
 \bigcirc


)

5

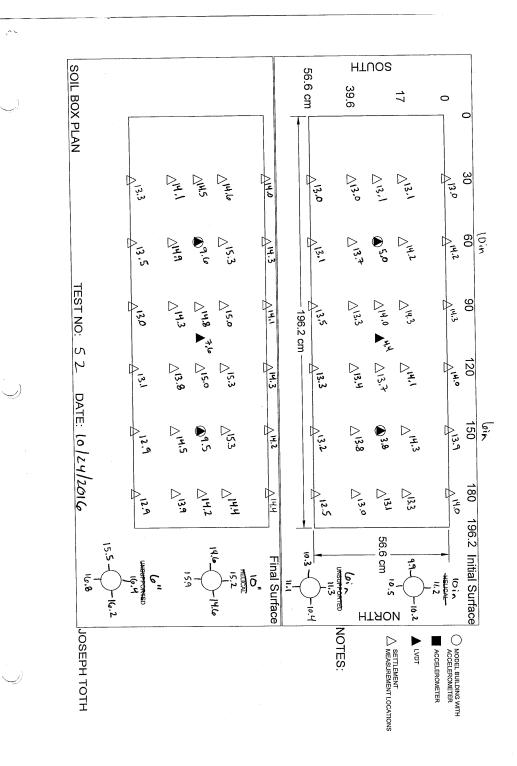

	Table Test # 48 9/30/2016				
Dense Layer		Liquefiable	Layer		
)	Ws (lbs)	Ww (lbs)	Ws (lbs)	1	
· ·	1 31.0	1.55	1 41.6		
	2 3 <i>8.2</i>	1,91 .	2 37.8		
	3 41,0	2.05	з <u><i>38.</i>Ч</u>		
	4 42.9	2.15	4 <u>39.8</u>		
	5 17.3	0.87	5 38.4		
	6 26.5	1,33	6 37.9		
	7 42.1	2.11	7 <u>37.8</u>		
	8 39.0	1,95	8 <u>42.4</u>		
	9 41.6	2.08	9 36.1		
	10 37.7	1.89	10 43.0		
	11 42.6	2.13	11 41.1		
	12 41.3	2.07	12 40.6		
441,2	13 45.3	2.27	13 <u>40,9</u>		
	14 36.8	1.84	14 <u>38.6</u>		
	15		15 41.2		
1	16		16 59.7		
)			17 64.2	#	
			18 58.8		
			19 62.3		
			20 62.7		
			21 6l.2		
			22 59.7		
			23 59.6		
	24		24 61.8		
			25 61.9		
	26		26 56.6	(20).3	
			27 61.7		
	28		28 63.5	-	
	20		29 61.9	- 1451.2	
	30 523,3 H	× !	30 <i>37.8</i>	16. j.	
N	NOTES:	<u> </u>	1489.0 lbs		
			an an an an an Article Constant an Article and Article and Article and Article and Article and Article and Artic		
)				<u> </u>	

SOIL BOX PLAN				56.6 cm		17	0
A N	∆ ^{i4, ð}	∆15,4 ∆15,1	$\Delta_{h_{i,q}}$	A 13.9	∆m;		30 14.8
	∆ ۱۷,6	$\sum_{i \in \mathcal{I}} i_{i} \in \mathcal{I}$	A _{K1}	A13.9	D'H'H	D ^{14,9}	(Server) 60 A15.0
TEST NO: 48	∆ اڻ;}	$ \begin{array}{c} \bigtriangleup & 15.4 \\ \bigtriangleup & 15.6 \clubsuit ^{9.7} \\ \bigtriangleup & 15.5 \end{array} $	A 15,5	196.2 cm	∆H,0 √H,5 ¥,2,1	Дн.н	90 Sev
	<u></u> ∧ 14.1	$ \Delta 15.8 $	A 15,5	14.0	^L ∆!42 ∆!40	⊳,µ,.	120 120 14,5
DATE: 9/30/2014	5.41	15, 6	A IS, I	13,5	© 3,2	°ri S	(Sensor - 5) <u>A</u> 14,6
016	△ 13.7		Ц. 7 Н, 7	A13,0	∆13.¢	$\triangle^{14,3}$	180 196.2
18.6	UNSUPPORTED	15.7 0 15.5	Final Surface	<u>-</u>	UNSUPPORTED HLDO	4 01	196.2 Initial Surface
JOSEPH TOTH	rotational failure		H _D = 0.5 (7071.) No initial line of profile	(in Earling \$10 in Feet H_ = 1.5 (351)			ACCELEROMETER


Date:	De	nse Layer	Liquefiable Laye	er
\sim	Ws (lbs)	Ww (lbs)	Ws (lbs)	l ·
	1 36.2	1.81	1 18.7 41.0	
fer f	2 24.3	1.22 .	2 41.8 45.0	
	3 37.1	1.86	3 44.7 40.5	
	4 36.0	1.80	4 41.5 44.2	
	5 39.5	1.98	5 40.1 37.7	
	6 42.6	2.13	6 42.4 40.9	4
	7 41.0	2.05	7 40.6 45.4	-
	8 39.7	1.99	8 45.3 39.1	
	9 39.7	1.99	9 35,4 40.1	724
	10 12.8	0.64	10 <i>58.1</i>	
	11	-0-	11 57.7	
			12 60.0	
			13 <u>58.7</u>	
			11 59 3	
			15 63.7	
\sim			16 65.7	
\smile			17 60.8	
			18 63.9	
•			19 61.7	
			20 59.1	
			21 59.0	
			22 63.2	
			22 (a) 7	
			772	
			26	
			27	
			28	
	29		29	
	30 348.9		30 1654.9 lbs	
N	OTES:		and the second	
~				
\bigcirc		·		

Date: 10/13/2016	ense Layer	Liquefiable La	iyer
Ws (lbs)	Ww (lbs)	Ws (lbs)	
1 42.9	2.15	1 64.1	
2 <u>38.5</u>	1.93	2 60.2	
3 37.3	1.87	3 62.6	
	2- 11	4 60.3	
4 <u>42.2</u> 534 .8	1.74	5 60.2	
6 45.4	2.27	6 62.0	307.9
7 <u>40.4</u>	2.02	7 62.1	
8 45.7	2,29	8 61,3	
9 40.5	2,03	9 60.2	
10 42.6	2,13	10 61,3	1
10 <u>72.6</u> 11 39.0	1.95		
12 41.9	2.10	12 60.7]
13 <i>36.4</i>	1.82		
13 <u>542.1</u> 14 43.8	2.19	10 527	
15 37.4	1,87		917.1
16 45.3	2.27		
17 39.2	1.96		
18 37.6	1.88	18	
19 <u>37, 7</u>	1.89	19	
811.0_20 42.4	2.12	20	
21 40.6	2.03	21	
22 38.6	1,93	22	
23 42.9	2.15	23	
24 <u>33.3</u>	1,67	24	
1006.4 25 40.0	2	25	
26 35.5	1,78	26	
27 4.7	0.24		
28	<u>-</u>	28	
29		29	
30 1046.6	lbs	30 992.7	
NOTES: $Dr = 35$	4 7 17 1	12'n laver Thickness	

	e Table Test # 51			Joseph Toth
Date:	10/21/2016	ense Layer	Liquefiable L	ayer
	Ws (lbs)	Ww (lbs)	Ws (lbs)	
) .	1 <i>41.8</i>	2.09	1 38.2	
	2 39.5	1,98	2 44,5	
	3 42.6	2.13	3 39.2	
	4 36.7	1.84	4 38.9	
	4 <u>38.7</u> 5 <u>38.5</u>	1.93	5 20.7	
	6 3 8.6	1,93	6 64.1	
	7 39,5	1,98	7 60.6	
	8 45.4	2.27	8 57.7	
		1.88	9 63.1	
	9 37.6		10 57.5	- 4845
	10 42-1	2.11 2.01	11 62.5	
	11 <u>40.1</u>	2.2	12 62.2	
	12 42.5	1.99	13 63,5	
	13 39.7		14 573	
	14 43.5	2-18 2.17	15 <u>59,4</u>	700.11
	15 <u>43.4</u>	2.14	16 60.2	784.4
	16 <u>42,7</u>	1.99	17 64.0	
	17 39.8	2.19	18 57.1	1
	18 <u>43.8</u>		19 22.0	970.7
	19 43.3	2.17	20 -0-	
	20 43.7	2.19 2.01	20	
	21 40.2	2.25	22	
	22 45.1	2.22		
	23 44.3		23 24	
	24 40.6	2.03		
	25 43.0	2.15		
	26 <u>8.7</u>	0.44	~~~	
	27	G	27 28	
	28			
	29		29 30972.7-165	
	30 1046.6 NOTES: $HI = 1 ft$	(351.)HD = 1ft (701.)	30 792.7165	l
	10in uns		n an an an Arthread State State State and an	
١	_lein	"(sen sor #5)	
/	i	1. 1		
	4 sec sho	King duration		



)

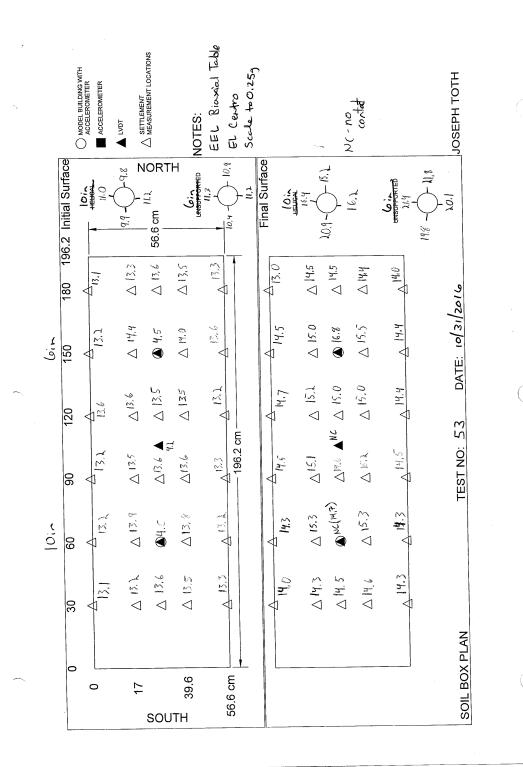
Shakle Table Test # 52			Joseph Toth
Date: 10/24/2016	Dense Layer	Liquefiable Lay	/er
Ws (lbs)	Ww (lbs)	Ws (lbs)	
1 28.7	1.44	1 61.2	
2 40.2	2.01	2 63.5	
3 49,9	2.50	3 64.1	
4 42.7	2-14	4 61.9	
5 42.7	2.14	5 64.0	- 314 7
6 40.6	2.03	6 62.0	
6v 7 46.5	2.33	7 62.4	
6 8 42.4	2.12	8 (01.8	
9 41.2	2.06	9 64.3	
10 45.3	2,27	10 64.3	
10 <u>13.3</u> 11 43.6	2.18	11 64,3	
11 <u>75.0</u> 12 <u>42.7</u>	Z-14	12 63.8	
13 45.7	2,29	13 65.1	
13 <u>73.7</u> 14 42.7	2.14	14 62.5	
15 39.6	1.98	15 63.5	948.7
16 46.7	2.34	16 44.0	
17 <u>44.8</u>	2.24	17	
18 <u>44.9</u>	2.25	18	
19 43.3	2.17	19	
20 40.7	2.04	20	
21 <u>43.3</u>	2,17	21	
22 42.1	2.11	22	
23 41.1	2.06	23	
24 38.3	1,92	24	
25 26.9	1,35	25	
26	-0-	26	
27		27	
28		28	
29		29	
30 1046.	6 lbs	30 992.71bs	
NOTES: HL = Ift	(351.) HD=1ft (701.)	No. Contracting and a	
10in un		<u>ه)</u> # 5)	
_6in "	(Jenson	+	
8 195 5	Labing duration		

.,

Shakle Table Test # 53 Date: 10/31/2016

7

À


2

Joseph Toth

Dec. 10/3//20105	ense Layer	Liquefiable La	yer
Ws (lbs)	Ww (lbs)	Ws (lbs)	
1 41.0	2.05	1 58.0	
2 42,0		2 60.2	
3 <u>4<i>8.0</i></u>		3 56.2	
4 43.0		4 56.7	
5 45.1	2.26		
6 40.5	2.03	6 56.9	
7 38,9			- 402.2
8 42.7			
9 43 1			
10 43.6			
11 42.2	2-11	-	
12 41,9	2.10		
13 44./	2.21		- 725,1
14 38.3	1.92		
15 40.1		15 51.2	
16 <u>41.2</u>	2.06	16 56.7	
17 <u>41,</u> 7			944.0
18 40.5	2.03		
19 39.7	1.99		
20 44.9	2.25		
21 41.9	2.10	21	
22 42.4	2-12		
23 44.3	2,22		1
10.824 39.7	1.99	24	
25 <u>35.8</u>			
26			
28			
29 1046.Cp		29 992.7 lbs	
30		30	
NOTES:		an a	
		····	

.

