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ABSTRACT

The application of the one-dimensional Poisson prob­

ability model to magnitude- and time-series of earthquakes 

can be an important aid in further understanding of the 

physics of earthquake occurrence, yet there are many features 

of earthquake sequences that are not described by the simple 

Poisson model. From a detailed examination of the axiomatic 

basis of the Poisson process in the context of observed 

earthquake magnitude-frequency and occurrence - frequency dis­

tributions, specific non-Poisson earthquake behavior patterns 

are identified and isolated for further study. Emphasis is 

placed on understanding the process of earthquake occurrence 

rather than on the determination of accurate mathematical 

models.

The frequency distribution of magnitude has been exten­

sively discussed in terms of the linear relationship log N = 

a - bM. The Poisson basis of the law is reviewed so as to 

apply proper statistical procedures to evaluate data samples 

consistently and accurately. In studying the Poisson behav­

ior of magnitude distributions, three non-Poisson elements 

must be considered in order to perform a mathematically valid 

analysis of b-values: determination of the minimum magnitude 

cutoff needed to define a complete catalog, possible non- 

random characteristics of the largest events, and magnitude- 

value biases or other sources of nonlinear magnitude- 

frequency distributions. Close examination of the cumulative
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magnitude-frequency plot combined with use of the maximum 

likelihood estimator of b is the best b-value analysis tech­

nique. In the analysis of specific samples of foreshocks and 

aftershocks, it is found that the proposed dependence on com­

pressive stress level within a fracture zone is not statisti­

cally supported at a high confidence level.

For earthquake time-series, three processes based on the 

Poisson model appear to describe earthquake behavior. The 

first is a simple Poisson occurrence of independent earthquakes 

that has a stationary or slowly time-varying occurrence rate. 

The second is the triggered process of aftershock occurrence, 

in which one of the independent events in the simple Poisson 

process initiates a single sequence or multiple sequences of 

aftershocks. Each aftershock sequence is composed of Poisson- 

distributed independent events that follow an approximately 

hyperbolically decaying rate law, with the trigger event gen­

erally of magnitude 4.0 or larger. The third process is that 

of microearthquake clustering, occurring among earthquakes of 

magnitude up to between 3.0 and 4.0. Clustering is defined 

by spatial and temporal relatedness among earthquakes and is 

identified in the seismically active regions of Nevada and 

central California. A cluster is not characterized by a 

trigger event, but each cluster is composed of events with 

magnitudes independent of one another. The cluster-size 

frequency distribution is described by an inverse power law 

with exponent near 3.5. Spatial and temporal statistical
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features of clustering are analogous to those of the after­

shock process in most respects, but the pattern of energy 

release is symmetric about the center of the cluster in 

constrast to the major energy release occurring with the 

trigger event of an aftershock sequence. Comparisons with 

laboratory experiments suggest that the predominant occur­

rence of clusters of earthquakes containing events differ­

ing by less than one-half magnitude unit is associated with 

the small size of the source volumes of the. clustered events 

and apparent rapid viscoelastic reloading of the initial 

slip surface.
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CHAPTER I. INTRODUCTION

The proliferation of accurate and extensive earthquake 

catalogs has encouraged the use of earthquake statistics in 

fitting mathematical models to the patterns of earthquake 

occurrence. Such statistical probability models may be use­

ful in developing more understanding of the mechanisms 

whereby earthquakes occur. However, the physics of the 

occurrence of earthquakes presently is not well understood 

in a deterministic sense. The collection and study of ex­

tensive earthquake data catalogs have occurred in an attempt 

to increase understanding of earthquake physics because of 

the inaccessibility of earthquake sources to direct experi­

ments and measurements.

The use of probabilistic models in lieu of determinis­

tic ones can be subject to a number of both mathematical and 

seismological (physical) errors and subtleties. In many 

earlier studies of earthquake statistics, the attempt often 

was made to find a mathematical model that accurately des­

cribed the observed distribution of one or more variables of 

an earthquake data set. Then values of the parameters of 

the model were related to a physical interpretation of the 

mechanisms governing the occurrence of the data set. In 

this study, the weaknesses of such straightforward modeling 

procedures are discussed. In general, it is not reasonable 

to assume that simple probability models can describe the 

complexity of features of earthquake occurrence. In an
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effort to develop mathematically accurate models, the more 

significant information and understanding from the seismo- 

logical point of view can be obscured or neglected.

Poisson processes and derivations therefrom have proven 

applicable to many physical processes characterized by inde­

pendently occurring events. In this paper, a critical review 

will be presented of the usage of the Poisson-based class of 

mathematical models in seismology. It will be shown that at 

the present time the primary value of the models discussed 

here is in identifying and isolating basic earthquake occur­

rence patterns for further analysis and thereby establishing 

constraints for the testing and evaluation of deterministic 

laboratory and theoretical physical models. The approach 

used in this study involves (1) explicit consideration of 

the mathematical assumptions made; (2) careful evaluation of 

the composition of the data sets used, particularly of the 

measurement of the parameters; (3) detailed examination of 

the ability of the models used to adequately or inadequately 

represent the observed earthquake parameters; and (4) inter­

pretation of the probability models and their inadequacies 

in terms of the processes of earthquake occurrence.

The key to this approach lies in the attempt to iden­

tify and investigate the details of any disagreement between 

the models used and the data they are trying to describe 

probabilistically. This perspective on the use of proba­

bility models in seismology is taken so as to maximize the
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seismological understanding gained rather than demonstrate 

the application of statistical probability theory.

Poisson Processes

For modeling purposes, an earthquake is defined as a 

point event described by its focal coordinates, occurrence 

time, and magnitude. Procedures for measuring these parame­

ters vary individually for the specific data sets used.

There are certainly other parameters that may be used to 

describe earthquakes, such as focal mechanism, stress orien­

tation, slip area, stress drop, ambient stress, and geologic 

setting. But for an initial model that will be applied gen­

erally, the least complex and most widely and uniformly ob­

served parameters are most suitable for mathematical treat­
ment. The models and data samples that will be discussed 

will be related to other parameters of earthquake occurrence 

to the greatest extent possible.

The most mathematically tractable examination of the 

earthquake point process is in terms of one - dimens’ional fre­

quency distributions. A cursory examination of the chrono­

logical catalogs of'many earthquake data sets suggests a 

somewhat random distribution of location, magnitude, and 

occurrence time. The class of probability models to which 

such random data is applied is the stochastic process. Sev­
eral authors (Cox and Lewis, 1966; Parzen, 1962; and Vere- 

Jones, 1970) have presented the theory of one- and multi­

dimensional stochastic processes. Common usage applies the



term "stochastic" to mathematical models and "random" to the 
data variable being discussed.
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The simplest one-dimensional model of a series that is 

random over some parameter is the Poisson process, which can 

be derived from the following axioms (Parzen, 1962). Let q 

be a continuous coordinate with events taking place at q^, 

q 2 > T 3 > •••> and let N(q) be the number of events which have 

occurred in the interval (0,qj. The Poisson process is 

usually defined over the coordinate of time but, for the sake 

of generality, an arbitrary coordinate q is used in this 
definition.

Axiom 1. The process N(q), q-0, has independent increments; 

that is, the number of events in any interval (q^, q^) is in­

dependent of the number of events in any other nonoverlapping 

interval. Thus, the events composing N(q) are assumed to 

have no causal connection.

Axiom 2. For any q-0, the probability that an event will 

occur in a given interval dq, no matter how small,’ is greater 

than zero and is, in fact, equal to Adq, where A is a con­

stant over q. A corresponds to the average number of events 

per unit q.

Axiom 3. For q-0,
lim P[N(q + h) - N(q) > 1 
h+0 P[N(q + h) - N (q) = 1 ( 1 - 1)

or, it is not possible for events to happen at exactly the

same value of q.
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Axiom 4 . N(q) has stationary increments. That is, for any 

two values of q, > q^ > 0, and any h-0, the random vari­

ables N(q 2 ) - N(q^) and N(q 2 + h) - N(q-̂  + h) are identically 

distributed. Thus, the distribution is constant over q.

These axioms lead directly to a differential equation 

whose solution is the Poisson distribution (Parzen, 1962),

P(x,q) = Aqx f>q:)X , d-2)

where A is the mean number of events per unit q, and P(x,q) 

is the probability of occurrence of x events in interval q. 

The mean of equation (1-2) is Aq and is the most probable 

number of events in interval q.

It is also shown (Parzen, 1962) that, for random events 

that are Poisson distributed in time, the occurrence inter­

vals between successive events (^'^l’ q ̂ ^ 2 * •••) are ^ d e ­
pendent, exponentially distributed random variables with 

cumulative distribution function

F(q) = 1 - e'Xq , * (1-3)

and density function

f (q) = dF/dq = Ae~Aq . (1-4)

It is not necessarily true, however, that events with expon­
entially distributed occurrence intervals are Poisson dis­

tributed. As an extreme example, the exponentially distribu­

ted occurrence intervals could be sequentially distributed 

according to size, having the intervals increasing from 

smallest to largest. This would certainly contravene axioms 

1 and 4, yet satisfy equation (1-3).
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An additional useful property of the Poisson process is 

its additivity. That is, the sum of two independent Poisson 

processes with rate A^ and X^ is a Poisson process with 

parameter Ag = A^ + X^ (Parzen, 1962). This may be extended 

to the sum of any number of independent Poisson processes.

In order to model certain kinds of statistical behavior, 

several modifications of these axioms can be made so as to 

describe specific features of earthquake occurrence. The 

resulting generalized Poisson processes are powerful model­

ing tools, but the increased mathematical sophistication also 

holds the possibility of obscuring a greater understanding of 

the physics of earthquake occurrence.

In the following chapters, the Poisson process model 

will be used to analyze the sequence of earthquakes in time, 

N(t), and the sequence of earthquakes in magnitude, N(M).

For both one - dimensional processes, the analysis will involve 

the discussion and application of the relevant statistical 

techniques to find parameters of Poisson models to* fit vari­

ous data sets. From this base, the more significant aspects 

of the modeling procedure will be investigated, namely, the 

details of any inadequacies of the Poisson model. It is re­

markable to find that the simple, one - dimensional Poisson 

model represents the statistical features of earthquakes 

from so many differing geologic and tectonic settings. The 

power of the model as discussed herein, however, lies in its 

usefulness in allowing the discrimination of some more subtle 

features of earthquake occurrence.
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Sources of Earthquake Data

Earlier statistical studies by a variety of authors have 

used earthquake catalog data taken from many local sources, 

as well as worldwide catalogs such as the Hypocenter Data 

File prepared by the National Oceanic and Atmospheric Admin­

istration (NOAA). As many of these studies are reviewed and 

reanalyzed in the following chapters, the data sources will 
be described.

Three additional earthquake data samples that are dis­

cussed in this paper have not been previously analyzed.*

These samples are briefly described here.

Beginning in October, 1969, a state-wide telemetry net­

work covering the central portion of Nevada was put into 

operation. Stations are indicated by triangles in Figure 

1-1, and the events recorded and located during the period 

up to the end of 1971 are shown. Events in the six quadri­

lateral zones were selected for particular analysis. Loca­

tions were revised to obtain the best possible epicenters. 

Magnitudes for the events have not been determined in gen­

eral; however, for specific events, in order to obtain mag­

nitude estimates, comparisons were made between amplitudes 

obtained from the Wood-Anderson instruments at Reno, and 

amplitudes recorded on three - component, short-period Benioff

*Some of the material for this paper has been taken from a 
publication by the author, "Microearthquake clustering near 
Fairview Peak, Nevada, and in the Nevada Seismic Zone," 
Journal of Geophysical Research, vol. 77, pp.7049-7056 
(1971).



8

Figure 1-1. Study areas in the Nevada Seismic Zone. 
(A) Fairview Peak zone; (B) Rainbow Mountain zone; 
(C) Mina zone; (D) Cedar Mountains zone; (E) Fish 
Lake Valley zone; (F) Bishop zone. Circular zone 
around station SMN contains events used in detailed 
microearthquake study.
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instruments at Tonopah (TNP) and Battle Mountain (BMN).

Just prior to operation of the state-wide network, be­

tween 17 March and 16 May 1969, a portable tripartite high- 

gain array was operated at station SMN at the south end of 

the Dixie Valley-Fairview Peak fault zone. A discussion of 

instrumentation and site location is found in an earlier 

study by Stauder and Ryall (1967). This zone, as well as 

the entire Nevada seismic zone, is characterized by an 

approximate west-northwest-trending horizontal extension 

axis (Ryall and Malone, 1971; Ryall, Savage, and Slemmons, 

1972). The southern terminus of this zone, approximately 

contained within the small circle centered at SMN (Figure 

1-1), is composed of mixed focal mechanisms with a compli­

cated pattern of faults (Ryall and Malone, 1971; Smith and 

others, 1972).

The third group of earthquakes selected for study was 

recorded during the three-year period 1969-1971 by the U. S. 

Geological Survey (Lee and others, 1972a,b,c). Locations 

of the more than 6500 reported events in the magnitude range 

0 to 4.5 are shown in Figure 1-2. Subdivisions of the most 

active portions were selected for statistical study and are 

outlined in the figure. By courtesy of Dr. W. H. K. Lee of 

the U. S. Geological Survey, a magnetic tape containing all 

event focal locations, magnitudes, and other location in­

formation was provided, by means of which the analysis was

conducted.
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Figure 1-2. Study areas in Centr 
veras zone; (2) Sargent zone; (3) 
(4) San Andreas zone; (5) Central 
(6) Danville swarm zone.

al California. (1) Cala- 
San Andreas North zone; 
California zone; and
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CHAPTER II. MAGNITUDE-FREQUENCY RELATIONSHIPS

Introduction

The examination of the frequency of occurrence of earth­

quakes as a function of magnitude led Gutenberg and Richter 

(1944) to propose the empirical distribution rule

log n = a + b (8-M) , (2-1)

where n is the number of events per unit time in the magni­

tude interval M ± 1/4. The constant a describes the sample 

size and is equal to the log of the number of events in the 

class M = 8. The constant b is the significant parameter 

describing the proportion of large events to small events. 

Magnitude is defined by Richter's (1935) formula,

M = log A - log Aq , (2-2)

between magnitude and maximum amplitude. The applicability 

of equation (2-1) to hundreds of different earthquake se­

quences over the magnitude range less than zero to 8.9 sug­

gests that this is a seismological "la\v" in which b has the 

roughly constant value of 0.9 (Utsu, 1969).

In this chapter, the behavior of the distribution of 

magnitude versus number of events is discussed in terms of 

the simple Poisson process reviewed in Chapter I. The analy­

sis of magnitude distributions is examined in terms of proper 

techniques for determining statistical significance. Poisson 

and non-Poisson aspects of several distributions are then 

evaluated as properties of earthquake occurrence as well as 

products of the measurement of magnitude.
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Theoretical Review

In common usage, equation (2-1) is usually rewritten as 

log n (M) = a* - bM , (2-3)

where n(M) is the number of events with magnitude between M 

and M + dM. In exponential form, this is

n(M) = 10a' 10"bM . (2-4)

Prior to Gutenberg and Richter's publication, Ishimoto and 

Iida (1939) presented an equivalent relation for the number 

n(a) of events in the amplitude range a to a+da,

n(a) = Ka"m . (2-5)

The constant m-1 was shown equal to b in equation (2-4) by 

Asada and others (1951). The Gutenberg-Richter relation has 

been more generally applied due to the widespread use of 

Richter magnitude values. Equation (2-3) is often referred 

to as the "recurrence curve" or "b-value curve."

Integrating equation (2-4) gives the cumulative form of 

the law, •
N(M) = 10A 10"bM , (2-6)

or, in logarithmic form,

log N (M) = A - bM , (2-7)

where N(M) is the number of events greater than or equal to 

the magnitude M. In accumulating magnitude statistics, in­

tervals of magnitude are typically used, in which the value 

M is assigned to the group of magnitudes falling between M-AM 

and M+AM. Thus, for the discrete case, the interval and 

cumulative equations are easily related:
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n(M) = N(M-AM) - N(M+AM) = 10a 10 -bM ( 2 - 8 )

The value o£ b is often determined by fitting either equation

(2-3) or (2-7) to the data using linear or weighted least-

squares methods or using "eye-ball" techniques.

An alternate method of determining b has been noted by

Utsu (1965) and Lomnitz (1966). For a given sample, they

calculated the value of the mean magnitude of all the events
larger than some minimum M :& o

ZM.n(M.)• 1 l
M(M ) = — - - = M + cK oJ En (M. ) o . b £n 10 (2-9)

From this, the value of b is easily calculated:

. 4343b =
M(M ) - M v oJ o

(2- 10)
Note that M has the exact value M = M, - AM, where M, is 

the first magnitude class.

Aki (1965) demonstrated that equation (2-10) has an al­

ternate derivation and is, in fact, the maximum likelihood 

estimator of b.

Before presenting the derivation of the maximum likeli­

hood technique, it is necessary to determine the probability 

density function for M. Equation (2-6) is normalized so 

that its intergral from M - 0 to infinity is one and is 

origin-translated so that the new function, N '(M), gives the 

cumulative distribution of magnitudes less than M:

N'(M) = 1 - e (b£nlO)M (2-11)
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Also, if the minimum magnitude is 0.0, from equation (2-9),

M = b£nl0 ' (2‘12)

At this point it is important to recognize that the for­

mulae developed through equation (2-12) indicate that the 

sequence of magnitudes described by equation (2-3) can be 

shown to be Poisson distributed. N'(M) in equation (2-11) is 

in the form of equation (1-3) with mean given by b£nl0. The 

continuous variable q has been replaced by the discontinuous 

variable M. M is associated with each point event in the same 

way that the quantity (q^ + ̂ ~ q^) is. According to Theorem 

2B of Parzen (1962) , if the occurrence intervals (the values 

of M) are exponentially distributed with mean 1/A, and if the 

occurrence intervals are independent, identically distributed 

positive random variables, then the process N'(M) is a 

Poisson process with intensity X. The two conditions of this 

theorem are well satisfied by the general success with which 

the exponential distribution of equation (2-4) describes any 

time-sequential grouping of magnitudes.

The recognition- that earthquake magnitudes may be des­

cribed by the Poisson process, with all its attendant mathe­

matics, suggests that the four axioms of Chapter I should be 

applicable. Reformulated in terms of magnitude, the assump­

tions are as follows:
1„. there is no causal connection between eventsM

of different magnitudes;
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2jyj- the probability of occurrence of an event is 

a small constant greater than zero;

3jyj. there is a minimum magnitude for the data set 
considered; and

4jyj. the distribution of magnitude is constant over 

the order of occurrence in the sequence. 

Although these axioms and the Poisson process are found to 

aPPly generally to all earthquake magnitudes, instances exist 

when one or more axioms do not apply, as for aftershock se­

quences. These cases will be examined in detail later in 
this chapter.

It may then be concluded from the foregoing that for a 

given sequence of magnitudes, the number of events within 

each magnitude class is a Poisson-distributed random vari­

able. From equation (1-2), the probability distribution of 

the number n of events with magnitude M-±AM is given by

-n(MP  ,n e n (M- )
p(n) = ----- HI--- —  ’ * (2_13)

n(NF) is the mean number of events obtained from equation 

(2-8). Using the additive property of Poisson processes, the 

number of events with M - M- - AM is also Poisson distributed. 

This distribution was noted to be empirically true by Utsu 

(1961) after Suzuki (1958).

The maximum likelihood estimator of b and its confidence 

limits can now be derived. From the distribution function
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equation (2-11), the probability density function f(M) is 
obtained:

in which b' = b£nlO. Since magnitude will again be measured

in finite classes, successive integration over the limits

(M-AM), (M+AM) between M and M results in the discreteo m
equation

(l,...,k), M = M, - AM, and M = Mv + AM. o x  m k

For large samples, the parameter b calculated by maxi­

mizing its joint probability distribution (equation 2-15) is 

at least as good as other estimates of b (von Mises, 1964).

It will be found later that, even for very small samples, 

the maximum likelihood technique is accurate but with large 

error limits. By finding

the maximum probability with respect to b' can be found for 

each magnitude M^. Since f(M^) is an exponential function, 

it will be computationally easier to first take the 

logarithm:

For all the values of M^, the maximum joint likelihood becomes

(2-14)

f(M.) = ^
b' AM -b'AM. -b'M. )e le 2-15)-b'Moe

Again, M^ is the central value of each class, and, for i

(2-16)
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Eyi = 9 ^  £n^fCMi) = 0 • (2-17)

When evaluated using equation (2-15),

-b'M
2b' AM M e

AM -e„....+ 1 + - 0
■b'M

M em
m

2b' AM -b'Mo -b'Mm

EM.l
N = 0 (2-18)

e - e

is obtained. This equation may be solved directly for the 
maximum likelihood estimator of b', but several simplifica­

tions are possible. In the first term, the quotient of ex­

ponentials may be expanded in a power series. When evaluated 

for a range of values of 2b'AM, this term may be replaced by 

1/Kb' with K listed in Table 2-1 (after Utsu, 1971). No cor­

rection is needed for 2bAM less than about 0.4. When the 

magnitude range Mm - Mq is larger than 2.0, the second term 

may be set equal to Mq with less than a few percent error in 

b'. Thus, for a large magnitude range, equation (2-18) 

reduces to

.4343Kb =
M(Mq)

(2-19)
M

For small magnitude intervals, K = 1, and this equation is 

the same as equation (2-10) obtained by calculating the 

average magnitude.

As Aki (1965) showed, confidence limits for b are easily 

derived. The central limit theorem (Hahn and Shapiro, 1967) 

states that "the distribution of the standardized mean of n 

independent observations from any distribution with finite 
mean and variance approaches a standard normal distribution
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TABLE 2-1

2b AM K
0.0 1.000
0.1 1.004
0.2 1.017
0.5 1.059
0.4 1.070
0.5 1.1CS
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as the number of observations in the sample becomes large." 
The mean of y^ is zero, using equation (2-16).

The variance is found to be 

1 (M - M ) m oJn2 -
° l A ' 2 + b"' (M -M , b ’ (M -M )

K b  2 - e m ° )  _ e o nr

Then, from the central limit theorem, the function

A

( 2 - 20)

n A
a/n

( 2- 21)

n

is distributed according to the standard normal distribution, 

with mean equal to zero and standard deviation equal to one. 

The confidence limits are then given by (Hahn and Shapiro, 
1967): A

o / n
* tc£,n-1 ( 2 - 2 2 )

The expression (equation 2-18) is inserted for Ey^ to obtain 

(after Page, 1968)

-b’M -b’M
i i M e

_!_ r_ L _  +

/iT [Kb’

- M e m
m EM-

-b'M -b'M
- e m N

L 2 2K D' Z 2 - e

(M - M )Z 1/2v m oJ i '
+b'(M -M ) b'(M -M )J  ̂ m oJ v r> m-'- e o nr

* tc£,n-l (2-23)

The inequality (equation (2-23) is solved for b' to obtain 

the limits. Typically, 95% confidence limits are used, thus
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giving the range of value of b' such that the probability is

0.95 that the "true" value of b' lies within the range.

Confidence limits permit the estimation of fluctuation 

of the value of b due to random variations in n(M^), the num­

ber of events per magnitude class. The approximation made in 

calculating the confidence limits was that n(NU) is normally 

distributed. As was found earlier, the distribution is actu­

ally Poisson; but near the mean, even for quite small numbers, 

the two distributions are quite similar with no extreme devi­

ations. Thus, the confidence limit calculations should be 

correct for arbitrarily small numbers of events.

A statistically proper test to compare b-values from two 

sets of data was discussed by Utsu (1966). For two sequences

with b-values b and b, , b, <b , which were calculated witha b ’ b a ’
numbers of events n and n, , the ratio b, /b is tested fora b ’ b' a
the hypothesis that the b-values are equal. Utsu (1966) 

showed that the ratio is distributed according to the F dis- 

tribution with 2n& and 2n^ degrees of freedom. Thus, the 

difference in b-value is significant at the 100a! level if

’a(2nb ,2na) (2-24)

The preceding method for comparing b-values is not 

necessarily sensitive to the seismologically significant 

difference in b-value. For example, two pairs of b-values, 

(0.5, 0.8) and (0.9, 1.2), have the same arithmetic differ­

ence but ratios of 1.6 and 1.33, respectively. In later



discussions in this chapter, several factors which could 

affect the "baseline" level of b are discussed. In princi­

ple, comparisons with different baselines should be performed 

with a ba-b^ test rather than a b^/ba test. Cox and Lewis 

(1966) discuss a different test appropriate for Poisson 
parameters. The confidence limits are given by

21

b - b, a b ± t
b 2£nl0 b 2£nl0 "c£,n-l_________ (2-25)

n n.- - iia b

For large sample sizes, this quantity can be assumed to have 

zero mean and unit variance. Cox and Lewis (1966) suggest 

that this distribution is well behaved even when the number 

of events is small.

Magnitude-Frequency Analysis: Techniques 

and Interpretations

The calculation of b-values is important in several re­

search areas. Scholz (1968), following Mogi (1962), noticed 

an inverse relationship between compressive stress and b- 

value in laboratory fracturing experiments. Thus, the deter­

mination of a statistically significant low b-value for cer­

tain earthquake sets may be an indicator of high stress and, 

therefore, a predictive factor for large earthquakes. The 

good fit of an earthquake sequence to the linear recurrence 

law can also allow the selection of a complete earthquake 

sample. If it can be demonstrated that the low-magnitude
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curvature often observed for recurrence curves is caused by 

the incomplete recording of small events, then a statistically 

complete sample (i.e. a sample including all events larger 

than a cutoff magnitude M ) can be obtained by determining 

the magnitude at which curvature begins. The definition of 

Mq for each data sample must satisfy Poisson axiom 3^. Com­

plete samples are important in the study of earthquake time- 

interval distributions and of earthquake triggering 
hypotheses.

The assumed linearity of the magnitude - frequency dis­

tribution must also be evaluated for each sample. Curvature 

of "knees" may indicate an anomalous seismic region, or 

simply a bias or error in calculating magnitude. Axioms 1^, 

2^, and 4^ of the Poisson process are violated by the occur­

rence of curvature. The behavior of the distribution for 

large earthquakes is often difficult to evaluate: should the 

largest events be included or excluded from a sample; is 

there a "maximum magnitude" for a particular region; do main- 

shocks belong to the same statistical population as after­

shocks? The inclusion of "trigger" events violates axioms 1M 

and 4m , but because of the small number of large events typi­

cally involved, there is often no significant distinction 

that can be made in terms of Poisson behavior.
All of the preceding examples depend on recognizing the 

occurrence of and deviation from Poisson behavior of the mag­

nitude distribution of earthquake data sets. In many earlier
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studies, emphasis has been placed on determining b-values by 

various methods. The consideration here will also include 

examination of the detail of deviations from purely Poisson 
distributions of magnitude.

The methods available to calculate b-values, namely, 

visually fitting or least-squares fitting of straight lines 

to data samples plotted according to equations (2-3) or (2-7) 

or estimating b by the maximum likelihood technique, are used 

and evaluated in the following sections of this chapter.

There are particular features of earthquake magnitude dis­

tributions which are of critical importance in applying the 

assumptions of Poisson behavior. In order of discussion 

these are: large-magnitude distributions, small-magnitude 

distributions, statistics of data grouping, and magnitude 

determination. Earthquake data sets from the literature are 

interpreted with respect to the details of their Poisson 

behavior.

Effect of Large Events. The largest events in an* earthquake 

sample present several special problems for recurrence curve 

parameterization depending on the randomness or nonrandomness 

of their occurrence. As was discussed earlier (equation

2-13), the number of events that occur in a fixed time inter­

val within a fixed magnitude range is expected to be Poisson 

distributed. The Poisson curves superimposed on the two re­

currence curves for n(M) and N(M) in Figure 2-1 illustrate 

the process of random variations in number of events. The
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Figure 2-1. Magnitude - frequency curves for the random- 
number generated data in Table 2-2. Closed circles are 
for cumulative plot and open circles are for incremental 
plot. The Poisson distributions also shown are calculated 
for the values X = 1 and X = 10.
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data composing the curves are taken from a random-number gen­

erated set of magnitude - frequency data with b = 1.00 used by 

Utsu (1967) and listed in Table 2-2. Because the number of 

events per magnitude class varies in integral amounts, a 

fluctuation of one event in the large magnitude groups con­

taining only a few or zero events represents a very large 

deviation with respect to the Poisson distribution. The 

actual number of events may be much different from the most 

probable (not necessarily integral) number. For the incre­

mental curve to the left it can be seen that there is a great 

deal of scatter in all the magnitude classes. This fluctua­

tion makes visual curve-fitting very difficult for the incre­

mental plot. In the case of the cumulative curve, however, 

the fact that as magnitude decreases the number of events in 

each group increases puts small number fluctuations rela­

tively closer and closer to the distribution mean. This 

averaging of the random variations is readily apparent in the 

linearity of the points above 20 cumulative events. A 

straight line has been eye-fit to the cumulative curve as 

shown, and its slope has a b-value of 1.08.

An alternative to using visual fitting to determine the 

slope of a recurrence curve is to apply a least-squares tech­

nique. In the case of the incremental plot, for all magni­

tude intervals the random variations are large. Also, the 

values of log n(M) cannot be included in the regression when 

n(M) = 0, so the data must be truncated to exclude such



TABLE 2-2

M n (M) N (M) M n(M) N (M)
0.0 28 100 1.3 3 7
0.1 10 72 1.4 1 4
0.2 11 62 1.5 0 3
0.3 6 51 1.6 0 3
0.4 12 45 1.7 2 3
0.5 7 33 1.8 0 1
0.6 5 26 1.9 0 1
0.7 3 21 2.0 0 1
0.8 4 18 2.1 0 1
0.9 1 14 2.2 0 1
1.0 0 13 2.5 0 1
1.1 4 15 2.4 0 1
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points. In this example, the truncation occurs at M = 0.9, 

leaving only 10 points to which a line could be fit. Yet the 

other 16 points certainly contain valid information. Also, 

using unweighted least-squares assigns equal significance to 

both large and small numbers of events. More weight should 

be assigned the intervals with larger numbers of events to 

minimize random fluctuations, as in the Deming least-squares 

technique discussed by Utsu (1967). However, the weights 

would need to be varied according to the number of events per 

group and the total number of groups, a rather complex and 

arbitrary procedure.

The cumulative plot is much more amenable to least- 

squares. Again, weights would have to be assigned to reduce 

the computational significance of 1arge-magnitude groups.

But the well-defined linearity of the smaller events suggests 

that an unweighted fit could be calculated for N(M) greater 

than 10 with fairly small standard deviation. The standard 

deviation does estimate the quality of the fit, but, since 

some data was not used in the computation, it is not a satis­

factory measure of the accuracy of the b-value.

There is another difficulty with use of the cumulative 

plot. Although random errors in the magnitude intervals 

would approximately average out as M decreased, whatever 

small error did not disappear would accumulate as N(M) in­

creased. Ryall and others (1968) tested the effect of remov­

ing the largest event from the 250-event Truckee sequence
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with M - 2.2. They obtained an increase in the value of b 

from .77 to .81, which is to be expected from a decrease in 

the number of large events in a cumulative plot. An estimate 

of the possible cumulative effect of random fluctuations in 

each magnitude group can be taken from a table of cumulative 

Poisson probabilities (Hahn and Shapiro, 1967, p.157). Utsu 

(1961) used this random fluctuation to obtain error limits 

on the value of b; his limits were very large because he 

assigned equal weight to the numbers of large-magnitude 

events. As can be noticed in Figure 2-1, the high or low 

fluctuation in numbers of events per magnitude class is 

biased to the low side; that is, the random fluctuations 

would lead to a more probable low estimation of N(M) and a 

consequently higher value of b for the cumulative plot.

The method of maximum likelihood avoids some of these 

problems. Since it uses the incremental rather than cumula­

tive values of n(M), cumulative random error biases do not 

occur. And since all values of n(M) are used, including 

zero, the data-fitting difficulties of regression techniques 

are avoided. The b-value obtained for Utsu's (1967) random- 

number data using the maximum likelihood estimator is .95, 

with confidence limits ±.19 giving a measure of the random 

data variation, not the quality of linear fit.

In interpreting the meaning of the confidence limits 

just given for b (.95 ± .19), it is important to recall that 

these limits were calculated on the assumption of normally
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distributed events in each magnitude class. From Figure 2-1, 

it is apparent that the statistical behavior for small sam­

ples is not a good approximation to normal behavior. Thus, 

the assumption of normally distributed deviations used to 

calculate the confidence limits of b (equations 2-16, 2-17, 

and 2-21) is not necessarily accurate for the few largest 
events.

The question of the statistical behavior of the few 

largest events of a sequence and whether or not to include 

them in b-value calculations can be examined from an empiri­

cal basis. For aftershock sequences, Utsu (1969) notes that 

in many cases the main shock is too large to be included in 

the recurrence curve of the aftershocks. He suggests that 

the main-shock occurrence mode may be quite difference than 

that of the aftershocks. In fact, earthquakes with after­

shocks are characterized by their nonrandom behavior with 

respect to the aftershock sequence: they determine the 

starting point of an exponentially decreasing rate of occur­

rence of events. However, Ryall and others (1966) pointed 

out that as a rule only the most active portion of an after­

shock sequence is included in the recurrence curve. The 

events which occur many months and years before and after 

the main shock are not completely included and may account 

for the apparent exceptional behavior of the main shock. 

Long-term distributions of larger events in the western 

United States do not suggest that main-shock and aftershock



recurrence curves are significantly different (Ryall and 
others, 1966) .

Other earthquake occurrence patterns, such as swarms and 

secondary aftershock sequences (Utsu, 1969), may present 

similar inclusion-exclusion questions with respect to the 

largest events. An example of this is a swarm of several 

thousand detected earthquakes which occurred near Danville, 

California, in 1970. Bufe (1970) analyzed the largest 986 of 

these events to investigate the possibility of time-varying 

b-values. Using the maximum likelihood estimator on succes­

sive groups of 50 events, Bufe found large fluctuations in b 

(from 0.6 to 1.17) with extreme values occurring near the 
times of large events.

To test this conclusion, a reanalysis was performed 

using the list of Danville events in Lee and others (1971). 

The 374 events in the magnitude range of 1.1 to 4.3 were 

divided into groups of 50 and are plotted cumulatively in 

Figure 2-2. The b-values associated with these curves are 

given in Table 2-3. Visually the curves are quite different, 

and Bufe's conclusion that significantly different values 

occur at the times of large events seems to be substantiated. 

However, if the large events greater than or equal to M = 3.1 

are not included in the calculation, the b-values given in 

the second row of Table 2-3 are obtained. The b-value for 

the entire sequence is .70 (which was also that found by Lee 

and others, 1971, using visual fitting) with associated 95%

30
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f igure 2 2 .  Cumul/rllve magnitude-frequency plots for 50-event  
juiii'tntm of  the Danvil le swarm. Subset H Is composed of  25 
o v on l it I rnm subsol 7 plus tho l as t  25 events.  Sot 9 is  the 
plot I'o i nil the da l n , O d



TABLE 2-3

50-event group b (all M) b (M -

1 0.74 0.74
2 0.55 0.68
3 0.82 0.82
4 0.50 0.69
5 0.60 0.70
6 0.7S 0. 78
7 0.96 0.96
S 0.80* 0.80
g 0.70

*
Group 8 is conposed of the last 25
events frcs group 7 plus a final 
25 events.
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confidence limits .58 and .89 for 50 events. Samples 2, 4, 

and 7 with large events included lie outside these limits; 

yet with large events excluded, only sample 7 is too large. 

Application of the F test for sample 7 indicates it also 

comes from the same distribution, with 951 certainty. There­

fore, since none of the differences in b-value with the 

largest events excluded are statistically significant, the 

conclusion is drawn that the slope of the recurrence curve 

does not change significantly for the 50-event samples. For 

the Danville swarm, Bufe's conclusion is found to probably 

have resulted from the occurrence of the largest events 

within the swarm. From Table 2-3, there is a trend seen to

higher values of b later in the swarm. The significance of 

this trend is a moot question, however, since it is not 

supported statistically. Another point of importance is 

that the maximum likelihood b-value calculated for the en­

tire sequence does change somewhat when the largest events 

are excluded--it increases to .76, which is within the 951 

confidence limits of .70 with 374 events. The change is not 

considered meaningful- and is due to a slight reduction of 

the value of M(M ) in equation (2-10) without the appropriate 

correction as in equation (2-19).
The preceding discussion has shown the mathematical ease 

and statistical value of using the maximum likelihood esti­

mator to calculate b-values. From the example of the 

Danville sequence one can appreciate that the occurrence of
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the larger events of a data set may perturb the magnitude 

distribution of subsets of that sequence. The use of equa­

tion (2-18) in its general form allows for specific consi­

deration to be made of data sets truncated at their upper 
magnitude ends.

Small Events Distributions. The ability to determine com­

plete catalogs of earthquakes is essential to the analysis 

of many aspects of earthquake occurrence patterns. A com­

plete catalog is defined as the set of all events in a 

temporally continuous earthquake sample with magnitude larger 

than a cutoff magnitude, M . It has been noticed that there 

does not appear to be any minimum magnitude to which the ex­

ponential model, equation (2-7), does not apply (Page, 1968). 

That is, increasing the sensitivity of a recording system 

simply extends the magnitude range of the linear portion of 

the curve. Yet, in all cases, the frequency-magnitude curve 

deviates from linearity below some small value of magnitude. 

In the case of the Danville swarm (Figure 2-2), tlie point of 

deviation is easy to pick visually on the cumulative plot and 

is denoted M . Since the point M is usually quite near the 

minimum detectable size of earthquake for the recording sys­

tem, it is concluded that the deviation from linearity is due 

to the incomplete detection of small-magnitude events. Thus, 

Mq defines the magnitude above which detection of earthquakes 

in a given region is complete.
Knopoff and Gardner (1972) have used another method to
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find Mq . Using 10,400 events in a "Southern California Sta­

tistical Area, they tested the randomness of successive 

events occurring within 1/2 magnitude unit intervals. They 

found a sharp change from significant randomness to a signifi­

cant nonrandomness for the catalog at M = 3-3/4, which is 

quite consistent with the network density and sensitivity for 

the 1934-1967 period. This technique has the disadvantage of 

requiring very large samples to which to apply the statistical 
test.

The incomplete recording of small events presents a

serious difficulty in determining the slope of a recurrence

curve when it is not possible to pick M and still leave ao
"complete" catalog which is large enough to be accurately ana­

lyzed. Determining Mq depends on two interrelated factors: 

magnitude class interval and magnitude range. Since a change 

in slope is being sought, there must be sufficient linear data 

to establish an accurate, stable value of b. Sufficiency in 

terms of total number of events will be discussed’in the fol­

lowing section using confidence limits. The magnitude range 

must also be subdivided in such a manner that a point of slope 

change may be observed. Thus, the accuracy of determination 

should be within an interval 2AM over the range of magnitude 

Md. If M occurs in one of the intervals, there must be suf- 

ficient intervals with > Mq to establish a stable value of 

b. In practice, this condition means that there must be at 

least fouri points of linearity to clearly fix the reference 

slope against which a change may be observed. That is,
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M - M m o > .
2AM " 4 • (2-26)

Ryall and others (1968) also noted the necessity of using 

small magnitude intervals (they recommended 0.1 unit inter­

vals) to obtain accuracy in plotting cumulative magnitude 
distributions.

The data from the Danville sequence in Figure 2-2 repre­

sent an almost ideal case; it will usually be more difficult 

to pick the Mq . Using a cumulative plot is probably the most 

accurate method, provided the data are determined with a 

small AM so that any linearity can be easily recognized.

Using Knopoff and Gardner’s technique does not allow the 

analyst to take account of any possible anomalous fluctua­

tions of the distribution.

Samp1e Size. Several authors have recently considered the 

statistical significance of varying numbers of events in 

samples used to determine b-values. Ryall and others (1968) 

empirically tested subsets of the 1966 Truckee aftershock 

sequence. They concluded that samples of 50 events could 

fluctuate in b-value by 30%, while samples of 100 or more 

events produced values which were closer to the true slope. 

Utsu (1967) also noted the increased accuracy associated with 

large sample sizes by measuring the random variations in b 

of a number of samples. He suggested using the standard 

deviations obtained for different sized groups as a method 

of comparing b-values.
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As was discussed in the theoretical portion of this 

chapter, the maximum likelihood estimator easily leads to the 

calculation of confidence limits on b, which may be used for 

comparisons. Since these limits include the factor /n, the 

sample size explicitly determines the accuracy of the slope 

if the source of error is randomness in the probability dis­

tribution. Note that the number n represents the events 

actually used in the b-value determination, i.e. the number 

of events, between Mq and M , which is often smaller than the 

total sample size. Similarly, the F-test, difference test, 

and ratio test allow other comparisons of estimation accuracy 

that depend on the number of events used in each sample.

While a statistically meaningful b-value may be obtain­

ed from virtually any size sample, the confidence limits for 

small samples are so huge that comparison of slopes is almost 

meaningless. For example Suyehiro (1966) examined, at tele- 

seismic distances, the foreshocks and aftershocks occurring 

within 33 hours of the main Chilean earthquake of*1960. For 

31 foreshocks and 122 aftershocks plotted in six magnitude 

intervals and fit with- a straight line by least squares, the 

b-values he found were .55 for the foreshocks and 1.13 for 

the afterhsocks. When recalculated using the maximum likeli­

hood estimator, the slopes obtained are .74 ± .25 and 1.33 ± 

.26 for the foreshocks and aftershocks with 95% confidence 

limits. The F-test concludes that these two values are 

significantly different at the 951 level. However, they are
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ri0̂- siSnificantly different at the 991 level. The small num­

ber of events in the foreshock sample, as well as the large 

value of b for the aftershocks (the confidence limits are 

proportional to b), are the statistical sources of doubt 

about the significance of the b-value difference. In an 

earlier study (Asada and others, 1964) discussed by Suyehiro 

(1966), foreshocks and aftershocks of a magnitude 3.3 event 

were examined. Again, the small number of events (25 fore­

shocks) makes the difference (.35 to .76) not significant 

using the F-test at the 991 level. From yet another study 

(Suyehiro, 1970), b-values (.70 and .95) were recalculated 

for foreshocks and aftershocks of a magnitude 5.1 event and 

differed from Suyehiro’s (1970) values of .59 and .89 for 171 

and 876 events respectively. The recomputed values were just 

barely significantly different at the 99% level.

Suyehiro's analysis technique is poor in several re­

spects, including the small numbers of events used. The 

principal factors affecting the recurrence curve ‘slopes are 

Suyehiro's use of very wide magnitude intervals and the use 

of least-squares fitting. For the Chilean case, there were 

only five magnitude intervals over a completely recorded 

range of 1.5 units; the unweighted least-squares fit then 

produced a small value for b. For the magnitude 5.1 event, 

the range of data was large enough to compensate for the 0.3 

magnitude unit intervals, but again the least-squares fit was 

biased by large events. Also, no attempt was made to
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determine and then exclude incomplete small-magnitude 
groups.

The effect that sample size has on b calculations is 

statistically considered by means of confidence limits or the 

F-test. But the effective sample size of a given sequence 

may be drastically changed by the cutoff magnitude Mq and in­

clusion or exclusion of large events. Because each case may 

present unique problems, individual examination like that 

done for Suyehiro's foreshock-aftershock examples will be 

necessary. From the standpoint of ease of calculation, the 

use of equation (2-19) with a magnitude range greater than 

two magnitude units and a number of events greater than the 

quantity 100b is optimum.

Magnitude Determination. The parameter magnitude was ori­

ginally devised to allow comparison of earthquakes in terms 

of their energy. Richter (1958) has reviewed the development 

of magnitude scales and notes that estimates of seismic 

energy have been developed in the form

log E = 11.8 + 1.5M . (2-27)

In general, for larger-events (M - 4) a unified magnitude 

scale incorporating both body-wave and surface-wave magni­
tudes determined at teleseismic distances is used. Although 

there may be some small systematic biases (Shlien and Toksoz, 

1970), critical reviews of frequency-magnitude data (e.g. 

Isacks and Oliver, 1964; Utsu, 1969; Evernden, 1970) have 

generally established the validity of the magnitude scale in



terms of a linear, semi-logarithmic, frequency-magnitude 
distribution.

For smaller events, quite satisfactory results are ob­

tained using Richter s local magnitude relation, equation 

(2-2) . However, it has been pointed out by Eaton and others 

(1970), Thatcher (1973), and others that over a large range 

of distance, the maximum amplitude phase is not the same for 

all events. To empirically avoid such variations, the usual 

approach in microearthquake, studies is to correlate a special 

local magnitude scale with Richter magnitudes based on Wood- 

Anderson seismograph measurements of the larger events of the 

sequence. Although such procedures are followed with good 

internal consistency in general, the comparison of studies 

based on different scales is often made questionable because 

of ignored or unnoticed biases in the magnitude values with 

respect to standard scales. Several examples will be con­

sidered here.

The most carefully and consistently developed Richter 

magnitude determinations are those for the 1966 Parkfield 

aftershock sequence (Eaton and others, 1970). The earthquake 

maximum amplitudes recorded by field seismograph systems were 

corrected for seismometer response, amplifier gain, and the 

use of vertical rather than horizontal instruments to give 

equivalent Wood-Anderson amplitudes, from which M^'s were 

calculated. The recurrence curves thus developed are linear 

over two units of magnitude. Following the Parkfield

40
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earthquake study, the increasingly dense network of stations 

installed and operated by the U. S. Geological Survey re­

sulted in the data sample from central California introduced 

in Chapter I. Magnitudes for these events were determined 

(Lee and others, 1972) by measuring the coda length (F - P 

time) of the events at many stations, then correlating these 

averages with Wood-Anderson magnitudes and magnitudes calcu­

lated by Eaton’s technique. The F-P magnitude technique is 

principally an empirical one, though Aki's (1969) interpre­

tation of local earthquake codas as scattered waves provides 

some theoretical support. Magnitudes greater than 3.5 for 

the central California data were obtained only from Wood- 

Anderson instruments in the area. The recurrence curves for 

various portions of the San Andreas fault system using this 

data are shown in Figure 2-3. For most samples, there is a 

pronounced curvature of the data, beginning at magnitude 3.5 

and extending smoothly to the left, to M = 0, with no clear­

ly defined M . This is surprising, since the Danville se­

quence to the north on the Calaveras fault (Figure 2-2) and 

the Parkfield area to the south are characterized by well-

determined b and M values. Thus, the offset in the curve ato
M = 3.5, as well as the curvature itself over a magnitude 

range that should exhibit linearity, strongly suggest that 

there is a bias in the values of the magnitudes rather than 

a valid nonlinearity.
There are several factors which may explain the smooth



Figure 2-3. Cumulative magnitude - frequency plots for the five regions 
in central California shown in Figure 1-2.. Horizontal scales at the 
top of each curve represent one magnitude unit; the vertical scales 
represent one-half order of magnitude change in number of earthquakes.
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deviation. In Figure £ of Lee and others (1972), the data 

sample from which the duration-magnitude rule was derived 

shows a deviation in the same direction as here observed, al­

though much smaller. Also, the comparison sample is composed 

of events occurring primarily north of the Calaveras-San 

Andreas junction, while only approximately one-fourth (231) 

of the activity covered by the catalog discussed here occur­

red south of the junction. Twenty-two percent of the com­

parison sample is composed of 79 Danville events, which 

occurred at an almost constant focal distance from the array 

stations. While the F-P magnitudes behaved linearly for the 

Danville data (Figure 2-2), the linear behavior seems subject 

to some regional bias within the San Andreas zone. The re­

currence curves in Figure 2-3 for regions that were repre­

sented in Lee’s comparison sample (in particular the Calaveras 

and Sargent zones) are more linear that the San Andreas, San 

Andreas North, and central California distributions. In 

fact, for the latter three zones, the skewness o£ the magni­

tude distributions reduces significantly the value of the 

data in terms of obtaining values of b and M . In addition, 

there is an element of arbitrariness in routine magnitude 

determination at the U. S. Geological Survey. The measure­

ment of durations has not been taking place for all stations 

which clearly recorded an event (Karen Meagher, USGS, personal 

communication, 1973). Only certain stations that have been 

found to produce generally consistent duration magnitudes are

43

used.
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An alternate method is sometimes used that avoids the 

specific difficulties of calculating Richter magnitudes. In­

stead of using Richter s formula for magnitude (equation 

2-2), the logarithm of the measured amplitude (either zero- 

to-peak, or peak-to-peak) is plotted with respect to number 

of events. Thus, the response characteristics of the re­

cording system that differ from a Wood-Anderson horizontal 

seismometer are ignored. For several sequences recorded by 

the University of Nevada field systems, this was chosen as . 

the easiest method for determining recurrence curves. The 

sequences from Adel and NTS shown in Figure 2-4 were recorded 

on the tripartite field system described in the introduction. 

The events were reproduced on a Geotech helicorder and were 

counted by maximum amplitude groups. To justify neglecting 

the system response, it was noted that for microearthquakes 

with magnitudes between approximately 0.5 and 2.5, the peak 

spectral frequencies lie within the flat (±3db) portion of 

the recording system response (Douglas and Ryall,* 1972).

This frequency range corresponds to the flat portion of the 

Wood-Anders on response. For a range of magnitude which is 

usually sufficient (about 2.0 units), no amplitude correction 

for variation in focal distance is necessary if the ratio of 

the focal distance range to the average focal distance is 

less than about 0.8. For larger distance ranges, a correc­

tion in amplitude due to geometrical spreading would have an 

effect over more than 0.3 units of magnitude, causing a
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Figure 2-4. Cumulative magnitude - frequency plot 
for (a) the Truckee aftershock sequence. Cumu­
lative amplitude - frequency plots for (b) Adel, 
Oregon, swarm earthquakes and (c) NTS Boxcar 
afterhshocks.
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reduction, by this amount in the usable magnitude range. For 

the NTS data, the ratio is one-third, causing magnitude 

errors over a range of 0.2 magnitude units, which is of 
little concern.

It was concluded by Ryall and Savage (1969) that there 

was a significant difference in b-value between NTS after­

shocks (b = .62) and other Nevada seismic activity (b = 0.8 

to 0.9). Additional studies of NTS aftershocks have sug­

gested a further interpretation of the unusually low b-value. 

Hamilton and others (1972) presented recurrence curves for 

aftershocks of four other underground nuclear tests. The 

magnitudes were calculated using a locally calibrated 

duration-magnitude relation. Hamilton and others (1972) 

found that all four recurrence curves showed high b-values 

(1.4) for events greater than M = 2.0. Between magnitudes 

1.0 and 2.0, which is the approximate magnitude range for the 

Ryall and Savage curve, there is a flattening of the curve to 

a b-value between 0.2 and 1.0, then a slow decrease (due to 

incomplete detection) to the minimum recorded magnitudes. In 

the Ryall and Savage data (Figure 2-4), only the low b-value 

range is apparent, with an increase in slope for larger mag­

nitudes. While Hamilton and others (1972) suggest that the 

larger magnitudes may be underestimated so that the slope 

should be closer to 1.0, the abnormally low value for the 

range of 1.0 to 2.0 determined by two independent groups sug­

gest that it is real. A discussion of this knee in the
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recurrence curve as a possible indicator of fracture distri­

bution will be presented at the end of this chapter.

The preceding several examples serve to illustrate the 

kinds of errors and the details of data evaluation associated 

with magnitude determination when doing a mathematically and 

seismologically proper magnitude-frequency analysis. A sig­

nificant characteristic of a useful magnitude-determination 

procedure should be the fit of those magnitudes to a linear 

recursion curve. Instances of nonlinear distribution suggest 

either statistically incomplete data, biased magnitude values, 

or a highly atypical earthquake occurrence mechanism. The 

details of non-Poisson statistical behavior can provide the 

means of discriminating its source.

Physical Model. There remain the fundamental questions of 

what b-values mean and on what they depend. According to the 

fracture theory of earthquakes, a seismic event is caused by 

a sudden drop of stress level on a fault surface (Mogi, 1967; 

Brune, 1970). The Gutenberg-Richter law is an empirical ob­

servation of the fracture process, which may be examined from 

both laboratory and theoretical viewpoints.

Scholz (1968) has determined from fracturing of labora­

tory rock specimens that the value of b depends inversely on 

the level of compressive stress. He attributes high values 

of b in the laboratory (1.0 to 2.5) to crack closing and 

frictional sliding. Lower values (0.5 to 1.0) are consider­

ed to be due to the propagation of new fractures. In the
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latter range, Scholz follows Mogi (1962) in relating this 
occurrence to that of earthquakes.

As a theoretical model, Scholz assumes a simple (approxi­

mately normal) distribution of local stress within an in­

homogeneous medium subject to a uniform applied stress. This

immediately leads to an exponential distribution of fracture 
2 . .area., r . Assuming simple relations between fracture area 

and strain energy, the Gutenberg-Richter law is derived, in 

which the parameter b is inversely proportional to stress.

The fracture area distribution can then be written, using b, 
as

2 2 +n(r ) = G- (r ) . (2-28)

Finally, Scholz suggests that only the scale of the medium 

inhomogeneities may be different between microfractures and 

earthquakes, so variations in b-value for crustal fractures 

should represent differences in stress level.

An alternative approach to the meaning of recurrence 

curves may be taken from Brune's (1970) source model. Using 

this theoretical description of source function and energy 

propagation, it is possible to relate seismic energy and mag­

nitude to other parameters. Hanks and Wyss (1972) summarize 

the use of earthquake spectral measures in Brune's (1970) 

model to determine source parameters. Using their results, 

with P-wave energy considered negligible, total energy is 

given by
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where

E (const) M 2f 3 mo o (2-29)

Mmo = Aar3 ^ • f _ G.Aar — , f ; e = Aa
:e££

(2-30)

and where represents seismic moment. Converting energy 

to magnitude with equation (2-27), an equation relating mag­
nitude and source parameters is found:

4/3 2/3r (f - |)M = (const) (Aa)

Thus, in the Gutenberg-Richter relations,

(2-31)

4/3 2/3
log N = A - b(const)(Aa) r2 (| - |) . (2-32)

This equation is similar to the distribution of crack area 

found by Scholz (equation 2-27), but it is the product of 

stress drop and source area which is exponentially distribu­

ted. Equation (2-32) is similar to the result obtained by 

Wyss (1972), in which he also noted the basic importance of 

the product of source dimension and stress drop.

Using the third of equation (2-30), it can be noticed 

that b is inversely proportional to effective stress level,

4/3 ? 7 7 2/3
log N = A - b (const) (eae^£) r (— - -j) (2-33)

for each value of log N.

Several results may be noted from equations (2-32) and 

(2-33). Although there is sparse data on stress drop, effec­

tive stress and source area, in the same region over large 

magnitude ranges, stress and stress drop may be assumed
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constant or simple linear with r2 (Wyss and Brune, 1968).

Fiom this, one finds that the distribution of crack size is 

exponential, and the constancy of b (~0.9) for most crustal 

earthquakes implies that the fracture distribution, or degree 

of inhomogeneity, is about the same for all fracture zones 

over the entire range of magnitude (Mogi, 1967). The excep­

tional knee in the NTS recurrence curve (Figure 2-4) may thus 

be interpreted as a structural regularity in the upper 5 

kilometers of the crust. The regularity should be on the 

order of a kilometer in dimension based on the appropriate 

source size of a magnitude 2.0 earthquake (Douglas and Ryall, 

1972). Mogi (1967) has noted such knees for several regions 

in Japan. Alternatively, with a given sequence, a change in 

the functional relationship (equation 2-31) at a particular 

magnitude could also be the source of non-Poisson features of 

the magnitude distribution. For the NTS data, a predominant­

ly smaller stress drop for the larger events could also cause 

the knee. Accumulation of much more statistical 'data will 

be necessary prior to a clear understanding of the relation 

between stress, stress drop, and source dimension and their 

influence on earthquake b-values.

The parameter b has been found to theoretically and ex­

perimentally vary inversely with stress. From Scholz' (1968) 

measurements of the change in b for microfractures in rock 

samples under compressive stress, the maximum change is not 

more than a factor of two, in general. Smaller stress
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changes produce a less obvious effect. In particular, Scholz 

found that the change in b-value between 80% of fracture 

stress and 100% fracture stress is as small as 2 to 8% for 

higher confining pressures in triaxial tests. The change in 

b between 50% and 100% of fracture stress is larger, 19 to 

33%. Detecting such small differences at the 99% level with 

the F-test would require high and low stress samples with 

thousands of events for the 80% case and at least hundreds of 

events for the 50% case. The change in b for a large change 

in percent of fracture stress, for the laboratory case, is 

slight, and is statistically supportable only with large 
s amp1e s .

The earlier discussion considered several examples, 

namely, research by Bufe (1970) and Suyehiro (1966, 1970), in 

which low b-values were found. It was shown that in both 

cases there was some indication of low b prior to times of 

large energy release, but the statistical substantiation of 

differences in b was, at best, not conclusive. TVie Danville 

swarm showed a trend to higher b-value which was not statis­

tically significant, and the greatest foreshock-aftershock 

differences were barely significant at the 99% level. In an 

additional example, variations in b-value were noted for 

several areal subdivisions of the 1966 Parkfield aftershock 

zone (Eaton and others, 1970). For events along the south­

east portion of the slip surface, lower b (.73) was observed 

for events deeper than 6 kilometers, while higher b-value
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(.94) was found for shallower aftershocks. This trend is not 

supported at 95% by a statistical significance test.

There is some question as to the reasonableness of lower 

stress observations expected for aftershocks. As was noticed 

for the Parkfield events (Eaton and others, 1970), after­

shocks occurred chiefly on the edges of the slip surface, 

presumably where stress concentrations exist. Thus, the 

stress level for most aftershocks may not be significantly 

different than the pre-main-event stress level and conse­

quently not detectable with recurrence curves. However, it 

may be that the effective stress level would increase with 

depth, which the tendency to lower b with depth at Parkfield 

supports. The trend to higher b with time during the Dan­

ville sequence suggests a lowering of stress in the focal 

zone, but the statistical fluctuations are so large that no 

interpretation can be firmly drawn.

Conclusions

On an empirical basis, Richter magnitude or an equiva­

lent is found to be a generally independent variable which is 

Poisson distributed over all the events of a sequence. In 

the hundreds of existing studies of earthquake magnitude sta­

tistics, emphasis has been placed chiefly on the determina­

tion of the parameter b and the comparison of b-values among 

various data sets. The approach here has been, however, to 

focus on various non-Poisson aspects of magnitude distribu­

tion. Prior to use of the statistically best maximum



likelihood estimator of b, the following items should be
evaluated:

1. The value of M^, the smallest completely detected 

magnitude, must be determined. This satisfies Poisson 

axiom 3^. The minimum detection level in the seismic 

recording system should be compatible with M .

2. The possible incompleteness of the largest events of 

the sample may require special consideration. The 

occurrence of a trigger event clearly violates axioms 

1̂,, and 4V,. The general maximum likelihood estimator, 

equation (2-18), allows the sample to be restricted to 

exclude the largest events to improve the quality of 

the b-value estimation. Specific large magnitude 

problems include the question of inclusion of main- 

shocks in a sequence and the possibility of a maximum 

magnitude limit M in a geologic region.

3. Any nonlinearities in the magnitude distribution be­

tween M and M are contrary to axioms' 1.,, 2„, and -,fo m -i -'1 XL
of the fundamental Poisson assumptions allowing the 

use of equation (2-18). Evaluation of cumulative plot 

of magnitude versus number can reveal such nenlrreari- 

ties as magnitude biases of "knees' in tne recurrence

curve.
4. There are a number ot sinplirications or equation

T2-1S) made mcssxhle bv various cata celiec__—  — -

niques and the use of large number or events.

53
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5. The non-Poisson details summarized above have 

cance in gaining further understanding of the 

tionship that stress, stress drop, and source 

have with magnitude-frequency distributions.

signifi-

rela-

dimension



CHAPTER III. OCCURRENCE TIME MODELS AND AFTERSHOCKS
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In this chapter, time-series created by the occurrence 

of earthquakes are examined in detail. Previous research has 

indicated that within specific regions over differing time 

periods earthquake occurrence appears to be a generally ran­

dom phenomenon. Yet there are many groups of shocks, such as 

aftershock sequences, that exhibit substantial nonrandomness.

The general temporal distribution of earthquakes in com­

plete catalogs is modeled here as the combination of three 

processes: (1) a steady-state or slowly rate-varying process

of random events, (2) strongly time - dependent processes of 

random events (aftershocks and swarms), and (3) nonrandom 

clustering of closely related earthquakes. As in the preced­

ing chapter, the aim of this investigation is to extract 

seismological understanding from the observed statistical 

behavior. In a historical review of time-series observations, 

the first two portions of the general temporal moclel are des­

cribed and evaluated. The occurrence of clustering is then 

investigated in detail in Chapter IV using the data from 

Nevada and California discussed in Chapter I.

Historical Review

Earlier seismological investigators studied time-series 

patterns of earthquakes with the objective of discovering 

causal processes. Consequently, correlations were tested 

with every conceivable physical phenomenon, such as climatic
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variations, sunspot cycles, barometric pressure, temperature, 

rainfall, solar and planetary influences, and tidal stresses. 

Since many of these phenomena are periodic or approximately 

so, a commonly used technique was to examine the earthquake 

series for periodicities, then correlate whatever significant 

periods were noticed with other occurrences with the same re­

currence periods. Aki (1956), Van Wormer (1967), and Malone 

(1972) have comprehensively reviewed past literature discus­

sing periodicities and external trigger phenomena.

In general, this approach is highly unsatisfactory, 

since a positive correlation of two time-series says little 

about any possible causal connection between the two phenome­

na except that their occurrence times happen to coincide. In 

particular, examination of earthquakes as a phenomenon "caused" 

by some physical process such as those listed above is fraught 

with many possible errors due to unknown ancillary relation­

ships which may actually contain causal connections or to 

spuriously high correlations caused by internal statistical 

dependencies within the earthquake sample. With respect to 

the latter, Jeffreys (1938) pointed out that "any tendency of 

earthquakes to stimulate one another after short intervals of 

time will lead to an increase of the random amplitudes ex­

pected to be obtained in a Fourier analysis." Malone (1972) 

also noted an instance in which the observation of tidal 

periods within an aftershock sequence appears to have been 

the product of an unusual burst of activity in the sample

used.
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It has long been noticed that large earthquakes are 

usually accompanied by foreshocks and aftershocks. In 1894, 

Omori (discussed in Aki, 1956) observed that the number of 

aftershocks of the 1891 Nobi earthquake in Japan decreased 

hyperbolically with time. Later researchers corroborated 

this observation (Utsu, 1961), which has led to a general 

rule for the number of aftershocks occurring in a unit time 
interval given by

n (t) = A (t - 8) ~P , (3-1)

with A, B, and p constants for the sequence, and t the tine 

after the main shock. Other less regular temporal patterns 

have also been investigated, but as Conrad concluded in 1952 

(Aki, 1956), "besides the law of decrease of aftershocks, 

there is not a single trend that one can be certain of."

Beginning very early in the twentieth century in Japan, 

the hypothesis of independence among very large events was 

tested by comparing the given sequence with a simple Poisson 

distribution. The events In the catalog were counted in 'some 

arbitrary time interval, then plotted along with a Poisson 

distribution that was calculated using the rate parameter 

given by the total number of events divided by the total mime 

Interval of the catalog. Four examples of early comparisons 

from Aki (1956) are shown in Figure 3-1. Nonrandomness is 

pronounced and was remarked upon by the various authors.

Aki (1956) has compiled a bibliography of work pertain­

ing to statistical analysis of many earthquake time-series,
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Figure 3-1. Frequency distributions and associated 
Poisson distributions for (a) strong earthquakes in 
Japan, 10-day counting interval (Inouye, 1932); (b)
felt earthquakes in the Tokyo area, 1898-1947, monthly 
counting interval (Kishinouye, 1948); (c) small earth­
quakes in the Tokyo area, daily counting interval 
(Iida, 1939); (d) Oxford Catalogue earthquakes, 1925-
1930, daily counting interval (Wanner, 1937a,b).
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much of which was done in Japan. Aki notes from this survey 

that the Poisson distribution does not accurately describe 

all earthquake occurrence; there is quite often a tendency 

for earthquakes to occur in groups other than simple fore­

shock and aftershock sequences. Since several of these 

earlier studies do have significant results, two examples 

by Inouye (1937) and Jeffreys (1938) are considered in some 
detail.

One major limitation with all work prior to the 1940's 

was the lack of any absolute measure of earthquake size. The 

Japanese used radius of felt area as a means of grouping 

events, with radius intervals of 100 kilometers. Thus the 

minimum size event that was completely counted could vary 

from region to region depending on population density, time 

of day, and so forth. The application of the Richter magni­

tude scale during the past 30 years has resulted in much more 

rigorously complete catalogs of events.

In 1937, Inouye suggested that all earthquakes occur in­

dependently of each other and that complex time-series pat­

terns may be decomposed into consecutive simple Poisson dis­

tributions with different rates. Several years earlier, 

Inouye (1932) noticed that felt events occurring during time 

intervals of a few years fit a Poisson distribution fairly 

well, but over longer periods the Poisson fit was poor. He 

proposed using a varying-rate Poisson distribution to model 

the complete occurrence pattern:
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PCx) e"£(x)£(x)x
Y ! (3-2)

where x is the number of events per unit time. In the later 

paper, he concluded that strongly felt events in Japan be­

tween 1912 and 1925 could be fit by the distribution

P f - r )  = 12. e 6 ‘ °6.0X A 1 e'1S-°15.0x 1 J 11 51 ' To 51----- (3-3)

The two rates, 6.0 and 15.0, apply to different portions of 

the sequence, with the higher rate applying to the periods of 

greater event occurrence. Inouye (1932) also found that 

earthquake swarms in the Ito district could be roughly mod­

eled by an exponentially decreasing rate of occurrence. As 

an alternative to the Poisson model, he applied the lognormal 

distribution,

. (log(x+h) - c)2
i ? 2$(x) = ----- ■- e Za . (3-4)

/2u a(x+h)

Although it does fit some of the observed distributions more 

accurately than the Poisson curve, no discussion was made of 

the meaning of its parameters, c, h, and a. The lognormal 

distribution is commonly applied to processes in which the 

value of an observed variable is a random proportion of the 

preceding value (Hahn and Shapiro, 1967, p.134). The signi­

ficance of this model for earthquakes is not clear. Inouye 

also tested the correlation of successive monthly intervals 

and found a tendency for months with high occurrence rates to 

be followed by another month of high rate. Events which



occurred at somewhat greater depths (subcrustal) showed a 
lower monthly correlation.

Inouye's work exemplifies most other available papers 

from Japan during the 1930's. The randomness of earthquakes 

was tested by comparison with a Poisson model, but the only 

conclusions drawn were "yes, the sample is approximately 

random" or "no, the sample is not composed in independent 

events because there are aftershocks and swarms." The in­

vestigations were carried no further.

Concurrently, Jeffreys (1938) developed several signifi­

cant results in earthquake statistics. He noted that in 

earlier analyses of periodicity in earthquake occurrence, the 

events were assumed independent of each other and no account 

was taken of aftershocks. Jeffreys showed that the occur­

rence of groups of dependent events in the sequences analyzed 

would create spuriously large amplitudes obtained by Fourier 

analysis. By counting the numbers of aftershocks present in 

four and one-half years of the International Seismological 

Summary catalog, Jeffreys found that the recurrent periods of 

earthquake activity previously determined by Davison (1958) 

could be explained by the occurrence of aftershocks rather 

than as a result of triggering influences. Jeffreys sugges­

ted that any analvsis of oeriodicities in earthquakes should 
be applied only to independent series of events.

In the second portion of his paper Jeffreys examined the 

degree of independence among the 1071 reported aftershocks of

61
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the Tango, Japan, earthquake of 1927. Nasu (1929) had shown 

that the Tango aftershocks were the sum of two Omori-law 

decaying sequences. one beginning with the main event, and 

one starting with the largest aftershock which occurred 24.5 

days later. Jeffreys calculated the maximum likelihood 

values of @ in equation (3-1) and obtained an excellent y2 

fit; he found no reason to use a value of p different from 

1.0. Jeffreys then proposed that, other than in the rela­

tionship given by equation (3-1), the aftershocks be inde­

pendent. He roughly tested this using the error distribution 

of second differences of numbers of events per day and found 

that the aftershock sequences could indeed be described as 

random events fluctuating about hyperbolic decay curves. 

Jeffreys concluded his investigation by testing the after­

shock sequence for periodicities, with negative results.

Recent Studies

Statistical studies made during the following 20 years 

were of the same genre as these just discussed, with no new 

results or techniques. In the 1960's, however, a renewed and 

continuing interest in statistical seismology appeared, due 

primarily to the existence of rapidly growing, high-quality 

data catalogs. The completion of many detailed local and 

regional studies in this period and the accumulation of in­

creasingly complete worldwide data by the National Oceanic 

and Atmospheric Administration (NOAA) have made possible more 

conclusive analyses of earthquake time sequences. Vere-Jones
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(1970) notes also that some of the statistical ideas needed 

to treat complicated point processes have only recently been 

developed. Unfortunately, much of the Japanese and European 

work earlier in the century was ignored, and the same dis­

coveries have been made again. The more recent research 

using better data samples is certainly better substantiated, 

but the temporary disuse of such ideas as Inouye's varying- 

rate Poisson process and Jeffrey's discovery of the statis­

tical independence of one set of aftershocks has probably 

hindered the development of statistical modeling of earth­

quakes. A key problem has been the approach to modeling 

foreshocks, aftershocks, and swarms.

In the same manner as earlier researchers (for example, 

Wanner, 1357a,b), Knopoff and Gardner (1972) and Shlien and 

Toksoz (1970a) removed aftershocks from the NOAA world data 

catalog using arbitrary criteria and found that the remain­

ing sequence was approximately Poisson. To identify and 

eliminate nonrandom events Knopoff and Gardner (1972) manu­

ally scanned a portion of the NOAA catalog to define dis­

tances 2L and time T (both functions of magnitude) such that 

relaced events would occur within 2L and T of each other. 

Knopoff and Gardner (1972) also established (using the ran­

domness test described by Knopoff and Gardner, 1969, and 

discussed in Chapter II) that the NOAA catalog Is complete 

down to magnitude 4-3/4. These two procedures selected 5547 

events from the total of 25,430 shocks between 24 March 1963
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and 31 December 1968. By a x2 test of the hourly distribu­

tion of events, Knopoff and Gardner (1972) concluded that the 

catalog with aftershocks removed was random at the 99% level. 

For a cutoff magnitude of 5-1/4, the smaller sample of 19,429 

events was random at the 95% level.

Shlien and Toksoz (1970a) used a slightly different 

technique to test the NOAA catalog for relatedness among 

events: using the property of Poisson events that their re­

currence times are exponentially distributed (equation 1-3), 

they tested the catalog for such a distribution. Figure 3-2 

is taken from Shlien and Toksoz (1972a) and shows the sequen­

tial distribution of numbers of events per day. Exponential 

distributions were tested for groups of 5016 events (separ­

ated by vertical bars) with associated probability P (signi­

ficance level is 100[1 - P]). The procedure used to remove 

aftershocks for the lower figure is much like the method 

applied by Knopoff and Gardner (1972). For all the 

"aftershock-removed" samples, the Poisson model is acceptable 

at the 95% level. For only two of the "aftershock-included" 

groups is the behavior Poisson, with the others being exces­

sively non-Poisson. Shlien and Toksoz note that the vari­

ability in occurrence of Poisson behavior in the raw data may 

explain earlier conflicting conclusions about the statistical 

nature of earthquakes.
A trend to higher activity may be noticed m  the le*er 

part of Figure 5-2; the daily rate increases from about seven
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P 0 .2 0 0 .38 0 .53 0.45 0.12

Figure 3-2. Daily earthquake frequency for the NOAA 
worldwide catalog, 1961-1968. P values are the prob­
abilities that time intervals between earthquakes for 
consecutive groups of 5016 events are distributed 
exponentially.



6 6

events per day to more than ten over a period of seven years. 

It is possible that some or all of this increase may be due 

to increased coverage by the worldwide net. Vere-Jones and 

others (1964) also found a long-term trend in shallow events 

with M 4.5 in New Zealand; there the rate decrased. In a 

study of M 7 earthquakes in the circum-Pacific seismic belt 

Duda (1965) found that the yearly energy release by shallow 

earthquakes has decreased by a factor of about two between 

1897 and 1964. The number of events per year does not show 

such a trend, i_hough there are periods of several decades or 

longer with below-mean and above-mean rates of occurrence.

These long-term trends could be incorporated in the 

above simple Poisson model for large independent events. But 

since the NOAA data was analyzed in yearly time segments by 

Shlien and Toksoz (1970a), the slow change in occurrence rate 

would have no appreciable effect since each segment wTould 

have almost constant rate. Since Poisson distributions are 

additive, a slowly varying rate function A(t) may be consi­

dered as a number of segments of constant rate A(t^) which 

may be summed to form the parameter describing the entire 

sequence. This is effectively what Knopoff and Gardner 

(1972) did.

Ivhi 1 e small rate variations may be considered as sequen­

tial short time intervals with differing constant rates, very 

rapid and large deviations from the mean occurrence rate can­

not be successfully modeled by series of constant occurrence
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rates. For example, the high peaks of activity in Figure 3-2 

(top) represent an increase in the occurrence rate by a fac­

tor of three or more. When these peaks are examined in detail 

the fluctuations of the occurrence rate are recognized to be 

principally due to aftershock sequences. Utsu (1961, 1969) 

has found that the modified Omori's law (equation 3-1) des­

cribes the distribution of occurrence rates for most after­

shock sequences. He notes, however, as does Mogi (1963), 

that there is great variability in the number of aftershocks 

which follow a given magnitude event, although events down to 

magnitude 5.5 (the lower limit of Utsu's reviewed main-shock 

data) may be followed by aftershock sequences.

It has also been observed on numerous occasions that 

aftershock sequences are compound; there may be secondary 

aftershock sequences following larger aftershocks. The pro­

cedure Jeffreys (1938) followed to analyze two overlapping 

aftershock sequences was discussed above (pp. 61 to 62). 

Lomnitz and Hax (1966) also used Omori's rate law*to examine 

the interdependence of aftershocks. For three of the four 

sequences that they examined, Lomnitz and Hax concluded that 

the Omorl law accurately described the occurrence rate 

changes and that the individual aftershocks were statisti­

cally independent of each other. For example, in the Kern 

County, 1952, aftershock sequence, the main event (M = 7.7) 

was followed 36 hours later by a magnitude 6.1 aftershock 

that triggered its own aftershock series. To transform this 

double sequence,
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t  =  a i  + b1log t = H(t-tQ)(a2 + b2log(t-to)) ( 3 - 5 )

was used to convert the time sequence of events N(t) into a 

stationary sequence, N(t). Constants a ^  bp  a2 , and b2 were 

deteimined by stepwise linear regression with H the Heaviside 

step function and tQ the time of occurrence of the second 

main event. Figure 3-3 (top) indicates the success of the 
compound transformation.

To test each sequence for the degree of grouping among 

aftershocks, Lomnitz and Hax calculated the correlation co­

efficient between the number of events occurring in succes­

sive (transformed) time intervals. For the Kern County se­

quence, with cutoff magnitude Mq = 4.0, the correlation 

coefficient was not significantly different from zero as 

determined by a random control sequence. Similarly, two 

simple aftershock series were considered, the San Francisco, 

1957, and Alaska, 1964. These two also were found to evi­

dence no grouping among events larger than Mq = 2.5 and 

Mq = 4.5, following the M = 5.3 and M = 8.3 main shocks, 

respectively. The fourth sequence considered was the 1960 

Chilean foreshocks and aftershocks. Lomnitz and Hax found 

this series to be composed of four different periods of 

activity occurring over a four-day period. They decided that 

the time sequence was too complicated to be fit by an equa­

tion of the form of equation (3-5) (see Figure 3-3, bottom), 

so further analysis was not done. Since this sequence was 

so distant from most recording centers, too few events were



Figure 3-3. Cumulative number of aftershocks observe 
versus number predicted from equation (3-5) for the 
(a) 1952 Kern County earthquake and (b) 1960 Chilean 
earthquake sequence. Each division represents 20 
aftershocks.
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recorded (50 events are represented in Figure 3-3) to attempt 

any more complicated modeling. From the figure however there 

is a suggestion that there were at least three superposed 

sequences of activity, excluding the six foreshocks of the 
magnitude 8.3 event.

One exception to the lack of grouping among aftershocks 

was found. in the San Francisco sequence there were a num­

ber of aftershocks recorded in the range 1.6 - M  ̂ 2.5, al­

though the catalog was not complete for these small events. 

The correlation test indicated that there was some dependence 

among these smallest events with the average group containing 

fewer than seven events. The occurrence process of such 

microearthquake groups will be discussed in Chapter IV.

In another examination of aftershock grouping, Utsu 

(1962) examined three Alaskan aftershock sequences following 

magnitude 8.3, 7.3, and 7.9 main shocks in 1957 and 1958.

He also found that Omori's modified law (equation 3-1) des­

cribed the occurrence rate decay and the fluctuations in the 

occurrence rate were within limits established by a sequence 

of random numbers.

From the foregoing review, the time distribution of 

large events (M - 5) seems to be generally well described as 

a concurrent combination of random events occurring at a con­

stant or slowly changing rate and occasional sequences of 

random events with approximately hyperbolically decaying rate 

whose occurrence is dependent on one or more trigger events.
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There is only a geneial correlation between increasing magni­

tude of the main event and increasing number of aftershocks, 

which varies from region to region (Mogi, 1963; Utsu, 1969). 

The recurrence cycle of major displacements on plate bounda­

ries is on the order of 100 years or more (Mogi, 1968), so 

the present observations are usually not sufficiently long 

to fully sample recurring seismic activity.

Some occurrence patterns are apparently not described 

by the above model and require further analysis. These in­

clude very complex foreshock-aftershock sequences, such as 

the 1960 Chile sequence, and swarms of events which lack a 

main event. These two patterns account for only 20% or so 

of all seismic activity (Mogi, 1963). It has already been 

noted for the Chilean events that the observed activity might 

be described by at least three separate exponential distribu­

tions. In general, it will be assumed here that all such 

complex aftershock series may be modeled by the combination 

of multiple Omori distributions with variable parameters. In 

addition, Utsu (1969) suggests that "large scale swarms in 

non-volcanic regions may be regarded as groups of aftershock 

sequences triggered by several large shocks of approximately 

equal magnitudes." Therefore swarms may also be modeled as 

sums of hyperbolic rate laws.
Generalized Poisson Models. The ability to model general 

earthquake occurrence in terms of a Poisson series plus in­

dividually modeled aftershock sequences is not satisfying in
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that it is necessary to extract and individually determine 

model parameters for each aftershock sequence or swarm. An 

alternative approach to individual modeling is to select a 

multi-parametered model, then use appropriate statistical 

estimation techniques to obtain the best values of the parame­

ters for the sequence. Vere-Jones and Davies (1966) have 

suggested the use of a "trigger" process, in which groups of 

events occur at times (cluster centers) defined by a simple 

Poisson process. The cluster center may or may not corres­

pond to a particular trigger event. The probability that a 

shock will occur in a small time interval (t + x, t + x +dx) 

following the occurrence time t of a trigger event is inde­

pendent of t and denoted and equal to

P = X$(x) . (3-6)

X is an independent random variable denoting the size of each 

group, and has distribution q(N), where N is the number of 

events per group. It is also assumed that the triggered 

sequences of events are themselves independent. ’This then is 

the fundamental form of a generalized Poisson process (Parzen, 

1962), a simple Poisson process in which the probability of 

more than one event occurring in a small time interval is 

finite instead of zero (see axiom 3).
Vere-Jones and Davies attempted to find a form of $(x) 

which described the long-term time series of M _> 4.5 earth­

quakes in New Zealand. After testing exponential and hyper­

bolic decays, they concluded that neither form was adequate



73

for both long- and short-term intervals. The temporal depend­

ence among shocks may last for many months, but is also evi­

denced by very strong short-term (1 to 5 days) grouping. 

Vere-Jones and Davies concluded that larger data samples and 

more detailed analysis must be made of the complex grouping 
process of shallow earthquakes.

Following Vere-Jones and Davies (1966), Shlien and Toksoz 

(1970a) also used the generalized Poisson model, with some­

what different assumptions. Shlien and Toksoz had noticed 

that the non-Poissonness of the worldwide earthquake time 

series was due to an excess number of time intervals with 

many events. To examine the distribution of events during 

these intervals, Shlien and Toksoz selected days during which 

the number of events which took place had a probability of 

occurrence less than .001 on the assumption of a simple 

Poisson process. Earthquake activity was broken into eight 

world regions for this examination, with consecutive days 

with highly improbable numbers of events combined* into large 

clusters. The distribution of cluster sizes is shown in 

Figure 3-4; this is also the distribution of the random 

variable X in equation (3-6). Since an inverse cube law fits 

the histogram rather well, it was assumed that the cluster 

size probability distribution q(N) could be adequately des­

cribed by a Zeta distribution,

n -e
q(N) - • (3-7)
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NUMBER OF E V E N T S

Figure 3-4. Frequency distribution of clusters of 
aftershocks versus the number of events per cluster. 
Each aftershock cluster is compoased of events occur­
ring during one day. The smooth curve is 
cube distribution.

an inverse
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Here E is a parameter describing cluster size, and 5 (E) is a 

normalization factor (the Riemann Zeta function).

The time distribution of events within a cluster, $(t), 

was assumed to be a delta function centered at the cluster 

center. Since the data analyzed (the NOAA catalog) was 

counted in events per day, this assumption is equivalent to 

assuming that clusters are entirely contained within one-day 

intervals and that successive intervals are independent.

This is certainly not generally true, since aftershock se­

quences frequently last longer than one day. Thus the fea­

tures of earthquake activity that are described by this model 

are not simply related to aftershock occurrences.

It is straightforward to determine the sort of daily 

clustering function q(N) which should be expected from a 

single aftershock occurrence. The simple Omori law is ob­

tained from equation (3-1) with 3 = 0  and p = 1; it is here 

shown as the relation between the time after the trigger 

event and the number of events per day which occur at that 

time:
t = A / n .  (3-8)

The first derivative gives

At = A/n^ (3-9)

when the change in number of events per day, An, is equal to 

one. Since At is the number of days that corresponds to a 

change in daily rate of occurrence of one per day at a parti 

cular value of n events per day, this is the distribution
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function for a single aftershock sequence corresponding to 

equation (3-7). Thus the distribution of days with a given 

number of events is proportional to the inverse square of 

the numbei of events per day. In other words, if every day's 

activity during an aftershock sequence is considered as a 

separate cluster, the cluster size distribution is in the 

form of equation (3-7) with E = 2. This is seen in Figure

3-5. The solid lines represent aftershock sequences follow­

ing earthquakes of indicated magnitude. To parallel the 

work of Shlien and Toksoz, the horizontal axis represents 

numbers of earthquakes per day. The initial values (the 

right-hand points in Figure 3-5) are proportional to the 

number of events in the first day after the main shock, and 

are found by Mogi (1967), Utsu (1969), and others, to gen­

erally increase with increasing magnitude of the main shock, 

but with large variations for a given magnitude. The A 

values chosen for these sequences, as given in the figure 

caption, are arbitrary. In Figure 3-5, the value of the 

slope for the individual sequences is E = 2.

The equation (3-9) may be summed for a combination of 

aftershock sequences, as shown in Figure 5-5. The individual 

sequences were combined In two ways. For the case in which 

there was a large earthquake and aftershock sequence, one 

magnitude 8.0 sequence was combined with two magnitude 7.0, 

twenty magnitude 6.0, and two hundred magnitude 5.0 sequences. 

The cutoff magnitude of 5.0 for this example is represented by
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Figure 3-5. Log-log plot of number of clusters of aftershocks 
versus number of events per cluster. Solid lines are for 
aftershock sequences per equation (3-9), with Seta distribution 
parameter E=2. Number of events per cluster for cluster size 
of one are arbitrarily selected and decrease by one-half order 
of magnitude for each^magnitude unit decrease. Dotted lines 
are for summed combinations of aftershock sequences. Curve (a) 
is composed of one M=8, two M=7, 20 M=6, and 200 M=5 sequences; 
curve (b) is the same as (a) without the M=8 sequence.
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the single point for the magnitude 5.0 aftershock data. The 

sum of these sequences form the curve (a) in Figure 3-5, 

which has a slope of 2.1. The second combination is formed 

from the first by deleting the magnitude 8.0 sequence and is 

shown in Figure 3-5 as curve (b). It has a slope of 2.8. 

Thus, for this hypothetical model, the value of the cluster­

ing parameter E appears to depend strongly on the occurrence 

of a single very large aftershock sequence. To relate the 

value of the exponent E to actual aftershock sequences, the 

number of events in each magnitude class that have after­

shocks would need to be determined, as well as the number of 

aftershocks that occur during the first day as a function of 

magnitude. This interpretation of the cluster model used by 

Shlien and Toksoz has a significant impact on their conclu­

sions, as will be seen shortly.

Using a maximum likelihood technique, Shlien and Toksoz 

(1970a) proceeded to determine the parameters describing the 

generalized Poisson model: the rate-of the simple Poisson 

cluster center occurrence, A and the cluster size parame­

ter, E. Their results are given in Figure 3-6 and Table 3-1. 

A low value of E indicates a higher degree of grouping of 

events in time, while a high value means that the distribu­

tion approaches that of a simple Poisson model. ihe P values 

again indicate quality of fit to the null hypotheses.

There are several observations which may be cra«n iron 

Table 5-1. For worldwide activity, the value ox t increases
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magnitude greater than 5.0; (d) Japan and the Kuril Islands.
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TABLE 3-1

Region E A i cl Mode P

WORLD:
Magnitude - 3.0 2.9 8.80 0 . 0 0 1Magnitude - 4.5 3.0 5.69 0.1Magnitude  ̂ 5.0 3.2 2.62 0.65Magnitude * 6.0 >4.4 0.17 0.40

REGIONAL:
Europe-Africa 3.4 1.25 4.6 0.60Austral!a-China 3. 7 1.72 ■ 4.6 0.20Japan-Kuril Islands 2.9 1.23 4.2 0 . 0 0 0 1New Zealand-Tonga 3.4 1.87 4.3 0.07Alaska-Aleutians 2.4 0.81 4.4 0 . 0 0 1North, Central America 3. 2 1.87 4.5 0.14South America 3.5 0.99 4.6 0.01

TWO-DAY INTERVALS: 
Europe-Africa 3.1 2.23 0.01
New Zealand-Tonga 3.3 3.64 0.39

J
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as the magnitude cutoff increases; in other words, larger 

events aie in general more independent than smaller events.

As noted eailier, this fact has been known for many years; 

large independent events trigger aftershock sequences com­

posed of smallei events. In the regional analyses, it 

should be recalled that no cutoff magnitude was applied to 

the catalogs Shlien and loksoz used. In another paper,

Shlien and Toksoz (19/Ob) found large regional differences 

in the magnitude at which most events were detected (the 

mode). In all cases the mode values were less than the 

worldwide cutoff magnitude M = 4.75 determined by Knopoff 

and Gardner (19/2). In fact, the difference between the 

average world rate of all events (14.19 per day) and the rate 

for events with magnitude greater than 4.5 (7.76 per day) 

suggests that about half of the events used in the Shlien 

and Toksoz (1970a) regional analysis were smaller than the 

completely recorded cutoff magnitude. Thus, for the world­

wide data modeled, there is a bias to smaller events nearer 

seismic stations. Within each of the zones, recording in­

stallations are unevenly distributed, not necessarily in 

correspondence with the distribution of earthquake activity. 

Therefore, in some regions the locales of high rates of 

occurrence nav be over-represented, while in other regions 

the numbers of smaller events detected may be relatively low. 

This effect nav influence the variations in E from region to 

region.



82

A more significant effect may also be observed. In 

Figure 3-2, showing daily rates of occurrence for the world, 

there are three "spikes,” corresponding to large aftershock 

sequences following the M = 8.1 Kuril Islands earthquake of 

13 October 1963, the Alaskan earthquake of 28 March 1964, and 

an event in the Rat Islands on 4 February 1965. The very 

high daily counts following these earthquakes would definitely 

dominate the distribution of "clusters" and thus produce the 

low E values of 2.4 and 2.9 for Alaska and Japan, respective­

ly. The effect of a single large sequence is shown in Figure 

3-5. These values approach the value E = 2 that applies to 
a single sequence (equation 3-9).

Shlien and Toksoz (1970a) did note that the cluster 

model they used, in which 4>(x) is a delta function, also 

causes the cluster size parameter E to be sensitive to the 

time interval used. They found that the use of a two-day 

interval lowered the value of E. As expected, longer time 

intervals emphasize longer aftershock sequences that will 

lower the E value in equation (3-7).

Summary

It may be concluded that the Shlien and Toksoz (1970a) 

generalized Poisson model is not particularly satisfactory 

because it does not very closely relate the actual time 

series of events within a large region (composed of after­

shock sequences, constant occurrence periods, swarms, and so 

forth) to the occurrence frequency of daily numbers of
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events. This does not minimize the ability of the two- 

paiameter (^cp> E) model to statistically describe the daily 

rate pattern, which can be done quite accurately, as Shlien 

and Toksoz (1970a) demonstrated. However, the significant 

parameter that they identified (E) is controlled chiefly by 

large afteishock sequences and does not provide increased 

seismological understanding. It may be possible to find 

other probability models which also fit the observed distri­

butions. 1 he disadvantage is that the seismological value of 

the data is almost completely eliminated when basic features 

of the occurrence pattern are masked as in the Shlien and 
Toksoz model.

To allow a more meaningful and extensive modeling capa- 

ability, spatial coordinates and energy need to be incorpor­

ated with the temporal dimension. Vere-Jones (1970) also 

mentions these extensions of generalized time-series cluster­

ing models, but he notes that the necessary probabilistic 

techniques for discussion multi-dimensional point processes 

are still in "a somewhat exploratory stage."
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CHAPTER IV. MICROEARTHQUAKE CLUSTERING 

It is appropriate, at this point, to review the axioma­

tic basis of Poisson probability models. From Chapter I, the 

four axioms from which the simple, one-dimensional Poisson 

process may be derived can be written as follows for earth­
quake time-series:

l,p. there is no causal connection among the earthquakes 
in a time-series N(t);

2j. the probability of occurrence of an earthquake in a

given time interval is greater than zero and is equal 

to the product of the average rate of occurrence of 

earthquakes and the duration of the time interval;

3rp. it is not possible for earthquakes to happen 

simultaneously;

4,p. the distribution of earthquakes is stationary with 

respect to time.

In the preceding chapter, a number of instances of non- 

Poisson statistical behavior were described, and examples of 

attempts to model such behavior, particularly those of Inouye 

(1937), Jeffreys (1938), and Shlien and Toksoz (1970a), were 

reviewed. In modeling specific earthquake time-series that 

do not conform wTith the assumptions of the Poissonian axioms, 

it is clear that axioms lj and 4^ are no longer applicable and 

it is necessary to provide additional parameters to enabxe a 

successful non-Poisson model. Inouye (1937) noted that the 

data he wras examining did not fit axiom 4̂ ,, so he used a mocel
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(equation 3-2) with a varying rate of occurrence that voided 

axiom 2^. A number of other authors, including most recently 

Vere-Jones and Davies (1966) and Shlien and Toksoz (1970a) 

have approached the probability modeling of earthquake time- 

series with a multiparametered mathematical methodology. It 

is seen how this approach can lead to somewhat non-meaningful 

descriptions of the earthquake process. The trigger models, 

which contravene axiom 3^, have been applied to earthquake 

data in such a tvay as to favor statistical data-fitting over 

an approach guided lgy the qualitative features of the time- 

series data and the physics of earthquake occurrence.

With a significantly differing methodology, a number of 

previous researchers have attempted to identify or investigate 

explicitly the elements of earthquake occurrence that do be­

have in a Poisson manner. Knopoff and Gardner (1972) assumed 

some arbitrary criteria to exclude relatedness among earth­

quakes in order to define a Poisson data set. Jeffreys (1938) 

and Lomnitz and Hax (1966) used a time transformation so as 

to apply axiom 2j and define a Poisson model of aftershock 

occurrence.
In this chapter, the second methodology is applied to 

earthquakes in the range M = 0 to 4.0. In particular, statis­

tical data from central Nevada and central California micro­

earthquake studies are analyzed, and it is found that micro­

earthquakes occur in a compound process somevhat like that of 

larger events (M - 4.5) that involves a Poissonian sequence
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with non-Poisson aftershock behavior superimposed. For micro- 

eaithquakes, an approximately constant-rate Poisson process 

of independent events is found, with some of these events 

accompanied by secondary "clusters" of dependent events. The 

dependent events are not like aftershock sequences, however, 

in several details of their occurrence. Henceforth, the term 

"cluster" will apply only to the groups of related microshocks 

Microearthquake Cluster Identification 

There have been only a few previous examinations of the 

independence of microearthquakes, again with varying conclu­

sions. Iida (1939) studied small, instrumentally recorded 

events in a local area in Japan and concluded that their 

interoccurrence times were well described by an exponential 

distribution, indicating their randomness. It is noticeable 

from Iida's data, though, that there are more short time 

intervals than expected for a Poisson distribution. Singh 

and Sanford (1972) also noted a tendency for microearthquakes 

near Socorro, Newr Mexico, to cluster in time. Following the 

Alaskan earthquake of 1964, Page (1968) examined microafter­

shocks in eighteen S-P distance ranges for 102 hours beginning 

22 days after the main event. He concluded that in only twro 

distance ranges, each being one S-P second in size, could the 

assumption of a Poisson distribution of occurrence times be 

rejected. Page associated these two discrepancies with small 

aftershock sequences or swarms. In summary, n o m  andomness 

has been observed in several microearthquake sampler, but not 

investigated in detail.
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In the following sections, microearthquake samples from 

Nevada and California that were described in Chapter I are 

analyzed foi dependence among events, using the Poisson model 

with generalizations to disclose the nature of the observed 

relatedness. The procedures used focus on analysis of the 

earthquake locations and magnitude as well as the time-series 

to determine the secondary distributions describing cluster­

ing, rather than attempts to fit arbitrarily chosen prob­

ability models for the time-series alone.

Central Nevada Microearthquakes. The first events examined 
occurred near the SMN array (Figure i-i) during a period of 

60 days. Magnetic tape recordings were made of signals from 

three vertical-component seismometers arranged as a tripartite 

array plus a three-component set of instruments at the center 

of the array. The tapes were played out continuously on a 

multi-channel chart recorder to facilitate counting events 

and measuring amplitudes. From the recorded group of earth­

quakes a limited spatial sample was chosen containing only 

events with S-P times between 1.5 and 2.2 seconds, correspond­

ing to focal distances of about 11 to 16 kilometers. The cut­

off amplitude was determined from the low-amplitude roll-off 

point of the log-amplitude frequency distribution curve; 

events with peak-to-peak amplitudes greater than five times 

background level (5 X 1.0 mm) were found to form a complete 

catalog. Based on previous field recordings with the same 

equipment (Ryall and others, 1968), estimated Richter
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magnitudes of the events ranged from about -1/4 to 2.0. The 

sample thus selected consisted of 856 events recorded during 

59.55 days, corresponding to a mean rate of 0.60 events per 
hour.

The observed time sequence was initially compared with 
the simple Poisson process

P(x,t) U t ) x
x! (1- 2)

The number of events in consecutive 12-hour periods were 

counted and are showrn in Figure 4-la along with the theoreti­

cal curve calculated from equation (1-2) using the observed

mean rate A = 7.20 events per 12 hours. As a rough measure2of goodness - of - fit, the x test was used and gave a probabili­

ty of less than 0.5% for this curve. The points of worst y2 

fit are the intervals containing fourteen or more events.

This observation is similar to earlier ones made by Page 

(1968), and others.

To further isolate the non-Poisson behavior, the time 

interval distribution of the data was examined to see how 

closely it fit the exponential distribution expected for a 

Poisson process. From the probability density function,

f(t) = Ae~U  , (1-4)

one can calculate the distribution of time intervals, F, for 

intervals of duration between t^ and t?:
At. -At.

F(t1 ,t2) = / *f(t) dt = e
tl

e • (4-1)
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Figure 4-1. Observed (bar graph) and calculated (solid 
line) Poisson distributions for (a) all microearthquakes 
in the selected time sequence, mean rate A = 7.20 
events/ 1 2  hours, and (b) the same events counted as a 
cluster sequence, mean rate A = 6 .2 / clusters/ 1 2  hours.



Figure 4-2 shows this distribution calculated for multiples 

of five minutes along with the outline bar plot indicating 

the observed time interval distribution. The calculated 

exponential curve for these events is an especially poor fit 

for the shoitest time intervals. For events occurring within 

five minutes of each other there are 108, or 204%, more events 
than the 45 that would be expected for the exponential dis­

tribution. Examination of the original data indicated that 

the above two major discrepancies with a simple Poisson pro­

cess arise from bursts of earthquake activity occurring during 
small time intervals.

The time - interval distribution anomaly suggests a direct 

way to examine the clustering phenomenon. The 196 paired 

events that occurred within ten minutes of each other were 

reproduced on a seven-channel chart recorder with high time 

resolution for detailed examination. All six instrumental 

recordings appeared together with common time base for each 

event. When paired events were compared visually by over­

laying them on a light table, two distinct classes of pairs 

appeared: (1 ) those with both events having almost identical

signal character and focal location, and (2 ) those with mark­

edly different character and location. For the similar 

events, in some cases there were reversals of sense of first 

motion for various instruments of the array; e.g. the north- 

south trace for one event would be the mirror image about the 

zero line for the other, or the sense of motion on various of
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Figure 4-2. Distribution of time intervals between successive micro- 
earthquakes (entire bar plot) and clustering centers (dashed bars in 
first two intervals). The solid and dashed curves indicate the cal- 
clatcd exponential distributions for microearthquakes and clusters, 
respectively. Time intervals are plotted in successive 5-min units, 
as 0-5 sec, 5-10 sec, ...
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the ai ray legs might change from event to event. But the 

traces could still be overlain with minimal (less than 0 . 0 2  
seconds) diffeience in arrival time at each array instrument. 

This indicates a source region on the order of a few hundred 

meters dimension for related pairs events. Examples of this 

spatial and temporal grouping of microearthquakes at SMN, with 

occasional reversals of sense of motion, was also noted by 

Stauder and Ryall (1967). Events occurring with short time 
intervals were thus sorted into:

1 ) clusters of twTo or more (up to fourteen) closely re­

lated events; and

2 ) groups of only two differing shocks, each of which was 

then treated as a separate event.

The frequency distribution of clusters as a function of 

cluster size is indicated in Figure 4-3. The smooth curve 

fits the observed distribution quite well, as determined by 

linear fitting to a log-log plot, and is given by

n(N)
N N o

3.5
(4-2)S(3.5)

This is the Zeta distribution (equation 3-7) used by Shlien 

and Toksoz (1970a), in which N is the number of events per 

cluster, n(N) is the number of clusters containing N events, 

and N = 746 is the total number of cluster centers. A cluso
ter center is a statistically independent group containing one 

or more earthquakes, with the 196 paired events forming clus­

ters of two or more earthquakes. As before, the parameter
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E 3.5 describes the cluster size distribution.

In terms of the generalized Poisson model, the time 

sequence of the SMN microearthquake sample may be tested for 

resolution into a simple Poisson distribution of clustering 

centers and a secondary distribution (the Zeta distribution) 

of numbers of clustered events. The secondary distribution 

as found in equation (4-2) seems quite adequate, so the 

clustered groups of events are reduced to single cluster cen­

ters and the resulting distribution of cluster centers is 

tested for the null hypothesis of the Poisson distribution. 

Note that from equation (4-2) above, single unrelated earth­

quakes are considered to be clusters containing only one 

event. The occurrence time of each cluster is taken arbi­

trarily to be the occurrence time of the largest event in the 

cluster. The cluster distribution is counted in successive 

12-hour intervals and is shown in Figure 4-lb. Also shown is 

the Poisson curve calculated using the rate of cluster occur­

rence, A =6.27 clusters per 12 hours. The cluster distri- 

bution has a probability of 35%, a far better fit than was 

found for single events in Figure 4-la. The generalized 

Poisson model with parameters A and E is thus found to be a 

statistically good model.
The interoccurrence time distribution for clusters also 

indicates a closer agreement with a simple Poisson process. 
Figure 4 - 4b shows this distribution for clusters, on an ex­

panded time scale, with its much closer agreement vith the
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Figure 4-4. (a) Distribution of time intervals
of earthquakes for the first 10 min of Figure 4-2 
counted for a more detailed time scale. (b) Time 
interval distribution for clusters with a detailed 
time scale. The solid lines are the associated 
calculated exponential distributions. The time 
interval scale is in successive 25-sec units, as 
0-25 sec, 25-50 sec, ....
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theoietical exponential distribution calculated from equation 

(4-1) with parameter Figure 4-4a shows the original

distiibution of Figure 4-2 for comparison. In Figure 4-2 the 

dashed bars and curve indicate the empirical and theoretical 

cluster occurrence interval distributions. The discrepancies 

between the empirical and theoretical distributions, particu­

larly in the first ten or so interval groups, suggest that 

there are still some inadequacies in the cluster model. The 

arbitrarily chosen ten-minute time limit for relatedness is 

apparently too short, but has allowed the identification of 

most of the clustered microearthquakes. In terms of the gen­

eral cluster distribution function (equation 3-6), $(r) has 

been assumed to decay to zero in less than ten minutes. The 

limited size of this sample precludes a more refined descrip­

tion of 4> ( t )  .

The structure of the 79 earthquake clusters has been 

examined, with the following observations. The position in 

time of the largest event in the cluster appears to be random 

for all group sizes from two to fourteen events. The clus­

ters are not spatially restricted within the data sample, for 

the clustered events exhibit the same S-P distribution as do 

the non-clustered events. Similarly, the log N(A) versus log 

A curve is not noticeably different for the clustered events 

from that of the entire sequence. In a greatly magnified plot 

of the first 1 2 0  seconds of the interoccurrence time distri­
bution for events within clusters (Figure 4-5) , the t\vo most
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Figure 4-5. Distribution of time intervals for the 
first 120 seconds of Figure 4-2 counted in successive
4-second intervals, as 0-4 sec, 4-8 sec, ....
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likely gioups of time intervals are 0 to 4 seconds and 24 to 
28 seconds, as noted by the two highest peaks. Study of the 

Califoinia data will supply more information on intra-cluster 
structure.

Nevada Regional Variations. The possibility of near-regional 

diffeiences in clustering patterns was considered for earth­

quakes that occurred during a two-year period in the Nevada 

seismic zone from Fairview Peak south to Fish Lake Valley 

(Figure 1-1). The events are in the magnitude range 2.0 to 

4.2 and were located using the University of Nevada state-wide 

telemetry network between October, 1969 and December, 1971.

The active zone was subdivided into six distinct seismic or 

geographic units as shown in Figure 1-1, with the characteri­

zations and other data summarized in Table 4-1. The Fairview 

Peak and Rainbow Mountain zones contain aftershocks of earth­

quakes which occurred in 1954 and were associated with Basin 

and Range block faulting. The Cedar Mountains zone delineates 

the active area of the 1932 magnitude 7.2 event. Gianella and 

Callaghan (1934) interpreted the mapped surface faulting as a 

product of southeastern horizontal displacement of the Cedar 

Mountains-Paradise Range block. The area surrounding and in­

cluding the Excelsior Mountains is characterized by complex 

transverse range structure and dispersed seismicity, although 

the composite focal mechanism for events in this zone is very 

well and consistently determined and is quite similar to that 

of the Fairview Peak zone (Ryall and others, 1972). The
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TABLE 4-1

Location Type of Zone
No. of 
Events

Rate, 
event/day

Minimum
Magnitudi

Fairview Peak Aftershocks of 
1954, range 
front fault

106 0.134 2
Rainbow Mtn. Aftershocks of 

1954, range 
front fault

36 0.046 2
Excelsior Mtns. 

area
Dispersed zone 141 0.178 2

Cedar Mtns. Aftershocks of 
1932, rift 
valley

44 0.056 2
Bishop area Dispersed zone 38 0.048 2 -1 / 2
Fish Lake Near-historic 55 0.070 2 -1 / 2

Valley faulting,
range front 
fault
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events in the Fish Lake Valley, while not explicitly known to 

be afteishocks, occur along a clearly defined range front 

fault with near-historic surface displacement. The 40- 

kilometer-wide gap in the zone near the north end of the 

valley (a large swarm of events is the northernmost activity) 

has been noted by Gumper and Scholz (1971) and Ryall and 

others (1972). Activity to the north and west of Bishop, 

California, is also dispersed and not associated with any 

specific surface features. This zone is northwest of the 

termination of surface faulting of the 1872 Owens Valley 

earthquake.

Interoccurrence times for the six zones are plotted in 

Figure 4-6 with the associated simple exponential distributions 

indicated by solid curves. Intervals are measured in multiples 

of one day. For these six zones there is not enough data to 

allow estimation of the E parameter. However, several dis­

tinct qualitative features are apparent: Cedar Mountains, 

Rainbow Mountain, Fairview Peak, and the Excelsior Mountains 

area show similar clustering features, with two to three times 

as many e\rents in the 0 to 1 day interval group as would be 
expected for a randomly occurring sample. Because of its 

large area the Excelsior Mountains area was further subdivided 

(not shown here) with almost exactly the same clustering 

features appearing for each subzone as for the entire zone.

The Fish Lake Valley activity is dominated by clusters, with 

ten times as many events in the shortest interval class. Moie
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TIME INTERVAL,  DAYS

Figure 4-6. Time interval distributions in units 
of°l day for larger events (2 < M < 4.2) in six 
parts of the Nevada seismic zone. The solid curves 
are the associated calculated exponential distribu­
tions. Dashed bars and curves are for the sequences 
with clustered events reduced to single events.
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than 60% of the entire Fish Lake Valley sample occurred in 

clusters. The Bishop area to the west, however, shows no 

significant evidence of clustering for the two-year period.

The differences in type of source area (Table 4-1) appear 

unrelated to the degree of clustering.

By using a visual overlay comparison of seismograms, 

the events in the Nevada region with occurrence times differ­

ing by less than one day and that occurred at the same focus 

(to within less than about one kilometer) are identified as 

clusters. As before, the clusters are considered to repre­

sent single independent events, and the time interval of one 

day was selected so as to include most of the related events. 

The resulting changes in the distributions for cluster cen­

ters are noticed primarily in the first interval group as 

shown by the dashed bar in the first columns of Figure 4-6. 

Recalculations of the exponential distributions are shown by
• >SR'

the dashed curves when there is a noticeable change. In all 

cases except the Bishop area, the resulting distributions of 

occurrence times much more closely approach distributions of 

random times. Events near Bishop already occurred in a 

random manner.
Microearthquake Clustering in Central California

The California data samples discussed in Chapter I are 

examined in a manner similar to the Nevada samples. To select 

the samples for time-series analysis, it is necessary to 

determine the cutoff magnitudes above which the samples aie
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complete. As discussed in Chapter II and shown in Figure 2-3, 

picking Mq is made difficult by biased magnitude values.

Since the b-value for the active fault zones in central 

California has been found to be between 0.8 and 0.9 (Eaton and 

others, 1970), it was assumed here that the five curves in 

Figure 2-3 should have slopes in this range. For each curve 

the value of b using the maximum likelihood method was deter­

mined as a function of magnitude, and the cutoff magnitude was 

chosen from this function as the magnitude at which the slope 

value fell below 0.8. For the five zones in Figure 2-3, the 

magnitude cutoffs thus calculated are as follows: Calaveras, 

0.85; Sargent, 0.85; San Andreas north, 1.65; San Andreas, 

1.35; and central California, 1.15. Admittedly, these cut­

offs are not accurate nor are they statistically proper. The 

arbitrary values do, however, define the data sets to be 

approximately complete.

The time intervals between successive events larger than 

the cutoff magnitudes in each zone were computed, and the 

frequency distributions for three of the zones are shown in 

Figure 4-7. Calculated exponential distributions based on the 

average occurrence rates are shown by the solid curves. As in 

the previously examined areas in Nevada, clustering is evi­

denced in each of these three zones within the central Calif­

ornia active region. The numbers of small time intervals 

exceed what is expected for a random distribution of events in 

time by factors of ten or more.
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TIME INTERVAL, 10 minutes

Figure 4-7. Bar graphs of time interval distributions in 
units of 10 minutes for three regions in central California. 
Solid curves are the associated calculated exponential 
distributions.
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Cajja.vgrjas_ _C 1 u s t e r i n g. Only one o£ the samples, that from the 

Calaveras zone, with 672 events in the range 0.85<M - 3 .1 , 
was chosen for further examination. Zones 4 and 5 included 

some of the early mainshock-aftershock sequences from the Bear 

Valley region (Ellsworth and Wesson, 1972). These large se­

quences and possible variations in time-series features prior 

to their occurrence could distort the pattern of microearth­

quake clustering in the region. The northern portion of the 

San Andreas fault, zone 3, contained relatively few events and 

had the least linear magnitude frequency distribution (Figure 

2-3). The Sargent zone had less than 400 events of magnitude 

0.85 or larger and so was of less value in providing an ample 

statistical sample to work with, although in other respects 

it would be suitable.

In the earlier examination of Nevada microearthquakes, 

events separated by short time intervals were examined for 

spatial relatedness by visually comparing the seismograms.

For the Calaveras data, use was made of the hypocentral error 

estimates given for each event in the catalogs of Lee and 

others (1972a,b,c). The data examined initially were the 

pairs of events with time separation less than thirty minutes, 

a time interval adequate to include all the pairs of earth­

quakes in the spike in Figure 4-7. For each event, the square 

root of the sum of the squares of the epicentral and depth 

errors was calculated as a measure of the event focal location

error. Then the sum of the error measures for each pair of
-2
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events was plotted against focal separation calculated from 

the given focal coordinates, as shown in Figure 4-8. It is 

found that the pairs are clearly divided into two groups:

(1 ) those with separation less than the summed error measures 

plus one kilometer; and (2 ) those with separation much greater 

than the focal errors. The dashed line in Figure 4-8 indi­

cates this boundary, with the scatter in the clustered event 

locations being interpreted as an indication of the actual 

location accuracy of the catalog events (± < 1 kilometer).
It is apparent that a clustering process quite similar 

to that occurring in central Nevada is taking place along the 

Calaveras fault in central California. Most events that occur 

within several tens of minutes of each other and that have 

focal separations on the order of the size of the source di­

mension for a M = 1.0 to 2.0 earthquake are taken to be 

clustered.

Cluster Occurrence Statistics. The criterion of spatial re­

latedness obtained above was used to identify as clusters all 

pairs or larger groups of events that occurred within one 

kilometer of each other. Within the Calaveras zone, 85 such 

clusters were selected and contained from two to eighteen 

microearthquakes and lasted up to five days. A variety of 

statistical features were examined in this sample of clusters.

The cluster size distribution function for three differ­

ent maximum cluster durations is shown in Figure 4-9 and has 

the functional description of equation (3-7). Foi clusters
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Figure 4-8. For pairs of events in the Calaveras sample 
with time difference less than 30 minutes, the square 
root of the sum of the squares of epicentral and focal 
depth are summed and plotted with respect to focal separa­
tion. Dashed line separating clustered pairs from non­
clustered events was arbitrarily drawn.
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coir

Figure 4-9. Histograms of the distribution of the number 
of clusters versus the number of events per cluster for 
three sets of clusters with maximum cluster duration less 
than 120 hours, 30 hours, and 2 hours, respectively. 
Smooth curves are power laws fit to log-log plots.
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lasting less than 30 hours, the distribution is

q W  = .

The exponent of the distribution function, E = 3.5, is the 

same as that found for Slate Mountain, Nevada, microearth­

quakes . As can be seen in Figure 4-9, arbitrary shortening 

or lengthening of the maximum cluster duration strongly 

affected the cluster size distribution parameter.

The 240 events that occurred in the 85 clusters were 

examined for the slope of the magnitude-frequency distribu­

tion. In Figure 4-10 the cumulative magnitudes for the clus­

ters are shown along with the distribution for all the data 

from the Calaveras zone taken from Figure 2-3. The b-value 

appears to be somewhat less than that for the complete 

Calaveras zone, but the curved distribution does not allow 

any numerical comparison.

The distribution of energy release within the 85 clus­

ters was examined by plotting the position of the largest 

magnitude event within each cluster, as shown in Figure 4-11. 

The first column indicates that 31 clusters had the largest 

event occur within the first half of the number of events of 

the cluster. The third column shows the number of clusters 

(28) with the greater energy release in the second half of the 

cluster. The central column indicates 26 clusters with less 

than 0.1 magnitude unit difference in cluster halves. This 

pattern of symmetrical energy release among clustered events
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MAGNITUDE

Figure 4-10. Cumulative magnitude-frequence plot of 
all Calaveras data from Figure 2-3 (solid circles) and 
clustered events only (open circles).



Figure 4-11. Histogram of relative position within 
each cluster of the largest energy release. M-̂  and 
M represent the energy release of the first and last 
halves of each cluster, respectively. The central 
column indicates the number of clusters with less 
than 0 . 1  magnitude difference between and M2.
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was also noted for microearthquake clusters in Nevada (page 

96) . This pattern stands in contrast to that noted for the 

occurrence of larger (M > 4) events. Utsu (1971) has tabu­

lated lengthy statistics on shallow earthquakes in Japan and 

finds that the aftershock mode, with the largest energy re­

lease early in the occurrence of a sequence, is most typical. 

His data also show that for earthquake swarms in a sample with 

events larger than 5.5, the maximum energy release is still 

biased strongly to the earlier part of the sequence.

Another statistical measure of earthquake sequences is 

the distribution of the magnitude difference between the two 

largest events of the sequence. For a given sequence, the 

average energy difference of the largest two events may be 

derived from the assumptions of independence and exponential 

distribution of the magnitudes. Vere-Jones (1969) has done 

this, and finds that the average difference should be about 

one-half a magnitude unit. For the Calaveras data, the aver­

age difference of magnitude is 0.45. The symmetry in energy 

release mentioned previously indicates that the second largest 

event occurs before or after the largest event with approxi­

mately equal likelihood. Finding that the average magnitude 

difference is close to that expected for independent events 

suggests that magnitude independence is another characteristic 

of clusters, with the largest event of the sequence being in­

dependent of the others.
A commonly observed characteristic of aftershock
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occuiience is the hyperbolic decay of number of events with 

time, equation (3-1). In order to examine the temporal char­

acter of the clustering process, a clear understanding of the 

definition of cluster duration is needed. From Figure 4-7, 

the piedominant duration can be seen to be relatively short, 

yet spatial relatedness for some Calaveras events apparently 

occurs for at least five days. In order to avoid the problem 

of having to define an "end" to a cluster, the time difference 

between the two largest events in each cluster was used as a 

variable indicating the duration of clustering. The differ­

ence times for the 85 clusters are plotted cumulatively in 

Figure 4-12. In the upper graph, the linear portion indi­

cates a hyperbolic fit to the initial portion of the data, out

to about 36 hours. The slope of the line represents a time
- 1  2decay of cluster duration proportional to t . The lower 

graph of Figure 4-12 represents the same data points plotted 

on a semi-log scale. The approximately linear relationship 

for clusters with longer durations begins near four hours and 

represents an exponential decay. A somewhat similar change 

from hyperbolic and exponential decay was noted for after­

shock occurrence at approximately 1 0 0  days after the main 
event (Mogi, 1962).

In Figure 4-13 the spatial occurrence of clusters is 

compared with the occurrence of unclustered single events.

The events and clusters were counted in intervals along the 

zone defined by 3 -kilometer changes in latitude. The two
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TWO-EVENT CLUSTER 
INTERVALS, 2 HOURS

Figure 4-12. Plots of time differences between 
two largest events in Calaveras clusters. Uppei 
figure is plotted on log-log scale; lower figure 
is plotted on semi-log scale. Horizontal scale 
is in units of two hours.
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Figure 4-13. Plot of number of clusters (lower line) and 
number of independent single events (upper line) along the 
Calaveras fault. Data is plotted by points at intervals 
of 3 kilometers in latitude from northwest to southeast 
along zone 1 shown in Figure 1-2.
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distributions correlate well visually, with the level of clus­

tering being 2 0  to 30% of the number of single events all 
along the fault length. Thus clustering is a fairly constant 

fraction of microearthquake activity along the Calaveras 
fault.

An alternative method to examine the duration of micro­

earthquake clustering is to define a quantity, "characteristic 

time," for each microearthquake sample that characterizes 

cluster duration. The smallest time interval within which 

most of the temporally clustered events occur is a rough index 

of the time constant of the clustering process and is referred 

to here as the characteristic time. Characteristic times may 

be read from such time - interval plots as Figures 4-2, 4-6, and 

4-7, and are taken as the widths of the major non-Poisson 

peaks on these figures. In Figure 4-14 characteristic times 

are shown for the Calaveras zone, two samples from Nevada, two 

samples from Russia (Gaisky and Zhalkovsky, 1972), and large 

Japanese earthquakes including aftershocks (Utsu, 1970). The 

horizontal axis is the minimum magnitude in each sample. This 

limited data suggests that cluster duration scales exponen­

tially with magnitude.
Summary

In this chapter, occurrences of microearthquakes in 

areas of California and Nevada were examined for their spatial 

and temporal relationships. This resulted in the identifica­

tion and definition of microearthquake occurrence as a



CH
AR

AC
TE

RI
ST

IC
 

CL
US

TE
R 

TI
M

E,
 

DA
YS

117

100

1 0 -

I-

0 . 1

/
/

p
/  UTSU 

/  (1970)

/
/

NEVADA SEISMIC ZONE

/

/

C/GAISKYand ZHALKOVSKY (1972)
/

/
CALAVERAS

°- 0!" O  FAIRVIEW PEAK

0 i r I l I T
2 4 6 8
MINIMUM MAGNITUDE

Figure 4-14. Characteristic cluster time as a function 
of minimum magnitude for each sample shown. Symbol size 
is larger for less well-defined values of characteristic 
time.
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compound process consisting of (1) a Poisson distribution in 

time of cluster centers, and (2) a Zeta distribution of the 

numbers of events per cluster. A number of observations were 

then made of the clusters themselves. These observations are 

evaluated and compared in further detail in the next chapter 

with similar measures of aftershock behavior associated with 
larger earthquakes.
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CHAPTER V. DISCUSSION AND SUMMARY 

Comparisons with Aftershock Statistics 

In the analyses and discussions of the preceding two 

chapters, it was proposed that earthquake time-series can be 

described by three processes; Poisson occurrence of random 

events, aftershocks following a "trigger" event, and micro­

earthquake clustering. The second of these processes, after­

shocks, has been studied statistically in considerable detail 

with a quite thorough summary of aftershock statistics pre­

sented by Utsu (1969, 1970, 1971, 1972). Since microearth­

quake clustering is also a significantly non-Poisson process, 

it is most natural to compare these two processes in detail 

to identify similarities and differences. Some of the fol­

lowing comparisons were discussed in Chapter IV and will be. 

summarized here in the following items. Table 5-1 itemizes 

the similarities and differences between aftershocks and 

clusters.

1. For both aftershocks and clusters, the volume within 

which the aftershocks or clusters occur appears to be 

scaled according to magnitude of the largest number of 

the group. Numerous studies have found that after­

shocks define the approximate slip surface of the 

triggering event (Utsu, 1961, 1969), although the 

aftershock zone may grow somewhat with time after the 

main shock. The source dimensions associated with 

clustered earthquakes in the magnitude range 0 to 3



TABLE 5-1

Similarities Between Aftershocks and Clusters

1. Both occur in focal region approximately defined by 
source volume of largest event in sequence, which is 
proportional to magnitude.

2. Both decay in level of activity approximately hyper- 
bolically with time.

3. Duration time of both sequences is proportional to 
magnitude, as defined by "characteristic time."

-E4. Group size distribution proportional to N

Differences

Aftershocks Clusters

Occur following earth­
quakes of magnitude 
greater than 4.0 to 5.0.

1. Occur for earthquakes of 
magnitude 0 to near 4.0.

Likelihood of after­
shock sequence occur­
rence increases with 
magnitude of main shock 
to near 100% above mag­
nitude 7.0 or so.

2. Clustering occurrence 
varies regionally, but is 
an approximately constant 
fraction of activity in 
each zone.

Main shock acts as 
"trigger" for sequence.-

3. Magnitude values within 
clusters are independent 
of each other.

Main shock is "trigger" 
event and dominates 
energy release.

4. Energy release average is 
symmetric about center 
event of cluster--no 
"trigger" event.



121

are of the same or smaller size, tens to hundreds of 

meters, as the relative location accuracies of the 

clustered events. Thus for clustering the degree of 

spatial relatedness can be estimated to be approxi­

mately within the source dimension of the largest 

event of the cluster.

2. The temporal decay in relatedness is approximately 

hyperbolic both for aftershocks (Omori's law, equation 

3-1) and for clusters (Figure 4-12) . The possible 

change in the distribution for clusters beyond 36 hours 

is not considered significant and may be due to in­

adequate data.

3. For the Calaveras sample, clustering affects a rather 

constant fraction of the total number of earthquakes 

(Figure 4-13), about 25%. The spatial distribution of 

clustering as shown in Figure 4-13 also indicates that 

clustering is a usual element of earthquake occurrence 

all along the zone studied and does not occur in a 

limited spatial area. The fraction of larger earth­

quakes that are followed by aftershocks increases from 

some small fraction of earthquakes near magnitude 4.0 

to essentially 100% for events of magnitude 6.0 and 

greater. The Calaveras sample analyzed in this paper 

was not of sufficient size to look at possible rela­

tionships between clustering and magnitude in the 

range M = 1.0 to 3.0. It would not be surprising to
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find that there was a moderate increased likelihood of 

occuirence of related events with magnitude in that 

range. Among the Nevada samples, there were marked 

regional differences in the fraction of events that 
occurred in clusters.

4. The quantity "characteristic time," which was defined 

in Chapter IV as a measure of the duration of the most 

obvious period of temporal relatedness, appears to 

scale according to magnitude (Figure 4-14). The 

difficulty of definition of cluster duration and the 

variability of duration of aftershock sequences (Utsu, 

1961, 1969) again suggest caution in presuming a sub­

stantial degree of accuracy to Figure 4-14, but the 

trend of the relationship is quite clear.

5. For both aftershocks and clusters, the average magni­

tude . difference of about 1/2 magnitude unit between 

the two largest earthquakes of the group is predicted 

based on the assumption of magnitude independence 

(Vere-Jones, 1969). The observed average difference 

for clusters is 0.45, in good agreement, but the ob­

served average difference for larger mainshock- 

aftershock sequences is substantially larger (about 1) 

and does not appear to be subject to biasing due to 

magnitude cutoff value, Mq (Utsu, 1969). For clus­

tered events, the occurrence of an apparently large 

number of pairs of events with very small magnitude
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difference (Figure 4-11) does not indicate that these 

pairs of similar events are related in an unusual 

manner. The magnitudes of clustered earthquakes ap­

pear to be independent of each other, while the two 

largest events in the initial portions of a mainshock- 

aftershock sequence do not appear to be independent.

6. The most prominent and consistent difference between 

clustering and aftershock occurrence lies in the pat­

tern of energy release within the two groups. In an 

aftershock sequence or swarm of moderate or large 

earthquakes, the major energy release is at or near 

the first part of the sequence. For clusters, how­

ever, the maximum energy release is symmetrically 

distributed on the average about the middle of the 

cluster (Figure 4-11).

Physical Models for Earthquake 

Clustering: Two Hypotheses

Microearthquake clustering appears to be the small-scale 

analog of the aftershock process associated with larger 

earthquakes. The many statistical features shared by clus­

tering and aftershocks suggest that any physical model that 

is generally applied to the aftershock piocess should also 

apply to clustering.
Clearly, some sort of time-dependent process triggered 

by a main shock is the most significant feature of aftershock 

occurrence. In various models proposed for aftershocks, such
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as Benioff (1951) , Scholz (1968) , Burridge and Knopoff 

(1967), Dieterich (1972), and Nur and Booker (1972), there 

is a viscous element to produce time dependency in the model. 

These include creep behavior of rock, static fatigue, time- 

dependent friction, or pore fluid migration. To a more or 

less adequate extent, the above models all predict the occur­

rence of conditions allowing for continued stress release 

that decreases in amount proportional to 1/t following a main 

event. However, the key features of cluster occurrence that 

must be adequately considered in order to develop a success­

ful model are the lack of a triggering event and the symmetry 

of stress release.

In Figure 4-11 it was noted that a predominant pattern 

of stress release in clusters is the occurrence of two earth­

quakes (the two largest events in the cluster) with quite 

similar magnitudes, differing by less than one-half magnitude 

unit. For pairs of clustered events, as noted in Chapter IV, 

the arrival-time differences on array stations were as small 

as the timing accuracy of the records, and the detailed char­

acter of the seismograms were so similar that they could be 

overlaid and matched peak-for-peak well into the codas. Due 

to the frequency response of the recording systems, this 

suggests a relative location accuracy of better than 50 

meters. The small magnitude difference and very similar 

locations suggest that such clustered events lepresent re­

peated slip of approximately the same area, displacement, and
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stress drop on either the exact same fault surface or on two 

parallel fault surfaces separated by at most a few tens of 

meters. The occurrence of a pair of clustered events thus 

appears to indicate the reloading of the slip surface follow­

ing the first event to essentially its original stress level 

within the seconds or minutes before the occurrence of the 

second event. This process does not involve a "trigger" 

event but instead requires a mechanism for rapid viscoelastic 

stress recovery such as that proposed by Benioff (1951) and 

used by Dieterich (1972). Because of the similarity in size 

between the average two clustered events, stress recovery 

must be sufficient to essentially fully reload the slip sur­

face. Stress recovery to nearly the original conditions also 

allows the following earthquake to occur with a magnitude 

value that is statistically independent of the preceding 

event.

The observed upper magnitude limit to clustering, be­

tween magnitude 3.0 and 4.0, may be due to a loss in capacity 

for near-complete stress recovery to occur for larger events. 

As the source volume grows much larger than a dimension of 

several hundred meters, it begins to interact with the bound­

ary conditions of the associated fault zone or the thickness 

of the brittle crust itself. The result of such boundary 

effects may be to reduce to capacity for the initial slip 

surface to be restressed by the surrounding stress field and 

thus to remove the potential for clustering.
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An alternative approach to interpreting the occurrence 

of microearthquake clustering is in terms of Mogi's (1963) 

classification of fracture patterns. He found that differ­

ent types of laboratory-generated microshock patterns depend 

on the structural state of the material and the spatial dis­

tribution of the applied stresses. In particular, a fairly 

homogeneous material to which a uniform stress is applied 

will exhibit a distinct main shock followed by a time- 

decaying aftershock sequence. However, a highly hetero­

geneous medium when uniformly stressed shows no main frac­

ture, but breaks with many smaller shocks concentrated in 

time. This second pattern is also observed for a very con­

centrated stress appearing in a less heterogeneous medium.

Mogi (1967) relates these laboratory models to the seismicity 

of Japan, and notes that swarm-type events up to M = 5.0 to 

6.0 occur predominantly in volcanic regions and several other 

tectonic areas which are highly fractured. Earthquake swarms 

are also noted as a primary occurrence pattern along oceanic 

ridges (Sykes, 1970; Francis and Porter, 1971), where the 

source region is also highly fractured with a concentrated 

(linear) stressed region. A similar explanation may be 

applied to microearthquake clustering. On the scale of the 

source dimensions of magnitude 5.0 and larger events, with 

fault lengths greater than several kilometers, a fracture 

zone such as the San Andreas appears to be a two-dimensional 

boundary between two elastic blocks, and aftershock occuiience
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predominates. However, for magnitude zero to magnitude 3.0 

events the source dimensions range from less than a kilometer 

to tens of meters, which is on the scale of the detailed 

fracturing within a fault zone. Thus, to a small event, the 

medium appears to be highly fractured and it is this scale- 

dependent heterogeneity that encourages the clustered occur­

rence pattern. It is observed that clustering is most pro­

nounced in areas along the San Andreas, Calaveras, and Fish 

Lake Valley fault zones, and these zones are characterized 

by complex fracture patterns within zones hundreds to a 

thousand meters in width j(D. B. Slemmons, personal communi­

cation, 1972) .

Summary

In the preceding chapters the importance of examining 

the detailed application of one-dimensional probability 

models to magnitude- and time-series of earthquakes has been 

emphasized. The Poisson model has proven of great utility in 

isolating and permitting further study of earthquake occur­

rence features that are not described by the simple Poisson 

process.
In studying the Poisson behavior of magnitude distribu­

tions, three non-Poisson elements must be considered in order 

to perform a statistically proper analysis of b-values: 

determination of the minimum magnitude cutoff to define a 

complete catalog; dependencies on occurrence of the largest 

events; and magnitude-value biases oi other souices of
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nonlinear magnitude - frequency distribution. A linear dis­

tribution log N versus magnitude is produced by earthquakes 

with Poisson-distributed magnitudes.

For earthquake time-series, three processes based on the 

Poisson model appear to describe earthquake behavior. The 

first is a simple Poisson occurrence of independent earth­

quakes that has a stationary or slowly time-varying occur­

rence rate. The second is the triggered process of after­

shock occurrence, in which one of the independent events in 

the simple Poisson process initiates a single sequence or 

multiple sequences of aftershocks. Each aftershock sequence 

is composed of Poisson-distributed independent events that 

follow an approximately hyperbolically decaying rate law, 

with the trigger event generally of magnitude 4.0 or larger. 

The third process is that of microearthquake clustering, 

occurring among earthquakes of magnitude up to between 3.0 

and 4.0. Clustering is defined by spatial and temporal re­

latedness among earthquakes and is identified in the seis- 

micially active regions of Nevada and central California. A 

cluster is not characterized by a trigger event, but each 

cluster is composed of events with magnitudes independent of 

one another. The cluster-size frequency distribution is 

described by an inverse power 1 aw with exponent near 3.5. 

Clustering is analogous to the aftershock process in many of 

its spatial and temporal features, but according to the 

physical models that were discussed, the cluster process may
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arise from factors determined by the scale of the earthquake 
process for microearthquakes.
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