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Each mining operation is faced with the problem of scheduling produc-

tion from its working areas or ore zones unless requirements must be met 

by mining all ore in the mine. This production scheduling is determined 

by management and is frequently done on a weekly or monthly basis, which-

ever is applicable to the particular operation. Management reaches these 

decisions by balancing the grade and maximum practical production from 

each ore source against the tonnage and grade to be delivered to the mill.

Often management ignores the fact that production costs vary in dif-

ferent sections of the mine. Only if these variations in cost are taken 

into account can management hope to determine a production schedule which 

will result in maximum profit. With the introduction of these and other 

complications, management is generally inclined to turn the problem over 

to an organizational division usually known by some such name as "Opera-

tion Research Department."

Operations Research is generally described as a "scientifically or-

ganized approach to problem solving", and has become increasingly impor-

tant in the mineral industry within the past few years. Most of the 

larger mining companies have complete scientific and mathematical facil-

ities at their disposal for the handling of these conplex problems. Un-

fortunately, the smaller mining companies do not have the necessary capi-

tal to invest in computers, programmers, or technicians which are often 

required. These companies can, however, use a systematic mathematical 

technique such as linear programming to solve many of their problems. 

Easily accessible digital computers are used for solving a linear program. 

There are numerous university computer centers as well as company compu-

ter centers throughout the country which will run programs for individu-

als or other companies for a fee.
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The staff of a small mining operation usually does not carry anyone 

who has had much experience in programming or computer work. Therefore, 

it becomes necessary for one of the members of the staff to take the re-

sponsibility of learning about programming if the company wants to par-

take of the information afforded by a linear program. It is not necessary 

for this individual to understand all the intricate and minute details of 

programming and computer functions; however, he should have a basic under-

standing of the mathematical technique he is using and its limitations 

and capabilities.

Linear programming is a methodology whereby a linear function is 

optimized, either minimized or maximized, subject to a set of linear con-

straints in the form of equalities or inequalities.1 2 In our situation, 

it would be described as a procedure which arrives at the optimum distri-

bution of production with a corresponding maximization of profit. Linear 

programming is a systematic process of solving simultaneous linear equa-

tions when the number of unknowns exceeds the number of equations. 

Obviously there will be an unlimited number of possible solutions, but 

only one set of "n" unknowns from a larger set of "m" unknowns will opti- 

mize the objective function, i.e., maximum profit. The computational 

procedure, while always satisfying the equations with ”n,! unknowns, pro-

gressively selects new unknowns to bring into the solution and takes 

out the less desirable unknowns. Ultimately the optimum set of unknowns 

is chosen. This type of linear programming described is known as the 

simplex method and consists of a series of steps whereby one equation

1 Bowman and Fetter, Analysis for Production Management ,
(Homewood, Illinois: Richard D. Irwin, 1961), p. 102.

2 Ibid., p. 86.
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the objective function— is optimized while the other equations— the con-

straints— are being manipulated.3 4 The steps in the problem solving pro-

cedure are as follows:

1. The problem is defined and all pertinent mathematical rela-
tionships are determined.

2. An initial solution is determined.

3. Alternative changes to this solution are considered and 
evaluated.

4. The alternative with the largest favorable profit which still 
satisfies the constraints is selected.

5. A new solution is determined by using this most favorable 
alternative.

6 . Steps 3 through 5 are repeated until the best possible so-
lution is reached.

7. The procedure is complete and no better solution exists when 
step 3 evaluates no alternative choices favorably.1*

To illustrate a linear programming solution, a problem has been 

created by using a rather small hypothetical lead, zinc, silver mine of 

simple dimensions. Although in practice this prototype mine is overly 

idealized, it is nonetheless, a good basic example upon which more compli-

cated operations can be based.

Let us assume the production from the prototype mine is to be from 

four stopes on each of three levels while development work is being carried 

on in ore on the fourth level. Table I lists the necessary data concern-

ing each stope, and therefore the mine in general. This data includes 

the grade of ore in each stope, the cost per ton of ore produced from 

each stope, the maximum number of crews that can work in each stope, and 

the "proven” reserves of each stope. The number of men in each crew is

3 Bowman and Fetter, Analysis for Production Management, p. 86.

4 Ibid., p. 83.



arbitrary and should be assigned by management. Although it is unlikely 

that the reserves, as stated in Table I, could be counted as "proven" 

in the early stages of development in a typical western United States mine, 

let us assume that on the basis of drill hole data, management is rela-

tively certain about the grade and tonnage of ore in each stope.

It may be beneficial for management to calculate the cost of producing 

a ton of ore in terms of total costs. That is, the cost should include 

labor, equipment, development work, etc. This solution, in terms of max-

imum profit, may then be more significant to management since it has been 

arrived at by considering nearly all of the costs involved in the opera-

tion and thus be in terms of total net profit. The data in Table I must 

be presented by management and is certain to be available, for it would 

be necessary for the efficient operation of a mining property.

First we must define the problem. The problem is to schedule a month’s 

production from the twelve available stopes in the hypothetical mine so as 

to meet the, mill requirements and predetermined mining procedures while 

providing maximum profit for the company. Suppose the mill requires

15,000 tons per month Including development ore, at grades as follows:

1.0 - 2.0 ounces silver per ton
1.5 - 2.5 per cent lead per ten
1.0 - 2.0 per cent zinc per ton

In order to make the problem interesting, there are any number of other 

restrictions which may be added. Suppose company mining plans specify 

that each level is to be mined out in a progressive manner from the top 

level down, and the stopes in levels I and II must be completely ex-

ploited within 60 months and those in level III are to be completed in 72 

months. The figures of 60 and 72 months are strictly arbitrary in this 

example; however, in actuality these limits will be management decisions



TABLE I.— DATA FOR THE PROTOTYPE MINE

LEVEL STOPE
RESERVES
TONS OZ.Ag./TON $Pb. %Zn.

COST
$/T0N

MAX. PRODUCTION 
TONS/MONTH

M A X I M
CREWS

PROFIT
$/TON

1 A1N 150,000 1.2 2.0 1.5 5.40 5,000 6 6.50
B1 90,000 0.8 3.0 1.0 7.00 4,000 4 5.93
Cl 50,000 2.5 2.0 0.5 6.00 2,000 3 4.68
D1 20,000 2.0 4.0 2.0 8.50 1.000 2 11.88

2 A2 180,000 0.7 1.5 3-0 5.00 5,000 6 9.10
B2 100,000 1.0 1.0 2.5 7.50 5,000 5 4.04
C2 40,000 2.0 2.0 0.8 8.00 2,000 3 2.90
D2 10,000 3.0 1.0 1.0 6.00 500 1 3.77

3 A3 100,000 0.6 2.0 0.7 5.00 5,000 5 3.80
B3 70,000 1.5 2.5 1.0 7.00 2,000 4 5.34
C3 20,000 2.5 1.8 2.0 7.50 1,000 2 6.93
D3 10,000 4.0 3.0 3.0 8.00 500 1 13.86

4 Development 2.0 2.0 1.0 7.50 1,000 ($)
A7 - ti T i l

Monthly Production:

Development 1,000 Tons
Stopes 14,000 Tons

Total 15,000 Tons



based on mining rate, ore reserves, and operational confinements of par-

ticular areas of the mine—-all of which are a portion of the general 

operating policy.

Assume each stope underlies its corresponding stope number on the 

level directly above the one in question. That is, stope A2 lies directly 

under stope Al, and stope A3 lies under stope A2. Because of safety 

and maintenance reasons, management may want to add the restriction or 

constraint that no stope is to be completed to the level above until the 

stope on that level is completed. In other words, a crown pillar is to 

be left over each stope until the stope above is finished or completed.

It is assumed crown pillars to be maintained are as follows:

12,000 tons for each of "A" zone stopes
8.000 tons for each of "B" zone stopes
5.000 tens for each of "C" zone stqpes
3.000 tens for each of "D" zone stopes

Of course, a constant work force is desirable; therefore, for solu-

tion purposes an arbitrary figure of HO crews is inposed on the problem. 

Even though this figure is arbitrary and quite large, it will assure 

enough available labor to produce the required tonnage. Hie program will 

be set up so that the optimum solution will furnish the exact number of 

crews which are necessary for this operation.

Another constraint which may be placed on the problem is that of 

putting mayimum and minimum limits on the cost of production, such as 

$7.50 and $5.50 per ton. It may not be obvious why a lower limit is placed 

on the production costs. If production is to be scheduled on a monthly 

basis, as this problem supposes, and maximum profits are sought, it nec-

essarily follows that ore would be produced from the stopes containing 

the highest grade ore and the lowest production costs. Needless to say, 

the mine would be essentially "high-graded". In other words, the mine



would soon be stripped of Its low cost, high grade ore with cxily high 

cost, low grade ore remaining. Depending on the economic conditions 

at the time, this low grade ore may not be considered economical for 

mining. Consequently, for conservation purposes, which are becoming 

increasingly important in the Twentieth Century, the lower limit placed 

on the production costs will force some of the lower grade ores to be 

mined. The amount of low grade ore which is to be mined will, of course, 

depend on the lower limit set on the production costs. Obviously, this

will prolong the life of the mine which may be beneficial to the company 

because of equipment amortization and depletion allowances, and return 

on their initial capital investment. These cost restrictions, in all 

probability, will help maintain the monthly profit at a more stable, 

uniform level which will reduce the complications of monthly budgeting. 

From this discussion, it is readily seen that determining the lower cost 

limit is a large share of the whole problem. Management must not treat 

this restriction lightly and should spend much time and thought in affix-

ing a value to this lower cost limit.

Since linear programming is a mathematical technique, one must be

able to express all functions and constraints in a mathematical form 

either as equalities or inequalities. Fran Table I, the limitations on 

stope production rates can be mathematically represented as follows:

(1) Al. 5000
(2) Bl$ 3000
(3) Cl~ 2000
(4) Dl~ 1000
(5) A2| 5000
(6) B2j 4000
(7) C2§ 2000
(8) D2^ 500
(9) A3~ 4000
(10) B3| 3000
(11) C3^ 1000
(12) D3“ 500

tons per month 
tons per month 
tons per month 
tons per month 
tons per month 
tons per month 
tons per month 
tans per month 
tons per month 
tons per month 
tons per month 
tons per month



The letter and number represent the tonnage produced from a particular 

stope. That Is, A1 Is the monthly production from the A stope on the 

first level.

8

As stated previously, the mill requirements are 15,000 tens from 

development and stope production. Prom Table I, 1,000 tons of develop-

ment ore are being produced; consequently, 14,000 tons of ore must be 

produced from the stopes. The required mill tonnage from the stopes 

is then expressed by:

(13) A1 + B1 + Cl + D1 + A2 + B2 + C2 + D2 +
A3 + B3 + C3 + D3 - 14,000 tons.

The mill grade restrictions for silver in ounces is expressed by:

(14) 1.2A1 + 0.8B1 + 2.5C1 + 2.0D1 + 0.7A2 + 1.0B2 +
2.0C2 + 3.0D2 + 0.6A3 + 1.5B3 + 2.5C3 + 4.0D3 <
2.0(15,000) - 2 .0(1000)< 28,000

(15) 1.2A1 + Q.8B1 + 2.5C1 + 2.0D1 + 0.7A2 + 1.0B2 +
2.0C2 + 3.0D2 + 0.6A3 + 1.5B3 + 2.5C3 +
4.0D3 > 1.0(15,000) - 2.0(1,000)> 13,000

The mill grade restrictions for lead in per cent is expressed by:

(16) 2.0A1 + 3.0B1 + 2.0C1 + 4.0D1 + 1.5A2 + 1.0B2 +
2.0C2 + 1.0D2 + 2.0A3 + 2.5B3 + 1.8C3 +
3.0D3< 2.5(15,000) - 2 .0(1,000)< 35,500

(17) 2.0A1 + 3.0B1 + 2.0C1 + 4.0D1 + 1.5A2 + 1.0B2 +
2.0C2 + 1.0D2 + 2.0A3 + 2.5B3 + 1.8C3 +
3.0D3> 1.5(15,000) - 2 .0(1,000)> 20,500

The mill grade restrictions for zinc in per cent is expressed by:

(18) 1.5A1 + 1.0B1 + 0.5C1 + 2.0D1 + 3.0A2 + 2.5B2 +
0.8C2 + 1.0D2 + 0.7A3 + 1.QB3 + 2.003 +
3.0D3 < 2.0(15,000) - 1.0(1,000)< 29,000

(19) 1.5A1 + 1.0B1 + 0.5C1 + 2.0D1 + 3.0A2 + 2.5B2 +
0.8C2 + 1.0D2 + 0.7A3 + 1.0B3 + 2.0C3 +
3.0D3> 1.0(15,000) - 1.0(1,000)> 14,000

The development ore is considered on the right hand side of the equation.

The coefficient of each stope designation is simply the grade of ore con-



9

tained in that stope as shown in Table I.

Hie production cost restrictions may be represented as follows:

(20) 5.40A1 + 7.00B1 + 6.00C1 + 8.50D1 + 5.00A2 +
7.50B2 + 8.00C2 + 6.00D2 + 5.00A3 + 7.00B3 +
7.50C3 + 8.00D3 < 7.50(15,000) - 7.50(1,000) < 105,000

(21) 5.40A1 + 7.00B1 + 6.00C1 + 8.50D1 + 5.00A2 + 7-50B2 +
8.00C2 + 6.00D2 + 5.00A3 + 7.00B3 + 7.50C3 +
8.00D3 > 5.50(15,000) - 7.50(1,000) > 75,000

Hie ramerical coefficients are of course the cost per ton of ore produced 

from each stope as shown in Table I.

Hie mathematical equations expressing retreat from the three levels 

within the time limit of 60 and 72 months are as follows:

(22) A1 . 150,000 - 5,000(60)
(23) B1 — 90,000 - 4,000(60)
(24) Cl | 50,000 - 2,000(60)
(25) D1 ̂  20,000 - 1,000(60)
(26) A2 f 180,000 - 5,000(60)
(27) B2 ^ 100,000 - 5,000(60)
(28) C2 ~ 40,000 - 2,000(60)
(29) D2 |  10,000 -  500(60)
(30) A3 ~ 100,000 - 5,000(72)
(3D B3 z 70,000 - 2,000(72)
(32) C3 |  20,000 - 1,000(72)
(33) D3 |  10,000 - 500(72)

Hiese equations state that the production from any one stope must be 

greater than, or equal to, the remaining reserves in that stope, minus 

the may!mum production rate per month, times the number of months allow-

able for production in each stope. In other words, in order for a stope 

to be ccnpleted within the time limit designated; the product of the time 

limit in months, times the maximum production per month possible in each 

stope, must at least be equal to, or exceed, the total amount of remain-

ing reserves in the stope. Obviously the production rate can never be 

negative; therefore, if the right hand side of the aquation is less than 

zero, it should be replaced by zero. These equations will tend to force
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production from various stopes in later months.

In order to leave crown pillars above each stope and to force one 

level to conpletion before the one directly below it, the following 

equations are employed:

(34) 150,000A2 - 168,000A1 < 0
(35) 180,000A3 - 88,000A2 < 0
(36 ) 90,000B2 - 92,000B1< 0
(37) 100.000B3 - 62,000B2<0
(38) 50,00002- 35-OOOC1 < 0
(39) 40,00003 - 15,00002 < 0
(40) 20,000D2 - 7,000D1 < 0
(41) 10,000D3 - 7,000D2 < 0

Actually, a so-called !Slf" statement would be the easiest method of hand-

ling this pillar constraint. In other words, "if" ’x' tens are produced 

from stope A2, "then" at least 'x' tons must be produced from stope A! 

or possibly ’x' tens plus an additional amount of »y» tons, unfortunate-

ly > In linear programing such "if" statements cannot be handled. There-

fore, it becomes necessary to put the constraints in the form of mathe-

matical inequalities once again. One must make certain the time required 

to mine out an upper stope is less than, or equal to, the time required 

to mine out the stope directly below, exclusive of the pillar which is 

to be left. Looking at constraint (35) in particular, the expressions 

are arrived at as follows: (see Table I)

180,000 < (100,000 -  12 ,000)
A2 A3

After rearranging and simplifying:

180,000A3 - 88,000A2 < 0

Consequently, in order for the expression to be true, more tonnage must 

be produced from stope A2 than from A3 which is what is desired. One 

may note that an equation such as (34) may remain correct mathematically 

since sane tonr a$e may be extracted from stope A2 even though none is
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taken from Al. Although this is true, it should be noted that with the 

production from A2, the coefficient of Al will steadily decrease while 

that of A2 remains the same— providing no ore is extracted from stope Al. 

Consequently, within a very few months equation (3*0 will take on the form 

of equation (35) and will force the production from stope Al to be greater 

than that of stope A2 ,

The only remaining constraint which must be written in mathematical 

terms is that governing the number of crews. Previously an arbitrary 

figure of *10 crews was given which was considered excessive, therefore, 

the constraint must be written so that the optimum number of crews re-

quired to produce the necessary ore is obtained in the solution. The 

coefficient preceding each stqpe designation is obtained by dividing 

the maximum number of crews in each stope by the maximum production from 

that stope, thus resulting in crews per ten produced. The crew constraint 

is then as follows:

(*»2) (0.0012)A1 + (O.OOl)Bl + (0.0015)C1 + (0.002)D1 +
(0.0012)A2 + (0.001)B2 + (0.0015)C2 + (0.002)D2 +
(0.001)A3 + (0.002)B3 + (0.002)03 + (0.002)D3 < *»0

Now that all of the restrictions or constraints have been written for the

problem, there is only one function left. This last equation is the

optimization criteria, or, in this case, the maximum profit equation.

Naturally this equation must be expressed completely in term of profit.

Therefore, the numerical coefficients are simply the difference between

the gross value of a ten of ore and its cost of production. For exanple,

stope Al contains ore whose grade is as follows:

1.2 ounces silver per ton 
2.0 per cent lead 
1.5 per cent zinc

In figuring these profits, July, 1966, values of these metals were used



Sliver (Ag)-— $1.29 per ounce 
Lead (Pb)— — $0.15 per pound
Zinc (Zn)--- $0,145 per pound

Therefore, the value per ton of ore confutations take this form:

2% Pb x 2000Lb. x $0.15 * $6.00
Lb.

1.5% Zn x 2000Lb. x $0,145 - $4.35
Lb.

1.2 oz. Ag x $1.29 ■ $1.55 
Oz.

Profit per ton of ore from stope A1 is then:

$6.00 + $4.35 + $1.55 - $5.40 = $6.50

The maximum profit equation may then be written:

(P) 6.50A1 + 5.93B1 + 4.68C1 + 11.88D1 + 9.10A2 +
4.04B2 + 2.90C2 + 3.77D2 + 3.80A3 + 5.3483 +
6.93C3 + 13.86D3 » Z » TOTAL PROFIT

One will note that each of the mathematical expressions is in the

first power or the desired linear form. Since the simplex method of

linear prograirming requires the equations to be expressed as equalities

rather than inequalities, an additional variable called a "slack variable",

must be introduced into the inequality expressions. For instance,

equation (12) becomes D3 + Y « 500 instead of D3 < 500. This "slack

variable", Y, represents sane available source such as idle time or

additional production which may be utilized. For exanple a maximum of

500 tons of ore may be extracted from stope D3, but if less than 500 tons

is extracted in a month, the available tonnage not being produced is

represented by the slack variable Y.

If an inequality takes the form of "greater than or equal to'(>),

q Bowman and Ftetter. Analysis for Production Management, p. 84.
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a negative slack must be added to the equation. For Instance, equation 

(22) A1 > 150,000 - 5,000(60) becomes A1 - Y ■ 150,000 - 5,000(60). This 

slack variable still represents the difference between limiting and actual 

production. After the addition of these slack variables, one suddenly 

finds that there is an enormous amount of unknown variables In the prob-

lem.

Ihe programmer need not concern himself with adding these slack 

variables manually to the equations. A computer such as the IBM Model 

7044 handles this problem quite easily. When wilting the input matrix, 

the programmer need only place the correct mathematical signs with the 

corresponding equations. For example, a negative sign is associated with 

those inequalities containing a ’’greater than or equal to’’ sign; a positive 

sign is associated with those inequalities containing a ’’less than or 

equal to" sigh; and a zero is placed next to equations containing an 

equal sign. From these mathematical signs, the conputer then selects 

the correct slack variable to be used and proceeds toward the soltion.

Since these slack variables have a zero profit associated with them, it 

is undesirable to have them appear in the solution so the conputer arbi-

trarily associates a large cost with each, and thus keeps than from appear-

ing in the final solution. It is possible, however, for one of these 

added variables to appear in the optimum solution. If this happens, it 

most probably indicates that a restriction was incompatible or illogical 

with the total system. Then it is necessary to isolate this restriction 

and alter or eliminate it with regard to the total system. Thus the com-

puter handles the slack variables quite easily, and they represent no 

problem for the programmer.

Now that the equations are all developed, it is advisable to compile
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TABLE II.— CONTINUED

CONSTRAINT A1 B1 Cl D1 A2 B2 C2 D2 A3 B3 C3 D3 SIGN RHS

Con 26 1 0000
Con 27 1 > 0000
Con 28 1 > 0000
Con 29 1 > 0000
Con 30 1 > 0000
Con 31 1 > 0000
Con 32 1 > 0000
Con 33 1 > 0000
Con 34 -168000 150000 < 0000
Con 35 -88000 180000 < 0000
Con 36 -92000 90000 £ 0000
Con 37 -62000 100000 < 0000
Con 38 -35000 50000 < 0000
Con 39 -15000 40000 < 0000
Con 40 -7000 20000 < 0000
Con 41 -7000 10000 < 0000
Con 42 .0012 .001 .0015 .002 .0012 .001 .0015 .002 .001 .002 .002 .002 < 40
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tlie constraints into a table which resembles a brief matrix in form.

Table II expresses the equations for this particular problem in the 

desired form. The matrix itself can be written quite easily from this 

table. The exact fom of the matrix will of course depend upon the 

type of computer which is being used.

The optimum solution to this particular example is given in Table 

III. In other words, this is the most profitable distribution of produc-

tion which will satisfy all the constraints imposed on the problem. If 

this solution is followed, it will result in a maximum net profit to the 

organization.

Another part of the output is contained in Table IV. It should be 

noted that the values shown in this table are oily one-hundredth of their 

actual value. When writing the matrix, it became necessary to divide 

all numbers by 100 in order to comply with space limitations in the matrix. 

It will be noted that the values of B(I) are just the right hand side 

values of the equations which define our problem. The values of PI(I) 

are marginal values. This table then gives us a relationship between 

the actual values in the problem and associated marginal values. For 

each unit increase in B(I), the value of the objective function, "Z", 

will increase by the amount PI(I).

Prom Table IV, it is seen that only constraints 04, 05, and 13, 

would have any appreciable effect on the objective function if the right 

hand side values associated with these constraints should vary for any 

reason. It should be noted that constraint 04 is associated with pro-

duction from stope Dl; constraint 05 is associated with production from 

stope A2; and constraint 13 is associated with the mill requirements.

If then, for any reason, management should want an extra profit for a
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table III.—optimum solution

PRODUCTION
STOPE NO. TQNS/MQNTH

OPTIMUM
NUMBER OP CREWS

A1 4464.28
B1 2940.71
Cl 0.00
D1 999.99
A2 4999.99
B2 0.00
C2 0.00
D2 349.99
A3 0.00
B3 0.00
C3 0.00
D3 244.99

Total 1*1000.00 22.5
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TABLE IV. — MARGINAL VALUES

ROW (I) PI(I) B(I)

Con 01
Con 02
Con 03
Con 04 7.13684999
Con 05 3.67892857
Con 06
Con 07
Con 08
Con 09
Con 10
Con 11
Con 12
Con 13 5.92999999
Con 14
Con 15
Con 16
Con 17
Con 18
C m  19
Con 20
Con 21
Con 22
Con 23
Con 24
Con 25
Con 26
Con 27 2.25580000
Con 28
Con 29
Con 30
Con 31
Con 32
Con 33
Con 34 0.00000339
Con 35
Con 36
Con 37 0,00000590
C m  38
C m  39 0.00002500
Con 40 0.00016955
C m  41 0.00079300
Con 42

50.00
30.00
20.00
10.00
50.00
40.00
20.00
5.00
40.00
30.00
10.00
5.00

140.00
280.00
130.00
355.00
205.00
290.00
140.00
1050.00
750.00

40
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gl̂ ren month, they simply have to Increase the right hand side values of 

one of these constraints. In this case, management would obtain addi-

tional profit by increasing the producing capacity of stopes D1 or A2 

or increasing the tonnage sent to the mill. This is assuming of course, 

that the mill is capable of handling the extra tonnage. Each of these 

specific marginal values are based on the assumption that all other 

variables remain constant.

Other information which may be gained from a linear program is the 

range through which the right hand side values may vary. Table V is a 

compilation of the output specifically relating to this problem. Once 

again, the values are only one-hundredth of their actual value. Principally, 

this means that if all of the right hand side values remain constant but 

one, and if the variable right hand side value stays within the designated 

interval, then the basis of the problem remains unchanged. Ihe value of 

the objective function may change slightly, but the basis will not be 

altered. For example, constraint 04, which is associated with production 

from stope Dl, may range between a minimum value of 962.83 tens and a 

maximum value of 1428.57 tens. At the minimum value, constraint 02 

will come into play which will prevent production from falling below the 

designated minimum value. Likewise, constraint 08 will keep production 

from exceeding the upper range of production. Therefore, constraint 02 

and constraint 08 act as controls on the range through which production 

may vary from this particular stope. In effect these two constraints 

prevent the basis of our problem from being changed. Of course, there 

are no limitations set forth for these stopes which are to produce no ore 

for this particular time period.

More useful information which may be obtained from the linear program
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is shown in Table VI. The stopes which are not shown have no signifi-

cance to the problem at this stage of the operation. This output is 

similar to that shown and described in Table V, except that in this case 

we are dealing with ranges in profit per ten produced. As long as the 

profit values remain within the designated limits, the limiting constraints 

of the incoming vector will not come into play, and the basis of this 

problem will remain unchanged.

Essentially then the program gives management ranges of profit and 

right hand side values to work within. As long as values remain within 

these limits, all the constraints imposed upon the general problem will 

be satisfied and the basis of the problem will remain unchanged. Conse-

quently , if more or less ore is produced from a given stope or the profit 

per ton produced in a given stope varies, management will be able to deter-

mine whether or not the basic program would be valid for the next time 

period sinply by checking to see if the new value is within the designated 

limits. Management will also be able to get an idea of how any new 

values will effect the objective function, optimum profit.

Prom Table IV, management will readily be able to determine which 

stqpes to increase production from, if an emergency should arise and the 

ccnpany should suddenly need extra profit from the operation. The 

quantity which may be taken from one of these stopes is by no means 

infinitej but rather, it will be determined by the right hand side ranges 

Prom Table V. Therefore, only a finite amount is obtainable at any one 

time.

The Important thing is that a linear program can furnish a large 

amount of extremely useful information in excess of the optimum produc-

tion figures for each stope. Since it is virtually inpossible to produce



TABIE V. -RIGHT HAND SIDE RANGES 

ROW CURRENT P(I) MIN. MAX. OurGOING VECI10R 
NAME RHS VALUE VALUE VALUE VALUE AT MIN. AT MAX. 

Con 01 50.0000 44.642857 Unbounded Con 01 
Con 02 30.0000 29.407143 Unbounded Con 02 
Con 03 20.0000 Con 03 
Con 04 10.0000 7.1368500 9.628302 14.285714 Con 02 Con 08 
Con 05 50.0000 3.6789285 49.686792 55.223358 Con 02 Con 18 
Con 06 40.0000 Unbounded Con 06 
Con 07 20.0000 Unbounded Con 07 
Con 08 5.0000 3.500000 Unbounded Con 08 
Con 09 40.0000 Unbounded Con 09 
Con 10 30.0000 Unbounded Con 10 
Con 11 10.0000 Unbounded Con 11 
Con 12 5.0000 2.450000 Unbounded Con 12 
Con 13 140.0000 5.9299999 129.63980 140.59286 Con 21 Con 02 
Con 14 280.0000 152.39714 Unbounded Con 14 
Con 15 130.0000 Unbounded 152.39714 Con 15 
Con 16 355.0000 303.35714 Unbounded Con 16 
Con 17 205.0000 Unbounded 303.35714 Con 17 
Con 18 290.0000 277.22143 Unbounded Con 18 
Con 19 140.0000 Unbounded 277.22143 Con 19 
Con 20 1050.0000 822.52143 Unbounded Con 20 
Con 21 750.0000 Unbounded 822.52143 Con 21 
Con 42 o.4000 0.174878 Unbounded Con 42 



TABLE VI.— PROFIT RANGES

STOFE
SUGGESTED
PRODUCTION

I
I

LIMIT #1 LIMIT #2
INCOMING VECTOR 

AT LIMIT #1 AT LIMIT

A1 4464.2857 6.50 2.3796 6.5000 Con 05 Con 34
B1 2940.7142 5.93 5.9300 5.9300 Con 34 Con 37
D1 999.9999 11.88 4.7431 Infinite Con 04 Unbounded
A2 4999.9999 9.10 5.4210 Infinite Con 05 Unbounded
B2

349.9999
4.04 Infinite 6.2958 Unbounded Ccan 27

D2 3.77 0.3790 Infinite Con 40 Unbounded
B3 5.34 5.3400 8.9783 Con 37 Con 27
C3

245.0000
6.93 5.9300 14.0100 Con 39 C2

D3 13.86 9.0157 Infinite Con 40 Unbounded

foru
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the exact amount frcm each stope suggested by the program output, it is 

extremely inportant for management to know which stopes may vary in pro-

duction more than others and the effect this variation will have in terms 

of carp any profits.

This program is designed to establish the distribution of monthly 

production from a mine and to insure maximum profit. It may be used for 

several months in succession before a new portion of the program need 

be written. For example, as the reserves and the grade constants change 

during the course of mining, only a few new input cards need be inserted 

into the program. Ihis is true for all the constants which appear in the 

program.

Of course, if the general corporate or company policy changes re-

garding such changes as the number of crews, production requirements, or 

mining procedures, it becomes necessary to insert or delete equations 

within the program. If, for example, one of the old stopes is completed 

or a new stope comes into production, or a production limitation is imposed 

upon a particular level or stope, then new equations will have to be added 

to the program to handle these new problems. There is only one require-

ment concerning these constraints; that being that the equations must be 

expressed in linear form. It is possible that a new constraint may con-

flict drastically with one of the original constraints. Generally, this 

can only be determined after the program has been processed. If a con-

flict exists, management must decide which constraint is more costly to 

violate or which will accomplish the company's goals more satisfactorily.

Although this program was designed on a monthly basis, It is possible 

to program a digital computer so that it cycles the linear program and 

alters the various constraints representing such factors as ore reserve
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by using the results of a previous solution. Consequently, It Is possible 

to get an idea of future production on a long range basis. However, this 

cycling process cannot handle any changes that may occur In new producing 

areas, reserve tonnages, or ore grade changes. This can be a very useful 

tool for management If used for only a few months in succession. Small mines 

in particular have many pertinent changes occurring within a few months, 

thus causing the usefulness of the cycling process to be limited. Manage-

ment should also realize that the solution regarding a particular monthly 

production may not be the best solution for use In solving long range or 

future production schedules. However, If no major changes occur In the 

mining procedure or restrictions, there is no reason why one monthly produc-

tion schedule could not be followed for three or four months in succession.

The usefulness and efficiency of linear programming in solving a 

mining problem of this nature is obvious. Not only is an enormous amount 

of time saved, but the possibility of making human errors is also greatly 

reduced. Only by a systematic mathematical approach, such as linear pro-

gramming, can a problem of this conplexity be solved in a reasonable amount 

of time. Once the program has been written, it can usually be run period-

ically, with only minor additions or deletions to the basic program itself.

The cost of running such a program is indeed minimal when compared to 

the amount of information it supplies the company. This program was run 

on an IBM 7044 Digital Computer and the total costs were as follows:

Description
Hours/ Rate per Hour 
Quantity Hour/Uhlt Amount

Key Punch with Operator 
Verifier with Operator

7044 Computer Operator 
Printed Lines

7044 Computer 0.14
0.14

21.00
1.08
0.83

190.00 $26.60
4.00 0.56
0 .001/L 0.03
2.75 2.97
2.75 47.50

Total $79.95

I
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The bulk of the cost for running this program is the consulting program-

mer's fee. The detailed matrix for this problem was written in a form 

required by the Model 7044 computer before the consulting prograirmer 

received it. It was then his responsibility to have the necessary data 

cards punched, verified, and fed into the computer. A programmer's fee 

may be more or less than the one stated depending on where the program 

is processed, and the time consumed by unexpected problems which may occur. 

The type of computer used will also have a bearing on the cost since the 

running time of some computers is more expensive than others. This prob-

lem took 2.65 minutes to run on the IBM Model 7044.

Because of the keen competition in the mineral industry at the 

present time, the linear programming technique should be especially appeal-

ing to the smaller mining operations. With a minimum amount of expense, 

management is able to determine whether or not a particular operation will 

be able to compete economically within the industry. The small operation 

should also be encouraged by the fact that it is not necessary to have a 

computer technician on the staff. A mining engineer should be capable 

of writing a linear program with only a small amount of study being 

required. It Is becoming increasingly Important for the small mining 

company to produce ore which meets the necessary requirements while, at 

the same time, profit is being maximized. Linear programing is a pro-

cedure which can accomplish this efficiently and economically.
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