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Abstract 

Faces are ubiquitous in our daily lives, and our ability to perceive and process 

them drives many important tasks, such as identifying age, emotional state, and health. 

Despite a rich body of literature on face perception, the mechanisms involved in 

perceiving and interpreting faces remain enigmatic. In this work I explore individual 

variations in face perception. Individual differences have been studied across many 

domains of perception because these differences provide rich insight into perceptual 

mechanisms and their variability. For higher level, more complex stimuli like faces, 

differences themselves have been identified but the bases for them are poorly understood. 

Across three studies I examine individual differences in how human faces are 

categorized, with the goal of characterizing the nature of the variability and the 

underlying processes involved. In my first experiment I measured face categorization 

judgments for race and sex for observers living in Reno, Nevada and Tokyo, Japan, to 

compare both the differences between and within cultural contexts. I found large and 

reliable individual differences in face categorization boundaries, which were substantially 

larger within than between groups. In a second experiment I tested whether these 

categorization judgments reflect general biases (e.g., to see a face as more female) or are 

specific to properties of the individual faces being judged. I found biases at the level of 

the face categories that were equally due to differences in observers and the face 

identities being judged. Finally, I test the hypothesis that differences in face judgments 

partly reflect differences in how face coding mechanisms are normalized in individual 

observers. Here, I found evidence for sensitivity differences across observers, likely 

driven by their long-term experience of the diet of faces they encounter. By utilizing 

individual differences, these studies provide a rich characterization of the patterns of 

variation in judgments about faces – one of the most important visual stimuli for humans 

– and reveal insights into the bases for these differences. 
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Introduction: Utilizing individual differences in the study of face perception 
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1.1 General introduction 

The empirical process of understanding visual perception has relied on data from 

many observers, which ensures reliable and replicable results (Mollon, Bosten, Peterzell, 

& Webster, 2017). To this end, differences that can be seen across observers have often 

been overlooked as noise in exchange for more generalizable, averaged result data. While 

some data variations are not of interest and do reflect confounding random noise, 

typically in measurement error, there are many variations that are systematic and provide 

insight into real differences in observer optical, neural, and cognitive processes that 

mediate our visual representations of the world. These meaningful individual differences 

are measured using test-retest reliability or can be correlated with some measured trait, 

such as a clinical diagnosis (Mollon et al., 2017). These variations come with low intra-

observer error and are defined by how large and stable they are (Wilmer, 2017). The 

ubiquity of individual differences is undeniable, with research across all levels of 

perception revealing variations in visual processing. Existing research has emphasized 

how the study of individual differences can benefit us, allowing us to test cognitive 

theories (Yovel, Wilmer, & Duchaine, 2014), isolate dimensions of cognitive variation 

(Wilmer et al, 2012;2014), and fuel the progression of science (Germine et al., 2012).  

1.2 Individual differences as an applied tool  

Often motivation to study individual differences has stemmed from practical 

considerations (Mollon et al., 2017). One advantage of studying perception at the level of 

the individual is to gain an understanding of who is particularly strong or weak in a 

perceptual skill. It is becoming more common to develop screening procedures to vet 
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individuals for jobs that require a certain level of perceptual expertise. One example is 

professions that require people to view and make judgments about a variety of faces, such 

as border control officers. Studies have revealed a large amount of variability in face 

perception, and it is useful to determine where someone may fall on this spectrum to 

assess if they are going to perform well at their job (Duchaine & Nakayama, 2006; 

Russell, Duchaine, & Nakayama, 2009; Wilmer, 2017; Robertson, Noyes, Dowsett, 

Jenkins, & Burton, 2016; White, Kemp, Jenkins, Matheson, & Burton, 2014). Also, of 

interest is utilizing the study of individuals to compare differences at the population level. 

There have been studies revealing differences in perceptual performance for judging the 

sex and age of a face (Held, 1989;  Filkowski, Olsen, Duda, Wanger, & Sabatinelli, 2017; 

Werner, Peterzell, & Scheetz, 1990), clinical populations (Simmons, Robertson, McKay, 

Toal, McAleer, & Pollick, 2009), and cultural differences, which will be discussed at 

length later (Masuda, Ellsworth, Mesquita, Leu, Tanida, & Van de Veerdonk, 2008; 

Webster & MacLeod, 2011; Voegeli, Schoop, Prestat-Marquis, Rawlings, Shackelford, & 

Fink, 2021a,b). It is of relevance to understand the ways in which individual populations 

of people perceive and respond to in- and out-group populations.  

Another goal in understanding individual differences is being able to tailor stimuli 

for observers. A commonly used example of this is correcting for luminance sensitivity 

for observers (Kaiser, 1988). While this doesn’t have much to do with interests 

specifically in individual variation, it is an example of how such knowledge can control 

for confounds (brightness) and strengthen experimental methods (customize a stimulus to 

the observer). One of the biggest motivations for studying individual differences is 

uncovering visual mechanisms, such as deriving spectral sensitivities of cones from 
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individual color matches (König, & Dieterici, 1886), or identifying distinct visual motion 

patterns of pursuit using an individual difference paradigm (Wilmer & Nakayama, 2007). 

These are some of the ways individual difference studies have been utilized to provide us 

with a richer picture of perception. As we progress these studies our goal should be to 

uncover underlying mechanisms driving variation and then discover ways to capture 

these differences to improve research and advance the field of vision science. Depending 

on the stimulus and mechanism of interest, different stages of these goals will be the 

emphasis of individual difference research. 

1.3 Established individual differences  

In some cases, we have utilized the study of individual differences more heavily, 

yielding a thorough understanding of mechanisms driving these differences so that we 

can shift our goal towards developing methods, analysis, and measurements that exploit 

them. The field of color vision and specifically colorimetry is a good example of this. 

Much of the variability in receptor sensitivities for color vision is accounted for by 

physiological differences in the eye (MacLeod & Webster, 1983; Pokorny et al., 1987; 

Hammond & Caruso-Avery, 2000, Asano, Fairchild, & Blonde, 2016). These have been 

well studied in an attempt to do away with the use of a standard observer often utilized in 

color experiments. Instead, models are now being built to include estimates of the 

individual to better capture the perceptual variation we know arises across individuals’ 

perception of color (Asano, Fairchild, & Blonde, 2016; Lee et al., 2020). In addition to 

physiology, variation arises across individuals because of the environment in which they 

are immersed. This has been studied for color perception in terms of adaptation of our 
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visual systems to color in the environment (Webster, Mizokami, & Webster, 2007; 

Webster & Mollon, 1997; Lee & Webster, 2020), and adaptation as a source of variation 

is relevant to other stimuli as well. Namely, there’s a lot of research showing that the way 

we perceive aspects of faces is shaped by the diet of faces to which we are exposed in our 

daily lives (Webster & MacLeod, 2011; Rhodes, G., Robbins, R., Jaquet, E., McKone, E., 

Jeffery, L., & Clifford, C. W., 2005; Rhodes, G., Jeffery, L., Watson, T. L., Clifford, C. 

W., & Nakayama, K., 2003). The ability for our visual system to adapt to these stimuli as 

we move through the world raises important questions about the ways that we exploit 

perceptual information and encode perceptual features across all levels of complexity.  

1.4 Individual differences in face processing 

Face perception is an ecologically important visual task that supports many of our 

social percepts and interactions. While differences in face perception have been 

identified, from individuals who fail to recognize familiar faces (despite otherwise 

healthy cognitive function), to those who are experts at the task, and many variations in 

between (Wilmer, 2017), it is only recently that these differences have begun to be 

explored, and thus, the sources of this variation remain poorly understood. Ongoing 

research on individual differences in face perception has a different goal from that of 

colorimetry, as the basis for these differences is not yet well established. 

The study of individual differences in face perception includes the investigation of 

cognitive, genetic, and environmental contributions. One major field of research touching 

on environmental contributions is cross-cultural research that has explored the other-race 

effect (ORE), in which it has been shown that we recognize faces of our own race more 
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accurately than of another race, often explored through population sensitivity differences 

to face stimuli (Feingold, 1914). A similar phenomenon has been identified for faces of 

the opposite sex (O'Toole, Peterson, & Deffenbacher, 1996). The ORE has been well-

studied and has yielded great consideration of population-level differences in face 

processing, such as investigation of racial attitude and interracial contact on other and 

own-race memory for faces (Wan, Crookes, Dawel, Pidcock, Hall, & McKone, 2017; 

Meissner, & Brigham, 2001; O’Toole, Deffenbacher, Valenhtin, & Abdi, 1994; O'Toole, 

Peterson, & Deffenbacher, 1996). The ORE supports the idea that individuals update their 

face-space based on the diet of faces they encounter (Valentine, 1991; Webster & 

MacLeod, 2011; Rhodes, Robbins, Jaquet, McKone, Jeffery, & Clifford, 2005), which 

helps explain how we develop such rich and variable perceptual differences. Moving 

forward, understanding the ORE through an individual and population-level difference 

lens will help us to make better decisions for selecting individuals to do face-related jobs 

as well as assist in boosting diversity for things like ML models that are trained with face 

sets of different races and with a variety of expressions, ages, etc. 

Differences have been explored across many domains of face perception, 

including familiarity, attractiveness, and memorability (O’Toole et al., 1994; Anzures et 

al., 2013). Some genetic studies have demonstrated how variable the underpinning 

mechanisms of individual differences in face processing can be. Twin studies conducted 

by Wilmer and colleagues (2009, 2010a, 2010b, 2013) showed that the amount of 

variability accounted for by genetics vs. environment changes greatly depending on the 

task observers are asked to perform. This is an example of how multidimensional face 

processing is and how complex the study of these stimuli can be. These considerations 
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are going to make the study of individual differences more complicated, but our findings 

and the ways that we apply them will be better informed and richer in the context of this 

multidimensionality.  

1.5 Summary 

While our understanding of individual differences varies across studies and 

stimulus types, the aim to understand, characterize, and emphasize individual differences 

at multiple levels is crucial to our understanding of visual perception. Individual 

differences can be used as a tool to better understand perception and elucidate broader 

scientific principles related to mechanisms underlying our daily perceptual judgments 

(Peterzell, 2016; de-Wit & Wagemans, 2016; Anzures et al., 2013). I aim to explore 

individual differences in face categorization using three studies to identify differences at 

the population and individual level, and then uncover potential bases driving these 

differences.  
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2.1 Abstract 

Individuals are exposed to a vastly different diet of faces depending on their social 

environment. These stimulus differences could shape their perception of faces by 

determining their individual face-space. We explored variability in face percepts by 

comparing face categorization judgments for the same set of face images for adults living 

in Tokyo, Japan and Reno, Nevada. Stimuli were morphs between four pairs of averaged 

faces differing in sex (female vs. male) or race (Japanese Asian or Swiss White). 

Observers classified different levels of the morphs according to the four categories, with 

the category boundary and sensitivity estimated from probit fits to the psychometric 

functions. For both the sex and race judgments, the overall mean boundaries differed for 

certain face category judgments, but individual differences within each group were 

substantially larger than the within-observer variability (estimated from repeated 

measurements). We did not observe consistent group differences in sensitivity depending 

on the race or sex of the observers and the stimuli. For the specific conditions of these 

studies, these results instead suggest that cross-cultural factors may exert relatively 

limited influence compared to “within-group” differences in determining an individual’s 

face categories. 

 

 

 

 

 

 

 



10 

 

2.2 Introduction 

Faces provide us with many types of information, including someone’s age, 

emotional state, and health. This information drives many components of our lives, such 

as social interactions. For this reason, the study of face perception has been extensive and 

has yielded a rich body of literature. It wasn’t until relatively recently, however, that we 

began to investigate differences in the way individuals perceive faces. Figure 2.1 from 

Wilmer (2017) shows the trajectory of research on individual differences in face 

recognition, highlighting the recent acceleration of this topic in the literature (Wilmer, 

2017; Wilmer, Germine, & Nakayama, 2014). Because of the ubiquity of faces and the 

important purposes they serve, it is worth noting that across individuals there is 

systematic variability in how we perceive and process them. In the absence of brain 

damage, there are individuals who have been shown to fail tasks involving face 

recognition, while individuals on the other end excel at recognizing minimally familiar 

faces, as well as individuals all along this spectrum (Wilmer, 2017). Individual 

differences in face perception have been studied for a variety of judgments, including 

attractiveness, recognition, and emotion (Little, Jones, & DeBruine, 2011; White & 

Burton, 2022; Hamann & Canli, 2004). Individual variation in face perception 

judgements has been identified, but less is understood when it comes to the underlying 

mechanisms driving observed differences.  
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Figure 2.1. The recent acceleration of research on individual differences in face recognition. The 

three lines represent averaged results for searches in Google Scholar and the Web of Science Core 

Collection. The y-axis is the number of publications divided by the mean for 2000-2006 to equate 

comparison across the searches. For details on search terms and parameters, see Wilmer, J. B. 

(2017). Individual differences in face recognition: A decade of discovery. Current Directions in 

Psychological Science, 26(3), 225-230. 

 

Because faces are variable and complex, it has been difficult to understand what 

drives judgments being made by individuals. There are non-clinical variations that lead to 

widespread differences in face perception, such as cases of individuals who are poorer 

than average at face recognition tasks, as well as people who are unusually good at this 

(Russell, Duchaine, & Nakayama, 2009; White & Burton, 2022). In an attempt to 

quantify differences, researchers have investigated the relationship between cognitive 

abilities and face recognition. Many studies have shown that variability in face 

recognition abilities is minimally related to/accounted for by IQ (Gignac, 
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Shankaralingam, Walker, & Kilpatrick, 2016; Van Gulick, McGugin, & Gauthier, 2016; 

Wilmer, 2017). When it comes to attractiveness judgments, it has been reported that 

many evolutionary factors play a role in variability. This includes factors tied to 

individual physiology, such as hormone levels and fertility (Rhodes, 2006; Little, Jones, 

& DeBruine, 2011). These factors may drive judgments of attractiveness across sex in 

order to define preferences surrounding evolutionary success. Additional factors when 

making these judgments have been shown to include judgment of one’s own 

attractiveness, as well as environmental/social factors linked to threat (Calder, Ewbank, 

& Passamonti, 2011). Important work by Wilmer and colleagues (2009, 2010a, 2010b) 

utilized twin studies to identify a genetic basis for face memory and recognition. This 

research showcased a phenomenon whereby the specific cognitive ability of face memory 

was linked strongly to heritability. Interestingly, additional twin research by Wilmer et al. 

(2013) showed that despite the genetic underpinnings of face recognition, judgments 

made on attractiveness of faces are highly affected by environmental factors. This 

indicates that our decisions on facial attractiveness are highly susceptible to experience. 

The variability in the bases for judging facial memory vs. attractiveness further highlights 

the complexity of the mechanisms underlying visual processing of faces. These findings 

are not unlike some of those identified in the underlying causes of variation in color 

perception. Individual differences in color can reflect sensitivity differences of an 

individual, but differences can also be studied separately in terms of color appearance, 

and the two are not predictive of one another, indicating that they depend on different 

factors. The ways that we perceive and categorize faces may be similar to the large, but 

poorly understood differences in color hue categories. If this is the case, then it is worth 
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investigating if parallels can be drawn across judgments of these face categories to those 

reported for color categories (Berlin and Kay, 1969). 

Differences in face judgments have been linked both to internal factors of an 

individual and to external factors, such as environment. One of the most well-known 

examples of individual differences in face perception is the other-race effect (ORE), 

classified by a deficit in processing faces of another race compared to our own. The 

primary explanation for this effect is that we are primed by the diet of faces we encounter 

daily and may have limited contact to individuals of other ethnicities, reducing our 

perceptual expertise to them (Hancock & Rhodes, Tanaka et al, 2004). ORE studies have 

utilized the study of individual differences to better understand the processes underlying 

face perception. For example, DeGutis et al. (2013) demonstrated that individuals more 

actively engage in a form of holistic processing for faces of their own race compared to 

other ethnicities. Additionally, cognitive and behavioral measures have provided evidence 

that we process familiar vs. unfamiliar face stimuli differently (Johnston & Edmonds, 

2009). While the ORE demonstrates group level individual differences in face processing, 

there has also been variability identified in how much individuals are affected by it. Some 

cases of the ORE have proven to be so severe it mimics face-blindness for other-race 

faces (Wan, Crookes, Dawel, Pidcock, Hall, & McKone, 2017). This severity for a small 

number of individuals is mediated by factors we know drive differences across observers 

already, namely lack of contact with other race faces and lower than normal general face 

recognition abilities. While there are a small number of individuals who are so severely 

impacted by the ORE, it emphasizes the importance of considering the impacts of the 
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ORE at the individual level for specific tasks, such as eyewitness testimony or passport 

checking.  

These studies further emphasize how the complexities of face processing can lead 

to rich patterns of individual differences. A review by Yovel, Wilmer, and Duchaine 

(2014) noted that studying these individual differences in face processing provides a 

powerful tool to help answer fundamental questions linked to behavioral and neural 

mechanisms. However, many of the individual differences in face processing remain 

poorly characterized, largely because faces are so complex, and we perform many 

perceptual tasks related to them. A more thorough look at differences in how individuals 

define face categories could reveal important information about face processing. Here, I 

will use methods designed to compare cultural differences and provide insight into the 

ways in which individuals categorize faces.  

2.3 Experimental methods 

2.3.1 Participants  

Participants included 23 observers from Reno, Nevada (14 female, 1 Asian) and 

13 observers from Tokyo, Japan (7 female). All participation was with informed consent 

and followed protocols approved by the University of Nevada, Reno IRB.  

2.3.2 Stimuli  

Morphs of 10 frontal-view faces were used to create averages for each of 4 

categories (Asian male-White male (AMWM), Asian female- White female (AFWF), 

Asian female- Asian male (AFAM), White female- White male (WFWM)) across 2 

dimensions of face judgments (sex, race) (Figure 2.2). The faces were obtained as still 



15 

 

images from a Swiss-Japan facial movie database, developed by our Japan collaborators 

(Namba, Sato, Nakamura, & Watanabe, 2022). Note, all the Asian faces for this 

experiment were Japanese and all of the white faces were Swiss. The averaged faces were 

then morphed between different pairs to form a gradient of 100 steps within each 

category.  

 

Figure 2.2. Average identities of faces used to create morphs. The four faces are the average 

faces representing Asian male (top left), white male (top right), Asian female (bottom left), and 

white female (bottom right). Pairs of these faces were then morphed along the four dimensions to 

create the series of faces varying in either race or sex. 

 

2.3.3 Procedure 

Stimuli were presented using Visual Basic on a 23” Dell flat panel monitor with 

1920x1080 resolution and a 60Hz refresh rate. The monitor screen was calibrated with a 



16 

 

Photo Research PR 655 spectroradiometer. Observers viewed the display binocularly, 

seated 60cm away from the monitor, so stimuli subtended ~5.2° of the visual angle. For 

testing, 11 morph levels were shown in random order. These ranged from 25-75% in 5% 

steps. Each face was presented onscreen 40 times over 2 sessions for the Reno observers 

and 1 session for the Tokyo observers. Observers were asked to classify the face as 

Japanese male, Japanese female, Swiss male, or Swiss female with a key press.  

2.4 Results 

Reno observers completed two runs of the face classification experiment, while 

Tokyo observers completed one run. The boundaries estimated from the two runs across 

all face sets for Reno observers were highly correlated, r = 0.88, and run one correlated 

highly with run two for all of the categories individually, indicating that observers were 

consistent in their categorization across runs (relative to the within observer variability). 

Specifically, the difference in variance between the observers was 2.6 times greater than 

the variability in the repeated settings of a single observer. 

2.4.1 Category boundaries  

The 25 faces at each extreme end were not used for the experiment, so 11 morph 

levels, ranging from 25-75% in 5% steps were shown. These are represented as values -

20:20 on the x-axis of Figure 2.3. Category boundaries and sensitivity were estimated for 

each observer using probit fits (cumulative Gaussian fit to the response proportions) to 

the settings of 2 observer runs for Reno observers and single run data for Tokyo observers 

(Figure 2.3). Here, the 50% point is the category boundary while the steepness of the 

curve gives a measure of sensitivity (Bliss, 1934; Cramer, 2002). While we may expect 
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less sensitivity for out-group race judgements, sensitivity did not differ from Reno to 

Japan observers for any face set or by observer sex. Despite some cross-cultural 

differences, the variability within each test population was substantially larger; Standard 

deviation across observers’ categories were on average 2.6x greater than the SD of the 

within-observer settings.  

When comparing variance in boundary responses across cultures, there was 

significantly more variance in the Reno (M = 7.5, sd = 13.3) compared to Tokyo (M = 

15.5, sd = 7.9) responses when judging Asian female to Asian male morphs, F(22) = 2.8, 

p = .03. Overall, there was a trend of more variance when judging the sex of the other 

race for both Reno and Tokyo observers, including trending significance for the WFWM 

category, p=.05. (Figure 2.4). The race categories did not show significantly different 

amounts of variance across Reno and Tokyo.  
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Figure 2.3. Example Probit fits for one representative observer. Category boundary (values in top 

left of each graph) and sensitivity (slope of lines) were estimated from probit fits to the 

psychometric functions. Points represent the percentages for each response while lines are the 

fits. Blue is run one, red is run two, and black is the mean of both.  
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Figure 2.4. Variance in judging sex of other race faces. Differences in observer variability of 

boundary judgements from both Reno (orange) and Tokyo (blue) observers. Both groups of 

observers show higher amounts of variability in responses when judging the sex of faces of their 

opposite race as opposed to their in-group race.  

 

The category boundaries of all observers for each of the face categories are shown 

in Figure 2.5. Each point represents an observer’s boundary within that face category, 

with black triangles showing the average response for both Reno and Tokyo groups. We 

see cross-cultural differences, more emphasized in some face categories. There was a 

significant difference in the average categorization boundary for Reno (M = 4.26, SD 

=6.6) and Tokyo (M = 15.5, SD = 7.9) observers for face set AFAM, t(34) = -4.54 , p < 

.00. There was also a significant difference in the average categorization boundary for 

Reno (M = -6.4, SD =3.39) and Tokyo (M = -11.9, SD = 9.8) observers for face set 
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WFWM, t(34) = 2.48 , p <=.02, and a Reno (M = 0.30, SD =3.79)  v. Tokyo (M = 4.5, SD 

=8.12) difference for face set AFWF, t(34) = -2.43 , p = .02. Figure 2.6 shows the same 

differences in cultural responses for the four face categories in a bar graph. Despite 

significant differences in some of these categories, the variance within a location was at 

least 2.6x larger in each category than the variance across locations.  

 

Figure 2.5. Category boundaries for all observers. Data for both Reno (orange) and Tokyo (blue) 

observers, showing category boundary responses for all four face categories. Each dot represents 

categorization data from one observer, and black triangles are average response across all subjects 

in that location.  
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Figure 2.6. Average category boundaries. Reno (orange) and Tokyo (blue) observer category 

boundaries. Asterisks indicate significant differences in the group means.  

 

2.5 Discussion 

The main aim of the current study was to explore cross-cultural differences in the 

way people categorize faces by race and sex. We conducted a simple face categorization 

task in Reno, Nevada and Tokyo, Japan to explore differences between the two groups. 

From the categorization responses, we calculated individual and group level category 

boundaries to represent where each observer and cultural group fell for their 

categorization for each of the four face groups.  
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2.5.1 Cross-cultural differences  

Cross cultural differences in categorizing faces may reflect a variant of the other 

race effect. The ORE is a widely studied phenomenon and has been shown to bias 

sensitivity in face perception for individuals living in primarily mono-racial societies 

(Anzures et al., 2013). It has been demonstrated for many race combinations, and like the 

current study, consistent differences have been found for Asians looking at Caucasian 

faces and vice versa (Hayward, Rhodes, & Schwaninger, 2008; Tullis, Benjamin, & Liu, 

2014; Wan, Crookes, Reynolds, Irons, & McKone, 2015). While the ORE is typically 

shown to affect observer sensitivity to faces, we did not see sensitivity differences here, 

but instead saw a difference in the category boundaries of observers. This means 

observers in our Tokyo group likely showed a bias in their category boundaries based on 

their exposure to Japanese faces more than Swiss ones, and vice versa for the Reno 

observers. Importantly, if these boundaries are shifted then we might expect people to be 

more sensitive to how a face differs from their own race category, as was found for 

adaptation to natural face categories in Webster, Kaping, Mizokami, and Duhamel (2004). 

But that finding was not replicated here. While some studies have shown the ORE to 

have a modest effect (Brigham et al., 1982; Meissner & Brigham, 2001), Wan et al. 

(2017) reported that for some individuals the effect can cause major functional 

consequences for real world tasks involving faces. These population differences are 

thought to arise based on the ways individuals update their face-space during exposure to 

faces, which supports our second and more surprising finding.  
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2.5.2 Within-cultural differences 

In addition to cross-cultural differences, we found large and reliable variation in 

category boundaries within our two test populations. When we consider the concept of 

individualized face-spaces, we can better understand where this variability may stem 

from. As we are exposed to faces in our environment, we update our ‘norm’ face by 

which we judge all other faces (Valentine, 1991; Webster & MacLeod, 2011; Rhodes, 

Robbins, Jaquet, McKone, Jeffery, & Clifford, 2005). If each person starts with a 

different norm based on their experiences, then it is very unlikely that any two individuals 

would have the same reference from which they perceive other faces. While this may 

explain the variable percepts we observed within our groups, it does seem interesting and 

surprising that within cultural differences would be larger than cross-cultural ones.   

However, this result is similar to a pattern identified in the field of color science, 

where there are strong cross-linguistic similarities in color naming yet large individual 

differences within languages (Berlin & Kay, 1969; Lindsey & Brown, 2009). The basis 

for the individual differences in color appearance and color categories are not fully 

understood but are not the result of differences in spectral sensitivity (Emery and 

Webster, 2019). Instead, it is possible that the association between linguistic categories 

and stimuli is weak and thus can vary widely between individuals; or as noted above, that 

individual differences in the visual diet are large and thus lead to substantial variation. 

Whatever the basis, our results point to a strong similarity between color and faces in 

terms of how the categories vary within and across populations.  
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3.1 Abstract 

Individuals vary widely both in their ability to recognize faces and in how they 

classify faces along dimensions such as race, sex, or expression. However, the bases for 

these differences are poorly understood. In particular, it is not known how the 

categorization judgments depend on the properties of the specific faces. We examined the 

pattern of differences for typical categorical judgments of the sex or race for a wide 

variety of individual faces. The face images were from the Chicago Face Database for 

individuals labeled as male or female and Asian or White, with 10 faces selected from 

each of the four categories. Faces were cropped to remove external features, and then 

paired and morphed to form 40 stimulus sets across dimensions. The morphed faces for 

each set were shown simultaneously as a graded series arranged in a circle on a display 

and spanned the two original identities in steps of 5%. Observers selected the face closest 

to the category boundary for each set. Reliability for repeated measurements was high 

(r~0.9), with average between-observers variance 2.3x the within-observers level. 

Correlations were generally weak across stimuli showing that the observers did not 

merely differ in a general bias but rather in face-specific biases. These results suggest that 

observers may partly use distinct and idiosyncratic strategies for making basic categorical 

distinctions between faces. 
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3.2 Introduction 

The ability for people to complete tasks related to face identity is relevant for 

many real-world situations, such as eyewitness identification. Studies have shown that 

there are individual differences in the ways that people perceive and recognize face 

identity, even within expert groups. For example, in a study conducted with individuals 

who had specialist experience at judging faces, performance on a face comparison task 

was variable across viewers, with some performing well and others performing poorly 

(White, Kemp, Jenkins, Matheson, & Burton, 2014). This variability is strong and 

persistent, leading researchers to study face perception for individuals working in groups 

instead of alone to decrease variability and increase performance accuracy (Phillips et al., 

2018; Bruce, Bindemann, & Lander, 2018; Balsdon, Summersby, Kemp, & White, 2018). 

Not only are we interested in studying how much variability exists across people, but we 

want to know what mechanisms are driving it and what this can tell us about perceptual 

and cognitive organization of face processing. 

Such questions have begun to be answered by discovering the things that do not 

seem to be driving systematic differences in face processing abilities. One study aimed to 

understand the relationship between perceptual variability and aspects of face-identity 

processing. While different face tasks correlated with each other, it was found that task-

specific influences drive performance and limit the amount of variability that can be 

accounted for with a general face-perception factor (McCaffery, Robertson, Young, and 

Burton, 2018). This study also ruled out that variation in perceptual abilities can be 

strongly accounted for by memory differences. Experience from years in a professional 

job that requires face matching also does not drive face matching performance (Bruce, 
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Bindemann, & Lander, 2018). Additionally, it was found that training for face tasks does 

not increase our ability to complete memory and matching tasks and may in fact put us at 

even more of a disadvantage due to forcing unnatural processing (Woodhead, Baddeley, 

& Simmonds, 1978). In contrast, later work found that training individuals to detect 

morphed faces-a task which yields substantial individual differences-leads to higher 

performance (Robertson, Mungall, Watson, Wade, Nightingale, & Butler, 2018). These 

findings beg the need to better understand the bases underlying individual differences in 

face processing, and specifically for different face tasks and identities.  

In a previous study (chapter 2) we found that a face categorization task yielded 

large and reliable individual differences across observers. A limitation of this study is that 

single identities were judged within each of the race and sex categories. It is of interest to 

investigate individual difference patterns for multiple identities within a category to see if 

they depend on the specific faces judged or general individual biases.  

3.3 Experimental methods 

3.3.1 Participants  

Participants included 21 observers from Reno, Nevada, although 16 total were 

analyzed (8 female, 13 white, 3 Asian). Five observers were eliminated from analyses due 

to missing data or low reliability across runs. All participation was with informed consent 

and followed protocols approved by the University of Nevada, Reno IRB.  

3.3.2 Stimuli 

Face images are from the Chicago Face Database for individuals labeled as male 

or female and Asian or White, with 10 faces selected from each of the 4 categories (Ma, 
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Correll, & Wittenbrink, 2015). These were cropped to remove external features, and then 

paired and morphed to form 40 stimulus sets (Figure 3.1). The faces that were paired to 

form each morph were randomly selected if they were classified by the database as 

White, Asian, Female, and Male. All faces were morphed by one experimenter for 

consistency and then checked by a second experimenter. If any of the morphs looked like 

the identities did not align well (e.g., blur around the eyes because they were drastically 

different in shape or size) then those morphs were redone with new identities. Face 

categories are abbreviated AFAM: Asian female-Asian male, WFWM: White female-

White male, AFWF: Asian female-White female, and AMWM: Asian male, White male. 

 

Figure 3.1. Examples of face identities. Examples of eight individual faces used to morph across 

sex and race dimensions. Left panel shows examples in the sex dimension: AFAM, WFWM. 

Right panel shows examples in the race dimension: AFWF, AMWM. For each identity pair the 

extreme identities are on the outside, while the 50% morph is in the middle. Within each of the 

four categories, a total of 10 different morphed pairs were created; Each example here shows one.  
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3.3.3 Procedure 

Stimuli were presented in Matlab 2022b on a 32” Cambridge Research Systems 

Display++ with 1920x1080 resolution and a 120Hz refresh rate. The monitor screen was 

calibrated with a Photo Research PR 655 spectroradiometer. Observers viewed the 

display binocularly, seated 80cm away from the monitor, so each individual face stimulus 

subtended ~4° of the visual angle. The morphed faces for a set were shown 

simultaneously as a graded series arranged in a circle on a display and spanned the two 

original identities in steps of 0.05 (Figure 3.2). Observers selected the face closest to the 

category boundary for each set, with the individual pairs for each dimension shown in 

random order, and with the morph configuration rotated randomly each trial (so that the 

position of the specific faces varied). Instructions specified that the observer should 

“select the face that is an equal balance of male/female OR White/Asian,” depending on 

the category being judged. All observers completed two runs of the experiment, selecting 

the category boundary for a given morph five times per run. 
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Figure 3.2. Example of the display for the sex judgment set. Faces were arranged in a circle and 

remained on the screen while observers selected the face that appeared to be an equal balance of 

male/female OR White/Asian, depending on the category. On different trials they rotated by 

random angles so that the morph levels were not tied to a specific angle or screen location. 

  

3.4 Results 

To assess reliability, we compared the settings across the two runs of observers. 

Between observer variability was 2.3x greater than within observer variability (Figure 

3.3). Additionally, correlations between the two runs for each category were high (AFAM 

r = 0.8, WFWM r =0.5, AFWF r = 0.8, AMWM r =0.8), indicating observers were 

consistent in their boundary settings across runs. Correlating all four of the face 

categories showed us that people were consistent in judging race independent of sex (two 

race categories, r = 0.8), but not vice versa (two sex categories, r = 0.4). 
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Figure 3.3. Within vs. between variability across observers. X-axis is the face categories, 

abbreviated: AFAM: Asian female-Asian male, WFWM: White female-White male, AFWF: 

Asian female-White female, and AMWM: Asian male, White male. Y-axis is SD calculated from 

the difference between observers’ two runs. Within (green) variability is lower for all face 

categories than between (brown) variability, indicating that observers were more consistent within 

their own responses than compared to other observer responses.  

 

3.4.1 Effect of observers and stimuli on boundaries 

 Individual differences we observed in boundary selection could be due to both the 

observers and stimuli, or perhaps more one than the other. To assess this, the variance 

across observers for each face set (Figure 3.4a) was compared to the variance across the 

ten face pair identities within each set (Figure 3.4b). The variance observed for each of 

these was comparable, indicating that variance we observe is due to both the observers 

and the different stimuli. When assessing variance across observers, there was a trend 

nearing significance that showed larger variance when observers judged Asian faces (M = 
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49.3, sd = 5.1)) compared to white faces (M = 48.5, sd = 3.3) in the sex dimension, F(15) 

= 2.4, p = .05.  
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a 
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b 

 

Figure 3.4. Boundary variance from observers and stimuli. a) Average boundary variance across 

observers for each face set, organized from lowest to highest. The four panels show data for the 

four face sets: top left is AFAM, top right is WFWM, top left is AFWF, and bottom right is 

AMWM. b) Average boundary variance across the ten identities within each set, represented in 

panels the same as a). 
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3.4.2 Correlations between face pairs and factor analysis 

To assess the influence of the individual faces on the category judgments, we 

examined the correlations for all face pairs (Figure 3.5). Patterns of high correlations 

suggest that observers were performing in similar ways for a given pair. These high 

correlations are evident for the race judgments (lower right quadrant of the figure), 

suggesting that the differences between observers were fairly consistent across the face 

exemplars; or in other words, that observers were showing “general” differences in how 

they were categorizing the faces. In contrast, the correlations are weaker for the sex 

judgments, suggesting that the observer differences for these categories were more 

dependent on the specific faces being judged. 
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Figure 3.5. Correlation matrix between average responses to fair pairs. Correlations organized in 

a heat map to represent patterns in response similarity for all face pairs. Large patterns of 

similarity are seen especially in the categories for race, indicating that response variability is 

occurring at the level of the categories and not for specific face identity pairs.  

 

To explore these patterns, we conducted a factor analysis of the correlations in 

observer responses. Factor analysis is a common technique used for dimension reduction 

by identifying underlying sources of variation in a set of data. A typical analysis involves 

multiple steps with various options (see Costello & Osborne, 2005; Emery, Volbrecht, 

Peterzell, & Webster, 2017, 2023). Our factors were computed from the correlation 

matrix of observer categorization responses and extracted with principal component 

analysis (PCA). The extracted factors are represented by their factor loadings, which 

specify the correlation between the factor and each variable. We used the standard 
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Varimax rotation which favors solutions in which the loadings tend to be very high. 

Generally, there must be as many factors as variables to represent all the variance, but 

only some of these account for real variations as opposed to noise. The number of factors 

to extract was determined by examining their loadings so that the factors with the highest 

loadings are likely to correspond to meaningful variations. The extracted factors were 

retained for categorization loadings of 0.6 or higher. This is an approach that has been 

applied previously in factor analyses (Emery et al., 2017; Peterzell and Teller, 2000; 

Peterzell, Chang, & Teller, 2000; Webster and MacLeod, 1988).  

The first eight factors accounted for 91% of the variance, while the first four 

factors accounted for 76% of that variance. The loadings for these factors are shown in 

Figure 3.6, with the face pairs arranged so that the loadings are ordered from lowest to 

highest. The top panel shows the first four factors. Factor 1 accounts for much of the 

variation for race judgments for both male and female faces, while factor 2 accounts for 

the sex judgments for Asian faces. That is, for these factors, the differences between 

observers were largely consistent across the face pairs. For race, this means each observer 

was applying a consistent criterion regardless of the sex or identity of the faces (though 

some face pairs were exceptions). For sex, the factor also suggests that when judging the 

Asian faces, observers were again applying a consistent criterion independent of the 

specific identity. In contrast, two factors (factors 3 and 4) emerged for judging the sex of 

the white faces, implying that observers may have relied on two different strategies or 

stimulus cues that depended on the identity. Note again that most observers for this 

experiment were white in race, and all primarily exposed to a diet of white faces, and this 

dimension was the only one composed of faces (female and male) that were both white. 
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Including factors 5-8 (Figure 3.6, bottom panel) brings the variance accountability to 

91%. These factors capture the variance from outlier faces in the top panel, such as faces 

31, 32, and 33, which were not accounted for by Factor 1 but seem to be captured by 

Factors 7 and 8. 

Although four loadings accounted for most of the face set response variations 

within each category, some face sets fell outside of those factors. Figure 3.7 shows 

examples of the three face pair exemplars that had low loadings for Factor 1 in the 

AMWM category compared to face examples that have the highest loadings for that 

factor. There does not seem to be a conspicuous visual distinction for these face stimuli, 

so the bases for these differences remain unclear. Figure 3.8 shows examples of the face 

exemplars with the highest loadings for both Factor 3 and Factor 4, given that they shared 

loadings within a single face category.  Similarly, there do not seem to be visual 

distinctions driving the separation of factor loadings within this face category.  
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Figure 3.6. Factor loadings by face stimulus pairs. Top panel shows factor analysis loadings 

accounting for 76% of the variability observed in categorization response data. Dashed lines 

emphasize the four factors within the face categories. Factor one (red) accounted for variability of 

the race judgments in both sex categories, and factor two (green) accounted for variability in the 

sex judgements for Asian faces. The sex judgments for Caucasian faces were accounted for by two 

factors: three (blue) and four (purple). This is interesting as it is the only category with a split in 

the factor loadings and the only race in-group category for observers. The bottom panel shows 

loadings for faces in the same order as the top panel on the remaining factors, 5-8, which brings the 

variance accountability to 91%. It is evident these factors do capture the variance from outlier faces 

in the top panel, such as faces 31, 32, and 33, which were not accounted for by Factor 1 but seem 

to be captured by Factors 7 and 8. 
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Figure 3.7. Comparison of face pairs with low vs. high loadings for Factor 1. Faces on the left 

panel are stimuli 31, 32, and 33 from Figure 3.6. These three face stimulus sets had the lowest 

loadings for Factor 1 while the right panel shows stimuli 38, 39, and 40, which had the highest 

loadings for this factor. Each set shows the two original identities (001 and 101) and the 50% morph 

(051).  
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Figure 3.8. Comparison of face pairs with high loadings for Factors 3 and 4. Faces on the left panel 

are stimuli 6, 9, and 10 from Figure 3.6. These three face stimulus sets had the highest loadings for 

Factor 3. The three sets on the right panel are stimuli 5, 7, and 8, which had the highest loadings 

for Factor 4. Each set shows the two original identities (001 and 101) and the 50% morph (051). 

 

3.5 Discussion 

 The main aim of the current study was to assess the ways individuals categorize 

the race and sex of different morphed facial identities. It is apparent that these judgments 

must in part depend on the properties of the faces being judged, because individual faces 

can vary widely in how well they represent different facial attributes. However, it is 

unclear how observers themselves differ, and whether these differences are consistent 

across faces or instead depend strongly on the specific characteristics of the faces. To 

assess this, we measured category boundaries for both a large number of observers and 

real faces.  

 



42 

 

3.5.1 Correlational patterns of boundary responses 

For three of the four face categories examined, we saw strong correlations in 

observer boundary responses for most of the ten identities. While there were exceptions 

in the pattern, overall responses were highly correlated across exemplars, indicating that 

whatever an observer was doing for one face identity set in a category, they seemed to be 

doing for all sets in that category. This suggests that the differences between observers 

were consistent across most face pairs, though the mean interobserver biases might vary 

with the stimulus pair. However, for one of the dimensions (WFWM) observers did not 

merely differ in a general bias but rather in face-specific biases, similar to a pattern that 

has been found for trustworthiness where multiple dimensions were pulled from a factor 

analysis when trying to build a model to account for judgements for a population 

(Sutherland, Rhodes, Burton, & Young, 2020; Sutherland et al., 2020). 

3.5.2 Factors driving variability 

A follow up PCA revealed four main factors accounting for 76% of the variance 

in observer responses. Of importance are potential implications of the breakdown of these 

factors and what they could reveal about processes operating for categorization in our 

face groups. Factor one accounted for variability in response to race judgments for both 

male and female faces. While we do know exactly what that factor is representing, the 

pattern of loadings suggest that observers were using a consistent strategy for classifying 

the race that was largely independent of the sex or identity of the face.  Factor two 

emerged for sex judgments, but only for Asian faces. Thus, in this case the judgments 

were again largely independent of identity but specific to race – i.e. the observers were 
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using different strategies to judge sex in the Asian vs white faces. Finally, for the white 

race exemplars, there were instead two different factors underlying the judgments, 

implying that the judgments depended on two different and identity-specific cues. The 

pattern for this factor is again notable because almost all observers were white in race, 

and it was also the only dimension restricted to white faces.  

Again, we cannot know from PCA alone what is specifically driving responses, 

but from the breakdown of factors there may be some in-group or other-race effect 

happening for categorization of the all-Caucasian vs. mixed-race pairings. Note, ingroup 

and ORE are not synonymous, although are related. Ingroup is much broader than race, 

and can refer to any group of faces that you relate as being an ingroup to yourself, 

including judgements on the basis of race, sex, community, club, sport, etc. Race is just 

one possible component of ingroup and outgroup, and likely would be the most relevant 

here, although not necessarily the only factor at play. Many perceptual effects have been 

identified as being associated with ingroup judgements, including stronger holistic 

processing for faces categorized as being in-group (Hugenberg & Corneille, 2009), larger 

N170 amplitude responses elicited by ingroup faces (Ratner & Amodio, 2013), a lack of 

detriment when outer features are removed for judging ingroup vs. outgroup faces 

(Sporer & Horry, 2011), and maybe most commonly, a perceptual benefit when judging 

ingroup faces. Further tests of these ideas could include repeating the measurements with 

an Asian population of observers to see if the factor pattern follows the race of the 

observer, or to look more generally at group or familiarity effects on the ratings. 
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4.1 Abstract 

 Individuals differ reliably in how they categorize faces for attributes such as 

ethnicity or biological sex, but the bases for these differences remain poorly understood. 

We examined whether differences in categorical boundaries for sex reflect differences in 

criterion or differences in neural coding of faces, by comparing subjective judgments of 

the category boundary (which we term the “perceptual norm”) with differences in the 

neutral point for adaptation aftereffects for faces (which we term the “response norm”). 

Average male and female faces (each formed by blending 10 individual faces) were 

morphed to form a graded variation from female to male. A staircase procedure was used 

to identify the category boundary (point at which there is equal probability of classifying 

the face as female or male), before or after adapting to faces corresponding to different 

levels along the morph. Prior adaptation to a female (or male) face causes subsequent 

faces to appear more male (or female). The adapting morph level that does not bias the 

responses therefore reveals the stimulus level that coding of the dimension is normalized 

or calibrated for. We show that these response norms significantly covary with the 

individual differences in the perceptual norm (r = 0.7). This suggests that a substantial 

source of the individual differences in the categorical boundaries for sex is how the 

neural architecture for representing faces is calibrated, potentially through either innate 

coding differences or the long-term experience of faces for the observer.  
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4.2 Introduction 

Adaptation is defined as a brief and temporary change in sensitivity or perception 

when we are exposed to a new stimulus (Webster, 2015). This is a crucial skill of our 

visual system, and many studies have shown that characterizing the dynamic changes of 

our visual system in response to different stimuli can provide insight into coding 

strategies and the ways in which they are calibrated. For example, Webster and Macleod 

(2011) provide visual examples of how stimuli along one dimension, like faces being 

judged on sex might be captured by a set of channels tuned in different ways (Partial 

Figure 4.1 from Webster & Macleod, 2011). These changes are typically characterized by 

studying aftereffects, or a type of afterimage that arises after the visual system adjusts its 

sensitivity from viewing a stimulus. There are established hallmark patterns of aftereffect 

changes, such as their selectivity to stimulus properties and tendency to reflect reduced 

sensitivity for stimuli similar to an adaptor. While they can be similar, aftereffects also 

show a range of varying dynamics based on the stimulus to which we are adapted and 

studying them can reveal something about the response changes in neural mechanisms 

underlying perception (Webster et al., 2004). Adaptation to low level stimuli, such as 

pattern orientation yields aftereffects indicative of adaptation at different visual cortical 

areas (Paradiso, Shimojo, & Nakayama, 1989), while adaptation to color has shown 

aftereffects selective for different orientations based on the adapted pattern (McCollough 

Howard & Webster, 2011). Adaptation can be used to explore the processes and dynamics 

underlying perception of higher-level stimuli, like faces as well.   
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Figure 4.1. Norms and channel coding along a face sex dimension. The sex dimension may be 

represented by a small number of broadly tuned channels (left) or a larger number of narrowly 

tuned channels (right). N is a point of neutral adaptation (no shift in the norm) and A represents 

adapting level. a) The norm is represented by equal responses in two channels. Adapting to a 

biased stimulus (shifted away from the norm) reduces the response in one of the channels more 

and shifts the norm away from neutral. This produces a shift in the appearance of all faces in the 

direction indicated by the arrows. b) Both the stimulus and channels are narrowband. Adaptation 

reduces the channel response at the adapting level and skews the responses to other stimuli away 

from the adapting level. There is not a unique norm (both N and A occupy same location). For 

details, see Webster, M. A., & MacLeod, D. I. (2011). Visual adaptation and face perception. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1571), 1702-1725. 

 

While aftereffects have been demonstrated at lower perceptual levels for stimuli 

like orientation or motion, the aftereffects studied for faces are inherently more complex 

since the adapting stimuli themselves carry multifaceted information about identity, 

mood, etc. (Leopold, Rhodes, Muller, & Jeffery, 2005). These aftereffects have been 

shown to possess a robustness, ultimately less affected by changes from the adapting to 

test stimuli than for lower-level effects. Worth exploring in the future are reasons for this 

robustness, as it may be related to other interesting components of adaptation, like 

timescale (Gao, Pieller, Webster, & Jiang, 2022). Leopold et al. (2005) found that face 
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adaptation had a similar trajectory as that to other, lower-level stimuli. Specifically, an 

aftereffect for judging face identity grew stronger the longer a person was adapted, and 

the effect dropped off as a function of how long a test face was viewed. This overlap in 

aftereffect patterns raises questions about the origins of adaptation in the visual stream. 

While low level stimuli are recruiting early visual areas and more complex stimuli are 

recruiting later visual areas, the overlap in aftereffect patterns may be evidence that to 

some degree, adaptation is evoking activation of the entire visual cortex. Additional 

studies have looked at aftereffects as they are associated with a face memory task, and 

reported results consistent with the idea that aftereffects can tap into high-level face-

space (Dennett, McKone, Edwards, & Susilo, 2012), which is less likely to be corruptible 

by low-level attributes. Although we understand a lot about the process of adaptation, 

continuing to investigate it for more complex stimuli will be informative for the ways in 

which the brain is responding to different stimulus types.   

Previous studies have shown figural aftereffects in the perception of faces, 

whereby people saw test faces as distorted in a direction opposite that of an adapting face. 

Beyond this, the aftereffects transferred across face stimuli and showed an asymmetry 

such that adaptation did not occur in the opposite direction, i.e., adapting to an original 

unedited face did not affect the perception of a distorted face. This provides evidence that 

adaptation may serve to normalize our perception of faces and is altering sensitivity at a 

high level of perceptual encoding, beyond low level feature differences (Webster & 

Maclin, 1999). Additionally, studies have found that adaptation transfers across changes 

in stimulus size (Zhao & Chubb, 2001) and retinal position (Leopold et al., 2001). 

Watson and Clifford (2003) also found that aftereffects transfer across changes in 
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stimulus orientation, while Tillman and Webster (2012) showed that aftereffects had 

strong transfer even across face identity. Yamashita, Hardy, De Valois, and Webster 

(2005) showed that featural differences are not the basis for adaptation selectivity. 

Together, these findings provide further support that face adaptation is adjusting 

sensitivity at higher, face-specific levels of processing, independent of these low-level 

feature cues. 

Another study showed that you can recalibrate preferences for faces by adapting 

people to distorted faces and observing a subsequent shift in what was perceived as 

normal and attractive towards that distortion. This result demonstrates that you can 

rapidly recalibrate preferences by updating the norm via adaptation (Rhodes, Jeffery, 

Watson, Clifford, & Nakayama, 2003). We can even adapt to face silhouettes of different 

genders and view the aftereffect change in front-view faces, revealing common neural 

mechanisms as the site of adaptation for these stimulus types (Davidenko, Witthoft, & 

Winawer, 2008). The ubiquitous adapting effects observed for many domains of face 

perception tell us that adaptation likely serves a critical purpose as it routinely influences 

face perception in our daily lives. To support this, Webster et al. (2004) studied adaptation 

effects for natural variations in faces, as opposed to extreme distortions or silhouettes of 

aforementioned studies. They found that natural stimulus variations, across dimensions 

like sex, race, and expression, are large enough to cause different states of adaptation in 

observers. This emphasizes the importance of the diet of faces to which we are all 

exposed in our daily environments, and may tell us something about the criteria we use to 

judge faces and the sensitivity of our visual systems to different faces we see.  
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Of interest is the idea that individual differences in face perception may be linked 

to individualized norms (Webster, 2015; Webster & Leonard 2008, Sawides et al. 2011, 

Radhakrishnan et al. 2015). As people move through the world and are exposed to a 

specific diet of faces, their visual systems generate a norm, established by adaptation. The 

perceptual experience of individuals will vary relative to this norm, such that individual 

faces will be represented by how they deviate away from it (Webster & MacLeod, 2011). 

Norm-based coding provides a good explanation for individual differences in face 

perception seen across observers, as everyone’s norm will be different based on their 

personalized experience (Rhodes, Robbins, Jaquet, McKone, Jeffery, & Clifford, 2005). 

If aftereffects can tap into high-level face-space, as reported by Dennett et al., (2012), 

they may be a useful way to study how individuals code faces. By studying adaptation of 

the visual system to a norm or stimuli varying in distance from the norm, we can better 

understand if these norms are shaped by criterion or sensitivity differences of observers. 

Criteria refers to the way individuals interpret a stimulus, whereas a sensitivity difference 

speaks to the neural architecture and reflects how our visual systems are calibrated to the 

environment.  

Here, I am interested in investigating the mechanism by which individuals, with 

established differences in their norm faces, are adapting to faces varying across a 

dimension of sex. I adapt people to faces varying in their male- or female-ness and see 

how the aftereffects of their adaptation reflect either a criterion or sensitivity difference. 
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4.3 Experimental methods 

4.3.1 Participants 

Participants included 11 observers from Reno, Nevada (5 female, 1 Asian). All 

participation was with informed consent and followed protocols approved by the 

University of Nevada, Reno IRB.  

4.3.2 Stimuli 

Stimuli were morphs of 10 faces (same morphs as in chapter 2) to create averages 

for a sex judgment category. The faces were frontal-view images of young-adult and 

white-race of individuals of Swiss nationality (Figure 4.2). The face images were cropped 

to remove external features.  

 

Figure 4.2. Examples of face stimuli for the dimensions of sex. Morph arrays consisted of 100 

images spanning the two original faces, fully female and fully male (top), which were assigned a 

value of 001 or 101. The morph levels for adaptation (11, 31, 51, 71, 91) therefore corresponded 

to how far along the sequence the image fell between the two original faces. 
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4.3.3 Procedure 

Stimuli were presented in Matlab 2022b on a 32” Cambridge Research Systems 

Display++ with 1920x1080 resolution and a 120Hz refresh rate. The monitor screen was 

calibrated with a Photo Research PR 655 spectroradiometer. Observers viewed the 

display binocularly, seated 80cm away from the monitor, so each individual test face 

stimulus subtended ~7.5° and each adapt face subtended ~11° of the visual angle.  

To estimate the category boundary – at which observers were equally likely to 

describe the presented face as male or female – we used a one-up one down staircase 

procedure (Figure 4.3). A morph level was chosen at random to display the initial face for 

500 ms. Observers made a forced-choice response to classify the sex. Morph levels for 

subsequent faces varied in a staircase (i.e. if the response was “male” the next morph 

shown was incremented in the “female” direction or vice versa), with the category 

boundary taken as the mean of the final 8 of the total 10 reversals.  

In the initial settings, observers judged the faces without a prior adapting 

stimulus. These settings define their “preadapt” category boundary. Following analogous 

studies examining individual differences in color perception (Webster & Leonard, 2008), 

we refer to the “unadapted” settings as the perceptual norm, because it corresponds to 

their subjective null for the stimulus in the absence of a short-term context and is 

therefore their intrinsic code for classifying the face.  

To examine how this perceptual norm is biased by adaptation, we also measured 

the category boundaries after adapting to different levels of the morph. As noted, adapting 

to a male face makes an androgynous face appear more female or vice versa, so there 
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must be some adapting level that does not produce a bias. We refer to this as the response 

norm because it is the level that maintains the underlying calibration of the neural code 

(the level at which the adaptation isn’t affecting sensitivity). For adaptation, the 

participant was first shown the adapting face for one minute. Adapting identities ranged 

from a face that was extremely female to a face that extremely male, for a total of five 

adapting faces (face 11-very female, faces 31, 51- neutral, 71, 91-very male). Following 

adaptation, the staircase procedure was repeated and interleaved with 3000 ms top-up of 

the adapt face to maintain a stable state of adaptation. The adapt stimulus was larger in 

size than the test faces to prevent biases resulting from adaptation to low-level stimulus 

features. The first two reversals for all observers were excluded, so final boundary 

thresholds are calculated from the last eight reversals. All observers received all five 

levels of adaptation, plus the baseline no adapt condition (always run prior to adapt 

conditions) six times across two separate days. Results reported are based on the mean of 

the repeated settings for each observer and condition. 
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Figure 4.3. Adaptation experimental design. Left panel walks through an adaptation trial, starting 

with instructions then a one minute adapt before alternating a test face and a top up adapt 

stimulus. Observers respond to the test face, indicating if it looks more male or female. The right 

panel shows a no adapt condition, which was always run prior to an adapt condition. It looks like 

the adapt condition, except in place of an adapting face, observers view a blank screen.  

 

4.4 Results 

4.4.1 Individual differences in category boundary for sex 

Comparisons of multiple observer runs showed that between observer variability 

(M = 8.5, SD = 2.8) was 2.2 times greater than within observer variability (M = 3.8, SD = 

1.1), which was significantly different (t(6) = -3.7, p <.01). Thus, there were reliable 

inter-observer differences in category boundaries. There was no effect of observer sex, 

meaning no significant differences in categorization responses for male or female 

observers. This contrasts with the observer differences reported by Webster et al. (2004) 

for a larger sample of observers. 
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4.4.2 Adaptation and shifts in the category boundary  

Figure 4.4 plots the settings before and after adaptation for each of the observers 

tested. For all observers the category boundary for identifying a face as male or female 

varied with the adapt level. Specifically, as the adapt level became more male, their 

category boundary also shifted to a more male level of the morph (implying that the 

original boundary appeared more female) or vice versa. For most observers the adapted 

settings span the setting chosen before adaptation. However, for one observer (010) the 

post-adapt values were far outside their pre-adapt boundary and strongly shifted toward 

the female exemplar relative to other subjects. We are not sure of the basis for these 

settings but excluded this observer from further analysis because of the large disparity 

between their pre- and post-adapt judgments. 

For the remaining observers we ran a linear regression analysis on each 

individual’s settings. This showed that there were significant adaptation effects of all 

observers (all p <= .02). The linear fits provided a good approximation to the settings (all 

R2 >= 0.84). We therefore used this fit to estimate the pattern of aftereffects for each 

observer, and specifically, to estimate the adaptation level that did not produce a change 

in individual pre-adapt category boundaries. This corresponded to the intersection of the 

adapting trend line with the pre-adapt setting (as indicated by the horizontal black line for 

each observer).  Importantly, with the exception of observer 7, the response norms and 

perceptual norms within each subject were similar, as shown by comparing the red 

triangles with the cross point in figure 4.4.  
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 To formally evaluate this correspondence, we correlated the observers’ (pre-adapt) 

perceptual norms with their (post-adapt) response norms (Figure 4.5). This revealed a 

moderately strong correlation (r = 0.7, p =.003). A linear fit line to the values had a slope 

of 1.3, suggesting that observer response norms varied more than their perceived norms. 

However, much of this difference is driven by the results for one observer (S7), for which 

as noted there was not a close correspondence between their pre- and post-adapt neutral 

points. With this observer excluded the slope changed to 1.1 and the correlation increased 

(r = 0.8, p = .003). 

 Settings across observers can become more similar to each other as they 

normalize to a common stimulus. We tested the variance for observers in their no adapt 

condition vs. variance across the five post-adapt settings and found that post-adapt 

variance was 1.7x lower compared to no adapt variance. This supports the idea that 

observers were normalizing and becoming more similar in response to the five adapt face 

levels. Face level 11 was an outlier here, as when variance was assessed at that level 

alone it yielded variance higher than the no adapt setting. 
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Figure 4.4 Individual observer threshold responses for all adapt levels. Observers denoted at the 

top of each graph: 000-010. Observer 10 was excluded from further analyses as their post adapt 
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level never crossed their pre-adapt. Blue dots represent the threshold responses across all adapt 

levels, which trends similarly for all observers and has a slope significantly greater than 0, 

indicating adaptation. Dashed blue line represents a linear fit to each observer’s data. All R2 

values were .84 or above. The horizontal black line is each observer’s no adapt null value. The 

cross point of the no adapt with the data fit indicates each observer’s response norm – i.e. the 

adapt level that does not produce a change in the pre-adapt or perceptual null. Concordance of the 

perceptual and response null predicts the lines should intersect at the level of the perceptual null, 

as indicated by the red triangles.  

 

 

Figure 4.5. Correlation of individual perceptual norms and response norms. Blue diamonds show 

threshold data and dashed line is linear fit. A strong correlation between observer perceptual (x-

axis) and response (y-axis) norms show that they covary. 
 

4.5 Discussion 

In summary, the aim of the current study was to see if individual differences in 

categorizing the sex of face images reflect differences in criteria or in the underlying 

neural representation of faces. We adapted observers to different levels of face morphs 
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and measured subsequent aftereffects based on their responses to the morphed stimuli. As 

expected, observers’ category boundary was shifted by the adaptor face sex (Webster et 

al., 2004), except for some intermediate adapt level that did not produce a shift. The 

correlation between this neutral adapt level – or response norm – with their pre-adapt 

category boundary – or perceptual norm – suggests that at least part of the differences in 

how observers categorized the faces reflects differences in the neural responses to the 

faces, and not merely different criteria applied to a common neural representation. 

4.5.1 Negative aftereffects 

 All observers showed significant adaptation to the varying levels of the adaptor 

face, consistent with the robust aftereffects demonstrated in previous studies (Webster et 

al., 2004; Webster & MacLeod, 2011; Gao et al., 2022). For example, when adapted to 

the original female face, observers saw the original boundary level as too male and 

required a physically more female face in order to perceive the test face as neutral. This 

specific type of post-adaptation bias has been demonstrated for many aspects of faces, 

including identity (Leopold et al., 2001; Leopold et al., 2005), race (Little, DeBruine, 

Jones, Waitt, 2008; Webster et al., 2004), sex (Little, DeBruine, & Jones, 2005), and 

attractiveness (Rhodes et al., 2003) (see review by Webster and MacLeod, 2011). 

While the current study morphed faces to create a male-female sex dimension, 

other studies have shown that you can also adapt these categories independently, causing 

sex-contingent aftereffects for male and female faces (Little, deBruin, & Jones, 2005). 

For example, viewing faces transformed along dimensions of identity or masculinity 

increased preferences for novel faces, but only when the sex of the adapt and test faces 
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were congruent. These findings may provide insight into the neural codes underlying the 

perception of male and female faces, indicating distinct populations of neurons encoding 

them. This provides interesting implications for the current study as the differences in 

where observers draw their sex boundaries may indicate how variable these populations 

of neural codes are for individuals and tell us that these populations of neurons are 

susceptible to tuning on a short timescale.  

4.5.2 Sensitivity differences drive individual variability 

A strong correlation between observers’ no adapt null thresholds and their post-

adapt cross points suggest that sensitivity changes are driving at least part of their 

individual boundaries for face sex, as opposed to the percepts being driven by criterion 

differences. Adaptation provides an avenue to distinguish criterion vs. sensitivity changes 

by measuring the neutral adapt level of the face that does not produce an aftereffect. This 

stimulus level is congruous with individual response norms at the neural locus of 

sensitivity change, as the lack of aftereffect indicates that level does not change responses 

within response channels (Webster, 2011). This approach was first used to assess how 

color vision is normalized. Webster and Leonard (2008) found that the response norms 

for chromatic adaptation were close to the subjective achromatic point for individual 

observers, and that this correspondence held in both the fovea and near-periphery, even 

though spectral sensitivity at the two locations differed because of differences in macular 

screening pigment. This suggested that the two locations were adapted or normalized for 

the same physical stimulus even though the retinal stimulus was very different. Moreover, 

this normalization for color coding must occur at or prior to the site of the adaptation, 
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which for color is largely at the site of the cone receptors. Subsequent studies applied the 

same logic to examine whether the visual system is adapted to the level of ambient blur in 

the retinal image (Sawides, de Gracia, Dorronsoro, Webster, & Marcos, 2011; 

Radhakrishnan, Dorronsoro, Sawides, Webster, & Marcos, 2015). These studies showed 

that the neutral level for blur adaptation also corresponded to the level of subjective 

image focus, and moreover that both the subjective focus and adaptation was based on 

mechanisms showing complete binocularity, implicating a cortical site for the effects.  

To our knowledge, the present study is the first to apply this paradigm to assess 

high level perceptual judgments and aftereffects. The current results are similar in 

showing a correspondence between perceptual and response norms. This suggests that 

individual differences in the perception of the sex of faces partly depends on differences 

in the underlying, long-term calibration or adaptation state, potentially driven by 

individual differences in exposure to a particular diet of faces. By assessing variance in 

boundary thresholds before and after adaptation, we found that individuals had less 

variability overall after adaptation, indicating they were normalizing to a common 

stimulus.  

It is still of interest to determine where adaptation transitions from being brief 

sensitivity changes to more complex shifts in functional mechanisms or cellular 

responses that are indicative of neural plasticity or perceptual learning (Webster, 2011; 

Lu, Yu, Watanabe, Sagi, & Levi, 2009). Functionally defining adaptation becomes 

increasingly difficult as we find that our visual systems adapt at abstract levels, 

demonstrating a large variety of changes based on individual experience. For example, 
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Dils and Boroditsky (2010) found that people can adapt to motion extracted from mental 

imagery derived from linguistic descriptions. Other studies have found that you can adapt 

to sex from viewing biological motion (Jordan, Fallah, & Stoner, 2006), adapt to faces 

from viewing a body (Ghuman, McDaniel, & Martin, 2010), and adapt to faces from only 

imagining them (D’Ascenzo, Tommasi, & Laeng, 2014). A better understanding of 

aftereffects, their time course, and the ways in which they cause changes in sensitivity 

will be necessary to understand the adaptability of our visual systems and exploit that as a 

tool to unveil the ways in which we encode perceptual features across all complexity 

levels.  

In this regard, it is important to consider more closely the underlying nature of the 

representation of faces and how this is altered by adaptation. Many forms of adaptation 

reflect a renormalization for the adapting stimulus, so that this stimulus itself appears 

more neutral or closer to the norm. For example, adaptation to a color causes that color to 

appear less saturated, or more like the gray norm. For faces, this would correspond to a 

male (or female) face becoming more androgynous the longer we adapt to it. Many 

aspects of face coding are consistent with this account (Webster and MacLeod, 2011). 

However, for gender, Storrs and Arnold (2012) have argued that the adaptation to the 

facial attribute of gender is instead a “contrastive” effect, where the adapt face itself 

remains similar but other faces appear more different to it. By this account, each adapting 

face should have looked the same after adapting, and this could lead to an alternative 

explanation where the response norm corresponded to the perceptual norm simply 

because the adaptor at that level would remain the same in appearance. However, there 

are a number of arguments against this account. First, these kinds of contrastive effects 



63 

 

should occur when the bandwidths or tuning of the individual channels are narrow 

relative to the coding dimension (Webster, 2011). This in turn predicts that aftereffects 

should be strongest for faces near the sex boundary while weaker for faces farther from 

the boundary. Instead, we found a monotonic and largely linear increase in the magnitude 

of the aftereffect with increasing adapt-boundary distance, and this pattern is considered a 

signature of norm-based coding (Webster and MacLeod, 2011; Valentine, 1991; Loffler, 

Yourganov, Wilkinson, & Wilson, 2005; Leopold, Bondar, & Giese, 2006). Moreover, 

while some drop-off occurs at larger separations (Zhao, Series, Hancock, & Bednar, 

2011), these are outside the range of natural variation in faces, and thus unlikely to reflect 

response changes in the mechanisms directly involved in face coding (Pond et al., 2013; 

Robbins, McKone, & Edwards, 2007). These different effects have been debated with 

regard to whether the coding is norm-based (e.g. based on the relative activity of two 

opposing channels) vs. multichannel (e.g. based on the peak response among a population 

of channels) (Webster and MacLeod, 2011; Blakemore & Campbell, 1969; Calder, 

Jenkins, Cassel, & Clifford, 2008; Jenkins, Beaver, & Calder, 2006). However, in practice 

these models do necessarily lead to different patterns of aftereffects. For example, 

chromatic adaptation is “multichannel” in the sense that it varies the relative activity of 

the three class of cones. However, because the cones have broad spectral sensitivities 

relative to the visible light spectrum, the adaptation leads to renormalization of color 

perception rather than a contrast effect at the adapting wavelength. Similarly, the 

monotonic increases in adapt strength are consistent with a renormalization of the 

perceived magnitude of biological sex in the face images, even if that magnitude is coded 

by a distribution of channels rather than an explicit opponent code. And the fact that this 
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renormalization is again relative to observer’s neutral point is suggestive of the idea that 

the differences in how sex is judged reflects differences in how faces are actually seen, 

and not simply how they are interpreted. 
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Chapter 5 

 

 

 

 

General discussion, limitations, and future directions 
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General discussion  

Current studies  

 Across three experimental studies I unveiled individual differences in the ways 

that people perceive and categorize faces. Some differences are reflective of population-

level variability, though interestingly within-region differences were most prominent. 

These differences were stable and persisted across different face identities within and 

across their race and sex categories. Judgements also seem to be related to individual 

neutral points or norms, and following adaptation, aftereffects reflected a sensitivity 

change of observers based on that norm, indicating perception of the sex of faces partly 

depends on differences in the underlying, long-term calibration or adaptation state, 

potentially driven by individual differences in exposure to a particular diet of faces. 

 Cultural differences in face perception have been studied through the lens of the 

other race effect (ORE) (Feingold, 1914). This work is useful for identifying population-

level differences that drive perceptual processes. For example, Masuda et al. (2008) 

found that Japanese individuals incorporate context into their emotional judgments of 

faces, while Westerners do not. This work yielded behavioral as well as eye-tracking 

differences between the groups and shed light on the way social aspects of culture can 

drive differences. Additional work identified many interacting factors driving differences 

in judging female faces, including the ethnicity and sex of both subject and assessor 

(Voegeli et al., 2021a, b). Population level differences yield important information about 

societally driven variation, although many stable differences in percepts within a culture 

exist as well. The current study found that differences in face categorization were larger 
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within a region than across. This finding is consistent with one that exists in the field of 

color vision research, in which color terms were more consistent across cultures than 

within (Berlin & Kay, 1969). It may be the case that categories such as race and sex are 

not unlike color term categories. Across cultures, these categories are stable, like the 

regularities in the coding of color, but within a culture there are a multitude of factors 

driving differences in the ways we are sensitive to category boundaries. 

 As an attempt at understanding the factors that influence differences in face 

perception, my second study expanded the categorization judgments to different identities 

for the race and sex categories. Individual differences persisted, with variability occurring 

at the level of the category and not for specific pairs of faces. The differences between 

observers were consistent across most face pairs, though the mean interobserver biases 

varied with the stimulus pair. This means that variability is not dependent on the 

individual identity, but instead persists for a range of faces. This generalizability is worth 

noting, as it can be informative of a degree of commonality of underlying mechanisms 

driving perception across different facial identities (McCaffery et al., 2018). Further, 

studies have shown that there are differences in the variability of judgments observed 

when people are assessing familiar versus unfamiliar faces, so more detailed exploration 

of face identity is needed (Megreya & Bindemann, 2013; Burton, White, & McNeill, 

2010; Woodhead & Baddeley, 1981).  

 In a final experiment, I utilized an adaptation paradigm to unveil 

sensitivity differences across observer category boundaries. More investigation is needed 

to determine if the pattern of aftereffects we observed could be due to contrastive effects 
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of faces other than the adapt, but currently the pattern of our results suggests a 

renormalization of the adapting stimulus. This provides evidence that people are at least 

partially adapting to faces based on their own sensitivity differences surrounding norms, 

likely updated from their long-term adaptation to the world around them.  

Adaptation paradigms and namely face aftereffects have been useful at providing 

insight to the ways that individuals reference a face-space when making judgments about 

face stimuli. Leopold et al. (2001) showed that adaptation shifted perception along a 

trajectory that increased selectivity of a test face and impaired recognition of other faces, 

indicating that face encoding utilizes the norm in face space to facilitate perception. 

Robbins, McKone, and Edwards (2007) tested several experimental conditions that 

support a norm-based face coding model by showing that aftereffects shifted in the 

direction of a norm face as opposed to just away from the adapter. Webster and Maclin 

(1999) also found figural aftereffects from viewing distorted faces and reported that 

adaptation may be important for understanding configural properties of face perception, 

especially since we are sensitive to such properties of faces.  

Because face-space is a good culprit of variation in face perception across 

observers, continued studies on the aftereffects of faces are important to gain a better 

understanding of the mechanisms driving the ways that we see faces and how those may 

differ across individuals. Dennett et al. (2012) identified important criteria for the 

aftereffects that can provide the most information on face-space, including studying 

aftereffects specifically related to facial coding as opposed to lower-level configural 

properties. This is especially important because many studies have identified effects of 
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adaptation on low level features (McCollough Howard & Webster 2011; Foster 2011; 

Paradiso et al. 1989; Mather et al. 2008), so it will remain important to parse those out 

from adaptation to face-level features for future studies.  

Improving the study of individual differences 

Individual differences are a useful tool to elucidate broader perceptual concepts. 

Wilmer (2007) emphasized the ways in which the study of individual differences has 

allowed researchers to test cognitive theories (Underwood, 1975). For example, Wilmer 

(2008) describes the importance of considering individual differences in what he referred 

to as Nature’s experiments, or experiments that encompass a full range of natural 

variation in an individual’s ability, as it is affected by unique genes and environment. 

While the sources of individual differences are still being explored for many perceptual 

tasks, for color vision, the study of individual differences has been promising as insight 

into the functional organization and genetic underpinnings to which Wilmer refers. He 

makes the case that perception beyond the retina should also be explored through an 

individual difference lens. Wilmer (2008) lays out five central principles to making use of 

individual differences in vision science. I won’t go into extensive detail, but will mention 

three of these briefly, including experiments that have exemplified these principles.  

The first principle is considering data from both natural and lab experiments 

(Cronbach, 1957) to determine potential differences being driven by each. Kosslyn et al. 

(2002) developed such a study on individual differences that utilized variation often ruled 

out as noise. By combining thorough laboratory results with historic research on theories 
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and biological mechanisms, they reiterated the point that multiple approaches as well as 

group and individual data should be combined to yield the most informative outcomes.  

A second principle involves identifying and accounting for noise in data. For a 

long time, individual differences have been overlooked as noise, probably because non-

systematic, uninformative noise does occur in data, and we cannot draw conclusions until 

this noise is reduced. This can arise from many things, including observer biases, 

instrument error, even observer mood. These are confounding and prevent the study of 

true individual differences, which in turn are systematic and intrinsic to the individual 

(Mollon et al., 2017). Methods such as attenuation correction help to compare correlated 

measures and rule out measurement error as the source of variation (Schmidt & Hunter, 

1996).  

The third principle I’ll mention is addressing questions of relation between 

mechanisms. Individual differences are powerful in this domain, as they harness 

overlapping and distinct manipulations on the visual system via difference-based 

correlations. Underwood (1975) studied individual differences to uncover relations 

between independent variables of interest and utilized this to support causal theories.  

These principles are worth consideration when studying individual differences. 

Because the differences available to uncover are vast, so are the ever-evolving methods 

and analyses for best capturing them.  
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Limitations/future directions 

The amount of variability that can be identified across individuals is seemingly 

infinite. To classify that variability and try to connect it to underlying mechanisms is a 

feat that we’ve only begun to undertake in the field of vision science. For that reason, our 

attempts are not without limitations. Papers like Wilmer (2008), Bosten (2022), and 

Mollon et al. (2017) should be heavily referenced when building individual difference 

experiments. For example, the current study could benefit from consideration of more 

real-world, natural components. That could mean using more naturalistic stimuli, 

adapting to a larger variety of faces, or testing a more diverse population of observers. 

The current findings are a good start towards understanding individual differences in face 

categorization, and the goal moving forward should always be to improve methods aimed 

at capturing individual differences. 

The current studies utilize faces, which are one of the most multidimensional and 

complex stimuli we perceive. Common issues surrounding face perception studies 

include deciding what type of face stimuli to use. The faces here were morphed identities, 

and in some cases even morphed across many more than two identities. Studies have 

shown that averaged faces are viewed as more attractive (Valentine, Darling, & Donnelly, 

2004; Langlois & Roggman, 1990). Although not an attractiveness study, it is worth 

noting that averaged faces may be perceived differently than individual identities. 

Similarly, there is a tradeoff between real and generated faces. For all experiments here, 

the morphed identities were composed of real face images from databases. While using 

real identities provides more real-world validity and generalizability, the downside is that 



72 

 

you don’t control as many featural aspects of the stimuli. Some of our faces had makeup, 

while others had wrinkles, varying hairlines, etc. These are all features that may affect the 

way people make categorical judgments about faces and should be considered when 

selecting real vs. generated faces, although new research is still investigating if humans 

can distinguish AI-generated faces from real ones (Shen, Richard, Webster, O’Toole, 

Bowyer, & Scheirer, 2021; Bray, Johnson, & Kleinberg, 2023). The study of face 

categories itself is becoming increasingly complex. Many aspects of race and sex (or 

gender) can be viewed on a spectrum (e.g., mixed race, nonbinary identification), and the 

ways that individuals think about these spectra varies widely and is likely changing based 

on societal exposure. Future research should aim to collect more qualitative measures 

from observers to gain an understanding of the ways they think about these topics and are 

exposed to them in their everyday lives, and well as make strides to create experiments 

that can capture these differences (Kozan, 2020; Fisher et al., 2020).  

Only part of the current studies was run in Tokyo, Japan. The comparison of Reno 

and Tokyo observers was fruitful and would go a long way in providing additional 

clarification to the Reno data collected in studies two and three. More data should be 

collected in Tokyo to shed light on some of the PCA potential in/outgroup effects from 

study two, specifically. Additional follow ups should be done on the adaptation 

experiment to parse out if the aftereffects are truly reflective of sensitivity differences, 

like our data suggest, or if there may be some contrastive effect causing our response 

norm to coincide with the perceptual norm. 
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Significance/application 

While no experiment will perfectly capture all there is to know about variability 

in face processing, the current research makes positive strides towards identifying 

variability for face categorization and attempting to understand the underlying 

mechanisms driving that variability. Maybe the most important outcome from studies like 

these is thinking about why this research matters and where it can be applied.  

Given that we know a lot about face processing from behavioral measures, many 

recent studies have turned to neuroimaging techniques to investigate mechanisms in the 

brain. This is true for studies of individual differences as well. Furl, Garrido, Dolan, 

Drier, and Duchaine (2011) associated findings of individual differences in face 

processing ability to core face processing regions in the brain. Seghier and Price (2018) 

considered variance in brain functioning to be informative data representative of 

plasticity as opposed to simple noise. This approach had ramifications for characterizing 

typical vs. atypical brain functioning, revealing cognitive strategies that underpin tasks, 

and predicting recovery after brain damage. As we progress behavioral studies to uncover 

mechanisms driving variability, neuroimaging studies can begin to use this to inform 

studies aimed at identifying neural underpinnings of individual differences. The 

combination of behavioral and neuroimaging studies will go farther in providing the full 

story of individual differences and identifying their usefulness.  

 A major area of growing research in vision science is artificial intelligence, or AI. 

Whether it’s being used to provide guidance to humans for face processing (Crum, Boyd, 

Bowyer, & Czajka, 2023; Boyd, Tinsley, Bowyer, & Czajka, 2023), or to generate 
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synthetic media (Whittaker, Kietzmann, Kietzmann, & Dabirian, 2020), AI is becoming 

more ubiquitous as a tool in science. While it is a powerful tool, AI is trained based on 

the things we know about the human visual system (Boyd et al., 2023). That means our 

studies of how humans perceive faces are being used to inform AI, and our understanding 

of individual variation will feed into this as well. Advances in computer vision based on 

knowledge of how humans process faces have already been utilized by leveraging 

caricatures to train algorithms (Davis and Hand, 2022; Davis, Lingenfelter, McElhinney, 

Sengupta, & Hand, 2023). This research is informed by the knowledge that caricatures 

can be identified more efficiently (Sun, Wang, & Tang, 2014). Additionally, given what 

we know about the ORE, it is important that we make strides towards building 

variability/diversity into AI models (Cavazos, Noyes, & O’Toole, 2019; O’Toole, & 

Castillo, 2021; O’Toole, Deffenbacher, Abdi, & Bartlett, 1991; Scheuerman, Paul, & 

Brubaker, 2019). This means ensuring that training of these algorithms is driven by a 

wide variety of face races, ages, sex, etc. so that biases in these categories do not skew 

performance.   

Final conclusions 

 There is still much to understand about perception at the level of the individual. 

When we take the time to look for patterns in individual differences, we uncover a wealth 

of knowledge about underlying cognitive and sensory processes of human perception. 

These differences exist for many types of stimuli in our perceptual environment. As we 

investigate them for higher level stimuli, like faces, identifying the basis for differences 

becomes increasingly complex and informative. The key to capitalizing on these 
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differences is appropriate measurement and analysis to parse true, systematic differences 

from noise. While no one study meets all the requirements for best practices and 

principles, many, including the current studies, have begun to yield compelling and 

invaluable insights into the variability in human perception and experience.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 

References 

Anzures, G., Quinn, P. C., Pascalis, O., Slater, A. M., Tanaka, J. W., & Lee, K. (2013). 

Developmental origins of the other-race effect. Current directions in 

psychological science, 22(3), 173-178. 

Asano, Y., Fairchild, M. D., & Blondé, L. (2016). Individual colorimetric observer 

model. PloS one, 11(2), e0145671.  

Balsdon, T., Summersby, S., Kemp, R. I., & White, D. (2018). Improving face 

identification with specialist teams. Cognitive Research: Principles and 

Implications, 3, 1-13. 

Berlin B, Kay P. 1969. Basic Color Terms: Their Universality and Evolution. Berkeley: 

Univ. Calif. Press. 

Blakemore, C. & Campbell, F. W. (1969). On the existence of neurones in the human 

visual system selectively sensitive to the orientation and size of retinal images. J. 

Physiol. 203, 237-260 

Bliss, C. I. (1934). The method of probits. Science, 79(2037), 38-39. 

Bosten, J. M. (2022). Do you see what I see? Diversity in human color perception. 

Annual review of vision science, 8, 101-133. 

Boyd, A., Tinsley, P., Bowyer, K., & Czajka, A. (2023, June). The value of ai guidance in 

human examination of synthetically-generated faces. In Proceedings of the AAAI 

Conference on Artificial Intelligence, 37, No. 5, pp. 5930-5938. 



77 

 

Bray, S. D., Johnson, S. D., & Kleinberg, B. (2023). Testing human ability to detect 

‘deepfake’images of human faces. Journal of Cybersecurity, 9(1), tyad011. 

Brigham, J. C., Maass, A., Snyder, L. D., & Spaulding, K. (1982). Accuracy of 

eyewitness identification in a field setting. Journal of Personality and Social 

Psychology, 42, 673– 681. http://dx.doi.org/10.1037/0022-3514.42.4.673 

Bruce, V., Bindemann, M., & Lander, K. (2018). Individual differences in face perception 

and person recognition. Cognitive Research: Principles and Implications, 3, 1-3. 

Burton, A. M., White, D., & McNeill, A. (2010). The Glasgow face matching test. 

Behavior research methods, 42(1), 286-291. 

Calder, A. J., Jenkins, R., Cassel, A. & Clifford, C. W. G. (2008). Visual representation of 

eye gaze is coded by a nonopponent multichannel system. J. Exp.Psychol. Gen. 

137, 244–261. (doi:10.1037/0096-3445.137.2.244) 

Cavazos, J. G., Noyes, E., & O'Toole, A. J. (2019). Learning context and the other-race 

effect: Strategies for improving face recognition. Vision research, 157, 169-183. 

Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four 

recommendations for getting the most from your analysis. Practical assessment, 

research, and evaluation, 10(1), 7. 

Cramer, J. S. (2002). The origins of logistic regression. 

Cronbach, L. J. (1957). The two disciplines of scientific psychology. American 

psychologist, 12(11), 671. 



78 

 

Crum, C. R., Boyd, A., Bowyer, K., & Czajka, A. (2023). Teaching ai to teach: 

Leveraging limited human salience data into unlimited saliency-based training. 

arXiv preprint arXiv:2306.05527. 

D’Ascenzo, S., Tommasi, L., & Laeng, B. (2014). Imagining sex and adapting to it: 

Different aftereffects after perceiving versus imagining faces. Vision Research, 

96, 45-52. 

Davidenko, N., Witthoft, N., & Winawer, J. (2008). Gender aftereffects in face silhouettes 

reveal face-specific mechanisms. Visual Cognition, 16(1), 99-103. 

Davis, S. R., & Hand, E. M. (2022). Improving face recognition using artistic 

interpretations of prominent features: Leveraging caricatures in modern 

surveillance systems. In Intelligent Video Surveillance-New Perspectives. 

IntechOpen. 

Davis, S. R., Lingenfelter, B., McElhinney, K., Sengupta, S., & Hand, E. M. (2023, 

September). CarVer: Setting the Standard for Face Verification with Caricatures. 

In 2023 IEEE International Joint Conference on Biometrics (IJCB) (pp. 1-10). 

IEEE. 

Dennett, H. W., McKone, E., Edwards, M., & Susilo, T. (2012). Face aftereffects predict 

individual differences in face recognition ability. Psychological science, 23(11), 

1279-1287. 



79 

 

Dils, A. T., & Boroditsky, L. (2010). Visual motion aftereffect from understanding motion 

language. Proceedings of the National Academy of Sciences, 107(37), 16396-

16400. 

Duchaine, B., & Nakayama, K. (2006). The Cambridge Face Memory Test: Results for 

neurologically intact individuals and an investigation of its validity using inverted 

face stimuli and prosopagnosic participants. Neuropsychologia, 44(4), 576-585. 

de-Wit, L., & Wagemans, J. (2014). Individual differences in local and global perceptual 

organization. 

Emery, K. J., Volbrecht, V. J., Peterzell, D. H., & Webster, M. A. (2017). Variations in 

normal color vision. VI. Factors underlying individual differences in hue scaling 

and their implications for models of color appearance. Vision research, 141, 51-

65. 

Feingold, G. (1914). The Influence of Environment on Identification of Persons and 

Things. of Crim. Law and Criminal, 5, 39-51. 

Filkowski, M. M., Olsen, R. M., Duda, B., Wanger, T. J., & Sabatinelli, D. (2017). Sex 

differences in emotional perception: Meta analysis of divergent activation. 

Neuroimage, 147, 925-933. 

Fisher, A. D., Ristori, J., Castellini, G., Cocchetti, C., Cassioli, E., Orsolini, S., ... & 

Gavazzi, G. (2020). Neural correlates of gender face perception in transgender 

people. Journal of Clinical Medicine, 9(6), 1731. 

Foster DH. 2011. Color constancy. Vis. Res. 51:674–700. 



80 

 

Furl, N., Garrido, L., Dolan, R. J., Driver, J., & Duchaine, B. (2011). Fusiform gyrus face 

selectivity relates to individual differences in facial recognition ability. Journal of 

cognitive neuroscience, 23(7), 1723-1740. 

Gao, Y., Pieller, J., Webster, M. A., & Jiang, F. (2022). Temporal dynamics of face 

adaptation. Journal of Vision, 22(11), 14-14. 

Germine, L., Nakayama, K., Duchaine, B. C., Chabris, C. F., Chatterjee, G., & Wilmer, J. 

B. (2012). Is the Web as good as the lab? Comparable performance from Web and 

lab in cognitive/perceptual experiments. Psychonomic bulletin & review, 19, 847-

857. 

Ghuman, A. S., McDaniel, J. R., & Martin, A. (2010). Face adaptation without a face. 

Current Biology, 20(1), 32-36. 

Gignac, G. E., Shankaralingam, M., Walker, K., & Kilpatrick, P. (2016). Short-term 

memory for faces relates to general intelligence moderately. Intelligence, 57, 96-

104. 

Hammond BR, Caruso-Avery M. 2000. Macular pigment optical density in a 

Southwestern sample. Investig. Ophthalmol. Vis. Sci. 41(6):1492–97. 

Hayward, W. G., Rhodes, G., & Schwaninger, A. (2008). An own-race advantage for 

components as well as configurations in face recognition. Cognition, 106, 1017–

1027. http://dx.doi.org/10.1016/j.cognition.2007.04.002 

Held, R. (1989). Perception and its neuronal mechanisms. Cognition, 33(1-2), 139-154. 

Howard, C. M., & Webster, M. A. (2011). McCollough effect. Scholarpedia, 6(2), 8175. 



81 

 

Hugenberg, K., & Corneille, O. (2009). Holistic processing is tuned for in‐group faces. 

Cognitive Science, 33(6), 1173-1181. 

Jenkins, R., Beaver, J. D. & Calder, A. J. (2006). I thought you were looking at me: 

direction-specific aftereffects in gaze perception. Psychol. Sci. 17, 506–513. 

(doi:10. 1111/j.1467-9280.2006.01736.x) 

Jordan, H., Fallah, M., & Stoner, G. R. (2006). Adaptation of gender derived from 

biological motion. Nature neuroscience, 9(6), 738-739. 

Kaiser, P. K. (1988). Sensation luminance: a new name to distinguish CIE luminance 

from luminance dependent on an individual's spectral sensitivity. Vision research, 

28(3), 455-456. 

König, A., & Dieterici, C. (1886). The modern development of Thomas Young's theory of 

colour-vision. Report of the British Association for the Advancement of Science, 

56, 431-439. 

Kosslyn, S. M., Cacioppo, J. T., Davidson, R. J., Hugdahl, K., Lovallo, W. R., Spiegel, 

D., & Rose, R. (2002). Bridging psychology and biology: the analysis of 

individuals in groups. American psychologist, 57(5), 341. 

Kozan, E. (2020). The effect of gender roles on gender identity, sexual orientation and 

subjective perception of attractiveness (Doctoral dissertation, YAŞAR 

UNIVERSITY). 

Langlois, J., & Roggman, L. A. (1990). Attractive faces are only average. Psychological 

Science, 1, 115-121. 



82 

 

Lee, K. R., Richardson, A. J., Walowit, E., Crognale, M. A., & Webster, M. A. (2020). 

Predicting color matches from luminance matches. JOSA A, 37(4), A35-A43. 

Lee, K.R. & Webster, M.A. Environmental influences on color vision. In Encyclopedia of 

Color Science and Technology (Second Edition) (2020). R. Luo, Ed. (Springer). 

Leopold, D. A., Bondar, I. V. & Giese, M. A. (2006). Norm-based face encoding by single 

neurons in the monkey inferotemporal cortex. Nature 442, 572–575. 

(doi:10.1038/nature04951) 

Leopold, D. A., Rhodes, G., Müller, K. M., & Jeffery, L. (2005). The dynamics of visual 

adaptation to faces. Proceedings of the Royal Society B: Biological 

Sciences, 272(1566), 897-904. 

Leopold, D. A., O’Toole, A. J., Vetter, T., & Blanz, V. (2001). Prototype referenced shape 

encoding revealed by high-level aftereffects. Nature Neuroscience, 4, 89–94. 

Little A. C., DeBruine L. M., Jones B. C. (2005). Sex-contingent face after-effects 

suggest distinct neural populations code male and female faces. Proceedings of 

the Royal Society B: Biological Sciences, 272, 2283–2287. 

Little A. C., DeBruine L. M., Jones B. C., Waitt C. (2008). Category contingent 

aftereffects for faces of different races, ages and species. Cognition, 106, 1537–

1547. 

Loffler, G., Yourganov, G., Wilkinson, F. & Wilson, H. R. (2005). fMRI evidence for the 

neural representation of faces. Nat. Neurosci. 8, 1386–1390. 

(doi:10.1038/nn1538) 



83 

 

Lu, Z. L., Yu, C., Watanabe, T., Sagi, D., & Levi, D. (2009). Perceptual learning: 

Functions, mechanisms, and applications. Vision Research, 50, 365–367. 

MacLeod, D.I.A. and Webster, M.A. (1983). Factors influencing the color matches of 

normal observers. In Mollon, J.D. and Sharpe, L.T. (Eds.), Colour Vision: 

Physiology and Psychophysics, Academic Press, London.  

Ma, D. S., Correll, J., & Wittenbrink, B. (2015). The Chicago face database: A free 

stimulus set of faces and norming data. Behavior research methods, 47, 1122-

1135. 

Masuda, T., Ellsworth, P. C., Mesquita, B., Leu, J., Tanida, S., & Van de Veerdonk, E. 

(2008). Placing the face in context: cultural differences in the perception of facial 

emotion. Journal of personality and social psychology, 94(3), 365. 

Mather G, Pavan A, Campana G, Casco C. 2008. The motion aftereffect reloaded. Trends 

Cogn. Sci. 12:481–87. 

McCaffery, J. M., Robertson, D. J., Young, A. W., & Burton, A. M. (2018). Individual 

differences in face identity processing. Cognitive research: principles and 

implications, 3, 1-15. 

McCollough Howard C, Webster MA. 2011. McCollough effect. Scholarpedia 6:28175 

McGugin, R. W., Van Gulick, A. E., & Gauthier, I. (2016). Cortical thickness in fusiform 

face area predicts face and object recognition performance. Journal of cognitive 

neuroscience, 28(2), 282-294. 



84 

 

Megreya, A. M., & Bindemann, M. (2013). Individual differences in personality and face 

identification. Journal of Cognitive Psychology, 25(1), 30-37. 

Meissner, C. A., & Brigham, J. C. (2001). Thirty years of investigating the own-race bias 

in memory for faces: A meta-analytic review. Psychology, Public Policy, and Law, 

7(1), 3. 

Mollon, J. D., Bosten, J. M., Peterzell, D. H., & Webster, M. A. (2017). Individual 

differences in visual science: What can be learned and what is good experimental 

practice? Vision Research, 141, 4-15. 

Namba, S., Sato, W., Nakamura, K., & Watanabe, K. (2022). Computational process of 

sharing emotion: An authentic information perspective. Frontiers in Psychology, 

13, 849499. 

O'Toole, A. J., & Castillo, C. D. (2021). Face recognition by humans and machines: three 

fundamental advances from deep learning. Annual Review of Vision Science, 7, 

543-570. 

O'Toole, A. J., Deffenbacher, K., Abdi, H., & Bartlett, J. C. (1991). Simulating the ‘other-

race effect’as a problem in perceptual learning. Connection Science, 3(2), 163-

178. 

O’Toole, A. J., Deffenbacher, K. A., Valentin, D., & Abdi, H. (1994). Structural aspects of 

face recognition and the other-race effect. Memory & Cognition, 22, 208-224. 

O'Toole, A. J., Peterson, J., & Deffenbacher, K. A. (1996). An ‘other-race effect’for 

categorizing faces by sex. Perception, 25(6), 669-676. 



85 

 

Paradiso, M. A., Shimojo, S., & Nakayama, K. (1989). Subjective contours, tilt 

aftereffects, and visual cortical organization. Vision research, 29(9), 1205-1213. 

Peterzell, D. H., & Kennedy, J. F. (2016). Discovering sensory processes using individual 

differences: A review and factor analytic manifesto. Electronic Imaging, 28, 1-11. 

Peterzell, D. H., Chang, S. K., & Teller, D. Y. (2000). Spatial frequency tuned covariance 

channels for red–green and luminance-modulated gratings: psychophysical data 

from human infants. Vision Research, 40(4), 431-444. 

Peterzell, D. H., & Teller, D. Y. (2000). Spatial frequency tuned covariance channels for 

red–green and luminance-modulated gratings: psychophysical data from human 

adults. Vision Research, 40(4), 417-430. 

Phillips, P. J., Yates, A. N., Hu, Y., Hahn, C. A., Noyes, E., Jackson, K., ... & O’Toole, A. 

J. (2018). Face recognition accuracy of forensic examiners, superrecognizers, and 

face recognition algorithms. Proceedings of the National Academy of 

Sciences, 115(24), 6171-6176. 

Pokorny J, Smith VC, Lutze M. 1987. Aging of the human lens. Appl. Opt. 26(8):1437–

40. 

Pond, S., Kloth, N., McKone, E., Jeffery, L., Irons, J., & Rhodes, G. (2013). Aftereffects 

support opponent coding of face gender. Journal of Vision, 13(14), 16-16. 

Radhakrishnan, A., Dorronsoro, C., Sawides, L., Webster, M. A., & Marcos, S. (2015). A 

cyclopean neural mechanism compensating for optical differences between the 

eyes. Current Biology, 25(5), R188-R189. 



86 

 

Ratner, K. G., & Amodio, D. M. (2013). Seeing “us vs. them”: Minimal group effects on 

the neural encoding of faces. Journal of experimental social psychology, 49(2), 

298-301. 

Rhodes, G., Jeffery, L., Watson, T. L., Clifford, C. W., & Nakayama, K. (2003). Fitting 

the mind to the world: Face adaptation and attractiveness 

aftereffects. Psychological science, 14(6), 558-566. 

Rhodes G., Jeffery L., Watson T. L., Jaquet E., Winkler C., Clifford C. W. G. (2004). 

Orientation-contingent face aftereffects and implications for face-coding 

mechanisms. Current Biology, 14, 2119–2123. 

Rhodes, G., Robbins, R., Jaquet, E., McKone, E., Jeffery, L., & Clifford, C. W. (2005). 

Adaptation and face perception: How aftereffects implicate norm-based coding of 

faces. In Fitting the mind to the world: Adaptation and after-effects in high-level 

vision. Oxford University Press. 

Robertson, D. J., Mungall, A., Watson, D. G., Wade, K. A., Nightingale, S. J., & Butler, 

S. (2018). Detecting morphed passport photos: A training and individual 

differences approach. Cognitive research: principles and implications, 3, 1-11. 

Robertson, D. J., Noyes, E., Dowsett, A. J., Jenkins, R., & Burton, A. M. (2016). Face 

recognition by metropolitan police super-recognisers. PloS one, 11(2), e0150036. 

Robbins, R., McKone, E., & Edwards, M. (2007). Aftereffects for face attributes with 

different natural variability: adapter position effects and neural models. Journal of 

Experimental Psychology: Human Perception and Performance, 33(3), 570. 



87 

 

Russell, R., Duchaine, B., & Nakayama, K. (2009). Super-recognizers: People with 

extraordinary face recognition ability. Psychonomic bulletin & review, 16(2), 252-

257. 

Sawides, L., de Gracia, P., Dorronsoro, C., Webster, M. A., & Marcos, S. (2011). Vision is 

adapted to the natural level of blur present in the retinal image. PloS one, 6(11), 

e27031. 

Scheuerman, M. K., Paul, J. M., & Brubaker, J. R. (2019). How computers see gender: 

An evaluation of gender classification in commercial facial analysis services. 

Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1-33. 

Schmidt, F. L., & Hunter, J. E. (1996). Measurement error in psychological research: 

Lessons from 26 research scenarios. Psychological methods, 1(2), 199. 

Seghier, M. L., & Price, C. J. (2018). Interpreting and utilising intersubject variability in 

brain function. Trends in cognitive sciences, 22(6), 517-530. 

Shen, B., RichardWebster, B., O'Toole, A., Bowyer, K., & Scheirer, W. J. (2021, 

December). A study of the human perception of synthetic faces. In 2021 16th 

IEEE International Conference on Automatic Face and Gesture Recognition (FG 

2021) (pp. 1-8). IEEE. 

Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. 

(2009). Vision in autism spectrum disorders. Vision research, 49(22), 2705-2739. 



88 

 

Sporer, S. L., & Horry, R. (2011). Recognizing faces from ethnic in‐groups and out‐

groups: Importance of outer face features and effects of retention interval. Applied 

Cognitive Psychology, 25(3), 424-431. 

Storrs, K. R., & Arnold, D. H. (2012). Not all face aftereffects are equal. Vision 

research, 64, 7-16. 

Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face representation from predicting 

10,000 classes. In Proceedings of the IEEE conference on computer vision and 

pattern recognition (pp. 1891-1898). 

Sutherland, C. A., Burton, N. S., Wilmer, J. B., Blokland, G. A., Germine, L., Palermo, 

R., ... & Rhodes, G. (2020). Individual differences in trust evaluations are shaped 

mostly by environments, not genes. Proceedings of the National Academy of 

Sciences, 117(19), 10218-10224. 

Sutherland, C. A., Rhodes, G., Burton, N. S., & Young, A. W. (2020). Do facial first 

impressions reflect a shared social reality?. British Journal of Psychology, 111(2), 

215-232. 

Tillman, M. A., & Webster, M. A. (2012). Selectivity of face distortion aftereffects for 

differences in expression or gender. Frontiers in Psychology, 3, 14. 

Tullis, J. G., Benjamin, A. S., & Liu, X. (2014). Self-pacing study of faces of different 

races: Metacognitive control over study does not eliminate the cross-race 

recognition effect. Memory & Cognition, 42, 863– 875. 

http://dx.doi.org/10.3758/s13421-014-0409-y 



89 

 

Underwood, B. J. (1975). Individual differences as a crucible in theory construction. 

American Psychologist, 30(2), 128. 

Valentine, T. (1991). A unified account of the effects of distinctiveness, inversion, and 

race in face recognition. The Quarterly Journal of Experimental Psychology, 

43(2), 161-204. 

Valentine, T., Darling, S., & Donnelly, M. (2004). Why are average faces attractive? The 

effect of view and averageness on the attractiveness of female faces. Psychonomic 

Bulletin & Review, 11, 482-487. 

Voegeli, R., Schoop, R., Prestat-Marquis, E., Rawlings, A. V., Shackelford, T. K., & Fink, 

B. (2021a). Cross-cultural perception of female facial appearance: A multi-ethnic 

and multi-centre study. Plos one, 16(1), e0245998. 

Voegeli, R., Schoop, R., Prestat‐Marquis, E., Rawlings, A. V., Shackelford, T. K., & Fink, 

B. (2021b). Differences between perceived age and chronological age in women: 

A multi‐ethnic and multi‐centre study. International Journal of Cosmetic Science, 

43(5), 547-560. 

Wan, L., Crookes, K., Dawel, A., Pidcock, M., Hall, A., & McKone, E. (2017). Face-

blind for other-race faces: Individual differences in other-race recognition 

impairments. Journal of Experimental Psychology: General, 146(1), 102. 

Wan, L., Crookes, K., Reynolds, K. J., Irons, J. L., & McKone, E. (2015). A cultural 

setting where the other-race effect on face recognition has no social-motivational 



90 

 

component and derives entirely from lifetime perceptual experience. Cognition, 

144, 91–115. http://dx.doi.org/10.1016/j.cognition.2015.07.011 

Watson, T. L., & Clifford, C. W. G. (2003). Pulling faces: An investigation of the face-

distortion aftereffect. Perception, 32, 1109–1116. 

Webster, M. A. (2015). Visual adaptation. Annual review of vision science, 1, 547-567. 

Webster, M. A., Kaping, D., Mizokami, Y., & Duhamel, P. (2004). Adaptation to natural 

facial categories. Nature, 428(6982), 557-561. 

Webster, M. A., & Leonard, D. (2008). Adaptation and perceptual norms in color 

vision. Josa a, 25(11), 2817-2825. 

Webster, M. A., & MacLeod, D. I. (1988). Factors underlying individual differences in 

the color matches of normal observers. JOSA A, 5(10), 1722-1735. 

Webster, M. A., & MacLeod, D. I. (2011). Visual adaptation and face 

perception. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 366(1571), 1702-1725. 

Webster, M. A., & Maclin, O. H. (1999). Figural aftereffects in the perception of 

faces. Psychonomic bulletin & review, 6(4), 647-653. 

Webster, M. A., Mizokami, Y., & Webster, S. M. (2007). Seasonal variations in the color 

statistics of natural images. Network: Computation in neural systems, 18(3), 213-

233. 



91 

 

Webster, M. A., & Mollon, J. D. (1997). Adaptation and the color statistics of natural 

images. Vision research, 37(23), 3283-3298. 

Werner, J. S., Peterzell, D. H., & Scheetz, A. J. (1990). Light, vision, and aging. 

Optometry and Vision Science, 67(3), 214-229. 

White, D., Kemp, R. I., Jenkins, R., Matheson, M., & Burton, A. M. (2014). Passport 

officers’ errors in face matching. PloS one, 9(8), e103510. 

Whittaker, L., Kietzmann, T. C., Kietzmann, J., & Dabirian, A. (2020). “All around me 

are synthetic faces”: the mad world of AI-generated media. IT Professional, 22(5), 

90-99. 

Wilmer, J. B. (2008). How to use individual differences to isolate functional organization, 

biology, and utility of visual functions; with illustrative proposals for stereopsis. 

Spatial vision, 21(6). 

Wilmer, J. B. (2017). Individual differences in face recognition: A decade of 

discovery. Current Directions in Psychological Science, 26(3), 225-230. 

Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Gerbasi, M., & Nakayama, K. 

(2012). Capturing specific abilities as a window into human individuality: The 

example of face recognition. Cognitive neuropsychology, 29(5-6), 360-392. 

Wilmer JB, Germine L, Chabris CF, Chatterjee G, Williams M, Loken E, Nakayama K, 

Duchaine B. Human face recognition ability is specific and highly heritable. 

Proceedings of the National Academy of Sciences of the United States of 

America. 107: 5238-41. PMID 20176944 DOI: 10.1073/Pnas.0913053107 (b)  



92 

 

Wilmer J, Germine L, Chabris C, Chatterjee G, Williams M, Nakayama K, Duchaine B. 

(2010). A genetic basis for face memory: evidence from twins Journal of Vision. 

10: 563-563. DOI: 10.1167/10.7.563 (a)  

Wilmer, J. B., Germine, L. T., & Nakayama, K. (2014). Face recognition: a model 

specific ability. Frontiers in Human Neuroscience, 8, 769. 

Wilmer JB, Germine L, Williams MA, Nakayama K, Chabris CF, Duchaine BC. (2009). 

Genetic and environmental contributions to memory for faces: A twin study 

Journal of Vision. 9: 509509. DOI: 10.1167/9.8.509  

Wilmer, J. B., & Nakayama, K. (2007). Two distinct visual motion mechanisms for 

smooth pursuit: evidence from individual differences. Neuron, 54(6), 987-1000. 

Wilmer J, Russell R, Bronstad M, Kwok H, Anthony S, Germine L. Disagreements about 

the attractiveness of faces arise largely from past experiences: evidence from 

twins. Journal of Vision. 13: 854-854. DOI: 10.1167/13.9.854 

Woodhead, M. M., & Baddeley, A. D. (1981). Individual differences and memory for 

faces, pictures, and words. Memory & Cognition, 9, 368-370. 

Woodhead, M. M., Baddeley, A. D., & Simmonds, D. C. V. (1979). On training people to 

recognize faces. Ergonomics, 22(3), 333-343. 

Yamashita J. A. Hardy J. L. De Valois K. K. Webster M. A. (2005). Stimulus selectivity 

of figural aftereffects for faces. Journal of Experimental Psychology: Human 

Perception and Performance, 31, 420–437. 



93 

 

Yovel, G., Wilmer, J. B., & Duchaine, B. (2014). What can individual differences reveal 

about face processing? Frontiers in human neuroscience, 8, 562. 

Zhao, L., & Chubb, C. F. (2001). The size-tuning of the face-distortion aftereffect. Vision 

Research, 41, 2979–2994. 

Zhao, C., Seriès, P., Hancock, P. J., & Bednar, J. A. (2011). Similar neural adaptation 

mechanisms underlying face gender and tilt aftereffects. Vision research, 51(18), 

2021-2030 


