
University of Nevada, Reno

AI Enabled IoT Network Traffic Fingerprinting
with Locality Sensitive Hashing

A dissertation submitted in partial
fulfillment of the requirements for the

degree of Doctor of Philosophy in Computer
Science and Engineering

by

Jay Thom

Dr. Shamik Sengupta/Dissertation Advisor

May 2024

Copyright by Jay Thom 2024

All Rights Reserved

May 2024

i

Abstract

The ubiquity of IoT devices in both public and private networks has increased dra-

matically in the last few years with billions of network-connected devices appear-

ing in every sector. In many cases these devices provide low-power and low-cost

solutions to multiple problems, but this convenience comes with a price. Low-

powered devices often lack the computational capacity to support encryption or

other means of protection. In addition, devices are often optimized for easy connec-

tion out-of-the-box, potentially leaving them vulnerable due to unchanged default

configurations. It has been shown that device IP and MAC addresses can be easily

spoofed, making accounting for IoT devices within a network problematic. These

vulnerabilities have led to devices being compromised by malware such as the Mirai

botnet, allowing for their unintentional use as access points to protected networks,

as well as participants in large scale distributed denial of service (DDoS) attacks.

Much work has been done in recent times to address the problem of identification

by fingerprinting network traffic using various techniques, allowing network admin-

istrators to track device membership and detect anomalous behavior. While a high

degree of accuracy has been achieved, effective feature extraction and acceptable

computational overhead continue to be an issue. In addition, machine learning

models often require frequent modification and retraining to remain effective. We

apply a combination of locality sensitive hashing and machine learning techniques

to identify specific devices based on their network traffic, eliminating the need

for complex feature engineering and model retraining. This approach achieves

an accuracy identifying known devices as high as 98% using only a single packet

sniffed from the network allowing for real-time device identification, providing a

significant improvement over previous approaches. We leverage this method to

assist in the real-time identification of IoT devices based on their network traffic

fingerprint, providing improved security and network device accounting.

ii

Acknowledgement

During my journey as a computer science student and information security engi-

neer at UNR, I have met and worked with many great people. To name a few, I

would like to thank several fellow students that have since graduated and moved

on; M. Abdullah Canbaz, Suman Bhunia, Khalid Bakshaliyev, Amar Patra, Raj

Shukla, Prasun Dey, Paulo Regis, Tapadhir Das, and many others. In particular

I’d like to thank Batyr Charyyev, we spent much time working together...time well

spent. Every day is a good day!

Most of my time at UNR has been a combination of work and study, and I’ve very

much enjoyed it. Much thanks to all of the faculty here for their friendship and

assistance. I won’t forget your kindness.

I would like to thank my dissertation committee Dr. Fred Harris, Dr. Batyr

Charyyev, Dr. Emily Hand, and Dr. Hanif Livani for their time, insightful com-

ments, and encouragement. Their constructive questions, suggestions, and guid-

ance made this dissertation stronger.

I was very fortunate to be advised and to work under the supervision of Dr.

Shamik Sengupta and I would like to thank him for everything he has done for

me. I really have a lot to say about his ethics, his guidance, his example, and his

professionalism.

Finally and most importantly, I would like to thank my family. My wife Shendry,

my sons Ben, Max, Nick, and Nate, along with their wives have all been students

here at UNR along side me. We’ve had a great time. In particular I’m grateful

for the time I was able to spend working and studying with Nate, it was a huge

help to me. I want to thank all of you for your patience, understanding, and

encouragement. You’ve all been a blessing to me and I count myself fortunate

every day.

iii

Contents

Abstract i

Acknowledgement ii

Contents ii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Dissertation Organization . 6

2 Background 8

2.1 Bot Origins . 8

2.2 Proliferation and Commercialization 10

2.3 Era of Advanced Botnet Techniques 11

2.4 Botnets in the Age of Cyber Warfare 11

2.5 Rise of IoT Botnets . 12

2.6 Mirai Landscape: Evolution and Diversification 12

2.7 Current Problems . 13

3 Related Works 15

3.1 Security Vulnerabilities in a Smart City 15

3.2 IoT Testbeds . 17

3.2.1 Home IoT Testbeds . 17

3.2.2 Security-Specific Testbeds 18

3.2.3 Software Defined Networking (SDN) Testbeds 19

3.2.4 Education-Oriented Testbeds 20

3.2.5 Other Testbeds . 22

3.3 Honeypots and Malicious Traffic Collection 22

3.4 IoT Traffic Fingerprinting . 25

3.4.1 Temporal Features . 25

3.4.2 Network Protocol Features 26

3.4.3 Initial Connection Phase Fingerprinting 27

iv

3.4.4 Flow-Based Feature Extraction 28

3.4.5 Behavioral Fingerprinting 29

3.4.6 Limited Feature Extraction/Engineering 30

3.4.7 Textual Features and Data Mining 31

3.5 Contribution to Current Research 33

3.6 Taxonomy of Related Works on IoT Network Traffic Fingerprinting 35

4 Vulnerabilities in a Smart City 37

4.1 Introduction . 37

4.2 Background . 38

4.3 Methodology . 42

4.3.1 Vulnerabilities on the Perimeter 42

4.3.2 Vulnerabilities Inside the Network 43

4.3.3 Solutions for Perimeter Vulnerabilities 44

4.3.4 Solutions for Inside the Network Vulnerabilities 45

4.4 Results . 47

4.4.1 Results for Perimeter Vulnerabilities 47

4.4.2 Results for Inside the Network Vulnerabilities 47

4.4.3 Results for Perimeter Solutions 48

4.4.4 Results for Inside the Network Solutions 50

4.5 Future Solutions . 51

4.5.1 OpenPLC . 52

4.5.2 Interconnected Smart Cities 53

5 A Software Defined Networking Testbed for IoT Research and
Education 55

5.1 Introduction . 55

5.2 Contributions . 57

5.3 System Model . 58

5.3.1 Smart City Controller . 60

5.3.2 Honeypot Devices . 60

5.3.3 Software Defined Networks 61

5.3.4 Traffic Analysis and Network Probing 62

5.4 Simulations . 63

5.4.1 Traffic and Flow Analysis 63

5.4.2 Network Foot-printing and Honeypot Detection 68

6 Utilizing Global Honeypots for Malicious Traffic Collection 71

6.1 Introduction . 71

6.2 System Implementation . 74

6.3 Analysis and Insights from Cowrie Data 75

6.3.1 Source IP Addresses and Port Numbers 76

6.3.2 Destination IP Addresses and Port Numbers 78

6.3.3 Daily Events . 80

6.3.4 Cowrie Sessions . 81

v

6.3.5 Usenames and Passwords . 84

6.3.6 Malicious Downloads . 85

6.4 Conclusion . 87

7 Heterogeneous Device Fingerprinting 90

7.1 Introduction . 90

7.2 Locality Sensitive Hashing . 91

7.2.1 LSH Families . 92

7.2.1.1 E2 LSH . 92

7.2.1.2 MinHash . 93

7.2.1.3 SimHash . 94

7.2.1.4 Random Binary Projection 95

7.2.1.5 K-Means LSH . 95

7.2.1.6 Bayesian LSH . 96

7.2.1.7 Hamming LSH . 97

7.2.2 Significant n-gram Based LSH Tools 97

7.2.2.1 ssdeep . 97

7.2.2.2 sdhash . 98

7.2.2.3 tlsh . 99

7.2.2.4 Nilsimsa . 100

7.3 Methodology . 103

7.4 Results and Analysis . 104

8 Homogeneous Device Fingerprinting 115

8.1 Introduction . 115

8.1.1 Difference of Our Study from Previous Works 117

8.2 Hybrid LSH . 119

8.2.1 Tunable Parameters . 119

8.2.1.1 Sliding Window . 120

8.2.1.2 n-gram Size . 122

8.2.1.3 Accumulator Length 122

8.2.1.4 Visualization of FlexHash tunable parameters . . . 123

8.2.2 fhash . 125

8.2.3 Hashing traffic data . 128

8.3 Methodology . 130

8.3.1 Identification of IoT Devices 130

8.3.2 Ensemble Learning . 131

8.4 Experimental Analysis and Results 134

8.4.1 Identify devices in the presence of background noise 135

8.4.2 Identify devices by genre . 136

8.4.3 Identification of individual devices from identical peers . . . 137

9 Conclusions and Future Work 140

9.1 Conclusion . 140

9.2 Future Research Directions . 143

vi

9.2.1 Questions Regarding Tunable Parameters 143

9.2.2 Further Explanation of the fhash Hashing Algorithm 143

9.2.3 Device Anomaly Detection 144

9.2.4 Questions Regarding Importance of Packet Elements 144

9.2.5 Distribution Represented in UMAP 144

9.2.6 Machine Learning Algorithm Optimization 145

9.2.7 Implementation of FlexHash as a Framework 145

A Publications 146

A.1 Published . 146

A.2 Submitted for Review . 147

Bibliography 148

vii

List of Tables

3.1 Summary of related works based on identification method and key
feature set . 36

6.1 Series of commands per session and frequency of occurrence. 78

6.2 Mapping of attackers to targets and targets to attackers. 79

6.3 Command legend. 82

6.4 Most used usernames, passwords and download filenames. 88

7.1 Model performance on cleaned per-packet data set 105

8.1 Tunable Parameters of FlexHash 121

8.2 Average performance in identifying device genre in the presence of noise

and without noise. 135

8.3 Average performance in identifying identical devices from the same cat-

egory in the presence of noise and without noise. 136

8.4 Comparison of average performance, FlexHash vs Nilsimsa in identifying

identical devices from the same category. 136

8.5 Comparison of average performance, FlexHash vs Nilsimsa in identifying

identical devices from the same category. 138

viii

List of Figures

2.1 IoT devices can be hidden behind a rogue hotspot, effectively con-
cealing their network membership. Only a trace of their network
traffic can reveal their presence or identity. 13

4.1 Network Physical/Virtual Topology 42

4.2 University of Nevada, Reno Educational Smart City 44

4.3 Example of exploiting the city’s PLC through the Modbus port on
the Linux command line . 46

4.4 Example of catching an intruder (192.168.1.51) scanning the PLC
(192.168.1.42) using OpenWRT Port Mirroring and and Snort IDS . 50

4.5 OpenPLC Neo Encryption Process [1] 53

5.1 Topology of the virtual Software Defined Network. 58

5.2 Bandwidth Captured from Host B to Host D during uninterrupted
operation . 64

5.3 Bandwidth Captured from Host B to Host D during interrupted
operation . 65

5.4 Measured Throughput between Interrupted and Uninterrupted flows 66

5.5 Round Trip Times for Network Traffic Flows 67

5.6 Cowrie .json log segment showing a failed login attempt on a honeypot. 68

6.1 Unique source IP addresses per honeypot location. 75

6.2 Unique source port numbers per honeypot location. 77

6.3 Unique destination IP addresses per honeypot location. 80

6.4 Unique destination port numbers per honeypot location. 81

6.5 Common attacker IPs across honeypots. 82

6.6 Common target IPs across honeypots. 83

6.7 Daily events per honeypot. 84

6.8 Daily sessions per honeypot. 85

6.9 Unique usernames per honeypot. 86

6.10 Unique passwords per honeypot. 87

7.1 Data points are hashed in such a way that similar items will fall
into buckets that are near one another. When mapped to Euclidean
space, points within a given radius (nearest neighbors) should be
similar [2]. 93

ix

7.2 Data points are separated by random hyperplanes, and points are
assigned a 1 or 0 depending on whether they fall on the same side
of the plane as a normal vector [3]. 95

7.3 Data points are grouped into clusters by randomly selecting means,
or centroids, then iteratively moving these centroids until they most
closely represent the center of the cluster [4]. 96

7.4 Construction of a Nilsimsa hash . 101

7.5 .pcap files are converted of to Nilsimsa hash digests and then to
integer strings for processing by a classifier. 104

7.6 Accuracy for all time slices (10-minute through 1-minute and per-
packet) in the cleaned and uncleaned data. These metrics were com-
puted using a balanced 5-Fold Cross Validation technique. Here,
balanced means that each device has equal representation in each
fold. 107

7.7 F1 Score for all time slices (10-minute through 1-minute and per-
packet) in the cleaned and uncleaned data. These metrics were com-
puted using a balanced 5-Fold Cross Validation technique. Here,
balanced means that each device has equal representation in each
fold. 108

7.8 Model performance excluding results from Ring Doorbell and tp-
link Bulb (devices with poorest results) 110

7.9 10-minute flow clustering. The blue and green classes respectively
represent the ring doorbell and TP Link Light Bulb. At 10 minutes
enough unique behavior is captured to create clustering, which helps
the MLP to identify individual samples. 111

7.10 5-minute flow clustering. The blue and green classes respectively
represent the ring doorbell and TP Link Light Bulb. This figure
shows the transition as the time slices become shorter, and individ-
ual samples become more difficult to identify. 112

7.11 1-minute flow clustering. The blue and green classes respectively
represent the ring doorbell and TP Link Light Bulb. In this short
time slice the blue dots are almost completely obscured by the green
dots as a pattern of behavior is difficult to distinguish. 113

8.1 FlexHash functionality with tunable parameters 118

8.2 Wireshark representation of a single cleaned packet (.pcap) includ-
ing the hexadecimal representation of the packet contents which are
processed by FlexHash. 121

8.3 UMAP representation of cameras 1-8 to correlate with 8.4. We see
well defined clusters only in cam-1. 126

8.4 With window, combination, and accumulator of size 128, 6, 6 re-
spectively, we see that cam-1 is correctly identified, but cam-2
through cam-8 are frequently misidentified. 126

8.5 UMAP representation of cameras 1-8 to correlate with 8.6. In this
image we see with optimal parameters all cameras are well clustered.127

x

8.6 With window, combination, and accumulator of size 1224, 4, 2 re-
spectively, we see that all cams are correctly identified with a high
degree of accuracy. 127

8.7 Traffic data was collected from 3 categories of devices, representing
simple to complex set of devices. Each set contains 8 identical
devices. Data is collected for 24 hours. 131

8.8 The network traffic is continuously monitored by the device iden-
tification system. The traffic data is processed by FlexHash and
converted into feature vectors. These feature vectors are given as
input to the pre-trained ML model to identify the device that gen-
erated the traffic. 132

8.9 Results for identification of individual devices from a group of identical

peers (plugs, lights, and cameras). 137

1

Chapter 1

Introduction

In recent times the concept of an Internet of Things (IoT) has been emerging with

numerous devices such as cameras, low-powered sensors, wearable technologies,

and a multitude of household and industrial devices inter-connected to one another

and to the Internet. We are essentially surrounded by IoT devices which play

increasingly significant roles in our lives, with the average American household

utilizing 22 connected devices, a number that increased significantly as a result of

the Covid-19 pandemic [5]. At the enterprise level, the average network consists of

48% IoT devices, much of which is related to premise security (cameras, sensors,

etc.). These trends are likely to continue, with reports indicating there are as many

as 30 billion IoT devices connected worldwide [6] with continued rapid growth

expected. While offering convenience and utility, there are also increased security

risks with many devices under-equipped to prevent compromise.

One example of such security risk was seen in 2016 with the emergence of the Mirai

botnet and its variants [7]. At its peak, Mirai was able to cripple a number of

key services including OVH (the worlds largest cloud provider), Dyn (a key DNS

resolution service), and the Krebs on Security website by generating distributed

denial of service attacks (DDoS) of unprecedented scale. OVH reported attack

2

traffic exceeding 1 terabyte per second, making it the largest such attack to date

[8]. These attacks were perpetrated primarily through the use of low-powered

and otherwise innocent Internet-of-Things (IoT) devices such as air-quality mon-

itors, home routers, baby monitors, and web cameras. It is estimated that at its

height, Mirai infected over 600,000 vulnerable IoT devices [9]. While not especially

sophisticated, the Mirai botnet was very effective, and demonstrated the vulnera-

bility present in many such devices, as well as the need for effective methods for

monitoring their behavior.

Much of the vulnerability inherent in these devices rests in their simplicity. The

typical IoT devices offers a limited range of functions, i.e. a smart socket simply

turns power on and off, or in the case of a smart light bulb a user can control

power and change color schemes. To make the devices easy to use, manufacturers

often forego adequate security practice by setting the device up for ’plug-and-

play’ so that users can easily activate the device out of the box for a favorable

user experience. While convenient, issues such as default login credentials may go

unchanged, and users with limited technical experience may not even be aware of

potential problems. It is estimated that the Mirai botnet was able to compromise

nearly 600,000 devices with 60 username/password combinations [10]. This along

with a telnet service left enabled by default by several manufacturers made IoT

devices easy prey for malicious activity.

On a positive note, the simplicity of these devices also lends itself to effective

device fingerprinting. Along with their limited functionality, IoT devices typically

produce a limited number of network transactions and tend to perform the same

duties in a repetitive manner. We find that using locality sensitive hashing (LSH),

it is possible to capitalize on this repetition to identify devices by producing a

recognizable fingerprint. By extension, our hybrid LSH approach in combination

with machine learning extends this capability from identifying a known device

in a heterogeneous group to identifying a specific individual in a homogeneous

3

group of identical devices, and to identifying the genre (i.e. webcam, smart bulb,

smart socket, etc.) of an unknown device found on a network, as in the case of a

rogue IoT device. These fingerprints can also be used to detect changes in known

device behavior. For instance, in the case of Mirai, while devices may be engaged

in scanning or attacking activities, they will continue to perform their expected

duties. Owners or administrators may be completely unaware their devices or

networks are engaged in nefarious activity. Changes in the patterns of a device

fingerprint can be an indicator of compromise.

As an initial research we begin by constructing a model of a Smart City, in-

cluding infrastructure such as transportation, street lighting, traffic signals rail-

road crossings, and a mock power plant, all controlled by a fully networked pro-

grammable logic controller (PLC) which utilizes the MODBUS communications

protocol. Known for their vulnerabilities, we demonstrate how the PLC can be eas-

ily hacked from outside the network and then work to secure the network perimeter

to prevent malicious access. This work helped us along the path towards research-

ing IoT vulnerabilities.

Next, we build an IoT test bed for research and education based on a software

defined network model, and explore performance and vulnerabilities in connected

devices. The test bed consisted of a number of virtual edge devices and a net-

work of routers controlled by an OpenDaylight SDN controller. Experiments were

conducted to explore performance and mitigation options for IoT devices in a soft-

ware defined network environment. From here we begin to focus specifically on

IoT devices and how they are compromised by malicious botnets.

Shortly after the initial appearance of the Mirai botnet its authors released their

code as open-source (likely to evade authorities) leading to the proliferation of

numerous variants, many of which improved performance and added functionality

to the original code [11]. To gain a better understanding of botnet behavior,

4

we employed a global network of honeypots to collect and analyze network traffic

activity data by infected devices and the downloading of botnet software scripts to

sand-boxed devices as detailed in Chapter 6 of this paper. Data collected between

May 2019 and December 2021 show high degrees of repetitive behaviors associated

with Mirai and its variants, as noted by [12]. It is likely that new approaches to this

attack will continue to emerge in the foreseeable future requiring new methods of

defense. One aspect of this defense will rely on greater security measures built into

IoT devices, but there will always be a need for methods to monitor device behavior

and identify their presence by security personnel and network administrators.

The first step in providing security for IoT devices and the networks on which

they reside is proper accounting and management, but keeping track of IoT de-

vices in a network can prove to be a challenging task. Identifiers such as IP and

MAC addresses are unreliable as they can be easily spoofed, making it difficult to

know when rogue devices join a network. Known devices can continue to perform

their simple duties, with malicious background activities such as eavesdropping,

scanning, or sending unsolicited traffic to other targets. Some means of detecting

changes in their expected behavior is required. The topic of IoT device identifi-

cation by analyzing generated network traffic has been a popular area of research

in the last few years with several proposed solutions in the literature. Various

approaches using machine learning techniques have been explored, wherein net-

work traffic is collected and analyzed either in real time or offline, and models are

developed for machine learning classifiers which have been able to identify specific

devices and device types as well as differentiating normal traffic from anomalous

traffic. This has also been helpful for highlighting when new or unknown devices

connect, or when familiar devices begin behaving in unexpected ways. Many of

these methods are not without their weaknesses though, requiring specific traffic

intervals be collected, that adequate quantities are collected, or that classifiers

5

are able to operate within available computational constraints. Many require fea-

ture extraction and engineering which can introduce a high degree of overhead, or

high degrees of required domain knowledge to choose the appropriate features for

the given classifiers. In addition, many classifiers require models be updated and

retrained frequently to continue providing good results [13] [14].

Non-machine learning approaches have been explored as well, seeking to identify

device similarity based on packet header information, temporal features such as

traffic flow, traffic volume, and by hashing packet data. Of particular interest

to us is a study by [15], wherein device fingerprints are generated using locality

sensitive hashes. Locality Sensitive Hashing (LSH) is useful in performing sim-

ilarity searches, and has proven to be of fundamental importance in numerous

fields, such as spam email and malware detection, data mining, and content based

retrieval [16]. In a similarity search, “given a collection of objects D with some

similarity measure s defined between them and a query object q, retrieve all ob-

jects from D that are most similar to q according to the similarity measure s” [17].

Put more simply, a hash can be generated that is very similar for similar inputs,

with minor changes causing only slight differences in the output. Details of LSH

are explored in more detail in Chapter 7. When employing LSH for IoT identifi-

cation, a model can be built from several samples of traffic generated by the same

device, then compared to unknown traffic to find the highest degree of similarity to

approximate a match. In the same sense, some threshold can be set to determine

devices of similar type. This approach provides a means for identifying devices

without the need for feature extraction or model retraining. Unfortunately, it has

been shown that as the sample size decreases, say from a 10-minute sample to a 5-

minute sample, the accuracy degrades considerably, requiring that a large enough

sample be collected for reliable identification. In addition, device samples need

to be stored and used for comparison when attempting to identify new devices

limiting system scalability. While an effective method for device identification

6

on a limited scale, we find the utility of locality sensitive hashing can be greatly

increased when combined with machine learning methods.

To enhance LSH for network traffic fingerprinting we develop a two-stage process

wherein device traffic hashes generated with a modified LSH technique are com-

bined with machine learning to creating a unique device fingerprint. To accomplish

this traffic flows collected as .pcap files are captured and converted to locality sen-

sitive hashes. These hashes are then broken down into their constituent bytes and

are combined into a feature vector with each byte represented as a base-10 integer.

In this way we combine the power of locality sensitive hashes with machine learn-

ing for device classification. Precision, accuracy, and recall are found to be high

with this method, avoiding the complexities of feature extraction, and maintaining

good performance for very small traffic flow samples (single packets); a significant

improvement over previous works.

1.1 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 will present a

background on this work including a brief history of botnets and their relationship

to IoT devices. This discussion will lead us to the problem we intend to solve

with this work. Chapter 3 will present a review of the related works found in the

literature as they relate to each chapter of this dissertation. Here we will also

discuss gaps in the previous research that we intend to fill, and we also provide a

taxonomy of previous research in the area of IoT device identification with network

traffic fingerprinting. This research begins with the development of a Smart City

testbed and an analysis of its vulnerabilities in Chapter 4. Next we develop a

software defined networking testbed in Chapter 5 to analyze vulnerabilities in IoT

networks. Chapter 6 will discuss the collection and analysis of malicious traffic

using a global network of honeypots. Chapter 7 will cover our initial research

7

in network traffic fingerprinting using Nilsimsa, an n-gram based locality sensitive

hashing tool, in combination with convolutional neural networks to identify known

heterogeneous devices. Chapter 8 will discuss hybrid locality sensitive hashing with

machine learning. Here we explore fingerprinting individuals in groups of identical

devices, including by device genre, and devices in the presence of of background

noise. Finally, Chapter 9 will present a conclusion to this dissertation and future

research directions.

8

Chapter 2

Background

2.1 Bot Origins

The history of botnets in many ways parallels the evolution of cybercrime it-

self [18]. It is marked by notable innovation, adaptation, and increasingly sophis-

ticated tactics, driven in many cases by intelligent but simple (and often young)

players. While a relatively recent phenomenon, the botnet landscape is one that

will continue to influence network interactions for the foreseeable future, mak-

ing IoT network traffic fingerprinting and device identification an important and

relevant topic.

Prior to the Internet as we now know it, legitimate bots were developed to assist

with simple tasks and user engagement on local machines and intranets. In the

mid 1960’s a program named ELIZA emerged as one of the first chatbots, capable

of simulating conversation through the use of early natural language processing

techniques [19]. ELIZA could engage users by parsing text, then by applying pat-

tern matching it could then transform user input into questions or prompts based

on pre-defined templates. While not particularly intelligent, it could engage users

with a reasonable simulation of human conversation. In the late 1970’s USENET,

9

a network of discussion groups present on the early Internet was developed to

automate various administrative tasks such as managing newsgroups, identifying

spam, or filtering out unwanted content [20]. While not strictly speaking a bot

itself, USENET embodied the automated nature that would shape the bots of the

future.

With the development of the modern Internet in the late 1980’s more sophisticated

bots for automating tasks began to emerge such as Internet Relay Chat (IRC)

bots, automated tools developed to manage functions within IRC channels such

as curating user lists, conducting searches, and providing news and update services.

In the 1990’s more advanced service bots such asWebCrawler [21] and ALICE [22]

were developed to index and search for the rapidly increasing number of web pages

and resources that were appearing, and to provide more advanced user engagement

with new artificial intelligence powered natural language engines. Up until this

time the function of bots was primarily legitimate, but even in the early days of the

Internet malicious software such as worms and viruses began to appear; precursors

of the darker side of network bots we see today.

The beginning of the new millennium saw the development of the first known

malicious bots and bot-nets. In 2000 a 15 year old hacker used a network of

compromised college and university network computers to launch a Distributed

Denial of Service (DDoS) attack against several large targets such as CNN, Dell,

E-Trade, eBay, and Yahoo! resulting in $1.1 billion in damages [18]. A few years

later another botnet appeared titled Storm which also delivered attacks with a

network of as many as 2 million compromised computers, and accounted for an

estimated 20% of all spam found on the Internet at that time.

In 2012 the Carna Botnet performed an illegal but useful scan of the Internet by

leveraging unprotected or poorly protected routers to perform a mapping of the

entire IPv4 address space. By using infected devices to scan for other vulnerable

10

devices, botnet software was propagated across network routers which would then

perform scans and continue propagation, as well as conducting Internet topology

measurements, deleting itself on reboot. Carna discovered that hundreds of thou-

sands of routers lacked even basic security measures, and also noted that of the

4.3 billion available addresses in existence in the IPv4 space, only about 1.3 billion

were actually in use [23]. Data amassed from the Carna botnet was published to

the scientific community anonymously as the process, while beneficial, was highly

illegal.

2.2 Proliferation and Commercialization

With the continued growth of the Internet and a rapid increase in the number of

targets of interest for cybercriminals, the proliferation of botnets also increased.

Simple connected devices such as IoT with meager or non-existent security con-

trols provided readily available victims that could be added to bot armies. Un-

derground forums and black markets facilitated the commodification of botnet

services, enabling individuals to rent or purchase botnets for launching cyber at-

tacks, conducting espionage, or engaging in financial fraud.

By the mid-2000s botnets had become a pervasive threat, capable of executing a

wide range of cybercrimes at scale. Notable botnets during this period included the

Storm Worm, Conficker, and Zeus botnets, each known for their sophistication and

global reach. These botnets were responsible for massive spam campaigns, data

theft, credential harvesting, and other malicious activities, attacking individuals,

businesses, and governments worldwide.

11

2.3 Era of Advanced Botnet Techniques

With tangible financial gain in the balance, the arms race between cybercriminals

and defenders escalated as botnet operators adopted increasingly sophisticated

tactics to evade detection and maintain control over their networks. One signif-

icant development was the use of fast-flux DNS techniques to constantly change

the IP addresses associated with command and control (CC) servers [24]. This dy-

namic infrastructure made it difficult for security researchers and law enforcement

agencies to trace and disrupt botnet operations effectively.

Moreover, botnets began leveraging encryption and peer-to-peer (P2P) commu-

nication protocols to enhance resilience and decentralize command infrastructure.

By distributing command functions across multiple nodes within the botnet, oper-

ators reduced the risk of a single point of failure and made it harder for authorities

to dismantle their networks.

2.4 Botnets in the Age of Cyber Warfare

The increasing prevalence of botnets did not go unnoticed by nation-states seeking

to advance their strategic interests in cyberspace. State-sponsored actors began

incorporating botnets into their arsenal of cyber warfare tactics, using them for

espionage, sabotage, and strategic attacks against rival nations. One of the most

well known examples is the Stuxnet worm [25], discovered in 2010, which targeted

Iran’s nuclear program with unprecedented precision and sophistication.

Stuxnet exploited multiple zero-day vulnerabilities and advanced propagation mech-

anisms to infiltrate an air-gapped system and manipulate a specifically targeted

set of industrial controls. The worm, believed to be developed by the United States

12

and Israel, demonstrated the potential of botnets as tools of geopolitical influence

and coercion, leading to a new era of cyber warfare.

2.5 Rise of IoT Botnets

The continued rapid growth of the Internet of Things has provided a rich new

landscape for botnet proliferation and exploitation. IoT devices, ranging from

smart cameras to home routers, often lacked robust security measures making

them vulnerable to compromise. 2016 saw the appearance and success of the Mirai

Botnet, underscoring the potency of IoT botnets and highlighting the urgent need

for improved security measures in connected devices, as well as tools for monitoring

and detection. Subsequent IoT botnets, many of which were variants of Mirai,

continued to exploit IoT vulnerabilities, posing significant challenges to network

defenders and cybersecurity personnel worldwide.

One of the most infamous attacks orchestrated by Mirai targeted Dyn, a major

Domain Name System (DNS) provider, in October 2016. The attack disrupted

access to popular websites and services, including Twitter, Netflix, and Spotify,

highlighting the disruptive potential of IoT botnets on a global scale.

2.6 Mirai Landscape: Evolution and Diversifica-

tion

In an attempt to evade authorities, the developers of the Mirai botnet released

their code as open source making it publicly available to anyone interested in pro-

ducing their own botnets. The landscape of IoT botnets underwent rapid evolution

and diversification as cyber-criminals capitalized on this source code to develop

new variants and derivatives, each with its own unique features and capabilities.

13

Figure 2.1: IoT devices can be hidden behind a rogue hotspot, effectively
concealing their network membership. Only a trace of their network traffic can

reveal their presence or identity.

As mentioned, many of the botnets present today are variants of the original Mirai

code. One notable successor was the Reaper botnet, discovered in 2017. Unlike

Mirai, which relied on exploiting known vulnerabilities, Reaper employed a more

sophisticated approach, actively scanning for and exploiting undisclosed vulnera-

bilities in IoT devices. This proactive strategy enabled Reaper to infect a wide

range of devices and evade traditional security measures.

2.7 Current Problems

One of the major difficulties for network administrators today is effectively mon-

itoring known IoT devices on a network, and discovering unauthorized or rogue

devices that may appear. For instance, in Figure 2.1, we see a scenario wherein

a group of IoT devices reside behind a rogue hotspot which is spoofing its MAC

address to avoid detection by administrative software. As the devices behind the

hotspot are masked, the only artifact to work with is the network traffic they

are producing. Through network traffic fingerprinting, packets can be randomly

captured, and hidden devices can be discovered based on characteristics of their

14

behavior and activity, and their presence and genre can be determined. In the

same way, known and trusted devices can be monitored by traffic sampling as

well. When device traffic deviates from normal parameters, it can be assumed

there is some anomalous behavior possibly indicating compromise.

15

Chapter 3

Related Works

The proliferation of IoT devices connected to the network today and the threat

of attack against them necessitates that research in the area of device protec-

tion be conducted. This includes an investigation of industrial controls such as

programmable logic controllers, traditional and software defined networks, recent

attacks, the the collection of malicious traffic data to understand attack patterns,

and improved techniques for the identification and monitoring of connected devices

for the purpose of accounting and anomaly detection. In this section we categorize

the main approaches to these problems, and provide a review of recent works from

the literature. Section 3.1 will explore works related to smart cities and smart city

test beds, Section 3.2 will review works on IoT testbeds, Section 3.3 will review

works related to honeypots and data collection, and finally Section 3.4 will review

studies on device fingerprinting categorized by the most common approaches.

3.1 Security Vulnerabilities in a Smart City

Previous research on programmable logic controllers and smart city control tech-

nologies has revealed that the most common problems are related to human error

16

and negligence. Primarily, many of these technologies are installed out-of-the-

box, meaning the equipment is set up with very basic and easy-to-access levels of

security [26]. With only default settings for protection, even a low-level hacker

could exploit vulnerabilities and cause major disruptions. As prior research ex-

plains, these disruptions can range from stealing citizens’ personal information

to shutting down entire city services. Compromise can lead to massive financial

and physical damages to the city itself. Successful exploits can damage the rep-

utation of the city, harming confidence in systems and reflecting poorly on their

ability to protect their citizens’ information and livelihoods. An example of this

was demonstrated in a recent incident wherein a hacker was able to shut down

Ukraine’s entire electrical grid for several hours, leaving a quarter of a million

customers without service [27].

One of the most significant vulnerabilities researchers have found in smart cities

is in the area of transport management systems [28]. This would include activities

such as disrupting the flow of traffic or a ransomware attack on ticketing services

that can completely shut the ticketing system down. As an example, it is reported

that “the University of Michigan managed to hack and manipulate more than a

thousand wire-less-accessible traffic signals in one city using a laptop, custom-

software, and a directional radio transmitter” [29]. The research revealed that any

system that relies on supervisory control and data acquisition (SCADA) software

had vulnerabilities that could be taken advantage of by hackers because almost

all commands sent to and from SCADAs are transmitted in plain text. Sending

sensitive instructions in plain text is dangerous as data is easily intercepted and

manipulated.

17

3.2 IoT Testbeds

A number of testbeds have been offered recently to facilitate IoT research and

development. They are presented here by category:

3.2.1 Home IoT Testbeds

In [30], Yamin et. al. introduce build it, break it, fix it philosophy, where students

are expected to design and construct an automated home IoT environment with an

emphasis on secure design principles. An exercise is held during a two-day boot

camp where students are separated into two groups, each constructing its own

secure environment. The groups are tasked with attacking the opposing teams’

environment to identify security weaknesses. Several constraints for the proposed

environment are given, such as mandatory door locks, a simple user interface,

cloud data storage, security alerts, etc. Pre- and post-event surveys are given

to reinforce the principles learned. This type of approach is beneficial in that

students play dual roles of maker and breaker, which is not normally provided by

cybersecurity exercises.

Another approach to teaching home IoT systems is presented in [31], where a

smart home environment consisting of a security system, air conditioning system,

entertainment system, lighting system, and smart appliances is provided. The

environment is constructed using a miniature doll house fitted with devices and

sensors connected through a home controller which in turn communicates with a

central management system via web sockets. The smart home server communicates

in the same way with other clients such as a smart phone, a smart home assistant,

etc. simulating a realistic environment for students to interact with.

The development of a multi-dimensional IoT testbed and associated challenges

are described in [32]. The construction of a realistic and controlled environment

18

is detailed, which supports multiple communication protocols, data processing,

gateway operations, cloud integration, node deployment, and security concerns.

This platform allows for interactive teaching of IoT concepts and practice-based

education using Commercial Off-The-Shelf (COTS) components.

A free and remotely-accessible platform AssIUT is described in [33]. Unlike other

testbeds that involve hundreds to thousands of IoT devices and servers to conduct

advanced research experiments, AssIUT is built to accommodate students and

novice researchers. A system of layers is defined, separating IoT concepts into

groups for more effective learning. Layers are defined as Things layer (Layer 0)

which contains IoT devices to be connected; Sensor layer (Layer 1) which involves

sensors, actuators, etc.; Nodes layer (Layer 2) that includes processing nodes;

Communication layer(Layer 3) that contains communication modules; and Cloud

layer(Layer 4) that encapsulates large cloud platforms. Users can remotely log

into a control portal and write/compile their own software solutions and upload

binaries to an Arduino micro controller on reserved IoT nodes in a Software Defined

network. A guide including experimental examples is included to facilitate the

process. The AssIUT framework depends on custom hardware devices connected

via wireless services (WiFi, LoRa, Zigbee, and 3G/4G Cellular networks) to form

a software defined network, which is in turn dependent on cloud services. While

very useful, it does not incorporate physical (wired) or virtual Ethernet networks,

and lacks the tangible element provided by the testbed proposed in this paper.

In addition, our testbed also emphasizes IoT and network security, a feature not

present in AssIUT.

3.2.2 Security-Specific Testbeds

The design and implementation of an automated IoT security testbed is developed

in [34]. The system automatically tests devices for vulnerabilities based on device

19

type. Two basic device-types are described; those that host a website for interac-

tion as in a web camera, and those that advertise their state to a remote server

and receive instructions back to make changes, as in a smart light bulb. This

categorization is then used to implement an automated device testing and vulner-

ability detection framework by analyzing communication patterns of devices. The

system exposes devices to the Internet, and automatically disable network access

when an anomalous communication behavior is detected.

ISAAC [35] is a realistic cyber-physical testbed system designed to facilitate learn-

ing and research specifically for IIoT. Recognizing that both complexity and real

time interactions in many cyber-physical systems cannot be reflected by simula-

tions alone, ISAAC provides a controlled environment for testing device resiliency

to attack. The system is adaptive and re-configurable, and provides both evalua-

tion as well as teaching opportunities.

Some of the problems associated with the heterogeneous nature of IoT are ad-

dressed in [36]. The authors develop a security testbed framework capable of

evaluating devices of different types by incorporating machine learning techniques

to perform standard and advanced security testings, effectively detecting compro-

mised IoT devices.

3.2.3 Software Defined Networking (SDN) Testbeds

Software Defined Networking (SDN) is an important technology for IoT ecosys-

tem in that it enables the management of network nodes through programming

rather than through traditional methods involving node autonomy and system

administration. This potentially provides for greater bandwidth flexibility and

management of large IoT systems. Several methods have been explored to inte-

grate SDN for IoT communication. In [37], authors propose SDN as a solution

to consolidate disjoint IoT platforms wherein multiple service providers can use

20

the same platform to supply services and share information. This allows for more

rapid development of technology and optimizes utilization of resources. Their

basic motivation for developing this IoT architecture is to promote the reuse of

various resources and to allow the rapid introduction and deployment of new IoT

services and applications. Their design principles emphasize layered architecture,

openness and programmability, data provisioning and sharing at different levels,

and interoperability.

Guo et. al. explain in [38] how SDN introduces a vehicle for raising the level

of abstraction for network configuration, enabling the network control plane logic

to be decoupled from the network forwarding hardware thus moving the control

logic and state to a programmable software component; the controller. However,

as networks become large, a single controller becomes a bottleneck as it is unable

to manage all network elements. They propose a system in which controllers are

layered vertically, with a master controller managing lower level controllers, and

allowing a SDN network to become large, opening the door for better services to

IoT devices.

3.2.4 Education-Oriented Testbeds

Numerous IoT testbeds focus specifically on education. [39] is an extension of

aforementioned AssIUT testbed focusing on providing a platform to conduct stu-

dent competitions. The competitions consist of registration, tutorial, missions

tackling, evaluation, and scoring phases. After the announcement of the compe-

titions, a duration of two weeks is given to teams to register in an online form.

Tutorial sessions were conducted remotely in the form of video-conference online

meetings to help the teams know more about testbed architecture and usage. The

tutorial sessions included presentations, program demos, and question sessions

from the teams.

21

Guo et. al. developed an IIoT testbed to allow students and researchers gain

experience in security and smart manufacturing related topics with a focus on

securing networked industrial systems and collecting, analyzing, and visualizing

the machinery data [40]. Its stated purpose is research and education, forcing an

emphasis on flexibility and ease of use. The platform is designed to be friendly

toward the study of IIoT devices and security, and is made up of low-cost off-the-

shelf components. However, while it addresses fog computing, it does not provide

access to a programmable SDN controller.

As IIoT deals specifically with industrial control systems, security is crucial for

safe operation of these infrastructures. Since there is a global shortage of qualified

personnel with relevant skills, Celeda et. al. presented KYPO4INDUSTRY, a

testbed that is customized specifically for training and education in IIoT systems

for beginning and intermediate level computer science students to learn cyberse-

curity in a simulated industrial environment [41]. The system is constructed using

open sources software and re-configurable modules to facilitate hands-on projects

in a flipped classroom format.

LICSTER [42] is also a testbed built specifically for training in industrial con-

trol systems. Sauer et. al. describe three approaches to building effective IIoT

testbeds; virtualized, real-world, and hybrid. Likewise, there are different tasks

for which a testbed can be used. For instance, for security scenarios and attacks

on Industrial Control Systems (ICS), a real-world testbed which utilizes physical

processes is preferred, as it helps students to more fully understand the impact of

different attack vectors on a production environment. This type of environment

can be very expensive to build as it requires proprietary devices. LICSTER ad-

dresses this problem by providing a low-cost simulated environment using open

source software and commercial off-the-shelf equipment.

22

3.2.5 Other Testbeds

Other frameworks developed for IoT testbeds include OpenTestBed [43], an open

source and open hardware testbed that can be reproduced by anyone wishing to

develop their own testbed environment. The authors attempt to share enough de-

tail to allow interested parties to replicate their work, which includes commercially

available state-of-the-art devices, and can emulate an environment which is repre-

sentative of the users specific use case. The system is capable of loading arbitrary

binary images on any device, and can send and receive serial bytes between them.

Finally, Raglin et. al. present a conceptual framework they call Smart CCR IoT,

an IoT testbed [44]. Their goal is to design a scalable testbed consisting of IoT-

based technologies, infrastructure, processes, data gathering, and location-specific

information that can emulate a real-time understanding of a physical environment.

The testbed is based on Arizona State University’s Blue Light Pole system, a net-

work of 700 public safety devices spread across the Tempe, Phoenix Downtown,

West, and Polytechnic Campuses. The poles provide an emulated IoT network

spanning campus, city, and regional scales capable of disseminating data from

sensors, cameras, and other smart devices. It provides an environment for experi-

mentation in optimal networking, computing, and storage technologies, along with

techniques for edge computing, software defined networks, publish/subscribe data

models, and emerging wireless technologies.

3.3 Honeypots and Malicious Traffic Collection

Honeypots have been widely used for collecting and analyzing the activities of

malicious actors. They provide an effective tool for observing attacker behavior

as it can be assumed no legitimate traffic should be exchanged with the honeypot

services, and they have no production value [45] [46].

23

More than 67% of web servers and 71% of IoT devices connected to the Internet

rely on Unix/Linux-based operating systems [47] [48]. In the work by Kambourakis

et al. [49], regular updates to firmware for these systems are often overlooked,

leaving opportunities for malicious actors to develop methods for unauthorized

access and remote manipulation. In addition, source code for many well-known

and scalable exploits are publicly available, providing hackers with ample resources

to bypass security measures and subvert vulnerable systems. Honeypots can be

placed inside of a network as a distraction, drawing attackers away from valued

resources, or as stand-alone services exposing vulnerable ports for services such

as SSH, telnet, HTTP, FTP, or SMTP. Services attempt to appear as legitimate

to attackers, and log activity without implementing all of the service’s logic and

functionality, as shown by Bistarelli et al. [46]. Kumar [50] and Kyriakou [51] et

al. demonstrate the advantages of deploying multiple honeypot tools and utilizing

containers to produce a lightweight multi-service honeypot on a single virtual

machine, server, or lightweight device (i.e. Raspberry Pi). In [52–54] examples

of deployment and data collection from honeypots are detailed, and the basic

functions of a botnet malware are examined based on scanning practices and the

order of commands executed by an attacker once logged in.

Several open-source honeypot applications are available to emulate common ser-

vices, provide limited functionality, and automatically log activity. Vetterl et al.

discuss applications such as Kojoney and Klippo [55]. Other applications such

as Dionaea, Whaler, and Cowrie provide access to services such as SMB, HTTP,

FTP, TFTP, MSSQL, MySQL, SIP, SSH and the Docker API. Narwocki et al.

[56] explain how by exposing the common ports for these services, attackers per-

forming random scans of the Internet are often attracted to them within minutes,

encouraging them to perform brute-force attacks using dictionaries of common

usernames and passwords to gain access.

High value data can be collected, and detailed analysis is required to learn more

24

about attack behavior. Fraunholz et al. [57] discuss analysis based on timing

behavior by correlating the overall number of attacks with the number of unique

IP addresses seen, as well as correlating the overall number of attacks with the

number of attacks per unique IP address. Vakilinia et al. [58] discuss capturing

commonly used passwords from brute force attacks and utilizing them as a feed for

Cyber Threat Intelligence (CTI). Fan et al. [59] develop attack profiles by applying

attack information to analyze malicious activity in order to unveil intruder motives.

Fraunholz et al. [60] discuss the application of machine learning techniques for

classifying attacks on honeypots.

A major concern is the fingerprinting and identification of deployed honeypots by

attackers. Vetterl et al. [55] present a generic technique for fingerprinting honey-

pots at Internet scale with a single TCP packet. They conduct Internet-wide scans

and are able to identify 7605 honeypot instances across nine separate implemen-

tations. They also discover most honeypot instances are not properly updated,

making them even easier for attackers to identify. McCaughey et al. [61] note

many open-source software tools are available to help identify honeypot devices

that have been on the network for extended periods of time by noting timing differ-

ences between honeypots and actual machines. Vetterl et al. [55] discuss a project

wherein they scan the Internet and discover thousands of honeypot devices. They

also cover some of the legal issues involved in “logging into” honeypot machines,

even for the purpose of identifying them. Cabral et al. [53] discuss how Cowrie in

its standard state can be easily identified by attackers using nmap, Shodan, and

OS fingerprinting, and require modification to be effective. Finally, Pitman et al.

[62] discuss their tool that can quantify the ability of a honeypots to fingerprint

its environment, capture valid data, deceive an adversary, and monitor itself and

its surroundings.

To better understand attack behavior and to develop a more complete understand-

ing of how adversaries are utilizing services left exposed by weak or default login

25

credentials we collect traffic on a global scale over an extended period of time,

both to amass a large body of data for the development of CTI tools, and to

identify patterns in behavior as attackers access and utilize services presented by

honeypots located in geographically separated regions.

3.4 IoT Traffic Fingerprinting

We divide related works in this section based on the various approaches to the

problem that are found in the literature. These include fingerprinting with both

machine learning (ML) and non-machine learning (non-ML) approaches. This

section is followed by a detailed taxonomy of the various works from this same

perspective which can be found in Table 3.1.

3.4.1 Temporal Features

In [63] Noguchi et al. monitor the state of a device within a network based on the

time change pattern of the number of features which can be extracted from signals

originating from the device. Several situations that limit device state detection

are noted, such as changes in installation location, the presence of multiple and

changing interfaces on a single device, software and OS updates, and network

changes, which make it difficult to know and track the current state of a device

or to detect anomalies. Their system automatically detects changes in state and

identifies new devices as they join a network.

Similarly, in [64] Mazhar and Shafiq seek to characterize IoT traffic in terms of

temporal patterns, volume, and target endpoints, and also consider security and

privacy concerns. Their system collects traffic from over 200 home networks, help-

ing to addresses the problem of identifying only traffic in a test bed environment

by using data collected in the wild. They reveal that while smart home IoT

26

ecosystems can appear fragmented, it is mostly centralized due to its reliance on

a few popular cloud and DNS services. They note certain devices exhibit specific

behaviors based on their particular functionality such as video streaming, diurnal

usage patterns, etc. They also note device back-ends typically connect to a limited

number of service providers making them more centralized than they appear.

In [65] Aneja et al. perform device fingerprinting based on packet inter-arrival

times. A Raspberry-Pi is configured to sniff packets, and graphs are plotted for

arrival times to two Apple devices, an iPhone and an iPad. A Convolutional

Neural Network (CNN) is used to classify devices based on the generated graphs,

achieving a device identification accuracy of 86.7%.

3.4.2 Network Protocol Features

Meidan et al. use supervised learning to train a multi-stage classifier in [66]. In

the first stage, the classifier works to separate IoT traffic from non-IoT traffic.

In the second stage it attempts to determine to which class of devices it belongs.

Features are extracted from packets by analyzing distinct traffic flows, represented

by source and destination IP addresses and port numbers from SYN to FIN. This

data is then enriched with publicly available data sets such as Alexa Rank and

GeoIP. Data is separated into 3 sets; two for training (single session and multi-

session classifiers) as well as a test set for verification. They achieve a device

identification accuracy of 99.28%.

In [6] Ullah and Mohmoud focus on the set of application layer services a device

uses, such as ARP, SSL, LLC, EAPOL, HTTP, MDNS, and DNS to develop a

static view of device behavior. Wireshark is employed to capture test data from

a test bed, and both packet headers and payload are considered. Five steps are

followed to identify devices; monitoring, building of a sensor profile, analysis of

27

results, device classification, and prevention & recovery. 3 K-fold cross-validation

tests are used to measure feasibility and model over-fitting.

In [67] Chowdhury et al. perform device identification through fingerprinting

by extracting features from single TCP/IP packet headers. A feature vector is

developed by generating a score for all available features based on variability,

stability, and suitability of each bit. WEKA tool is then utilized to sample various

ML algorithms for device classification. They test their work on two publicly

available data sets (UNSW and Iot Sentinel), and achieve an accuracy of 97.78%.

3.4.3 Initial Connection Phase Fingerprinting

Miettinen et al. develop IoT SENTINEL [68] with the goal of restricting com-

munications within an IoT network to prevent an adversary from connecting to

vulnerable devices, or to use a compromised device to communicate with or ex-

filtrate data from other vulnerable devices on the network. A series of fingerprints

are constructed from devices while they conduct their initial connection phase,

which are then mapped to device types. Rules can then be applied to device

types based on external information about their potential vulnerability. Features

used for developing fingerprints are extracted from IP packet headers, and do not

include payload information to avoid issues with encrypted traffic. The method

claims an overall average accuracy of 81.5%, but traffic must be captured during

the initial connection phase.

Similarly, in [69] Marchal et al. seek to define policies for various classes of IoT

devices based on device type. By monitoring network traffic, AuDI autonomously

fingerprints devices in any state of operation after the initial connection phase.

Since the goal of AuDI is network management, device classes rather than individ-

ual devices are identified as abstract device types. Once fingerprints are captured,

an unsupervised clustering algorithm is used for classification. Policies are then

28

formulated for appropriate device limitations which are stored in a database. These

are used for anomaly detection, network resource allocation, and identification and

isolation of vulnerable devices.

3.4.4 Flow-Based Feature Extraction

In [70] Salman et al. seek to manage security restraints and requirements for

IoT by identifying connected devices through the extraction of statistical features

from their generated network traffic. Their proposed framework extracts simple

features per packet based on any network flow of 16 consecutive packets, allowing

for device identification in real time. Extracted features include packet direction,

size, timestamp, and transport protocol. To classify devices the authors utilize

decision tree, random forest, recurrent neural networks, residual neural networks,

and convolutional neural networks.

Silvanathan, Gharakheili, and Sivaraman develop a set of one class clustering

models in [71] to identify devices from a real-time flow level telemetry. The primary

features used for model training are average packet size and average flow rate. Per-

flow packet and byte counts are captured each minute, and attributes are computed

at time granularity increments of 1, 2, 4, and 8 minute intervals. The authors use

their own packet-level parsing tool, which takes in raw .pcap files as input, develops

flow tables, and exports byte and packet counters of each flow. finally, a vector of

attributes is generated each minute which corresponding to each device. K-Means

algorithm is utilized to identify clusters, which are then used to identify device

instances.

In [72] Bao, Hamdaoui, and Wong address the issue of white listed, new, and

anomalous devices in an IoT network by using a hybrid deep learning approach.

The method combines deep neural networks with clustering to enable the classifi-

cation of both previously seen and unseen devices, and employs an auto-encoder

29

technique to reduce the dimensionality of the resulting data set. An unsupervised

data clustering algorithm called OPTICS is utilized which is based on space den-

sity. The auto-encoder is a symmetrical artificial neural network for reconstructing

a given input. Known devices are identified using a random forest classifier based

on an input vector with 297 features extracted from the network traffic.

Similarly, Hamad et al. [73] address the problem of IoT device identification by

assembling a series of packets from network traffic flows, and extract various fea-

tures to create a fingerprint for devices. Supervised machine learning algorithms

are then applied on these features to solve a multi-class classification problem.

Once devices are identified, rules can be applied to restrict their privilege to com-

municate on the network. In this way, a white list of known devices can be applied,

and abnormal or unwanted traffic can be identified and blocked. A vector of 67

features are selected, and algorithms such as Adaptive Boosting, Latent Dirichlet

allocation, K-Nearest Neighbor, Decision Tree, Naive Bayesian, Support Vector

Machine, Random Forest with 100 estimators, and Gradient Boosting are applied.

In addition, summary statistics on network features are calculated.

3.4.5 Behavioral Fingerprinting

In [74] Bezawada et al. ask the question what is this device and is this device

the one it claims to be. To accomplish this, the authors perform device behavior

fingerprinting by extracting features from their network traffic. They attempt to

approximate the device type based on an analysis of a collection of the protocols

used, and by observing command and response sequences elicited from a device via

its smart phone app. Features extracted include both packet headers and payload-

based features. Various machine learning classifiers are employed from the scikit

learn suite to identify device types. The authors claim a device can be identified

with as few as 5 packets from a single device.

30

Seeking to identify anomalous traffic, Gill, Lindskog, and Zavarshy [75] develop a

baseline normal profile using traffic discovery and classification, then work to de-

tect traffic anomalies based on the following features; overall traffic, transport layer

protocol traffic, traffic by destination socket, packet size, and IP flow. Variations

on statistical measurements of these five areas are used to formulate a profile that

is considered to be normal, with variations that fall outside of these parameters

identified as anomalous.

Also interested in device behavior, Yousefnezhad, Malhi, and Framling [76] analyze

packet header information to capture statistical information, and combine this

with sensor measurements to form a feature set that is used in classifying IoT

devices. Their method is used in both normal and under-attack scenarios, and

are able to identify devices with a high degree of accuracy. Seven behavioral

profiles are developed that are used to develop rules for network security. Various

machine learning algorithms are applied depending on the degree of linearity of

the captured data.

3.4.6 Limited Feature Extraction/Engineering

To address the problem of feature selection, Fan et al. [59] work on IoT device

identification using semi-supervised learning. The main advantage of this approach

is that rather than having to determine a large set of features for model training, a

smaller set of labeled data is used along with a much larger body of unlabeled data,

with labels inferred from the smaller set. To facilitate this, labels from the labeled

set should adequately differentiate devices from one another. In addition, IoT

devices should be differentiated from non-IoT devices that exist on the network

to improve model accuracy. Features chosen include time intervals, traffic volume,

protocol features, and transport layer security features. Transformed features are

clustered per class to compensate for feature fluctuation. Convolutional Neural

31

Networks are used for dimension reduction and multi-task learning is employed,

helping the classifier to distinguish IoT devices from the rest of the traffic. The

authors claim to achieve an average accuracy of 99.81%.

For real-time monitoring, Aksoy and Gunes [77] develop a framework they call

SysID which randomly selects single packets for analysis using a genetic algorithm

(GA) to determine which features are relevant for classification. Features are then

run on several different machine learning algorithms such as Decision Table, J48

Decision Trees, OneR, and PART for classification and identification. In this way,

rules can be applied to limit communication from the gateway or firewall to the

IoT device to provide device-appropriate security. SysID can perform single packet

analysis on network traffic selecting features without the need for expert input,

and achieves over 95% accuracy.

In a similarly innovative work Charyyev and Gunes [15] use locally sensitive hashes

to determine similarity in network traffic flows, a useful technique in that feature

extraction is not required. Hashes are generated and compared for similarity using

the Nilsimsa hashing tool, achieving a high degree of precision and recall when

compared against a set of devices used to generate traffic flow samples in the same

network. The system is tested on traffic collected from 22 devices by the authors,

as well as on other publicly available data sets. Variable lengths of traffic flows are

tested to determine how much traffic is sufficient to generate a good fingerprint.

We take this approach further by extracting each byte from generated hashes and

use them as features to be used with various other machine learning approaches

to improve performance.

3.4.7 Textual Features and Data Mining

In [78] Ammar, Noirie, and Tixeuil use a Bag of Words approach to identify

IoT devices on a network. A series of feature sets are collected both actively

32

and passively (depending on the device) from packets containing service discovery

protocols, DHCP fingerprinting, and user agent information found in the HTTP

headers. This textual information is modeled as binary data using Bag of Words.

Devices are represented by a feature vector of m words, and is set to 1 if a word is

present in a device description, and 0 if it is not. Vectors are added to a database

to construct an p X m matrix where columns represent words and rows represent

devices. These are then used as device labels.

Feng, Wang, and Sun [79] seek to build annotations for device types, vendors,

and product names by leveraging application layer response data from IoT devices

and relevant websites to obtain product descriptions. Honeypots are also used as

input for eliciting response data from offending IP addresses found there. These

annotations are used to build a rule set for devices within a network to control

and restrict access and communication to and from devices.

In a separate work, [80] Ammar, Noirie, and Tixeuil utilize a supervised learn-

ing classifier to differentiate devices based on features from network flow, as well

as textual features from packet payloads. Devices are identified within a home

network to determine their specific capabilities. This method seeks to identify a

device as it joins the network and is in its connection setup phase. Features that

are captured include maximum and minimum packet length, average packet inter-

arrival time, number of packets in a given flow, protocols used in the flow, device

manufacturer name, model, friendly name, XML description, mDNS information,

device OS, and device model. Textual features are modeled as a bag-of-words,

with each device description making up a feature vector.

In a unique approach, Kotak and Elovici address the issue of BYOD, employ-

ees connecting their own personal devices to an enterprise network [81]. In this

scenario, a white list of permitted devices must be constructed to identify and

assign rules to connected devices, and non-permitted devices must be identified.

33

To accomplish this, the authors collect TCP traffic (UDP and other protocols are

ignored in this study), which are processed to remove packet headers, and the

resulting data is converted into a gray scale image with each pixel representing a

hexadecimal value from the binary file. A single class classifier is applied to white

listed devices, while a multi-class classifier is applied to non-white listed devices

to identify anomalous traffic.

Finally, in [82] Desai et al. focus on the cost of choosing and selecting appropriate

features for applying machine learning algorithms to network traffic for device

identification. Their framework selects features based on their utility for meeting

the needs of specific algorithms. Once features are selected, popular ML algorithms

are applied. A statistical method is also utilized to screen features for their relative

value.

3.5 Contribution to Current Research

Our main contribution to the current research centers around the identification of

IoT devices based on their network traffic fingerprint. Many of the examples cited

here achieve a high degree of success in identifying IoT devices through a variety of

machine-learning based approaches, and leverage various aspects of the available

data found in device traffic and metadata for model building. However, it is

apparent that most require complex feature extraction and engineering to identify

the appropriate data elements to work efficiently with a given machine learning

approach. Another issue with many previous studies is the need for frequent model

updating to compensate for traffic variations due to changes in the devices, such

as periodic updates. In addition, several depend on capturing specific segments

of network traffic, i.e. traffic generated when the device is first connected and is

conducting its setup phase. Others are effective, but require an adequate amount

of data is captured to generate a reliable fingerprint, and may not scale well as

34

networks or sample sets of IoT devices grow in size. In addition, many are not

equipped to provide for real-time monitoring and analysis, limiting their practical

usefulness in network administration.

While achieving a higher accuracy and F1 score than many of these works, the

main contribution of our approach is that it eliminates the need for complex feature

extraction and engineering, can develop a resilient fingerprint that does not require

frequent model retraining, scales well, and can identify devices with a high degree

of accuracy using only a single network packet, allowing for real time monitoring

and analysis with a very low computational overhead. We believe this approach

can be applied to the problem of IoT device fingerprinting and identification with

an increased simplicity and resilience, making it possible to conduct network device

monitoring in a usable manner.

In addition, there were two areas that were generally neglected by the previous

studies that are important when considering the implementation of IoT network

traffic fingerprinting in a real-world scenario that we attempt to address. First,

the major studies in this field use data consisting of heterogeneous devices, while

in a live scenario, it is likely there would be multiple of the exact same device,

i.e. 10 identical web cameras. With a group of heterogeneous device data with no

other data, it appears a bit like “shooting fish in a barrel” in that, we know there

are a fixed number of devices in the set, and we can map a sample to one of these

devices. In this work we identify groups of homogeneous devices of the exact same

make and model, a much more difficult task.

Secondly, previous studies work with data in a laboratory environment devoid

of the kind of background noise that would always be present in a live network.

To create an environment where we can test the efficiency of our approach in a

more realistic setting, we introduce three types of noise in large volume; randomly

generated noise, noise from unknown IoT devices, and live network noise. We

35

show that our system of fingerprinting and identification works well even with

these mitigating factors.

As will be mentioned chapter 9 on future research directions, we hope in the

future to run this as a live framework for detecting and monitoring IoT devices,

demonstrating the value of IoT network traffic fingerprinting as a means of security

management when dealing with large numbers of such device. The greater the

realism in this study, the more likely such a framework would be effective.

3.6 Taxonomy of Related Works on IoT Network

Traffic Fingerprinting

Table 3.1 provides a taxonomy of significant related works in the area of IoT device

identification through network traffic fingerprinting.

36

Table 3.1: Summary of related works based on identification method and key
feature set

Approach Focus Algorithm Ref Performance Details

Non-
Machine
Learning

Temporal
Feature

Extraction

Euclidean
Distance

[9]

75% accuracy with packet header
information. 89% with TCP header
and a lower layer header or using
HTTP header and lower layer in 4
homogeneous devices.

Focus on communication features found in packet headers. Similarity between
samples measured by digitizing features then comparing Euclidean distance.
The most unique features found in device traffic are given a greater weight and
are used to identify traffic from the same device. Limitations can occur based
on OS or software updates or changes in the network.

Comparison
with expert
rule set

[10]
Study focuses on dataset develop-
ment using traffic from an unspec-
ified number of home IoT devices.

Devices characterized by temporal traffic patterns, traffic volume, and target
endpoints. Focus is on developing a dataset of live devices rather than devices
in an artificial lab environment. Fingerprinting driven by an expert rule set.

Rule-Based
Feature

Extraction

Statistical
Analysis

[11]
No accuracy measurement. Study
used a large body of botnet traffic.

Seeking to identify anomalous traffic, a baseline for normal behavior is built
by traffic discovery and classification. Features such as overall traffic, trans-
port layer protocols, dest. socket, packet size, and IP flow identify anomalies.

Natural
Language
Processing

[12]
Rule precision between 95.7% and
97.5% with a large body of hetero-
geneous and homogeneous devices.

Authors build annotations for device type, vendors, and product names by
using application layer response data from IoT devices and relevant websites
to obtain product descriptions, natural language processing and data mining
are incorporated to drive an Annotation Rule-Based Engine (ARE). Annota-
tions are used to build a rule set to control and restrict communications.

Device
Traffic
Hashes

Bitwise
Difference

[6]
Avg. precision and recall of 93%
and 90% respectively using 22
heterogeneous devies.

Hashes of device traffic flows are generated using Locality Sensitive Hashing.
Similarity metrics are used to determine whether traffic samples were produced
by same device. Flow lengths are tested to find minimally accurate sample size.

Machine
Learning

Temporal
Feature

Extraction
CNN [13]

86.7% accuracy achieved in 2
heterogeneous devices.

Heterogeneous traffic is collected using a Raspberry Pi. Device fingerprinting
based on packet inter-arrival time with graphs generated by a CNN.

Network
Layer

Features

Supervised
Learning

[14]
Overall accuracy of 99.281%
across 13 heterogeneous devices.

Two stage classifier; first stage identifies ’IoT’ or ’Non-Iot’. Second stage
attempts to identify one of 13 heterogeneous devices. Features are extracted
from packet flows based on source and destination IP from SYN to FIN.
Data is enriched with Alexa Rank and GeoIP information.

Application
Layer

Features

Decision
Trees

[1]
Authors claim 100% precision,
recall and F-score for 3 hetero-
geneous devices.

Application layer features such as ARP, SSL, LLC, EAPOL, HTTP, MDNS,
and DNS are captured to develop a static view of device behavior.

Initial
Connection

Phase

Random
Forest

[4]
Average accuracy of 81.5% in a
set of 27 heterogeneous devices.

A fixed set of link and application layer features are captured during device
initial connection phase to construct a device gateway to limit communication.

Device
Genre

Identification

Unsupervised
Clustering

[15]
98.2% accuracy with 33 hetero-
geneous devices.

Authors define policies on device type rather than on specific devices. Traffic
is collected after initial connection phase to identify device classes.

Flow
Based
Feature

Extraction

Ensemble
Approach
(multiple)

[16]

94.5% accuracy for device type,
93.5% accuracy for traffic classi-
fication, 97% accuracy for the
identification of anomalous traffic
utilizing 7 heterogeneous devices.

Statistical analysis applied to flows of 16 consecutive packets, extracting 4
simple features; packet size, traffic direction, timestamp, and transport
protocol. Utilizes decision trees, recurrent neural networks, random forest,
residual neural networks, and convolutional neural networks.

K-Means [17]
Overall accuracy of 94% in a set
of 10 heterogeneous devices.

Set of one-class clustering models from a real time flow level telemetry.
Primary features are average packet size and average flow rate.

Clustering
and Deep
Neural

Networks

[18]

Avg. accuracy of 91.2%, 92.9%,
and 81.8% with input features of
297, 234, and 179 respectively in
10 heterogeneous devices.

Clustering is combined with deep learning to classify devices. 297 features
are extracted and used to build a classifier. An auto-encoder is used to reduce
the dimensionality of the data set. Results are used to build a device white list.

Ensemble
Approach
(multiple)

[19]
White listed devices identified
with an accuracy of 90.3% using
27 heterogeneous devices.

67 features are extracted from a series of packets in a network traffic flow to
build a one class classifier. Algorithms include adaptive boosting, latent
dirichlet allocation, KNN, decision tree, naive bayesian, SVM, random forest.

Image
Analysis

Representation
Learning

[20]
99.86% accuracy using 10 hetero-
geneous devices.

Device traffic is collected from single TCP sessions. The hexadecimal value of
the packet payload is taken from a .pcap file and is converted into an image.
Image serves as a fingerprint for identifying traffic from the group of 10 devices.

Single
Packet

Identification

Genetic
Algorithm

[21]
95% accuracy in a dataset of 23
heterogeneous devices.

212 features are extracted from 23 devices and identification is done using single
packets. Genetic algorithm is used to identify relevant features.

WEKA ML
Analysis Tool

(various)
[22]

46 heterogeneous devices, achieves
an average accuracy of 97.78%.

Features are extracted from TCP headers. Feature vectors are developed by
generating a score for all available features based on variability, stability, and
suitability of each bit. WEKA tool is then utilized to sample ML algorithms.

Behavioral
Analysis

Scikit Learn
(various)

[23]
14 heterogeneous devices are
tested yielding an average
accuracy of 99%. 5-packet min.

To answer the questions ”what is this device” and ”is this device what it claims
to be”, the authors perform device fingerprinting by extracting network protocols
used from packet headers as well as information from payloads. They also
observe command/response sequences from device to smart phone.

Ensemble
Approach
(multiple)

[24]
Accuracy between 74.12% and
93.91% in a set of 6 sensors.

Packet header information is analyzed for statistical information which is
combined with sensor data to create a feature set. Method is tested in normal
and under attack scenarios. Seven behavioral profiles are built to develop device
access rules. ML algorithms are chosen based on linearity of the captured data.

Limited
Feature

Extraction

Semi-
Supervised
Learning

[25]
An average accuracy of 99.81%
is accomplished using a set of 25
heterogeneous devices.

Rather than determining a large set of features, a smaller set is used along with a
larger body of unlabeled data, with labels inferred from the smaller set. Features
extracted include time intervals, traffic volume, protocols, and transport layer
security features. CNN’s are used for feature space reduction.

Textual
Features
and Data
Mining

Bag of Words [26]
31 of 33 heterogeneous devices
correctly identified.

Features are extracted from packet service discovery protocols, DHCP
fingerprinting, and user agent information from HTTP headers. Vectors are
added to a database forming a matrix where columns represent words and rows
represent devices.

Decision Tree [27]
97% average accuracy in a
10 heterogeneous devices.

Features are extracted from a network flow as well as textual features from
packet payloads. Packets are collected as devices join a network and performs
its connection setup phase. Features are modeled as a bag-of-words with each
device description making up a feature vector.

Feature Cost
Metrics

Various
Algorithms

[28]
Average accuracy of 96.8%
using 15 heterogeneous devices.

Authors focus on the cost of selecting appropriate features for developing a
classifier. Features are selected on the basis of their utility for meeting the needs
of specific algorithms. 111 features are collected from a set of 15 devices.

37

Chapter 4

Vulnerabilities in a Smart City

4.1 Introduction

Implementations of smart city technologies are rapidly increasing around the

world, allowing for the interconnection and cooperation of multiple devices within

a system. The main goal of these technologies are to increase the well-being and re-

source efficiency of a municipality’s citizens. With systems interconnected, a safer

and more efficient environment is made possible. These smart technologies in-

clude a wide range of sectors spanning from smart traffic controls, parking, street

lighting, public transportation, energy management, water management, waste

management, and overall physical security [27]. With all sectors interconnected

it is expected that residents would enjoy a greater quality of life. Furthermore,

implementation of smart technologies should serve to reduce crime, prevent ter-

rorism, and avoid civil unrest. The benefits are clear and have been shown to

accomplish these goals when implemented correctly [83].

Unfortunately, when implementing new smart city technologies one of the most

crucial pieces of infrastructure is often overlooked: the network integrity on which

these technologies reside. Many of these systems are easily manipulable and have

38

become an attractive target for hackers. Recently, there has been an uptick in

cyber attacks on smart cities [26]. The three primary forms of attack include

availability attacks, confidentiality attacks, and integrity attacks. Availability at-

tacks attempt to close or deny service to a system, confidentiality attacks attempt

to steal information or surreptitiously monitor activity, and integrity attacks at-

tempt to enter a system to alter information and settings [29]. As a consequence

of attempting to make cities as interconnected and safe as possible, smart city

developers have also opened a wide range of new security concerns.

In this research we utilize the IoT test-bed built at the University of Nevada, Reno,

to demonstrate how easily the software and hardware systems supporting smart

city technologies can be exploited. With the exposed exploits, we show how the

vulnerabilities can be easily be avoided and remedied when implementing correct

and appropriate security measures.

4.2 Background

Previous research has placed primary emphasis on exposing the vulnerabilities of

smart cities. One of the greatest challenges in conducting research on this topic

has been replicating the smart city itself. Attempting to discover vulnerabilities in

an actively employed smart city could lead to devastating consequences; therefore,

any educational attempt to discover vulnerabilities must be done on a simulated

environment. Research of this nature is typically conducted through the utilization

of virtual test-beds.

Several simulated test-beds have been proposed in the literature. One of the

most well-known and heavily researched test-bed projects is the SmartSantander

Project [84]. Its name being derived from its original location, the Santander test-

bed Project is located in the city of Santander, Spain. The Santander test-bed

39

consists of IEEE 802.15.4 devices that are used to replicate wireless personal area

networks (WPANs), GPRS modules, and joint RFID tag/QR code labels deployed

at various locations in the city. It supports several applications concerning envi-

ronmental monitoring, precision irrigation, augmented reality, and participatory

sensing. Within Santander, the primary research goals relate to the implementa-

tion of the different applications; there is less emphasis on network security and

the subsequent ramifications of proposed attacks on the network of the smart city.

Another test-bed example comes from Antwerp, Brussels. This test-bed setup,

which has been replicated by numerous groups with various changes, allows for

experiments on the network level wherein researchers have deployed their network

protocols on top of existing nodes. They then evaluate their solutions in a realistic

city-wide network [85]. It also facilitates experiments at the data level, allowing

for research on the nodes implemented and provides for continual monitoring of

the city’s parameters. The Antwerp test-bed allows experiments on the user level

providing for input on novel smart city applications.

Finally, there is literature based on test-beds setups most similar to the setup

developed at the University of Nevada, Reno. This test-bed is on a much smaller

scale, and is referred to as an educational, research driven IoT test-bed [86]. Test-

beds of this nature subscribe to the build it, break it, fix it philosophy [86]. Our

test-bed serves as a training ground for students who are aspiring to understand

attacker behavior by scanning and foot printing network environments. Addi-

tionally, the test-bed provides an environment for students to practice utilizing

and identifying honeypot devices. It relies on open-source tools and commercial

off-the-shelf materials to emulate a real-world IoT environment. The smart city

test bed at the University of Nevada, Reno is designed to accommodate multiple

users performing research and analysis on IoT device networking and security. It

provides a complex multi-layer network topology, a software-defined network, and

numerous physical and virtual devices emulating real and decoy machines. While

40

the university’s smart city is not as complex as other test-beds in the literature, it

does allow for testing on a smaller scale which could then be translated and tested

further on much larger projects similar to those in Antwerp and Santander. A

benefit to the smaller scale setup is that it reduces the processing of overwhelming

amounts of data that can come with larger-scale test-beds.

From the test-beds presented, there is a general consensus that the vulnerabilities

in smart cities are urgent and need to be addressed immediately; most of the vul-

nerabilities are easily exploitable. Research has found that the security capabilities

of IoT devices are highly variable. Some systems are lacking the computational

capacity to manage encryption or to properly manage basic access credentials such

as usernames and passwords. Other systems are susceptible to infection from mal-

ware and firmware modification [26]. As IoT networks increase in complexity, the

risk of exposure proportionally increases. The networks can expose a large attack

surface and numerous vulnerabilities. In the Journal of Urban Technology, Kitchin

and Dodge discover at least 14 different attack surfaces within the IoT networks,

ranging from mobile applications to various device web interfaces [29].

While there is a variety of research on the vulnerabilities of smart cities, there

is less concrete literature about potential solutions or patch options. Most re-

search attributes outdated control systems, that contain legacy components, to

the smart city vulnerabilities. These legacy components use outdated software

which has not been regularly patched [26]. Remedies to common vulnerabilities

can be categorized into technical implementations, preparation tactics, and edu-

cational resources.

The technical implementations involve five primary approaches. First, it is sug-

gested to use proper access controls such as usernames and passwords that adhere

to secure standards, two-stage authentication, and bio metric identifiers. Next

they recommend proper maintenance and firewall placement. Prior research also

41

encourages strong end-to-end encryption. Then virus scanners and removers, gen-

erally known as malware checkers, are expected to be implemented. Finally, the

literature suggests the establishment of consistent procedures to ensure routine

software patching.

In addition to the technical implementations, it is recommended that cities dili-

gently monitor activity and prepare for cyber-attacks in advance. Through con-

sistent monitoring, systems will be able to rapidly detect and then eradicate in-

trusions. Preparing for cyber-attacks is significant because the city cannot afford

to be completely offline in the event of an attack. Tactics to execute monitoring

and preparation include: responding with urgent updates to close exploits as they

occur, auditing trails of usage and changelogs, having effective offsite backups, and

establishing emergency recovery plans.

Finally, the literature recommends extended education for professionals working

with smart city systems. Education should take the form of consistent and frequent

training in cybersecurity awareness. The overall proficiency on topics such as

adopting stronger passwords, routinely updating software, encrypting files, and

avoiding phishing attacks is essential.

Since so many cities use similar network structures and Programmable Logic Con-

trollers (PLCs), this work will address a few of these vulnerabilities [28], specifically

in the transportation sector. For this research we employ our educational test-bed

to demonstrate these vulnerabilities, as well as strategies on how to eliminate them.

By accomplishing this research, it prepares the way for further research to be done

with respect to scalable solutions on larger systems, like those in Santander and

Antwerp. This research is intended to open the door for real-world implementation

of solutions from the test-bed examples into actual smart city networks that are

similar to the test-bed at the University of Nevada, Reno.

42

Figure 4.1: Network Physical/Virtual Topology

4.3 Methodology

This work utilizes the University of Nevada, Reno smart city test-bed which

implements both physical and virtual devices on various platforms. The test-

bed includes several open-source tools such as OpenvSwitch, KVM/QEMU, Virt-

Manager, Linux Bridge-utils, and several versions of the Linux operating system

such as Debian, Ubuntu, CentOS, and Rasbian as seen in Fig. 4.1. A virtual

pfSense router is incorporated as a network gateway and firewall, and an Open-

DayLight SDN controller using OpenFlow10 manages the software-defined net-

work [86]. A SmartCity model utilizing a DirectLogic PLC that is attached to

the network (Fig. 4.2). These methods will be brokend down into four different

segments: finding the vulnerabilities on the perimeter of the network, finding vul-

nerabilities inside the network, finding solutions for the perimeter vulnerabilities,

and finding solutions for vulnerabilities that exist inside the network.

4.3.1 Vulnerabilities on the Perimeter

To find vulnerabilities on the perimeter of the smart city network, nmap is used

to create a map of the network [87]. Nmap provides for two types of low-level

scans, and also a much more comprehensive scan. To do this scans are initiated

43

from a computer located on a different subnet than that of the smart city. For

this research, scans were run from the Debian-10 machine (4.2). The low-level

scans provide for a rough overview of the network, including finding where the

smart city subnet was in relation to the rest of the network. The purpose of the

low-level scan was to reveal how many hosts or computers were on each subnet

and where the routers were located. An example of the command sent to conduct

these low-level scans was sudo nmap 192.168.x.x/24. The more thorough nmap

scans were used later in the research process, after a rough map of the network was

established. Thorough scans were not initially used due to the length of time it

takes for these scans to run. However, once a rough map of the smart city subnet

was established, more thorough scan commands to extrapolate which ports were

open on each machine were used. The thorough command accomplished this by

scanning each of the 65,535 TCP Ports. The port searched for specifically was

port 503, the MODBUS port. An example of the more thorough command was

sudo nmap -p- -sV 192.168.x.x/24 [87].

4.3.2 Vulnerabilities Inside the Network

To identify vulnerabilities inside the network, a Linux Command Line Utility called

mbpoll was used to communicate with the MODBUS port [88]. MODBUS is a data

communications protocol that is used to exchange information with PLCs. MOD-

BUS has become a standard communication protocol and is now a common way of

connecting industrial electronic devices, including the DirectLogic205 PLC used

in the smart city [28]. Once access is gained to this port, one could theoretically

control and manipulate any device that is controlled through the PLC. The only

requirement is that the device attacking and manipulating this port must be con-

nected to the Smart City network. In our case,the device could be established

through a wired or wireless connection. To exploit the port a simple Dell laptop

44

running Ubuntu to the city’s network is connected, and then commands are sent

directly to the PLC over the network.

4.3.3 Solutions for Perimeter Vulnerabilities

To remedy the perimeter vulnerabilities, a variety of potential options were tested

before a method was discovered that worked properly. The intricacies of the testing

conducted will be detailed in the results section and will only cover the successful

methods in this section. To catch intruders trying to conduct network scans using

software like Nmap, a laptop wired directly into the smart city router was config-

ured to run the Intrusion Detection System (IDS) called Snort [87] [89]. The Snort

IDS was configured to capture TCP intrusions on the smart city’s subnet. To do

this the following command was run from the Linux command line: sudo gedit

/etc/snort/snort.conf [89]. This command opens the Snort configuration window.

Figure 4.2: University of Nevada, Reno Educational Smart City

45

In the Snort configuration window, the network interface name and the IP range

required for monitoring with Snort were set. In our case, the network interface

name was enp4s0 and the IP range of the smart city subnet was 192.168.1.0/24.

While Snort has a set of pre-configured rules to catch most network intrusions,

local rules were added to assure that all Nmap scans were captured so they would

not pass through as normal network traffic. To do this, the Snort local rules were

modified using the command sudo gedit/etc/snort/rules/local.rules [89]. Three

rules were addedfollowing the standard Snort rule configuration of alert tcp any

any -¿ any (msg:”TCP Scan”; sid:1000001; rev:1;). Following this rule syntax,

modifications can be made to the rule action, source IP, source port, direction,

destination IP, destination port, Snort message, Snort rule ID, revision number,

and class type. Once the Snort IDS rules were configured, it was necessary to

ensure the system would catch all traffic directed at the PLC. To confirm this, the

preinstalled operating system was removed from our Linksys AC1900 V2 router

(the router for the smart city network). The open-source router operating sys-

tem OpenWRT was installed in its place. OpenWRT allows for port mirroring

to be configured in the interfaces window when accessing 192.168.1.1 in any web

browser. This allows the Enable Mirroring of Incoming and Outgoing setting in

the Network tab and in the Switch options. The router was then configured such

that the Snort machine would be the receiving machine and the PLC would be

the monitored machine. Finally, the wireless functionality on the smart city router

was disabled so that the only way to access the network is through a direct, wired

access to the router.

4.3.4 Solutions for Inside the Network Vulnerabilities

Unfortunately, as will covered in more detail in the results section, there was no

concrete solution to the vulnerabilities discovered inside the network. Instead,

temporary methods were put in place until a better solution could be found. The

46

first action performed was turning off the wireless functionality on the smart city

router so that the only way to access the network is through a direct, wired access

to the router. In the case that the smart city is unable to be removed from wireless

access, it is recommended that a very complex router password that only trusted

individuals know be utilized. Another security method used for inside the network

vulnerabilities was configuring a password on the PLC configuration software. For

the DirectLogic PLC a password was configured for the Do-More Designer software

that is used to program the PLC. It is recommended this password follow the same

requirements as those for the router password, both adhering to recommended best

practices.

Figure 4.3: Example of exploiting the city’s PLC through the Modbus port
on the Linux command line

47

4.4 Results

The results section will be divided into the same format as the methods section.

To determine the method used to find the results presented, please refer to the

corresponding methods subsection.

4.4.1 Results for Perimeter Vulnerabilities

Using the low-level nmap scans as described in the methods section, where the

smart city subnet was in comparison to the rest of the network was established [87].

While the network topology was already known, nmap scans were conducted as

though it were unknown. The actual network map to verify our findings were use

as a guide for future actions. Low-level scans revealed all the hosts on the smart

city allowing the mapping of the subnet where more thorough scans should be

run. When conducting the scan on the network, the IP address of 192.168.1.42

was the only host machine that had port 503, the MODBUS port [28]. Using

the more thorough scans it was determined that the PLC was at the IP address

192.168.1.42. The map of the network created was derived from the nmap scans

and matched exactly that of the network blueprint itself.

4.4.2 Results for Inside the Network Vulnerabilities

Once connected to the Smart City router, it was possible to send the mbpoll

command to the MODBUS port on the PLC and control almost the entire city [88].

This was possible both using a laptop that was connected wirelessly and through

a RaspberryPi machine that was connected using a Cat5e Ethernet cable to the

smart city’s router. The mbpoll command was used to read MODBUS coils, write

to MODBUS coils, read MODBUS registers, and write to MODBUS registers. The

command syntax for reading/writing to MODBUS coils wasmbpoll host -t 0 -r coil

48

number 0/1 [88]. The command syntax for reading/writing to MODBUS registers

was mbpoll host -t 4 -r register number 0/1/other [88]. The easiest way to tell

the difference between what MODBUS coils do and what MODBUS registers do

is to think of them in binary form. For MODBUS coils, the only change required

is to send either 0 or 1, or turning a system off or on. However, for MODBUS

registers, these are values that can be overwritten to something other than 0 or

1. In the smart city, the MODBUS coil examples were turning off or on the main

power to the city, the train power, the streetlight power, the traffic signal power,

or turning off/on each traffic signal light (turning on specifically the red light on

the signal light). For the MODBUS register examples, a smaller number of more

complicated actions were possible, like changing the direction of the train to off,

forward, or backward using the values 0/1/2 respectively. Or, one could change

the target temperature of the power generation reactor to an integer, which could

cause the nuclear reactor to trigger a false overheat. It was also possible to change

the temperature limit to an integer. If the temperature went beyond this limit,

the main power would turn off. Finally, it was possible to change the traffic signal

mode, so that they either acted like normal signal lights, stop signs, or our custom

configuration, like having all the signal lights illuminate the green light at the

same time. All of these vulnerabilities, if manipulated in an actual smart city by

attacking the PLC, could have potentially life-threatening consequences.

4.4.3 Results for Perimeter Solutions

Finding the solutions for the vulnerabilities discovered on the perimeter security

proved to be the most challenging task. The main issues encountered were in the

technology itself; these will be covered in this section. First, the results for the

solution that was presented in the method section that was found to be the most

effective will be shared. Using the OpenWRT port mirroring feature, the Snort

machine was able to capture almost all potentially manipulative network scans. To

49

confirm the network monitoring abilities of the OpenWRT port mirroring function,

the WireShark software was used to monitor the actual network traffic compared

to what Snort was catching [90]. When thorough Nmap scans were directed toward

the PLC or the entire Smart City subnet, all the traffic on WireShark and most

of the nmap TCP pings were detected by Snort [87] [89] [90]. It was then possible

to block the IP address of the would-be manipulator and eliminate the threat.

This type of detection does require monitoring of the Snort machine on a fairly

regular basis. In the context of a smart city, it is recommended that a trusted IT

professional is monitoring the city’s network traffic.

The issues encountered in implementing perimeter vulnerabilities came from the

Linksys AC1900 V2 router used for the smart city’s network. It was originally

planned to set up a Snort Machine in a Demilitarized Zone (DMZ). The thought

here was that the DMZ would enable access to the Snort machine from an external,

untrusted network while securing the rest of the network behind a firewall [91].

However, it was determined that when configuring a two-firewall DMZ, it would

become unnecessarily complicated; it was originally planned that the wireless func-

tionality of the router would be disabled to eliminate other vulnerabilities from

the research. Instead, the Snort machine was configured such that if any nmap

scanning traffic was directed towards any device on the network, it would be cap-

tured [91]. Unfortunately, because a router and not a switch with port mirroring

configured was used, the only nmap scans that the Snort machine would catch

were scans directed at the Snort machine’s IP, defeating the purpose of catching

traffic that was trying to scan the PLC. So, to solve this issue the Linksys prein-

stalled router operating system was removed and an OpenWRT operating system

was installed in its place. The new router operating system was chosen since it

has a port mirroring feature, while it still able to function as a router. Once the

router operating system was changed to OpenWRT, three unique Snort rules were

created to detect different attempted scans of the PLC.

50

Figure 4.4: Example of catching an intruder (192.168.1.51) scanning the PLC
(192.168.1.42) using OpenWRT Port Mirroring and and Snort IDS

4.4.4 Results for Inside the Network Solutions

Inside the network, the results that we had originally hypothesized were not possi-

ble. Using the DirectLogic 205 PLC, there is a lack of available security measures,

because, like many other PLCs, it was deployed with outdated SCADA systems.

These SCADA systems’ purpose is to monitor and control devices, like the smart

city IoT devices, at remote sites. SCADA systems are necessary because they help

maintain efficiency by collecting and processing real-time data [28]. They also al-

low for real-time manipulation and adjustments so that systems can stay online

while updates are sent out to devices. Despite these benefits, they lack security

features. The United States Department of Energy has even acknowledged their

weakness, stating that performance, reliability, flexibility and safety of distributed

control/SCADA systems are robust, while the security of these systems is often

51

weak [92]. There is even a specific advisory published about the DirectLogic PLCs

[93]. In this specific smart city setup, using the corresponding methods section

about Inside the Network solutions was the most secure the PLC could be made.

Some level of encryption or even a machine learning Intrusion Protection System

(IPS) was desired, but options were limited. It was found that turning off the

wireless functionality for the router that the PLC is connected to was a good tem-

porary solution and allowed for strict monitoring of who was on the network. It

was also found that configuring a password for the Do-More Designer software

that is used to program the PLC allowed for at least some added security, but

the passwords themselves are very basic. The Do-More Designer only allows for

eight-character numeric passwords, and most of the time the password is preset

to all zeros.

4.5 Future Solutions

When comparing the internal vulnerabilities exploited by the mbpoll command

to the internal vulnerabilities solutions, it is apparent that the solutions were

minimal. As examined before, the best options for securing these vulnerabilities

were to isolate the smart city network or employing strong password etiquette. To

isolate the smart city network, the network administrators must turn off or hide

the current wireless functionality of the entire smart city. Additionally, network

administrators should ensure that any password associated with the PLC software

abides by secure standards. Future research can be conducted to further discover

and test new solutions for the internal vulnerabilities. The security implications of

interconnected smart cities also can be taken into consideration for future research.

52

4.5.1 OpenPLC

In the search for internal vulnerability solutions, an open source software solution

called OpenPLC was found which is an alternate to the legacy components of the

SCADA software based systems. Traditional PLC hardware architectures have re-

served their documentation which makes it difficult for researchers and educators

to completely explore the existing vulnerabilities and test developing solutions to

these exploits. Contrary to the traditional PLC hardware architectures, the open

source capabilities of OpenPLC would allow researchers to assess network vulner-

abilities and test solutions with a hands-on methodology at the hardware level.

After extensive additional research, this software could replace the security short-

comings of the outdated SCADA software. The OpenPLC project was created

specifically for this purpose [94].

A key functionality embodied in the OpenPLC software is its aptitude for cryp-

tography. The most traditional sense of security stems from well-developed and

unique cryptography in place for static and dynamically operating networks [1].

OpenPLC adheres to a AES-256 implementation encryption process. This encryp-

tion technique requires that both the sender and receiver of data must have the

same secret key in order to gain access to the information, which creates what is

known as a symmetric cipher. Because both the sender and receiver of data are

required to be able to decrypt information in the same way, there is an additional

step needed to allow the PLC system to benefit from the OpenPLC. The addi-

tional step requires the OpenPLC project to implement a localhost Gateway to

allow the supervisory software of the PLC to be able to decrypt the data encrypted

by OpenPLC. By enabling the OpenPLC localhost gateway and further designat-

ing the PLC IP address within the supervisory system as localhost, the supposed

unsecured channel between the designated gateway and the main components of

the PLC is nonexistent [1], thus protecting the system.

53

Figure 4.5: OpenPLC Neo Encryption Process [1]

4.5.2 Interconnected Smart Cities

Another challenge created by the emergence of smart cities is the evaluation of

security threats within the scope of multiple smart cities being interconnected. The

extensive inter-connectivity of smart cities exponentially increases the systems’

endpoint complexity. In order to be completely secure each additional device to

the network has to be operated to the same standard of security as all other devices

on the network as the level of security is only guaranteed by the weakest link [29].

Another consideration for the system of systems approach for interconnected smart

cities, is the increased complexity of maintaining the vast quantity of devices.

This allows for a single-points of failure in the event of routine program bugs or

human mistakes that would have a cascade effect [29] on the entire system. The

54

disastrous consequence of this possibility is that the entire system would be wiped

out rather than a single segment of the system. While smart cities are a promising

advance in many ways, it is apparent there are significant security concerns to be

addressed. This research is continued with the development of a software defined

IoT testbed, wherein advanced networking techniques can be explored to better

secure connected systems in the future.

55

Chapter 5

A Software Defined Networking

Testbed for IoT Research and

Education

5.1 Introduction

Around the turn of the 21st century, the idea of an Internet of Things (IoT)

began to emerge as a concept; a vision of billions of devices such as low-powered

sensors, cameras, watches, household devices, cars and even airplanes all connected

simultaneously to the Internet and able to communicate and share data with one

another. Since that early vision IoT has continued to expand and is considered,

by some, to be the next industrial revolution. Today IoT devices are everywhere,

effectively surrounding us in every aspect of our lives. It has become apparent

that this trend is here to stay, with reports indicating that there are as many as

22 billion IoT devices operating worldwide, and we can expect as many as 38.6

billion by the end of 2025 and over 50 billion by 2030 [95]. As pervasive as this

technology has become, it is still under development and is changing the way we

56

view many aspects of technology, including networking and communications, data

processing and sharing, and power consumption.

One of the areas IoT is finding wide acceptance is in household devices. The

concept of a smart home has become commonplace, seamlessly integrating mul-

tiple household systems. Features such as temperature controls, security, access

controls, lighting, entertainment, and appliances are network connected and can

be remotely managed. These heterogeneous systems are linked to their respective

control centers using wireless technologies, but still utilize a largely disjoint archi-

tecture. This means each set of systems utilize their own connections to control

and data storage servers rather than working together. Future growth will re-

quire more horizontal coordination, with systems sharing control plane resources

to improve resource efficiency and facilitate data sharing.

Other areas of growth include the Industrial Internet of Things (IIoT) as man-

ufacturing, healthcare, and military applications are becoming more distributed.

In addition, the concept of Smart Cities has gained traction, with increased coor-

dination in public safety systems, transportation, and traffic controls in an effort

to accommodate a growing population. A smart power grid has also been largely

implemented, synchronizing power production and utilization for more effective

delivery. The growth of these technologies raise many questions about IoT de-

vices, their implementation, networking, data storage, control, and system secu-

rity. In addition, rapidly evolving multi-faceted technologies make it difficult for

students and new researchers to gain necessary experience and engage in research

and development.

Many of today’s IoT systems rely on specialized platforms and application do-

mains, and could greatly benefit from a more integrated architecture. To address

these concerns, IoT testbeds must be built to allow hands-on experience and the

development of expertise in fields such as programming, networking, circuits, and

57

micro-controllers [33]. Although there exists IoT testbeds to address some of these

requirements, they are often very expensive to build and aim to address a subset of

desired functionalities, demanding low-cost environments that provide multi-use

capabilities combining research, development, testing, and education in a single

system are still needed. This work aims to address this critical gap by develop-

ing a low-cost, flexible, and realistic IoT testbed that will significantly lower the

learning curve for students and new researchers to participate in IoT research.

5.2 Contributions

While IoT technologies are on the rise, there is still a wide gap between state-

of-the-art technologies and research/training environments accessible for many

universities. Network test-beds can be expensive to build, limited in their flexi-

bility, and difficult to set up. In addition, many of the proposed test-beds in the

literature address limited areas of focus; for instance, device testing, network re-

search, or education and training. In addition, none of the previous works address

IoT, virtual and physical networking, SDN, and security in a single, inexpensive

format that can be used for research, testing, and education simultaneously. It is

our aim to provide a complex and multi-level network test-bed environment for

IoT wherein students and researchers can interact with both virtual and physical

devices in a realistic and easily re-configurable setting. On one hand, network and

traffic optimization can be performed on a hybrid virtual/physical software de-

fined network, while concurrently generating and collecting traffic for research in

anomaly detection utilizing machine learning techniques. The system incorporates

both physical and virtual IoT and IIoT devices to provide real-world data, and

also hosts a number of honeypot devices. This provides the ability to conduct both

research on the development of honeypot stealth techniques, and also allows for at-

tack and defense training. Students are able to interact with and probe the system

58

through access to dedicated gateway devices located throughout the network. The

network provides interaction with both physical and virtual devices; some actual

targets and some honeypots. Students are able to practice security techniques (i.e.

scanning, fingerprinting, etc.) across the network, while research on aspects such

as honeypot design, IoT communications, and development of SDN networks (i.e.

controller design and traffic routing) can be conducted simultaneously.

5.3 System Model

To emulate a realistic IoT environment that can simultaneously address research

and development, education, and security, a complex environment incorporating

multiple network elements is developed. The network contains multiple levels, is

re-configurable, and addresses Ethernet, wireless, and software-defined network-

ing architectures. The testbed utilizes both physical and virtual devices on vari-

ous platforms, and includes a number of open-source tools such as OpenvSwitch,

Figure 5.1: Topology of the virtual Software Defined Network.

59

KVM/QEMU, Virt-Manager, Linux Bridge-utils, and several versions of the Linux

operating system such as Debian, Ubuntu, CentOS, and Rasbian. A virtual pf-

Sense router is incorporated as a network gateway and firewall, and an OpenDay-

Light SDN controller using OpenFlow10 manages the software defined network. A

Smart City model utilizing a Direct Logic programmable logic controller (PLC) is

attached the network, allowing students and researchers to interact with mechan-

ical elements via the modbus protocol.

A 24-port managed switch connects the test-bed to a wide area network, which is

in turn connected to a server with 5 external Ethernet ports. This host machine

supports the virtual router, and utilizes a 4-port Ethernet card with the additional

ports passed directly to the router; one for the WAN and three sub nets. In

addition, a fourth sub net is connected to a virtual bridge in the host. Within the

firewall a gateway device is located in each sub net, allowing for internal network

access by students to probe the network and gain experience with foot-printing

techniques. This also provides students an opportunity to monitor traffic via

honeypots, which are distributed throughout the network.

The three physical ports are connected to external network elements through man-

aged switches and wireless routers, while the internal bridge is connected to numer-

ous virtual machines. The internal bridge supports the virtual SDN. A diagram

of the SDN can be seen in Figure 5.1. The physical network connects several

Raspberry Pi hosts with various operating systems which emulate desktop com-

puters, IoT devices, and honeypots. In addition, a Smart City model with a

Programmable Logic Controller (PLC) is connected on its own sub-net, see Fig-

ure 4.2. A diagram of the network topology can be seen in Figure 4.1.

60

5.3.1 Smart City Controller

To emulate realistic industrial controls, the Smart City component of the test-

bed relies on a Direct Logic PLC which communicates over the network using the

modbus protocol. The PLC is made up of four modules; networking, digital input,

digital output, and an analog I/O module. To offer a visual/tangible aspect the

PLC controls an electric train, crossing guards, street lighting, realistic traffic sig-

nals, and a simulated nuclear power plant. The power plant has a heating unit and

temperature set-points managed by a command and control server, and utilizes

a cooling fan and smoke generator. All functions are accessible through the net-

work, giving students an opportunity to view functionality remotely, and to test

their skills at both hacking and defending the infrastructure by sending modbus

commands directly to the smart city and altering its behavior. A graphic user

interface and programming tools are hosted on the command and control server.

The sub net hosting the Smart City also contains decoy honeypots (Conpot) em-

ulating similar protocols for both masking the city, and for collecting attack data

from the network.

5.3.2 Honeypot Devices

One of the goals of the IoT network is to facilitate research and education in

cybersecurity. For this reason numerous honeypots of varying types are run in the

network to act as decoy devices, and to collect data on attacker activity. Students

are given access to both the honeypots and the gateway device in the network,

and can develop their skills both at scanning and attempting to gain access to

devices, as well as learning to monitor the activities of potential attackers. Devices

are hosted both virtually on physical and virtual devices in the network, and

also as stand-alone devices hosted on Raspberry Pis. Cowrie, Conpot, Dionaea,

and custom honeypots are operated to gather SSH attempts, FTP logins, traffic

61

tunneling attempts, attacker behavior, etc. The goal is to teach students both red-

team and blue-team skills and to expose them to various security technologies, as

well as to conduct active research on honeypot fingerprinting, device masking, and

attack analysis.

5.3.3 Software Defined Networks

Traditional networks are typically composed of autonomous fixed-function net-

work devices. These devices have hard-wired functionality that doesn’t provide

enough flexibility for satisfying the requirements of modern networks [96]. These

conventional networks have both control and data plane built into the same de-

vice. Software Defined Networking (SDN) on the other hand takes a different

approach wherein the control and the data planes are decoupled. Networking de-

vices such as switches and routers implement the data plane which is controlled

by the centralized control plane software typically known as a controller. Hence,

the software based control plane makes decisions on how the network packets are

forwarded and the networking devices execute the policy set by the control plane

[97]. This approach improves network management, scalability, programmability,

agility, and overall performance of modern SDN networks.

With flexibility provided by a SDN, the collection of network information is greatly

simplified. Having a central view of the network helps better understand network

status and activities. This information can be used to improve the algorithms

designed to detect attacks [98]. With agility and fine-grained control provided by

the SDN, responding to detected attacks becomes a simpler task. For example, if a

botnet command-and-control (C&C) communication is discovered by the detection

algorithm, the control plane can install policies in the data plane that can drop

packets related to that specific C&C, effectively terminating the existing commu-

nication and eliminating the threat. Hence, SDN can provide an active security

62

layer in the network that was not easily realizable in the traditional networking

paradigms.

IoT devices are much more vulnerable than traditional compute devices. The

Mirai botnet, which was responsible for the largest distributed denial of service

(DDoS) attack recorded, was able to amass a large number of IoT devices such

as IP cameras, routers, printers, DVRs etc. [9]. This demonstrates the presence

of critical vulnerabilities in IoT devices which can be exploited. SDN can be

utilized to leverage a global view of the network to understand the behavior of

IoT devices and and to leverage this to employ attack detection and prevention

mechanisms at the network level. Our proposed IoT test-bed caters to the goal of

understanding the behavior of IoT devices and build better solutions to actively

detect and prevent security attacks using SDN. Figure 5.1 shows the SDN net-

work currently running in our test-bed which can be customized according to the

simulation requirements.

5.3.4 Traffic Analysis and Network Probing

The test-bed provides multiple points where traffic monitoring and data collec-

tion can be performed. The use of a virtual environment provides for a simplified

means to probe the traffic directly in the device or host as required. A device

(either virtual or Raspberry Pi-hosted) is located within each network segment

to act as a gateway device which students can be given access to. In this way,

they are able to gain a foothold within the network firewall to act as a starting

point for network foot-printing. Using scanning tools such as nmap or Zmap,

students can probe the test-bed to discover network topology, device types, etc.

and to attempt brute-force attacks or vulnerability exploits on the various ele-

ments. Simultaneously, honeypot devices are able to record some of this activity,

and analysis can be performed on honeypot logs to learn attacker behavior and to

63

provide research and development opportunities on honeypot technologies. Skills

and understanding can be gained for both improved device stealth, as well as skills

in device fingerprinting. To test the setup, university cyber-club students can be

given access to the network from both an offensive and defensive perspective for

exercises in attack and network defense.

5.4 Simulations

In the following section simulations are performed on the test-bed environment to

demonstrate functionality and proof-of-concept. The test-bed is designed to sup-

port multiple experiments simultaneously by students and researchers for network

analysis, security analysis, and education/training. The following is a detail of

such activity.

5.4.1 Traffic and Flow Analysis

To showcase the functionality of the developed IoT test-bed, IoT traffic and flow

information within the software defined network is captured. There are two case

scenarios that are analyzed to highlight the operability of the proposed network:

• When network operations are uninterrupted

• When network operations are interrupted

Interruptions can refer to any network traffic that may influence normally accepted

operations. This can include multiple traffics flows through the same network

device, causing additional congestion and increased resource sharing. Another

instance of interruption can be device failure, malfunction, or tampering which

64

Figure 5.2: Bandwidth Captured from Host B to Host D during uninterrupted
operation

can cause variability in network traffic statistics. For our simulations, a focus is

placed on the network traffic between Host-B and Host-D.

To generate network statistics related to uninterrupted flow, network flow informa-

tion is captured from Host-B to Host-D. During this time there is no other traffic

flow occurring between any other hosts in the entirety of the network. Figure 5.2 il-

lustrates the observed uninterrupted network bandwidth, transferred bytes, packet

re-tries, and TCP congestion from Host-B to Host-D during a predetermined time

interval. It can seen that during uninterrupted network operations, the band-

width from host-B to host-D remains between 310 - 361 megabits per second. We

also observe that the TCP congestion remains consistent with packet loss in the

transmission, as TCP congestion window drops whenever there are packet losses.

Along the same lines, network statistics are generated for interrupted flows. To

create the interruption, simultaneously transfers are performed between host-A

and host-C, while host-B and host-D were also running. Figure 5.3 shows the

observed interrupted network bandwidth, transferred bytes, packet re-tries, and

65

Figure 5.3: Bandwidth Captured from Host B to Host D during interrupted
operation

TCP congestion from host-B to host-D during a certain time interval. It can

seen that during interrupted network operations, the bandwidth from host-B to

host-D is reduced to between 128 - 231 megabits per second, less than half of

uninterrupted network statistics. It can also be observed that TCP congestion

remains consistent with the packet loss in the transmission, as TCP congestion

window drops whenever there are packet losses.

Two metrics are gathered to measure the network flow performance between the

interrupted and uninterrupted flows: throughput and round trip time. To capture

the throughput, network traffic is captured and analyzed under the two case sce-

narios. The results are shown in Figure 5.4. It can be seen that introducing the

additional flow reduced the throughput below 50% of that of the uninterrupted

flow. In fact, the mean throughput measured for the uninterrupted flow was 306.13

Mb/s, while that of the interrupted flow was 122.46 Mb/s.

Another metric that was gathered was the round trip time for the network packets

under interrupted and uninterrupted flows. Both simulations were run for a period

66

of 50 seconds. This interval was chosen as it provided an adequate time for gen-

eralization of the network activity under both circumstances. The data gathered

is illustrated in Figure 5.5. From this, we noted that there were ≈52,000 network

packets transferred during the uninterrupted case, while the packets dropped to

≈23,000 during the interrupted case. This demonstrates that the uninterrupted

flow was able to transmit more network packets than the interrupted flow. This

is because of the reduced throughput and congestion on the network. Also, it is

noted that the magnitude of the round trip times are lower in the uninterrupted

circumstance than that of the interrupted. This can also be attributed to the con-

gestion on the network. In fact, the mean round trip time on the uninterrupted

flow was measured to be 0.079 ms while that of the interrupted measured 0.127

ms.

0 10 20 30 40 50
Time interval

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (M

b/
s)

Uninterrupted
Interrupted

Figure 5.4: Measured Throughput between Interrupted and Uninterrupted
flows

67

0 5000 10000 15000 20000 25000
Number of transmitted packets

0

10

20

30

40

50
Ro

un
d

Tr
ip

 T
im

e
(m

s)
Interrupted

((a)) Interrupted Traffic Flows

0 10000 20000 30000 40000 50000
Number of transmitted packets

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ro
un

d
Tr

ip
 T

im
e

(m
s)

Uninterrupted

((b)) Uninterrupted Traffic Flows

Figure 5.5: Round Trip Times for Network Traffic Flows

68

Figure 5.6: Cowrie .json log segment showing a failed login attempt on a
honeypot.

5.4.2 Network Foot-printing and Honeypot Detection

By granting a user (student) access to a gateway machine inside of the test-bed

firewall, it is possible to practice techniques for discovering network topology and

makeup with the help of scanning tools such as nmap or Zmap and potentially

discover vulnerable hosts or services on specific ports. In this case the objective

is to identify honeypots that have been placed on the network, namely Cowrie

honeypots that will be running SSH and FTP on ports 22 and 23. By running

the Zmap command: zmap –interface=ens3 -p 22 10.0.4.0/24 –output-

file=targets.txt or the nmap command: nmap -p- 10.0.4.0/24 a list of

hosts can be assembled for further analysis. Honeypots can be fingerprinted in a

number of ways by identifying key attributes, in particular those associated with

default settings included with the Cowrie installation. One such feature is the key

exchange algorithms presented by a host during the SSH handshake. By using the

-v flag (for verbose, or debug a listing of available algorithms is given to allow hosts

to agree on a suitable algorithm. The default algorithms available in Cowrie by

default under the kex-input-ext-info: server-sig-algs tag are rsa-sha2-256 and rsa-

sha2-512. For a non-honeypot SSH installation this list is typically (although not

necessarily always) longer, containing several possible key-exchange algorithms.

This short list is one possible means of fingerprinting a potential instance of a

Cowrie honeypot.

Cowrie can be set to respond to login attempts by reading from a default list of

username and password combinations, although in most cases (by default) it is

set to accept any combination of username and password after a pre-set random

69

number of attempts. The goal is to give the appearance of security, but ultimately

it is desirable to allow an attacker to access the honeypot. Typically an SSH

installation will be given a good password, will not allow root logins, and will often

block login attempts for a certain amount of time after three failed entries. By

brute-forcing suspected instances of Cowrie based on what is returned in the key-

exchange stage of the handshake it is possible to successfully log into a honeypot.

Cowrie is capable of logging all activities received, and keeps track of the various

attack-command types such as successful and failed login attempts, usernames and

passwords for each attempt, file downloads, system commands, etc. By examining

these logs it is possible to learn attacker behaviors, and to discover some of the

activities an attacker is conducting prior to, during, and after an attack. These

logs are stored in .json format and are easily parsed either with user-defined script,

or by using tools such as the ELK stack for storing, parsing, and displaying log

information. An example of a Cowrie honeypot indicating a failed login attempt

can be seen in Figure 5.6. In this example the user www attempted to log in with

the password 123123 unsuccessfully. This is very useful for helping students to

understand the makeup of a cyber attack, and to view real-time attacks while they

are in progress. In a honeypot exposed to the Internet these attacks often come

in a near-continuous stream from bots (and occasionally live attackers) seeking to

compromise exposed servers and IoT devices. By making these tools accessible

in a testbed environment, they can be used for instruction and training, and can

prepare students for deploying and analyzing honeypots and honeypot data in the

real world.

A second honeypot deployed in our testbed is the Conpot honeypot, which em-

ulates a number of IIoT devices on ports supporting device-specific services and

protocols. Access to these devices allows researchers and students to develop tech-

niques for fingerprinting devices, and also for learning to mask their presence in an

70

effort to learn as much about an attacker as possible before they determine they

are dealing with a honeypot and not a real device.

In the following section this research is extended as we move to deploying a series

of globally positioned honeypots in six different countries to collect and analyze a

large body of malicious traffic data on the Digital Ocean network. This will allow

for a greater understanding of IoT botnet activity as attacker activity is examined

on a large scale.

71

Chapter 6

Utilizing Global Honeypots for

Malicious Traffic Collection

6.1 Introduction

Scanning and brute-force attacks on Internet facing services such as SSH, Telnet,

FTP, and HTTP have become so common that within minutes or even seconds

of connecting devices to the global network, attacks are being launched to com-

promise them. An unwary administrator might find their work is actively being

compromised even as they are in the process of setting it up. Much of this ma-

licious scanning can be attributed to the Mirai Botnet malware and its variants.

Shortly after Mirai made headlines in 2016, the code behind the botnet was re-

leased as open-source, and has been modified by various hackers seeking to build

their own zombie-armies [49]. The original version of Mirai targeted vulnerable

Internet of Things (IoT) devices using a short word list based on default username

and password combinations, and by leveraging open Telnet and SSH services was

able to assemble an army of hundreds of thousands of connected devices using

just 60 username/password combinations [12]. The subsequent release of Mirai’s

72

source code lead to numerous clones and modifications by other malicious actors

which have expanded upon the attacks present in the original version of Mirai.

Despite receiving much attention after the 2016 attacks, IoT security is still a ma-

jor issue and new botnets appear regularly. As a result, there is a continued need

to monitor developments in IoT botnets so current attacks can be appropriately

dealt with. Evidence of this code and the sequence of actions indicating its in-

stallation and use are evident in data collected by SSH and Telnet honeypots and

account for a significant portion of scan and attack activity detected, along with

a host of other botnet-related malware. One method for analyzing botnet activity

is through the use of honeypots for data collection.

Honeypots are a useful tool for capturing such events by providing a realistic

environment for attack, and then logging activity for later analysis. They have

been extensively employed for such tasks as attack pattern comparisons, attack

frequency analysis, attack origin analysis, root cause identification, and risk as-

sessment [12]. For SSH and telnet attacks Cowrie is a popular medium interaction

sandbox environment which provides a simulated file system and shell, and allows

access with random credentials after a variable number of brute force attempts.

Once inside, an attacker is deceived into believing it has accessed a real system,

and is observed while carrying out whatever their intention is; changing or creating

files, downloading software, or altering passwords or user accounts. This type of

environment is especially effective with bots, as they are automated and generally

less able to identify the environment as a honeypot than a live attacker would be.

We seek to identify patterns in the activities seen in these environments and to

discover any correlations, similarities, or differences in attacks identified across a

globally distributed set of honeypots. This is accomplished by utilizing a series

of docker containers running Cowrie to detect SSH attacks without compromising

the host machine in an effort to answer these questions. In addition to Cowrie, the

73

honeypots also utilize an Apache web server and an FTP server running in con-

tainerized environments, allowing for the collection of associated logs and tracking

access attempts. Linux kernel logs from the host machines are also collected to

monitor for compromise of the host device. Each honeypot is built on a Debian

10 virtual machine running in one of six Digital Ocean data centers located in ge-

ographically separate areas, including London, New York, Toronto, Amsterdam,

Bangalore, and Singapore. Fake websites with domain names provided by Google

Domains are utilized with names related to higher education in an attempt to

attract specific kinds of traffic. Logs from these services are transferred using a

cron tab and rsync on a nightly basis to a repository server where all logs are

consolidated and analyzed. This study will look at data collected for the time

period between March 2020 and December 2021, with the data being continuously

amalgamated. Apache, FTP, and Linux kernel logs are in their standard form

(apache.json.log, ftp.json.log, kern.log), while Cowrie returns a .json or .log file

containing a variety of tags, including event-ID, session-ID, source-IP, destination-

IP, username and password (that were used to access the honeypot), source-port,

destination-port, message (commands passed to the honeypot), file hashes, and a

variety of other data points.

By collecting data from the honeypots over many months we observe data and

patterns of activity, and attempt to draw correlations between honeypots and

regions to learn more about attacks by identifying their objectives, methods, and

intent. Standard .json log files are also restructured so that session-IDs rather

than event-IDs are made the key value. This allows for the collection of command

chains, and makes it easier to view attack patterns and analyze attacker behavior.

74

6.2 System Implementation

To collect data on a global scale the Digital Ocean Developer Cloud is utilized,

allowing for the deployment of Low-cost virtual machines placed in various data

centers around the world. In order to limit resources and reduce cost, specific

honeypot services are run as containers on a Debian 10 virtual machine, and are

exposed to the Internet on the standard ports. Log files from each of the services

are collected and forwarded via rsync to a central repository server, allowing for

the periodic deletion of local files to save space. Containerized images of the

running services sandbox malicious activity from the host machine. Rayson-Cowrie

[99] is a version of the Cowrie honeypot running on Docker and maintained by

Rayson Zhu. The Cowrie container captures log files for SSH and telnet activity

in both .log and .json format, and simulates a real file system allowing attackers

to execute commands, create and download files, and forward traffic, but confines

these activities to the honeypot. The official Docker image of httpd, the Apache

HTTP server project [100] is run in a container to host a fake website and allow

exposure to the Internet without risking the host machine. Apache log files of

interactions with the web services are captured and stored. The Docker image

stillard-pure-ftpd [101] obtained from Github is used to host an FTP server with

a few sample files is exposed and logs collected. In addition to logs from sand-

boxed services, Linux kernel logs from the host machine are collected to track

changes in the host and to help determine if it has been compromised.

A central repository server collects data from each honeypot, and processes log files

to generate statistics about malicious traffic and to make comparisons in honeypot

activity. For this work we will focus primarily on log files generated by Cowrie.

75

6.3 Analysis and Insights from Cowrie Data

Cowrie generates daily logs in both json and log formats. Json logs are built

around events with each action initiated with the honeypot generating an event ID

which defines a command executed by an attacker. Within an event are numerous

data points, including source IP, destination IP, source port, destination port,

session ID, username, password, messages (which contain commands issued by the

attacker), timestamp, and many others. In this section we cover details of the

collected data.

Figure 6.1: Unique source IP addresses per honeypot location.

76

6.3.1 Source IP Addresses and Port Numbers

When contact is made with the honeypot, the source IP address and port number

of the machine initiating the contact is stored. From the series of commands (cov-

ered in more detail later), it appears the most common types of activity are illicit

login attempts and requests to forward traffic to another device. In the first sce-

nario, the machine initiating the contact (possibly infected by a bot) is randomly

scanning the network, then performing brute force attacks on susceptible hosts

using a dictionary of usernames and passwords, with the owner of the offending

device remaining unaware of this activity. In the second scenario, attackers are

logging in and passing traffic through the honeypot to hide their location. At-

tacker machines are often masked by one or more proxy, VPN, or VPS devices,

so the source IP recorded may not be the actual identity of the attack origin.

Recorded in Figure 6.1 are the unique source IP addresses globally that accessed

or attempted to access one of the honeypots. 170865 unique IP addresses were

recorded in total, with an average of 28478 unique IP addresses seen at each honey-

pot. These addresses were globally diverse, and appear to be random. There were

also 6527 addresses which were present in all six honeypots. Random addresses,

which make up the bulk of the observed source IP addresses collected, would be

expected as bots scan the Internet seeking new victims. However, we see many

addresses targeting the same machines which would seem to indicate credentials

are being shared across a network of devices, which are in turn accessing them for

the purpose of recruitment or traffic forwarding.

While there are a variety of events occurring at each honeypot, a majority of

the activity seen after a successful login are session.connect, direct-tcp.forward

and direct-tcp.data requests. Many of the login attempts are being made for the

purpose of utilizing compromised machines for routing traffic through SSH tunnels.

By default, SSH sets the AllowTcpForwarding flag to yes, enabling others to use

77

Figure 6.2: Unique source port numbers per honeypot location.

the victim machine as a SOCKS proxy to route any type of traffic generated by

any protocol or program. To prevent this, the forwarding flag should be set to

no. In addition, a limit on the number of login attempts allowed should be set

to prevent brute force attacks. These forwarding requests are logged by Cowrie,

but are not actually forwarded. Requested destination IP addresses appear to

be randomly distributed between those sent directly to targeted devices and with

messages routed through a known proxy device to further mask an attacker’s

actual location. Source port numbers on the order of 60k were present in each

honeypot as seen in Figure 6.2 as bots were utilizing random port numbers to

initiate contact.

78

Table 6.1: Series of commands per session and frequency of occurrence.

London Amsterdam Toronto New York Singapore Bangalore
FADBEFADBE 40.3% 67.7% 67.8% 28.7% 53.4% 66.7%
FAGEFAGE 36.1% 21.5% 19.3% 36.2% 33.5% 15.6%
FAEFAE 10.5% 2.5% 0.41% 22.3% 5.5% 10.4%
FAGGGEFAGGGE 4.1% 0.1% 2.6% 5.3% 1.6% 3.2%
FEFE 4.5% 0.7% 2.8% 3.4% 3.0% 1.6%
FADBCEFADBCE 0.1% 0.5% 0.8% 0.1% 0.2% 0.3%

6.3.2 Destination IP Addresses and Port Numbers

In order to better understand this forwarding behavior, an analysis is performed

mapping attackers to their targets, and targets to attackers. Table 6.2 gives a

numeric example of these mappings from the London honeypot. The left side of

the table lists the top 20 attackers in terms of the number of targets each attacker

can be mapped to, while the left side of the table lists the top 20 targets in terms of

the number of attackers each target can be mapped to. It can be seen here there are

far more targets per attacker than vise-versa, suggesting that this IP address has

identified the honeypot as available for tunneling activity and is running through

a list of targets using this host as a proxy. At the same time, we see these targets

are being contacted by what would appear a coordinated network of attackers,

some targets being accessed through all six honeypot locations. This suggests

information about the honeypot and its compromised credentials are being shared

across members of a botnet.

The honeypot in London saw far fewer unique destination IPs than the other hon-

eypots (12746), while Bangalore saw the most (100252). Totals for all honeypots

can be seen in Figure 6.3 This is probably an indication of the types of attacks

being carried out, possibly recruitment versus tunneling activity, although it is

unclear why the London honeypot was being utilized differently over this time

period. As for destination ports, there were 1038 port numbers targeted from

Bangalore and 718 from Amsterdam, while the other honeypots ranged between

29-57, see Figure 6.4. It is likely these two locations were engaged in scanning

79

Table 6.2: Mapping of attackers to targets and targets to attackers.

Attackers to Targets Targets to Attackers
5.182.39.88:114839 google.com:872
5.182.39.61:50318 ya.ru:871
5.182.39.62:25441 208.95.112.1:609
5.182.39.64:16741 216.239.32.21:492
5.188.62.11:13714 216.239.36.21:443
5.182.39.6:13049 216.239.38.21:374

45.227.255.163:7023 216.239.34.21:338
88.214.26.90:5120 v4.ident.me:270
5.182.39.185:3081 video-weaver.arn03.hls.ttvnw.net:138
45.227.255.205:762 ipinfo.io:118
5.182.39.96:443 www.instagram.com:113
5.188.86.172:233 www.youtube.com:102
88.214.26.93:166 ip.bablosoft.com:101

193.105.134.45:119 video-weaver.waw01.hls.ttvnw.net:101
103.114.104.68:60 104.16.119.50:101
51.158.111.157:53 104.16.120.50:101
45.155.205.87:44 speedtest.tele2.net:96
79.173.88.244:36 87.250.250.242:93
14.177.178.248:30 m.youtube.com:90
14.186.28.128:29 check2.zennolab.com:89

activity, while the others were focused on tunneling data to selected targets. Lon-

don, Toronto, and New York were targeting mainly common services such as web,

telnet, smtp, ssh, etc. Bangalore and Amsterdam seemed to target these, as well

as many non-common port numbers associated with specific services (i.e. bo2k or

Ghidra) that could have been identified by nmap scans.

We look specifically at tunneled traffic, examining the number of attackers and

targets present in each honeypot, and then looking for their presence across all

honeypots. Figure 6.5 shows that there are no attackers that are found in every

location (although most are found in more than one honeypot), while Figure 6.6

shows there are 1045 targeted IP addresses that all six honeypots have in common.

It would appear that while there are high value targets being sought by more than

one attacking entity or botnet, no individual attacking IP is seen in every honeypot.

80

Figure 6.3: Unique destination IP addresses per honeypot location.

6.3.3 Daily Events

As mentioned previously, Cowrie .json logs are built around events, with multiple

events often contained within a single session. A unique session ID is created

when a connection is initially established, and the session is terminated when the

connection is eventually closed. Figure 6.7 shows the number of unique events per

day across all honeypots, while Figure 6.8 shows the total of all unique sessions

per day across honeypots. Interestingly, there are several spikes in both events and

sessions, indicating increased activity across different honeypots on the same days

even though they are located in geographically separated regions. An attempt was

made to correlate these peak days with other events such as news items or known

attacks, but with no convincing results. There were several spikes in April 2020,

likely due to the beginning of the Covid-19 pandemic and a surge in the number

81

of people working on machines no longer protected by workplace security, as well

as quarantined individuals being online at home more than usual.

6.3.4 Cowrie Sessions

To bring event IDs into perspective, Cowrie sessions can be used to aggregate a

series of events under a single session, giving a better view of command patterns

and attacker behavior. By restructuring the Cowrie log as a dictionary with the

session ID as a key rather than the event ID, all events containing the same session

ID can be consolidated, and an order of events can be captured. There were 16

possible event IDs logged by Cowrie indicating actions such as a new connection,

the success of a login attempt, a file download, a message being forwarded, etc.

To make these aggregated lists of events easier to analyze, we assign a letter value

A-P to each command, then build a string based on the sequence of commands

Figure 6.4: Unique destination port numbers per honeypot location.

82

executed during each distinct session. Table 6.3 lists the most common of these

A-G, the others were omitted for space. The top six command sequences are listed

in table 6.1, along with the frequency of their occurrence compared to all identified

sequences.

Table 6.3: Command legend.

A cowrie.client.version
B cowrie.direct-tcp.request
C cowrie.direct-tcp.data
D cowrie.login.success
E cowrie.session.closed
F cowrie.session.connect
G cowrie.login.failed

The most common sequence involves a connection (cowrie.session.connect), fol-

lowed by the cowrie version supplied as part of the ssh handshake (cowrie.client.version),

Figure 6.5: Common attacker IPs across honeypots.

83

an indication of successful login (cowrie.client.success), then a request for a direct-

tcp connection (cowrie.direct-tcp.request) allowing the attacker to pass data through

the honeypot to another destination. Finally, the connection is closed (cowrie.session.close).

For the honeypot in London, of the 874782 sessions on April 12, 2020, about 40.3

percent, or 352537 of these followed this pattern. For the London honeypot there

were 4459 unique command patterns captured in total. Most were of the com-

mon type indicated here, which were quite specific and relatively short. However,

many individual unique command patterns found that were very long and exhib-

ited repetitive patterns (some entailing hundreds of individual commands). We

believe these likely contain repeated patterns that could be associated with an in-

dividual bot. This analysis will make an interesting future work as it could help to

identify behaviors indicating malicious activity and aid in attacker identification.

Figure 6.6: Common target IPs across honeypots.

84

Figure 6.7: Daily events per honeypot.

6.3.5 Usenames and Passwords

Each login attempt, whether successful or not, captures the credentials that were

given. A majority of these credentials attempt privileged access (either ’root’,

’admin’, or some other known default credential such as ’ubnt’ for a Ubiquiti

device), but many do not and instead utilize random usernames and a wide variety

of passwords. As discussed in [58], this data is very useful as a Cyber Threat

Intelligence (CTI) feed, allowing for compromised usernames and passwords to be

black-listed from a system. Figure 6.9 shows the number of unique usernames

found in each honeypot over the duration of this study, while Figure 6.10 shows

all unique passwords used to gain access. Cowrie randomly accepts any login

credentials after a variable number of attempts (set at three for our application),

in an effort to ”fool” attackers into believing they have correctly guessed login

85

Figure 6.8: Daily sessions per honeypot.

credentials. The most commonly used usernames and passwords are listed in

table 6.4.

6.3.6 Malicious Downloads

Some Cowrie event contains a key messages that detail a command being executed

in the honeypot. If a search is done for the string wget one can find attempts by

an attacker to retrieve files from a remote host and download it to the honeypot.

These are typically shell scripts that are then made executable using a chmod

command either in the same message, or in a subsequent message, and are then

run in the compromised machine. A list of these compromised files is gathered

and could be used as a CTI feed to identify known malicious filenames. The IP

addresses or URLs indicated in these download commands can be considered highly

malicious, either as command and control devices, or more likely as file storage

86

devices used for downloading malicious software. Again, these are often routed

through a VPN or VPS. To help pinpoint likely sources for these downloads, a list

of known VPN and data center addresses, and an api (getipintel.net) are used,

and a list of possible actual download IP addresses is compiled. 1564 unique IP

addresses are identified that do not appear in the known VPN or data center list.

As a future work, it would be interesting to retrieve these shell scripts and analyze

them forensically. The top 20 malicious file names, all of which appear in each of

the six honeypots is given in table 6.4.

Given the commonality of source and destination IP addresses seen in attacks on

the honeypots and the fact that many of the attack patterns present in collected

honeypot data are consistent with the Mirai botnet and its variants, it is apparent

that botnet activity continues to be a major security concern. With simple IoT

Figure 6.9: Unique usernames per honeypot.

87

Figure 6.10: Unique passwords per honeypot.

devices being the prime target for such attacks, continued development of tech-

niques for mitigating these attacks is crucial. In our opinion, the first step for

management and defense must be proper accounting and monitoring of IoT de-

vices within networks to detect abnormal behavior as well as to identify unknown

devices. To accomplish this, fingerprinting devices based on network traffic is es-

sential as other identifiers such as IP and MAC addresses can be spoofed making

detection using these parameters unreliable.

6.4 Conclusion

To better understand attack patterns and behavior, honeypots can be deployed

to monitor and log activity by simulating actual Internet facing services. By

examining traffic patterns, downloads, and traffic forwarding across a series of

88

Table 6.4: Most used usernames, passwords and download filenames.

Usernames Passwords Malicious Filenames
root guest bins.sh
guest admin GhOul.sh
admin root yoyobins.sh
test test SnOopy.sh
user 123456 axisbins.sh
ubnt 1234 EkSgbins.sh
0101 user 8UsA.sh
nproc password Pemex.sh
22 ubnt Sakura.sh

support 0101 sh
oracle 123 skid.sh
postgres nproc UwU.sh
ubuntu zeros6x.sh
usario support mavscock.sh

matrix KigaNet.x86
git 12345 infn.x86

Administrator usario ISIS.sh
pi 123456789 installer.sh

1234 12345678 Gummy.sh
ftpuser 1 gtop.sh

geographically separate devices we attempt to better understand malicious activity

and work to identify patterns that can be useful in identifying malicious traffic

in actual servers or IoT devices. In addition, collected data such as source IP

addresses, download filenames, and login credentials can be useful as a threat

intelligence feed to protect digital assets. As a future work more analysis on

command series patterns could be conducted to possibly predict attack behavior

and to identify threats in real time on production servers and IoT assets.

The Cowrie honeypot is a valuable tool for capturing samples of traffic and real-

time interaction with botnets. Analysis has shown much of the traffic occurring

across these honeypots are generated from Mirai and Mirai-variant bots, and it is

likely that such threats will persist for some time to come [12]. Given the reality

of this persistent threat, more work will need to be done to develop methods for

monitoring IoT devices and device membership on networks to assure secure oper-

ation and management. In the following section we study methods for developing

89

network traffic fingerprinting on IoT as a means to this end.

90

Chapter 7

Heterogeneous Device

Fingerprinting

7.1 Introduction

Keeping track of IoT devices in a network can prove to be a challenging task

as device identity can be easily masked. In order to accomplish this we focus on

identifying devices using a fingerprint of their network traffic that can be correlated

to a specific device. Our approach utilizes the principle of locality sensitive hashing

to generate a feature vector which will be used by a classifier in fingerprinting IoT

devices based on their generated network traffic. In this section we will describe

this technique and provide details on both the Nilsimsa hash and how it is used in

combination with a convolutional neural network to generate such a fingerprint.

Unlike cryptographic hashes which produce an entirely different result even if a

very small change is made to the input data, locality sensitive hashing (LSH) is a

hashing algorithm wherein small changes to the input data produce a very similar

output. This is accomplished by placing similar input items into common buckets

91

with a high probability, with hash collisions being maximized rather than mini-

mized. LSH has been effectively utilized for tasks such as electronic identification

[102], anomaly detection [103], malware classification [104], and spam email detec-

tion [105] [106]. There are several tools available for generating locality sensitive

hashes, such as Nilsimsa, ssdeep, sdhash and tlsh [107]. For our work we utilize

Nilsimsa as it provides a digest which displays little variance for similar inputs,

and can easily be broken into a fixed number of octets representing the input

source.

In the following we discuss locality sensitive and locality preserving algorithms

in general as they make up a vital core of our work. Here we will consider the

families of locality sensitive hashing approaches, and the major applications in

use. The most widely used n-gram versions of these algorithms are ssdeep [108],

sdhash [109], tlsh [110], and Nilsimsa [105].We cover these for reference, then focus

more specifically on Nilsimsa as the starting point for our work fingerprinting

network traffic, and the inspiration for our novel algorithm FlexHash.

7.2 Locality Sensitive Hashing

Hashing techniques provide a means of mapping high-dimensional data to a fixed

length digest, i.e. all resultant hashes of a given hash function will be of length

X. Locality sensitive hashing (LSH), also called fuzzy hashing is a specific set of

algorithms that apply a probabilistic function to perform dimensional reduction

while preserving the relative distance between objects. This is done by mapping

the input data to a set of buckets in such a way as to maximize the probability

of collisions, thus grouping similar items. This is contrary to the more familiar

cryptographic hashes (MD5, SHA-1, SHA-2, etc.) wherein even a small change to

the input data results in a completely different output hash by minimizing colli-

sions and applying a cascading effect. In other words, for a locality sensitive hash

92

a small change in the input data will result in a small change in the output hash.

Rather than assigning a unique identifier to an item, LSH seeks to approximate

a match to items that are likely similar, as in the case of data clustering or a

nearest neighbor search. There are several families of hashing functions that can

be applied based on the type of input data.

7.2.1 LSH Families

There are several common approaches to LSH depending on the data in question:

• E2 LSH

• MinHash

• SimHash

• Random Binary Projections

• K-Means LSH

• Bayesian LSH

• Hamming LSH

7.2.1.1 E2 LSH

E2 LSH is an LSH algorithm that provides a randomized solution for finding the

nearest neighbor in Euclidean space l2. This approach is useful when it is neces-

sary to solve the nearest neighbor problem where, given a query q, the data should

return the point P that is nearest q [111]. Euclidean distance is useful when mea-

suring the length of a line segment in space, and can be an indication of similarity

between two data points. By preprocessing objects in a dataset, subsequent items

93

Figure 7.1: Data points are hashed in such a way that similar items will fall
into buckets that are near one another. When mapped to Euclidean space,

points within a given radius (nearest neighbors) should be similar [2].

can be compared to find a nearest neighbor to determine likely similarity. This

is done by applying hashing functions that with a high probability map similar

items to nearby buckets or memory locations. Their Euclidean distance from one

another then represents how similar they likely are. A representation of similar

items mapped in Euclidean space can be seen in Figure 7.1 where points similar

to q should fall within a given radius of q.

7.2.1.2 MinHash

MinHash, or min-wise independent permutations locality sensitive hashing scheme

is an algorithm for estimating the similarity between two sets. This LSH scheme

was first used in the Alta Vista search engine and could detect and remove du-

plicate web pages for more efficient search results. It has also been used as a

clustering tool when searching large numbers of documents based on similarities

94

in sets of words they contain [112]. MinHash relies on the Jaccard similarity co-

efficient, which is a ratio of the number of elements found in the intersection and

the union of two sets. Specifically, the Jaccard coefficient is the size of the inter-

section divided by the size of the union. Using a technique known as shingling,

this method allows for the random sampling of words from a large body of sets,

hashing them as integers, then arriving at an acceptable distribution of hash codes

to represent similarity. In this way, documents can be quickly compared for rea-

sonable similarity without the time and computational constraints of a brute-force

search for matches.

7.2.1.3 SimHash

SimHash is an algorithm for calculating near-duplicates by tokenizing strings,

then creating vectors using term frequency-inverse document frequency (TF-IDF).

TF-IDF is a widely used method for text representation. Weights are assigned

to words in a document based on their frequency in the document and inverse

frequency in the corpus. Words that occur more frequent in a document but

less frequently in the corpus are deemed to be important for that document’s

meaning. This approach is commonly used for information retrieval and text

classification tasks. SimHash develops a binary fingerprint by comparing these

weighted feature vectors and assigning a 1 to a positive value, otherwise it is set

to 0. Hamming distance measure can be applied to the resultant binary string,

with a small distance between strings representing greater similarity. This is a

useful algorithm when performing document de-duplication, spam detection, or

near-duplicate (plagiarism) detection, and has been utilized by the Google crawler

to eliminate duplicate web pages in their index.

95

Figure 7.2: Data points are separated by random hyperplanes, and points are
assigned a 1 or 0 depending on whether they fall on the same side of the plane

as a normal vector [3].

7.2.1.4 Random Binary Projection

LSH using random binary projection works by reducing highly-dimensional vectors

into low-dimensional binary vectors, making it useful for approximate similarity

searches in very large data sets. Hamming distance can then be calculated on the

binary vectors to estimate their similarity. Hyperplanes are created through the

data points, and point on one side of the plane or the other are assigned either a

0 or a 1, essentially splitting the data into two groups. To determine which side

of the hyperplane data resides, a normal vector of the plane is calculated, and is

combined with a data point vector in a dot product function. If the two vectors

share the same direction, the dot product will be positive, otherwise it will be

negative. As successive hyperplanes are added and this process is repeated, the

amount of encoded data increases as seen in Figure 7.2. Binary vectors can then

be compared using Hamming distance to determine similarity.

7.2.1.5 K-Means LSH

K-Means LSH uses the K-Means algorithm to cluster data by partitioning n ob-

servations into k clusters. Vector quantization is used to assign every observation

(data point) to the nearest randomly chosen centroid, or mean, which serves as the

96

Figure 7.3: Data points are grouped into clusters by randomly selecting
means, or centroids, then iteratively moving these centroids until they most

closely represent the center of the cluster [4].

temporary prototype for the cluster. Through an iterative process, the centroid or

mean is moved to minimize the sum of squared distances between the data points

in the cluster and their corresponding centroid. The goal is to create clusters that

are as distinct as possible, separating clusters from one another and maximizing

the distance between centroids. Data that falls within a given cluster represents

similarity between the data points, thus achieving the goal of locality sensitive

hashing. Points within a given cluster are mapped to similar buckets as shown in

Figure 7.3

7.2.1.6 Bayesian LSH

Bayesian optimization is a method for tuning hyperparameters by learning from

past performance metrics to improve search speeds. When applying a similarity

measure to a collection of objects, the goal is to find all pairs of objects with

a similarity greater than a given threshold. Bayesian LSH performs candidate

pruning and similarity estimation using LSH to remove a large number of the

false-positive candidate pairs leading to faster similarity searches.

97

7.2.1.7 Hamming LSH

Hamming distance is a way to measure similarity in binary strings. The distance

between two strings or vectors of numeric values of equal length can be defined

as the number of positions in the vector where the corresponding characters are

different. More simply put, the Hamming Distance is a measure of the difference

in symbols in equal length strings or vectors. In the case of a binary string, the

Hamming Distance would be equal to the number of 1’s that result from an XOR

operation between the two strings. A low distance indicates greater similarity,

making this approach favorable to strings or data that can be represented as

numeric vectors [113]. This measure was utilize by [15] in developing fingerprints

for IoT traffic and served as a starting point for our work. This measure was

applied using Nilsimsa[114] to produce fingerprints of network traffic, applying

similarity to determine matches in traffic samples stored in a database.

7.2.2 Significant n-gram Based LSH Tools

Here we consider the aforementioned LSH tools (ssdeep, sdhash, tlsh, Nilsimsa)

in view of the hashing families they utilize. We cover these four for perspective,

then give more in depth detail on Nilsimsa and how it applies to this work.

7.2.2.1 ssdeep

ssdeep was introduced by Jesse Kornblum in 2006 [115]. ssdeep is based on work

done by Michael Rabin on data fingerprinting with random polynomials at Harvard

University in 1981. The tool was one of the original works on context triggered

piecewise hashes (CTPH), also referred to as fuzzy hashes. The approach follows

the following steps:

• Use a rolling hash function, or shingling, to break a file into smaller pieces

98

• Use a function to produce a hash for each small piece

• Concatenate the smaller hash functions into a signature representing the

entire input data

Using this method, files that exibit similarity should produce similar hash signa-

tures. Files that are dissimilar should produce dissimilar hash signatures. It is

important that in the process of breaking the input data into smaller pieces that

small changes in input produce only small changes in output. To accomplish this

the rolling hash function uses a few bytes of data at each iteration, incrementing

one byte each time (sliding window), with the results stored in an accumulator

of a set length, in this case 80 characters. This becomes the file signature, or

fingerprint.

To compare file signatures for similarity, the edit distance between two signatures is

calculated. It would be expected that, for related (similar) files, it would take fewer

editing operations (insert/delete/change/swap) to transform between signatures.

7.2.2.2 sdhash

sdhash [116] takes a different approach to develop, mangage, and compare its

similarity hashes, also known as similarity digests. This approach is similar to a

random projection method where the distance between two feature vectors is the

cosine distance between them. sdhash also uses a sliding window to perform shin-

gling, with the window size set to 64 bytes. To determine similarity, sdhash tries to

find the 64-byte sequences from each neighborhood of the input data that have the

lowest probability of being encountered by chance (most unique features). Each of

these is hashed and is entered into a Bloom filter. Once the filter reaches capacity

a new filter is started until all of the features are accounted for. Ultimately a digest

is formed of the sequence of Bloom filters that represents about 3% of the length of

99

the original data, mapping the original input to a compressed output. As Bloom

filters have predictable probabilistic properties [117], two filters can be compared

for similarity using Hamming distance measurement. For comparison, each filter

in the first digest is compared with its maximum match in the second, and the

resulting matches are averaged. sdhash then computes a normalized Shannon en-

tropy measure and places features into 1000 classes of equivalence, with statistics

for similarity being calculated based on this approximation. sdhash outperforms

ssdeep in every category [118].

7.2.2.3 tlsh

tlsh constructs a digest for similarity measure using the following steps [110]:

• Populate an array of buckets by processing the data byte for byte with a

5-byte sliding window

• Calculate quartile points q1, q2 and q3

• Construct the digest header values

• Construct the digest body by processing bucket arrays

The sliding window operates as in the above examples, with a 5-byte window

passing over the entirety of the data one byte at a time. When this is complete,

there remains an array of bucket counts. Quartiles of these counts are calculated

such that:

• 75% of the bucket counts are greater than or equal to q1

• 50% of the bucket counts are greater than or equal to q2

• 25% of the bucket counts are greater than or equal to q3

100

The first three bytes of the hash are considered to be the header. Byte number 1 is

a modulo 256 checksum of the byte string. Byte number 2 is equal to a logarithmic

representation of the length of the string modulo 256. Byte number 3 is made up

of 2-16 bit quantities calculated from the quartiles q1, q2 and q3 in the following

way:

• q1-ratio = (q1*100/q3) MOD 16

• q2-ratio = (q2*100/q3) MOD 16

The rest of the digest is calculated using the bucket array with:

For bi = 0 to 127

if bucket[bi] less than or equal to q1: Emit(00)

else if bucket[bi] less than or equal to q2: Emit(01)

else if bucket[bi] less than or equal to q3: Emit(10)

else Emit(11)

Finally, the tlsh digest used for determining similarity is constructed by concate-

nating:

• The hexadecimal representation of the digest header values

• The hexadecimal representation of the binary strings (bucket array)

Leaving out some of the complexities of the process, tlsh uses a hamming dis-

tance measurement to determine similarity between two digests; a greater distance

equates to less similarity.

7.2.2.4 Nilsimsa

Nilsimsa is an open source n-gram based LSH generator that was originally de-

signed to identify spam email [114]. As such, it is capable of taking in a text or

101

byte string of any length and returning a fixed length digest. Nilsimsa utilizes a 5

character window that moves over the text of the message one character (or byte)

at a time (see Figure 7.4). Each time a new character enters the window, the

algorithm generates all possible trigrams (t) associated with the characters in the

window and passes each them individually to a hash function h(). The function

h() computes a hash value i = h(t) between 0 and 255 that corresponds to the i-th

cell in an array of integers of size 255, called accumulator, and whose value at that

location is increased by 1. Each cell acts as a counter for the number of collisions

at that cell. Once all characters have been processed, an average is calculated for

all cells, and a median value is assigned. If the value in the cell is less than or

equal to the median, the cell value is set to 0, otherwise it is set to 1. The result

is a 256 bit digest in binary form. This can be converted to a 32 byte hexadecimal

code.

To determine similarity, the digests are compared, checking the number of bits in

the same cell position for two different digests. The Nilsimsa Compare Value is

the number of bits that are equal in two digests minus 128. For two randomly

Figure 7.4: Construction of a Nilsimsa hash

102

chosen 256-bit sequences, we expect an average of 128 equal bits, that is, a Nilsimsa

Compare Value equal to zero. The maximum value of the Nilsimsa Compare Value

is 128, for two identical digests. This is essentially a variant of the Hamming

distance.

As seen in Figure 7.4 Nilsimsa uses a fixed-size sliding window of 5 bytes which

analyzes input data on a per-byte basis, producing a series of trigrams of possible

combinations of the input characters. These trigrams are mapped to a 256 bit

array, or accumulator, to ultimately create a hash of the data. Each time a bucket

in the array is accessed its value is incremented, and at the end of the process if the

cumulative value of the bucket exceeds a given threshold its position in the array

is reset to 1, otherwise it is set to 0 producing a 32 byte digest. Typically these

digests are measured against one another for similarity by comparing each bit and

producing a score of between -128 and 128 by checking the number of bits that are

identical in the same positions and either adding or subtracting them, with the

highest score indicating the greatest similarity. In our approach we do not utilize

this scoring system, but instead use the resulting 32 bytes of the hash to produce

a set of features for use with a more complex machine learning algorithm.

At this time it would be appropriate to mention the work done by Batyr Charyyev

et. al in [15] wherein Nilsimsa similarity scores were generated for network traffic

from a group of 22 heterogeneous IoT devices. Signatures (or fingerprints) for

each device were stored in a database, then when unknown traffic was analyzed,

it was compared to the stored fingerprint, and if the similarity was above a given

threshold, it could be assumed the traffic was generated by that device. Although

we don’t use a similarity score for identification, the preliminary steps Nilsimsa

takes to generate a digest are very interesting, and we have found that these can

be transformed into feature vectors that can then be used with a convolutional

neural network to develop a model for device classification. We test this method

103

against the same 22 devices to demonstrate its effectiveness while using only a

single packet of data rather than requiring a longer traffic sample.

7.3 Methodology

While locality sensitive hashes have been shown to be useful on their own in

classifying network traffic, they have not been able to offer good performance with

smaller data flows and are at a disadvantage to more complex approaches such as

neural networks. Given a complex input feature space, a reasonable number of

samples, and a network architecture of sufficient size a neural network can do the

heavy lifting necessary for discovering correlations between various input variables

which are necessary for separating the data into the labeled classes. However, if

the input feature space is too large it will exceed even a neural network’s ability to

recognize patterns. For this reason it is difficult to directly apply neural networks

to raw .pcap (network traffic flow) files without extensive feature extraction and

engineering. To simplify the process our approach utilizes Nilsimsa to reduce the

dimensionality of the raw data and form features that a neural network can process.

By breaking Nilsimsa’s 32 byte digest into individual bytes and converting these

into integer values between 0-255 that are readable by the classifier, a single packet

or an entire traffic flow can be interpreted as a suitable feature vector, as seen in

Figure 7.5. The advantage of this approach, apart from increased accuracy, is

that rather than requiring a 10-minute flow of traffic to capture a good similarity

sample, a single packet is all that is needed for accurate device identification. This

approach requires no feature extraction, no particular domain expertise for feature

engineering, and is resistant to changes in the network.

We elect to use a Multi-Layer Perceptron (MLP) [119], an example of a relatively

simple neural network. The MLP is made up of four primary components: an

input layer, hidden layers, non-linear activation function, and an output layer. In

104

Figure 7.5: .pcap files are converted of to Nilsimsa hash digests and then to
integer strings for processing by a classifier.

the context of this work the input layer is made up of 32 integers with values

between 0 and 255. These values correspond to the 32 bytes which are output

from the Nilsimsa hash. Next, we utilize an extremely concise single hidden layer

containing 100 hidden units. The outputs of each unit in the network are passed

through the rectified linear unit (ReLU) activation function so that the model can

learn a non-linear decision function. Lastly, the network outputs a 22 length vector

where each value in the output vector represents a possible class correlating with

our 22 sample devices. The Softmax function is applied to the output vector which

translates output values to probabilities. The class with the highest probability

is identified as the predicted class. The network weights are learned in a single

epoch with the Adam optimizer and a constant learning rate of 0.001.

7.4 Results and Analysis

We test our method using a data set collected by Charyyev et al. [107], publicly

available at https://github.com/netlab-stevens/LSIF/. The set contains twenty

24-hour traffic samples collected from 22 different IoT devices. Each sample con-

sists of a file captured using tcpdump, and are stored in .pcap form. For our

experiment these larger flows are also converted into shorter time segments using

105

tshark, yielding descending samples ranging in time slices from 10-minute down

to 1-minute, and finally a sample of the original 24 hour data set at a per-packet

level; in other words, one .pcap file for each packet. Next, each of these .pcap

files is processed into a 32-length feature vector using Nilsimsa as described above.

A final field representing the name of the device that produced it (the class) is

appended to the vector, as seen in Figure 7.5. These are categorized by time slice

and are combined, producing a single file of strings for each time slice from all 22

devices for processing by the MLP.

In each of our experiments the model is trained in a balanced 5-fold cross validation

scheme where the data set is split into 5 equal segments. Our MLP is randomly

initialized and trained from scratch 5 times. In each iteration, 4 of the segments

are used for training (80%) and the remaining segment (20%) is used for evaluating

the model. Here, balanced means that each fold contains an equal, but random,

Table 7.1: Model performance on cleaned per-packet data set

Device Accur. F1 Sample wt.

oossxx SmartPlug 1.00 1.00 0.071
Lumiman 600 Bulb 0.99 0.99 0.071
Lumiman 900 Bulb 0.99 0.99 0.071
Gosuna Bulb 0.99 0.99 0.070
Smart Lamp 0.99 0.99 0.070
OceanDigital Radio 0.99 0.99 0.039
Smart Light Strip 0.99 0.99 0.071
Gosuna Socket 0.99 0.99 0.071
Renpho SmartPlug 0.99 0.99 0.071
Lumiman SmartPlug 0.99 0.99 0.071
Goumia Coffee Pot 0.98 0.99 0.012
Wans Cam 0.98 0.99 0.222
D-Link 936L Cam 0.97 0.98 0.015
Minger Light Strip 0.77 0.87 0.019
LaCrosse Alarm Clock 0.76 0.87 0.017
itTiot Cam 0.76 0.87 0.016
Tenvis Cam 0.61 0.76 0.008
tp-link SmartPlug 0.53 0.70 0.003
Chime Doorbell 0.34 0.51 0.007
Ring Doorbell 0.28 0.44 0.0007
Wemo SmartPlug 0.21 0.35 0.003
tp-link Bulb 0.09 0.16 0.001

106

representation of each class. This training regiment greatly reduces the likelihood

that our results are the product of a beneficial random selection of data points or

initial network weights.

Performance results for the per-packet time slice by device are shown in Table

7.1. The table displays device name, weighted accuracy score, weighted f1 score

and sample weight. Here, sample weight is the percent contribution of each device

to the total number of samples. Important findings in this table are as follows.

First, the Smart Recon method exceeds our expectations with 13 out of 22 devices

classified with over 98% accuracy. Second, the devices which perform poorly are

those with less than 15,585, or one percent, of samples available. Third, the

OceanRadio and Goumia Coffee Pot appear to be exceptions to the limited data

problem. This suggests that the devices have significantly different transmission

patterns than the others in the data set.

In Figure 7.6 and 7.7 accuracy and f1 scores for each time slice are visualized across

all time slices respectively. Upon inspection it appears that these performance

results show an unusual trend, with 10-minute flows performing very well, but

with degrading results as flow size decreases to 1-minute. Finally, at the per-

packet level performance spikes sharply upward to around 98%. We will discuss

this unusual trend further later in the paper.

To eliminate any possible sample bias when analyzing the various traffic flows,

all of the input data is replicated in its entirety with all IP and MAC addresses

generalized as either 1.1.1.1 or 11:11:11:11:11:11 . In this way it can be

shown that the model is not learning to identify trends based on device-specific or

flow-specific attributes. Average accuracy and F1 score for both uncleaned (non-

anonymized) and cleaned (anonymized) data can be seen in Figure 7.6 and 7.7. We

see there is some bias present as the cleaned data set yields an accuracy of 96.9%

and F1 score of 96.7%, slightly lower than the uncleaned with an accuracy of 98%

107

Figure 7.6: Accuracy for all time slices (10-minute through 1-minute and per-
packet) in the cleaned and uncleaned data. These metrics were computed using
a balanced 5-Fold Cross Validation technique. Here, balanced means that each

device has equal representation in each fold.

and F1 score of 98%. Note this bias has a negligible effect on the unusual trend.

As bias seems to play little role in this, we consider the possibility there could

be some imbalance in the number of samples representing each device possibly

contributing to this unusual trend.

To understand the unusual trend one needs to understand two important pieces of

information: how these metrics are calculated, and how the percentage of samples

differs between the minute/multi-minute time slices and the per-packet time slice.

There are two steps in computing the metric scores. First, metrics are calculated

for each label, and their averages are weighted by support (the number of instances

for each label divided by the total number of samples across all devices). Second,

the mean score is computed across devices. Simply put, the performance of devices

108

with a relatively high number of samples will strongly contribute to the final score

of a given time slice. Weighted averaging is effective for computing metrics because

it accounts for label imbalance, giving a more accurate value for assessing the

actual performance of the method. This is shown mathematically below, where D

is the number of devices, SD is the number of samples for the current device, MD

is the metric score for the current device and N is the total number of samples in

the current time slice.

ΣD
0 (MD ∗ SD

N)

D

In regard to the differences between time slices, the nature of the Nilsimsa hash

Figure 7.7: F1 Score for all time slices (10-minute through 1-minute and per-
packet) in the cleaned and uncleaned data. These metrics were computed using
a balanced 5-Fold Cross Validation technique. Here, balanced means that each

device has equal representation in each fold.

109

and how it is applied to the data set causes all flows to have the same percentage

representation for each device, with an increasing number of samples as the time

slices become shorter. It should be noted that while each time segment may contain

varying numbers of packets, it will still produce a single hash. If, therefore, a time

segment contains very little data, it will still produce a hash which when measured

in an un-weighted manner can produce deceptive performance results if the device

appears to be performing poorly. This is seen in the decreasing performance as

the time slices shrink from 10-minute to 1-minute and partially accounts for the

unusual trend.

While there is some variance in the amount of traffic generated by the differ-

ent devices, we find that with one exception, all devices contribute about 4% of

the samples in each data set between 10-minute and 1-minute. We see that the

OceanRadio device contributes only 0.05% of the data, yet still performs very well

despite the lack of traffic available. This indicates that imbalance in samples size

is not solely responsible for the unusual trend.

We therefore consider the possibility that some devices may be performing more

poorly overall than others which might affect the unusual trend by bringing down

the average performance. To explore this we analyze per device statistics across

all time slices, and discover the Ring Doorbell and the tp-link Bulb are often

misidentified. In many cases our model wrongly predicts these two devices to be

other devices, largely because they contribute considerably less data overall. To

see what effect this is having on the observe unusual trend we re-run the model

without these devices as seen in Figure 7.8.

We see that when these two devices are removed, overall accuracy and F1 score

improve for the time slices between 10-minutes and 1-minute, indicating that their

poor performance is bringing down the overall average performance. However the

removal has no real effect on the per-packet performance. Because the percentage

110

Figure 7.8: Model performance excluding results from Ring Doorbell and tp-
link Bulb (devices with poorest results)

representation for each device in the 10-minute to 1-minute time slices is equal

these poorly performing devices skew the overall average. When we reach the per-

packet flows, performance depends on how many packets were sent in the 24-hour

time period, giving a more accurate weighted view of the average performance.

Since these devices transmitted significantly fewer packets, there is less effect on

the overall average performance.

In order to better understand this behavior, we generate visualizations to represent

the 32-dimensional data in two dimensions using Uniform Manifold Approximation

and Projection (UMAP) [120], a tool for dimensional reduction and visualization.

UMAP reduces the dimensionality of data while maintaining spacial relationships,

allowing a two-dimensional view of clustering. Visualizations of the data are gen-

erated at the 10-minute, 5-minute, and 1-minute flows to demonstrate the effect

of poorly performing devices on the overall average. Two devices, Ring Doorbell

111

Figure 7.9: 10-minute flow clustering. The blue and green classes respectively
represent the ring doorbell and TP Link Light Bulb. At 10 minutes enough
unique behavior is captured to create clustering, which helps the MLP to identify

individual samples.

and tp-link Bulb perform poorly, while OceanRadio performs quite well. This is

despite the fact that all three contribute relatively small amounts of data as seen

in Figures 7.9, 7.10, and 7.11.

We see the clusters for the poorly performing devices degrading as the time slices

become shorter, explaining the downward trend in average performance (the blue

dots are almost completely obscured by the green dots in Figure 7.11). As the

sample sizes are evenly distributed, these devices (along with the others that

perform poorly) drag down the overall average. Per-packet performance is less

affected as these devices also contribute less overall traffic as mentioned above.

Because of the unusual trend noted it may be assumed there is an apparent weak-

ness in the data set as some devices are contributing small amounts of data for

analysis. In addition, some devices (Ring Doorbell and tp-link Bulb) are function-

ing in a way that cause them to appear similar to all other devices and to one

112

another which is certainly cause for further investigation into their actual network

activity. In fact, with these devices removed performance is nearly unchanged.

However, to gain more accurate results future data collection should consider why

some devices are contributing less traffic and some technique for mitigating this

should be applied. It does however serve to validate the results found at the

per-packet level, which is consistently performing at a very high level allowing

single-packet identification of devices, the first step in developing a system for

better management and oversight of IoT connected to a network. Our proposed

research explores the possibility of improving and expanding this fingerprinting

technique to improve IoT device identification, and for the development of tools

and methods to improve device monitoring and accounting capabilities.

The other factor to be considered when analyzing this data is that at this early

0.65

Figure 7.10: 5-minute flow clustering. The blue and green classes respectively
represent the ring doorbell and TP Link Light Bulb. This figure shows the
transition as the time slices become shorter, and individual samples become

more difficult to identify.

113

Figure 7.11: 1-minute flow clustering. The blue and green classes respectively
represent the ring doorbell and TP Link Light Bulb. In this short time slice
the blue dots are almost completely obscured by the green dots as a pattern of

behavior is difficult to distinguish.

stage of our research, we were approaching the problem of IoT traffic fingerprint-

ing in a manner similar to [107], where traffic was collected in time slices. For

comparison based on similarity in the manner Nilsimsa was designed to be used

this made sense; a single packet would never generate enough uniqueness to be

distinct when compared to all other samples, there would be far too many possi-

bilities for this approach to work. For that reason, a 10-minute time slice made

sense in that over a period of 10 minutes some of the repetition in the activities of

the IoT device in question could be captured. This would also explain why in [107]

it was discovered that when time slices were reduced from 10-minutes to 1-minute

performance degraded; less of the device behavior was being captured, and so was

less distinct when compared to all other samples.

What was learned from further analysis is that with the use of machine learning

in the form of a simple neural network, repetition at the per-packet level could be

captured effectively. Packets from a particular device were repetitive enough even

114

at this level that individual device behaviors could be captured and identified with

a very high degree of accuracy (higher than the aforementioned study). This was a

significant breakthrough as at the per-packet level a system could be implemented

that would have the capacity to sniff and identify traffic in real time paving the

way for a viable framework for system monitoring.

In this study we analyze the performance of our method on 22 heterogeneous de-

vices and find it is capable of device identification with a hight degree of accuracy.

As with most previous studies the data samples collected are from devices of dif-

ferent types, are from different manufacturers, or are different models from the

same manufacturer. As real-time monitoring of networks to manage IoT device

behavior would likely require the monitoring of many identical devices, we collect

a data set from 3 groups of 8 identical devices to test performance in this scenario

and find results to be poor. In the following chapter we give details on hybrid

locality sensitive hashing along with changes to the machine learning approach to

improve results and propose a framework for identifying devices in a much more

realistic environment.

115

Chapter 8

Homogeneous Device

Fingerprinting

8.1 Introduction

In this section we will discuss the continuation of our initial efforts, extending the

fingerprinting of heterogeneous devices using LSH and a multi-layer perceptron

algorithm to identifying individuals from 3 groups of 8 identical devices using hy-

brid locality sensitive hashing and an ensemble machine learning approach. While

good results have been achieved by other studies seeking to utilize network traf-

fic fingerprinting for device identification, they typically focus on heterogeneous

devices in a laboratory environment devoid of the background noises present in

live networks. Much of the previous research has relied on data sets provided by

seminal studies such as IotSentinel [68], which are made up either of completely

different (heterogeneous) devices or of different types of devices from the same

manufacturer. In a realistic network setting, an administrator will likely need

to track many devices of different types, but also multiple devices of

116

identical make and model (i.e. many identical web cameras) all pro-

ducing very similar traffic. In addition, this traffic will be mixed in

the presence of background traffic noise, possibly from other unknown

or un-modeled IoT devices. In our previous work [121] we found that while

our initial efforts were highly effective with heterogeneous devices they performed

poorly against groups of identical (homogeneous) devices on the same network,

leading us to this current work.

We present FlexHash, a novel system combining the data generalizing capabil-

ity of novel hybrid locality-sensitive hashing with the power of machine learning

to achieve a highly accurate network traffic fingerprinting model for identical de-

vice identification. FlexHash requires only a single packet from network traffic

to achieve accurate results, and also performs well in noisy environments. It also

achieves high accuracy in identifying devices from groups of identical devices, a

challenging task for traditional fingerprinting methods as identical devices are ex-

pected to generate similar network traffic. FlexHash avoids the complexity of

feature selection and engineering by hashing an entire packet and then converting

the resultant digest directly into a feature vector. Subtle differences in the typi-

cally repetitive traffic produced by IoT devices are captured by hybrid similarity

hashing, and can then be modeled with the help of machine learning algorithms

to produce a device fingerprint. The ability to achieve high accuracy using only

single packets for device identification will allow for system monitoring by period-

ically sampling traffic to detect device membership, device genre, the presence of

unknown devices, and changes in device behavior indicating traffic anomalies and

possible compromise.

Contributions of this work are as follows:

• We develop FlexHash, a novel locality-sensitive hashing algorithm that en-

ables adjustments to the hashing parameters (accumulator length, window

117

size, and n-grams).

• We implement a network traffic fingerprinting method combining FlexHash

with machine learning, and perform accurate IoT device identification re-

quiring only a single packet of network traffic.

• We evaluate this system by classifying device genre and identical devices in

the presence of identical peers while also including realistic background noise.

• We collect traffic data from three categories of 8 identical IoT devices, which

we share with the research community at:

https://github.com/UNR-IoT-Fingerprinting/FlexHash.

8.1.1 Difference of Our Study from Previous Works

Non-ML approaches offer the advantage of simplicity, but often require larger

traffic samples for comparison, and potentially large databases which must be

searched to find matching device profiles. Machine learning solutions offers the

advantage of highly accurate identification with smaller traffic flows and lend them-

selves to real-time monitoring which is more difficult when a database is required

for comparisons, when larger flows are required, or when rules must be applied

for identification. While effective, machine learning approaches rely on feature

extraction, selection, and engineering, a process that can be computationally ex-

pensive and typically requires a high degree of domain knowledge both in machine

learning and networking to select appropriate and relevant features for a given

algorithm. FlexHash takes advantage of both approaches by combining a hybrid

similarity hashing technique with machine learning, giving it the strength and

real-time monitoring capability using only a single packet of network traffic for

highly accurate identification, but requires no feature extraction or engineering.

Overall our work is different from existing studies in the following aspects:

118

• Our method does not depend on feature selection from the data which is

computationally expensive and requires domain knowledge.

• We mainly focus on fingerprinting homogenous (identical) devices rather

than heterogeneous (devices with different manufacturers and types) devices.

Note that the identification of homogenous devices is a complex problem

compared to the identification of heterogeneous devices as similar devices

are expected to have similar traffic characteristics.

• Our approach works when there exists traffic noise, which is an important

aspect as in real-world deployments the traffic noise is unavoidable.

• Finally our method can be tuned to fit various networks with different net-

work characteristics.

Our work addresses some of the main challenges in traffic fingerprinting such as

identification of homogenous devices, identification in noisy environments, and

feature selection from the network traffic data.

Figure 8.1: FlexHash functionality with tunable parameters

119

8.2 Hybrid LSH

To achieve identification of identical devices we develop a novel version of locality

sensitive hashing based on the approach taken by other n-gram locality sensitive

hashing schemes. It is novel in that it does not seek to measure similarity, but

uses the same approach to reduce high dimensional data, namely .pcap files using

similarity hashing, but then converts the resultant digest into a base-10 feature

vector for use with a machine learning algorithm. In addition, the static param-

eters seen in examples such as Nilsimsa are made to be adjustable with the goal

of amplifying the distinguishing characteristics of the hashes to learn individual

behaviors being carried out by otherwise identical devices as they produce network

traffic. This hashed traffic becomes a unique fingerprint, and is identified through

machine learning such that a device can reliably be identified using just a single

packet. We write this hybrid LSH scheme in Python and share it publicly at:

https://github.com/UNR-IoT-Fingerprinting/FlexHash

8.2.1 Tunable Parameters

There are implementations of the Nilsimsa hashing algorithm in various languages,

but most function in the same way that the original algorithm was designed, and

these parameters were optimized for its originally intended use as a spam email

detection tool. There are three main components of the algorithm that we have

found useful to adjust in order to bring out more detail in Iot device traffic hashes;

the sliding window, the process of producing n-grams from the data found in the

window at each step, and the length of the accumulator that the data is mapped

to. Figure 8.1 gives an overview of the entire process. In the following we consider

each of these parameters in detail.

120

8.2.1.1 Sliding Window

As with most n-gram based hashing algorithms, FlexHash utilizes a shingling

approach wherein data is read in bytes based on a sliding window of length n.

For Nilsimsa, n=5, a parameter that was chosen for efficiency in identifying spam

email. FlexHash, which is implemented in Python, allows for a variable length

to be set for n, allowing different characteristics to be captured based on the

traffic patterns and behavior of the device in question. Which window length

is best varies, as devices repetitively send unique bursts of traffic in different

packet formats. By increasing or decreasing the window size, the margins between

packets, or between segments of a packet can be blended, or generalized, to a

greater or lesser degree which allows the hash to capture unique behavior by the

device.

Figure 8.2 is a Wireshark representation of a random packet generated by a smart

plug. We know the packet contains information such as protocols used at each layer

(application, transport, IP, and network), header information, ect. and finally

payload content. Each of these is accompanied with a variety of metadata specific

to each layer. This information is seen as bytes in the figure, and the bytes are

generalized by the sliding window. Repetitions or uniqueness of these bytes can

be amplified or diminished by changing the window size. Which direction (longer

or shorter) is optimal depends on the device. To determine this and the other

parameters that provide the best results for a given device, we randomly choose

several settings then measure performance of the classifier to find the settings that

work best. Adjustable parameters and the pre-chosen values for each can be seen

in Figure 8.1.

It can also be seen in Figure 8.2 that all source and destination IP addresses and

MAC addresses have been generalized to either 1.1.1.1 or 11.11.11.11.11.11

respectively. Once these have been altered, header checksums are recalculated to

121

Table 8.1: Tunable Parameters of FlexHash

Accumulator Size (in bits) 128, 256, 512, 1024

Window Size 4, 5, 6

Combination Size [2: Window Size]

avoid unexpected bias based on these unique and easily spoofed characteristics.

However, the highlighted portion of the hexadecimal and ASCII representations of

the packet, the packet payload, still contain some device specific information. We

believe this may be key to uniquely identifying packets as belonging to a specific

device. As devices talk to one another in a network, or as they send traffic back

to the manufacturer for various reasons, they include specific information about

Figure 8.2: Wireshark representation of a single cleaned packet (.pcap) includ-
ing the hexadecimal representation of the packet contents which are processed

by FlexHash.

122

themselves, their firmware, their current location, ect. that cannot be erased or

spoofed in the packet, and that is sent consistently. Even if this data is encrypted,

it will still produce a unique hash based on the packet structure and may be

one of the reasons a classifier is able to single out individual devices based on

their network activity. This is significant as most previous studies focus on packet

structure, header details, ect. but generally igonore the actual payload of the

packet. This is also important for window size, in that based on how it is set, it

will capture more or less of this information as shingles that affect the final hash.

8.2.1.2 n-gram Size

As the sliding window progresses byte by byte across the input data file, n charac-

ters are represented in the window at each step. Nilsimsa, using a window of size

5, calculates all possible tri-grams (more specifically, all possible combinations)

from these characters before advancing. So for 5 bytes, there would be 10 pos-

sible combinations of these bytes. To expand the possibilities, FlexHash allows

for a variable number of combinations from 2 to the max size of the window; so

for a window of 7, there could be combinations of 2-7. The fhash algorithm (see

Algorithm 2) is applied to each combination mapping it to a variable length accu-

mulator. By applying all possible combination sizes, the degree to which the bytes

in the window are further shingled is affected again capturing different details in

the input data to help identify traffic as being unique to an individual device.

8.2.1.3 Accumulator Length

Finally, FlexHash allows for a variable length accumulator. As combinations are

mapped to the accumulator space, the cell are initially set to a value of 0, and as

items are mapped to cells they are incremented by 1. Once all data is processed,

the median value of all cells is calculated, then for each cell if the final value is

123

less than or equal to this median the cell is given a value of 0, otherwise it is given

a value of 1. This byte string is then converted to hexadecimal, then to binary

values between 0-255 to be used as an input feature vector for a machine learning

algorithm. Nilsimsa uses a set accumulator length of 256, but FlexHash allows

for a variable length to capture unique characteristics in the input data. We note

here that unlike the LSH approaches covered in Chapter 7, FlexHash does not

provide a similarity score. Instead it uses the hashing function of LSH to produce

a feature vector which is then passed to a classifier to produce a model for device

identification.

8.2.1.4 Visualization of FlexHash tunable parameters

In this section we demonstrate the strength of the FlexHash algorithm; hashing

parameter tuning. As discussed above, our novel algorithm allows for the adjust-

ment of variables that are pertinent to the hashing process (i.e. accumulator size,

sliding window size, and combination size). The adjustment of these values allows

FlexHash to capture more subtle aspects contained in the device network activity,

producing hashes which are more effectively identified by the machine learning

process when creating device traffic fingerprints.

To aid the reader in understanding differences in parameter settings we utilize two

types of visual aids; confusion matrices and UMAP representations [122]. A con-

fusion matrix is a tabular representation of data that illustrates the performance

of a model by displaying the counts of true positive, true negative, false positive,

and false negative predictions. This enables assessment of the model’s accuracy

and error rates across classes, and helps determine misidentification. UMAP is a

nonlinear dimensionality reduction technique used for visualizing high-dimensional

124

data in lower-dimensional space while preserving local and global structure. It fo-

cuses on finding a low-dimensional representation of data points while maintaining

their high-dimensional relationships with one another.

To demonstrate the effect of parameter tuning, we analyze the samples produced

with the best and worst hashing parameters in a set of 8 identical web cameras.

Visualizations of these samples are found in Figure 8.3, 8.5. Note that the UMAP

plots are generated with only the hashed data and have no exposure to the machine

learning model. We begin by inspecting Figure 8.3 which reflects hashes gener-

ated from sub-optimal parameters. While cam-1 achieves high performance, the

clusters of data points representing cameras 2-8 are overlapping, thus the machine

learning models struggle to accurately predict to which device a sample belongs.

In Figure 8.4 we see the result of these same parameters represented in a confu-

sion matrix. While cam-1 is correctly identified 99.71% of the time, cams 2-8 are

frequently misidentified as one of the other cameras.

In Figure 8.5 we see that by optimizing the parameter set used, FlexHash is able to

hash devices into a representation which reliably separates data points originating

from different devices into distinct spatial regions. The downstream effect of these

parameters is shown in Figure 8.6, with all devices being classified correctly 96% or

more of the time. Overall, locality-sensitive hashing removes the need for feature

engineering in device fingerprinting, while tunable hash parameters enable adap-

tation of the hashing algorithm to various sets of IoT devices, including identical

devices.

In the previous research on IoT device identification by network fingerprinting

there are two key areas where there has been little work; sample data that in-

cludes the presence of background noise, and the identification of homogeneous

(identical) devices. For a system to be useful in a live environment the inclusion

of random and IoT-specific noise is essential as these will always be present. In the

125

same way, network administrators will typically be required to manage groups of

devices that are of the same manufacturer and even the same model, as in multiple

sensors or cameras in a system. Similar to the works cited in our background study,

our previous research [121] was effective in identifying heterogeneous devices, but

was of limited use when facing homogeneous traffic. Through the tun-able pa-

rameters found in FlexHash characteristics in traffic produced by identical devices

can be isolated and amplified by adjusting parameters such as accumulator length,

ngram length, and combinations when hashing traffic. We believe this addresses

a significant gap in the previous research.

8.2.2 fhash

At each position of the sliding window all combinations of the length set by Flex-

Hash are generated. The function (fhash) multiplies the cumulative integer value

of each combination and then adds a prime number to the result to facilitate

greater hash distribution to the accumulator. The result is divided by the length

of the accumulator and the remainder (modulo) becomes the current target in-

dex. For more detail please refer to Algorithm 1. To perform optimal parameter

selection for a particular device, we run pre-chosen combinations of parameters

and test which set provides the best results. Optimal parameters vary based on

the device type, making the adjustable property of FlexHash vital to improving

accuracy and other performance metrics, especially when identifying identical de-

vices. Optimal parameters for devices found in our evaluations are 1024, 6, and

2 for accumulator, window, and combination size for smart plug and light bulb,

and 1024, 4, and 2 for web cameras. As a future work, an automated process to

predict a range of optimal parameters for a given device type would be desirable.

126

cam-1
cam-2
cam-3
cam-4
cam-5
cam-6
cam-7
cam-8

Figure 8.3: UMAP representation of cameras 1-8 to correlate with 8.4. We
see well defined clusters only in cam-1.

cam
-1

cam
-2

cam
-3

cam
-4

cam
-5

cam
-6

cam
-7

cam
-8

Predicted Labels

cam
-1

cam
-2

cam
-3

cam
-4

cam
-5

cam
-6

cam
-7

cam
-8

Tr
ue

 L
ab

el
s

99.71 % 0.04 % 0.04 % 0.05 % 0.03 % 0.05 % 0.05 % 0.02 %

2.70 % 30.60 % 17.41 % 9.40 % 9.65 % 11.07 % 10.91 % 8.27 %

2.66 % 5.95 % 50.64 % 8.49 % 8.76 % 9.44 % 7.02 % 7.04 %

2.56 % 9.18 % 18.36 % 30.38 % 8.69 % 13.72 % 9.41 % 7.71 %

2.70 % 7.91 % 17.20 % 7.72 % 36.82 % 9.68 % 8.76 % 9.22 %

2.81 % 6.53 % 17.79 % 7.59 % 10.50 % 36.66 % 10.92 % 7.20 %

2.69 % 8.50 % 16.86 % 7.90 % 8.52 % 12.13 % 34.77 % 8.64 %

2.79 % 7.42 % 18.08 % 7.31 % 12.62 % 11.44 % 10.73 % 29.60 %

Figure 8.4: With window, combination, and accumulator of size 128, 6, 6
respectively, we see that cam-1 is correctly identified, but cam-2 through cam-8

are frequently misidentified.

127

cam-1
cam-2
cam-3
cam-4
cam-5
cam-6
cam-7
cam-8

Figure 8.5: UMAP representation of cameras 1-8 to correlate with 8.6. In
this image we see with optimal parameters all cameras are well clustered.

cam
-1

cam
-2

cam
-3

cam
-4

cam
-5

cam
-6

cam
-7

cam
-8

Predicted Labels

cam
-1

cam
-2

cam
-3

cam
-4

cam
-5

cam
-6

cam
-7

cam
-8

Tr
ue

 L
ab

el
s

99.39 % 0.19 % 0.06 % 0.10 % 0.04 % 0.09 % 0.08 % 0.05 %

1.33 % 98.02 % 0.07 % 0.17 % 0.11 % 0.13 % 0.08 % 0.09 %

2.17 % 0.16 % 96.57 % 0.15 % 0.13 % 0.05 % 0.18 % 0.58 %

1.23 % 0.08 % 0.06 % 98.38 % 0.06 % 0.07 % 0.07 % 0.04 %

2.31 % 0.09 % 0.15 % 0.12 % 97.07 % 0.07 % 0.07 % 0.13 %

1.66 % 0.08 % 0.09 % 0.09 % 0.09 % 97.84 % 0.11 % 0.05 %

1.56 % 0.09 % 0.12 % 0.14 % 0.04 % 0.06 % 97.90 % 0.10 %

1.95 % 0.03 % 0.91 % 0.12 % 0.03 % 0.06 % 0.11 % 96.79 %

Figure 8.6: With window, combination, and accumulator of size 1224, 4, 2
respectively, we see that all cams are correctly identified with a high degree of

accuracy.

128

Algorithm 1 fhash

1: ngram list← current ngrams

2: total← 1
3: for each ngram do
4: total← total ∗ ngram
5: end for
6: result← total + 3
7: result← result % accumulator length

8: return result

8.2.3 Hashing traffic data

As mentioned earlier, FlexHash avoids the complexity of feature selection and in-

stead applies the entirety of a traffic data in hashed form to produce a fingerprint.

Earlier studies such as [6] [64] [79] [65] often work to capture network features

from packet headers such as protocol, packet size, packet inter-arrival time, etc.

to find distinct qualities with which to produce a recognizable uniqueness. What

is overlooked in this approach is what lies below the surface, in the message body

of the packet. We find that each packet produces traffic in which it identifies itself

in various ways as it communicates with the device manufacturer, other devices,

or other unknown IP addresses. During this activity devices often share their

MAC address, current IP address, or other details that may specifically identify

an individual device. Even if such identifying features are removed from the packet

headers during processing to avoid bias in the machine learning algorithm (as they

are in our study), information to a specific device may still appear in the encapsu-

lated message body and can be captured by a hash regardless of encryption, etc.

This is helpful when fingerprinting with LSH because the hash seeks to identify

not specific information, but similarity to other packets produced by the same

device.

129

Algorithm 2 FlexHash

1: x← window size

2: y ← ngram size

3: z ← accumulator size

4: procedure makehash(x, y, z)
5: for .pcap in file do
6: counter ← 0
7: for bytes in .pcap do
8: current← window[counter:counter+x]
9: ngramlist← current
10: procedure fhash(ngramlist)
11: return index
12: accumulator[index += 1
13: end procedure
14: end for
15: end for
16: total← 0
17: while index < z do
18: total← total + accumulator[index]
19: median← total / z
20: for accumulator[x]=0; x < z; x++ do
21: if accumulator[index] ¡ median then
22: accumulator[index]← 0
23: else if accumulator[index] ¿ median then
24: accumulator[index]← 1
25: end if
26: end for
27: end while
28: vector = []
29: counter ← 0
30: for bits in accumulator do
31: current← accumulator[counter:counter+8]
32: current← int(current)
33: vector.append← current
34: counter ← counter + 8
35: end for
36: end procedure

130

8.3 Methodology

For evaluation we focus on three categories of devices; smart plugs (Ghome Smart

Plug), smart light bulbs (General Electric CYNC Full-Color Smart Bulb), and web

cameras (YI 1080p Home Camera). Each category of device contains 8 identical

devices for a total of 24 devices as seen in Figure 8.7. Devices are connected

to the network and allowed to complete their initial setup phase and then traffic

data is collected on a resting state for 24 hours. Data is then sanitized and header

checksums are recalculated using editcap, replacing all MAC and IP addresses of

the devices with 11:11:11:11:11:11 and 1.1.1.1 respectively to avoid bias introduced

by unique addresses. Digests of each packet for each parameter combination are

generated and converted to feature vectors as described in prior sections. For

evaluation, the data was split into 80% for training and validation, and 20% for

testing. Results are measured in terms of precision (i.e., TP/(TP + FP)), recall

(i.e., TP/(TP + FN)), f1-score (i.e., 2/(1/precision + 1/recall)), and accuracy

(i.e., (TP + TN)/(TP + FP + TN + FN)) where TP, TN, FP, and FN stand for

true positive, true negative, false positive and false negative.

8.3.1 Identification of IoT Devices

The overview of the IoT device identification system is presented in Figure 8.8.

Traffic data is captured from IoT devices in a network and hashes of the traffic

data are generated with FlexHash. These hashes are converted to feature vectors

by converting each byte value in the resultant digest to base-10 numerical values

ranging from 0-255. For instance, the byte value ”FB” would be converted to the

integer value 251. These feature vectors are then passed to our device identification

system to train the underlying machine-learning model. Once a model is trained

131

Figure 8.7: Traffic data was collected from 3 categories of devices, representing
simple to complex set of devices. Each set contains 8 identical devices. Data is

collected for 24 hours.

the identification system is ready for deployment on a router or micro-controller to

serve as a gateway to a network. The device identification system will continuously

monitor traffic data by capturing periodic samples to identify known devices, new

devices joining the network, and to identify changes indicating anomalous behav-

ior. This is done by generating the digest of randomly captured traffic data in the

form of packets, converting them to numeric feature vectors, and passing them to

a pre-trained machine learning classifier.

8.3.2 Ensemble Learning

As a machine learning framework we use Autogluon-Tabular (AGT) [123] from Au-

togluon version 1.0.0. AGT is an automatic machine learning framework designed

specifically for tabular datasets, such as spreadsheets. AGT aims to simplify the

132

application of machine learning techniques for practitioners and researchers. We

elect to use this framework because it enables streamlining the use of various best

practices and machine learning strategies that lead to superior performance. The

components of AGT that make it an effective framework for our data are the use

of diverse base model types and carefully designed ensembling strategies.

AGT makes use of various well-known methods as base models. Base models are

the underlying learning strategies used by AGT for modeling the input data. Each

of these models has the capacity to perform well independently, but differences in

their behavior lead to variance in the patterns recognized. Ensembling predic-

tions from models with different perceptions of the data space leads to robust

Figure 8.8: The network traffic is continuously monitored by the device iden-
tification system. The traffic data is processed by FlexHash and converted into
feature vectors. These feature vectors are given as input to the pre-trained ML

model to identify the device that generated the traffic.

133

final predictions. Base models available are Random Forest, Extra Trees [124],

CatBoost [125], LightGBM [126], XGBoost [127], Logistic Regression, K-Nearest

Neighbors (KNN), and Neural Network. We select three base models to use in our

experiments. These are Extra Trees, LightGBM, and XGBoost. These models

were selected based on processing time and performance in preliminary experi-

ments. Extra Trees, an ensemble learning method with additional randomness,

builds multiple decision trees for predictions, potentially enhancing robustness

at the cost of increased computational expense. LightGBM, a gradient boosting

framework, prioritizes speed and efficiency with a tree-based learning approach,

particularly suitable for large datasets but potentially more sensitive to overfitting.

XGBoost, an optimized gradient boosting library, achieves exceptional perfor-

mance through regularized learning and parallel computing, necessitating careful

hyperparameter tuning.

Ensembling the predictions of multiple models leads to a reduction in the vari-

ance of a machine learning system and improved prediction accuracy [128]. AGT

provides the implementation for two important forms of ensembling: repeated k-

fold bagging and multi-layer stacking [129, 130]. Multi-layer stack ensembling is a

strategy in which the output predictions of a preliminary layer of models are used

as features or inputs to a subsequent layer. AGT’s implementation also utilizes

a form of skip connection which concatenates the original model features onto

the preliminary layer’s predictions. This technique allows the subsequent layers

of models to have an understanding of the original data space in addition to the

previous layers’ predictions. Repeated k-fold bagging is a method that randomly

splits the data into chunks and trains multiple models on different random chunks

of the available data. When making a prediction, the input data is passed through

each model and the outputs are voted on. Whichever output is most frequent is

used as the output for the group. The final model produced by AGT is a combi-

nation of 68 total models in 2 layers. All bags contain 8 copies of the base model

134

trained on different portions of the available data. The first layer (models trained

on just input data) contains 2 Extra Trees models, 3 bags of LightGBM models

with varying hyperparameters, and 1 bag of XGBoost models. The second layer is

identical to the first, except models are trained with the output predictions of the

first layer models concatenated to the original input data. AGT utilizes a method

called ensemble selection [131], which takes predictions from all available models

into account and produces a single output.

8.4 Experimental Analysis and Results

In this section, we analyze the performance of our device identification system

using FlexHash with the following experiments.

• To demonstrate the system’s ability to operate in a realistic network setting

we consider the effect of adding background noise to each data set. To achieve

this we combine device data with two types of noise: IoT noise (network

traffic of random IoT devices), and network noise (random traffic from a live

network).

• We generalize all devices into three categories: smart plug, smart bulb, or

web camera. A model is built and packets from each device are classified by

genre.

• We determine the source device of a network packet from a pool of 8 of

the same model devices. We train a model, then identify packets from that

group as belonging to a distinct individual.

• We compare individual device results to those from another popular LSH

method, namely Nilsimsa.

135

Table 8.2: Average performance in identifying device genre in the presence of
noise and without noise.

Accuracy F1 Score

Device
Without With Without With
Noise Noise Noise Noise

Smart Plugs 99.98 99.89 99.97 99.90
Smart Lights 99.88 99.41 99.92 99.57

Smart Cameras 99.99 99.98 99.99 99.98

8.4.1 Identify devices in the presence of background noise

In a live network traffic noise is inevitable, therefore it is crucial to explore system

performance in a noisy environment. This demonstrates the ability to apply device

identification techniques in a realistic network setting when monitoring for IoT

device membership or when searching for unknown devices by category. While

offering good results, many of the previous studies in this field have relied on

artificially sanitary environments made up of heterogeneous devices to perform

experimental analysis, but fail to show these systems could function in a live

network. To achieve realistic results, we introduce two types of background noise:

IoT noise (random IoT traffic from [68]) and network noise (random network

traffic from a large set of heterogeneous devices. We create hashes of the noise

data and add it to device data set labeled as either network-noise or iot-noise.

Even tested in adverse conditions, results show noise has a minimal impact on

performance demonstrating the FlexaHash systems ability to function in a live

network environment.

We begin with results for experiments with and without noise which are presented

in Tables 8.2, 8.3, and 8.4.

136

Table 8.3: Average performance in identifying identical devices from the same
category in the presence of noise and without noise.

Accuracy F1 Score

Device
Without With Without With
Noise Noise Noise Noise

Smart Plugs 85.79 85.02 85.77 84.91
Smart Bulbs 93.63 89.09 93.60 84.75
Web Cameras 97.89 98.61 97.78 98.55

8.4.2 Identify devices by genre

The identification of devices by genre enables inferring the device type for traffic

captured in real-time via a single packet. By monitoring a network and testing

random packets we can predict the likelihood that a particular packet belongs to

a genre, i.e. the packet is probably a camera, or probably a smart bulb, etc. To do

this, all 24 devices are re-labeled as either smart bulb, smart plug, or web cam-

era, and a multi-class classifier is built. The implication here is that in a network

scenario, randomly captured packets identified as being generated from some IoT

device can be further categorized as a specific device type. This is useful for inves-

tigating unknown or rogue devices on a network that could potentially compromise

security. Results for this experiment are presented in Table 8.2. Results for identi-

fication by genre are above 99% for all devices both with and without background

noise. We are also able to differentiate the noise type from known device genres,

achieving an accuracy for iot-noise above 98% and for network-noise above 97%.

Table 8.4: Comparison of average performance, FlexHash vs Nilsimsa in iden-
tifying identical devices from the same category.

Accuracy F1 Score
Device FlexHash Nilsimsa FlexHash Nilsimsa

Smart Plugs 85.79 72.97 85.77 73.27
Smart Bulbs 93.63 78.04 93.60 80.48
Web Cameras 97.89 84.74 97.78 84.66

137

Figure 8.9: Results for identification of individual devices from a group of
identical peers (plugs, lights, and cameras).

8.4.3 Identification of individual devices from identical peers

In this subsection, we work to identify an individual device from a group of iden-

tical peer devices. Instead of attempting to identify a heterogeneous set of unique

devices, we address the more challenging task of identifying clusters of identical de-

vices, a task under-explored in the literature. This type of identification is critical

in tracking device behavior and membership as there are often multiple individuals

of the same device appearing in a network. Experiments are performed both with

and without background noise and results compared.

Average results in terms of both accuracy and F1 score for this experiment are

shown in Table 8.3. We see that without background noise, web cameras achieve

138

Table 8.5: Comparison of average performance, FlexHash vs Nilsimsa in iden-
tifying identical devices from the same category.

Accuracy F1 Score
Device FlexHash Nilsimsa FlexHash Nilsimsa

Smart Plugs 85.79 72.97 85.77 73.27
Smart Bulbs 93.63 78.04 93.60 80.48
Web Cameras 97.89 84.74 97.78 84.66

an accuracy above 97% on average while smart bulbs and smart plugs achieve

results above 85% and 93% respectively. We note that in the case of smart plugs,

some imbalance was found in the data samples for a 24 hour period, with three

of the eight plugs generating considerably more traffic than the other five, possi-

bly accounting for this change in performance. Interestingly, devices with greater

complexity appear to perform better than simpler devices when identifying an

individual from identical peers. We note here that FlexHash and our device iden-

tification system achieve accuracy results in this more difficult scenario that are

either competitive or superior to results offered by other approaches in the lit-

erature while using only a single packet sample. Results per device are shown

in Figure 8.9. When running the same experiment with background noise, web

cameras, smart bulbs, and smart plugs achieve an average accuracy of 98%, 89%,

and 85% respectively. With noise added, we only see a slight degradation of per-

formance in the smart bulbs, with web cameras and smart plugs performing at

nearly an equal accuracy.

In Table 8.5 we compare the performance of FlexHash with another n-gram based

LSH method, Nilsimsa. In our previous study, we observed that Nilsimsa out-

performs other similar methods such as ssdeep [108], sdhash [109], and tlsh [110].

Thus, we can assume that better results with FlexHash over Nilsimsa will imply

better results over other hashing techniques as well. Experiments are performed

on network traffic data without background noise. FlexHash achieves an average

accuracy of 97.74%, 93.63%, and 85.79% for web cameras, smart bulbs, and smart

plugs respectively. On the same data, Nilsimsa achieves a lower performance

139

of 84.74%, 78.04%, and 72.97%. This represents a percent increase of 13.00%,

15.59%, and 12.82%. We see here that in every case FlexHash achieves a signifi-

cant increase in accuracy over Nilsimsa hashing, an indication of the effectiveness

of FlexHash’s tunable parameters.

140

Chapter 9

Conclusions and Future Work

9.1 Conclusion

There has been rapid growth around the concept of the Internet of Things with

devices such as cameras, low-powered sensors, wearable technologies, and house-

hold and industrial sensors and actuators becoming commonplace on both public

and private networks. These devices are often inter-connected to one another and

to source sites and command-control servers on the Internet. With the average

enterprise network consisting of 48% IoT devices and the average American house-

hold network hosting upwards of 20 devices, methods for tracking membership and

detecting anomalous behavior are essential for providing adequate security. In this

study we offer insights on current security issues and provide a novel approach for

tracking IoT device activity based on network traffic fingerprinting. Our method

demonstrates increased performance, provides a robust and sustainable method

for monitoring, and requires only a single packet of network data to identify de-

vices. In addition our method works in both heterogeneous and homogeneous

device clusters, can identify unknown device by genre, and performs well in the

presence of realistic background noise.

141

In Chapter 1 an introduction to the current landscape in IoT technology is pro-

vided, and we formulate a problem statement and detail our research approach.

This is followed by Chapter 2 where a history of bots on the Internet is provided

with particular attention given to recent issues with the Mirai botnet and its many

variants. An interest in this type of malicious network activity provides a foun-

dation for our research, and has lead to the various experiments and analyses we

perform.

In Chapter 4 we begin by constructing a Smart City testbed utilizing production

grade Iot in the form of a network connected programmable logic controller and

several tangible systems to allow for both education and research. The Smart

City provides hands-on access to the networking components and protocols com-

monly found in industrial IoT systems and proved to be highly useful in both

training students in their use, as well as providing a vulnerable target on which

to perform simulated attacks. This lead to further research on how best to pro-

tect modbus protocols and PLC-based systems, and perimeter security techniques

were employed to prevent future attacks. This experiment was also useful in that

it highlighted the weaknesses often found in industrial control systems and IoT in

general.

In Chapter 5 a follow-up experiment in networking testbeds was performed with

the implementation of an extensive software defined network for research and

education. The SDN testbed provides an environment for students and new re-

searchers to gain valuable hands-on experience with these cutting edge technolo-

gies, and provided a proving ground for experiments designed to aid with other

studies relating to edge computing and sensor management. The testbed was

made up of a complex network of both physical and virtual devices, including an

SDN controller, edge devices and several honeypots. Chapter 6 discusses the col-

lection and analysis of malicious traffic using a global network of honeypots for bot

traffic analysis. A network of honeypots using the Cowrie honeypot software was

142

established in Digital Ocean data centers around the globe, and a large body of

attack traffic logs were amassed, providing material for analyzing and correlating

attacks globally. It was determined from this study that a majority of malicious

bot traffic occurring during the time of the study could be traced to Mirai and

Mirai-variant botnets. This experiment lead to a closer analysis of IoT device

security and monitoring techniques through device traffic fingerprinting.

In Chapter 7 we develop a method for creating a unique fingerprints for a group of

heterogeneous IoT devices by combining locality sensitive hashing with a simple

neural network. This approach is able to identify known devices based on a clas-

sifier model using a single packet of network traffic with very high accuracy. This

novel approach opens the door for fingerprinting without the need for feature ex-

traction or engineering, and can be used to identify network devices in real time by

sampling single packets and comparing them to know devices. In addition, changes

to known devices will indicate possible compromise providing a powerful tool for

device monitoring. This work lead to several experiments in homogeneous device

identification, genre identification, and performance in the presence of background

noise which are taken up in Chapter 8. In this final work, a novel hybrid locality

sensitive hashing algorithm is developed and programmed in Python, allowing for

the adjustment of several parameters of the hashing algorithm. This allows for

tuning of device hashes that lead to the ability to identify one device among several

identical peers, an approach not yet done in the current literature. In addition,

we used this method to identify both known and unknown devices by genre, and

also added various types of background noise to demonstrate the method would be

effective as a tool in a realistic network scenario where there would inevitably be

a variety of interfering factors such as random, unidentified, and unknown traffic

from IoT and non-IoT devices. This approach then becomes the foundation of a

framework for device and network modeling for secure management.

143

9.2 Future Research Directions

There are several future study directions available in this work that were not

pursued due to time constraints. We list these here for those interested in taking

this study further, and happily invite them to do so.

9.2.1 Questions Regarding Tunable Parameters

In Section 8 we discuss the implementation of tunable parameters in the Flex-

Hash algorithm. By adjusting the sliding window length, n-gram length, and the

length of the accumulator we are able to optimize the resultant hashes for spe-

cific devices to increase the accuracy of our model when performing identification.

We randomly select a set of parameters as outlined in the chapter and test every

possible combination to see which work best. More work should be done here to

explain why certain parameters work better than others, and what part of the

hashed packets might be more or less affected by these adjustments. This would

provide for a means to predict which parameters should be chosen, and would offer

explain-ability for the improvement we see with this adjustment.

9.2.2 Further Explanation of the fhash Hashing Algorithm

In Section 8 pseudo-code for the fhash algorithm is given. This hashing algorithm

maps each of the n-grams from a given position of the sliding window to an address

in the accumulator. While effective in our case, we have given little explanation

for the mathematical underpinnings of this algorithm which would strengthen this

dissertation. In addition, more work could be done on this algorithm which may

possibly improve performance further.

144

9.2.3 Device Anomaly Detection

To show the usefulness of FlexHash for anomaly detection it would be beneficial to

take a sample of similar devices and infect some of them with a known malware,

then hash traffic from devices and develop a binary classifier to determine if a

device on the network was healthy or infected. We hypothesize that this would

work very well with our approach as even the smallest change to the operating

system on a device (i.e. a firmware update) has a significant effect on the accuracy

when identifying devices. While this was a goal for our project, it proved more

difficult than anticipated to infect a device with malware, and time constraints

prevented the completion of the experiment.

9.2.4 Questions Regarding Importance of Packet Elements

To create feature vectors for our method, network packets are saved as individual

.pcap files, and are then hashed. The question is, which part of the packet has the

greatest effect on the outcome of the hash? Is the whole packet required for good

accuracy, or is accuracy dependent on just certain parts of the packet, i.e. just the

TCP headers, or just the payload, or some combination of the various elements

available. To pursue this, packets could be broken down into their constituent

parts and experiments could be run to determine which parts have the greatest

impact.

9.2.5 Distribution Represented in UMAP

In Section 8 a UMAP representation of the spacial distribution of packets from

identical devices is given before and after parameter tuning to demonstrate the

effect of changing FlexHash parameters. The graph is made up of 8 identical

web cameras, and it can be seen that as parameters are optimized, groupings of

145

the cameras become more distinct and the associated confusion matrices show an

increase in accuracy when predicting a device. While the groupings are more dis-

tinct, there is some question about why certain parts of the UMAP representation

are still quite mixed while others are more segregated. Further explanation is

needed to explain this behavior.

9.2.6 Machine Learning Algorithm Optimization

We use AutoGluon Tabular (AGT), an ensemble learning tool for building a clas-

sifier. AGT uses several different machine learning algorithms in succession and

combination by using K-fold bagging, an approach where the outcome of one al-

gorithm becomes the input for another. In this way the optimal result is found.

Unfortunately it is essentially a black box in that we learn little about which al-

gorithms work best and why. Further research could be done here to explain why

some algorithms might work better than others, and if different algorithms may

work better for certain devices.

9.2.7 Implementation of FlexHash as a Framework

Finally, the implementation of FlexHash as a working framework that could be

applied to a live network for testing would do much to verify this work. We hy-

pothesize that with this tool network administrators could monitor known devices

on their networks, monitor for the appearance of unknown devices and identify

them by genre, and discover when devices exhibit anomalous behavior owing to

an infection by botnet code.

146

Appendix A

Publications

A.1 Published

Comparative analysis of internet topology data sets by M. Abdullah Can-

baz, Jay Thom, and Mehmet Hadi Gunes. In 2017 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), pp. 635-640. IEEE, 2017.

Analysis and prevention of security vulnerabilities in a smart city by

Ben Lupton, Mackenzie Zappe, Jay Thom, Shamik Sengupta, and Dave Feil-

Seifer. In 2022 IEEE 12th Annual Computing and Communication Workshop

and Conference (CCWC), pp. 0702-0708. IEEE, 2022.

Correlation of cyber threat intelligence data across global honeypots

by Jay Thom, Yash Shah, and Shamik Sengupta. In 2021 IEEE 11th Annual

Computing and Communication Workshop and Conference (CCWC), pp. 0766-

0772. IEEE, 2021.

Casting a wide net: An internet of things testbed for cybersecurity

education and research by Jay Thom, Tapadhir Das, Bibek Shrestha, Shamik

Sengupta, and Engin Arslan. In 2021 International Symposium on Performance

147

Evaluation of Computer and Telecommunication Systems (SPECTS), pp. 1-8.

IEEE, 2021.

Smart recon: Network traffic fingerprinting for IoT device identification

by Jay Thom, Nathan Thom, Shamik Sengupta, and Emily Hand. In 2022 IEEE

12th Annual Computing and Communication Workshop and Conference (CCWC),

pp. 0072-0079. IEEE, 2022.

Locality Sensitive Hashing for Network Traffic Fingerprinting by Nowfel

Mashnoor, Jay Thom, Abdur Rouf, Shamik Sengupta, and Batyr Charyyev. In 2023

IEEE 29th International Symposium on Local and Metropolitan Area Networks

(LANMAN), pp. 1-6. IEEE, 2023.

FlexHash-Hybrid Locality Sensitive Hashing for IoT Device Identifi-

cation by Nathan Thom, Jay Thom, Batyr Charyyev, Emily Hand, and Shamik

Sengupta. In 2024 IEEE 21st Consumer Communications Networking Conference

(CCNC), pp. 368-371. IEEE, 2024.

A.2 Submitted for Review

Flexhash: IoT Device Identification with Hybrid Locality Sensitive

Hashing by Jay Thom, Nathan Thom, Batyr Charyyev, Emily Hand, Shamik

Sengupta. Submitted to IEEE Transactions on Networking (February 2024).

148

Bibliography

[1] T. Alves, T. Morris, and S.-M. Yoo, “Securing scada applications using open-

plc with end-to-end encryption,” in 3RD ANNUAL INDUSTRIAL CON-

TROL SYSTEM SECURITY WORKSHOP (ICSS 2017), (NEW YORK),

pp. 1–6, ACM, Assoc Computing Machinery, 2017.

[2] K. Tanaka and E. Kondo, “A scalable algorithm for monte carlo localiza-

tion using an incremental (elsh)-l-2-database of high dimensional features,”

in 2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND

AUTOMATION, VOLS 1-9, (NEW YORK), pp. 2784–2791, IEEE, IEEE,

2008.

[3] D. Turnbull, “A pure python lsh nearest neighbors implementa-

tion.” https://softwaredoug.com/blog/2023/08/21/implementing-random-

projections, August 2023. Accessed: April 12, 2024.

[4] N. Pang, J. Zhang, C. Zhang, and X. Qin, “Parallel hierarchical subspace

clustering of categorical data,” IEEE transactions on computers, vol. 68,

no. 4, pp. 542–555, 2019.

[5] C. Weinschenk and J. Engebretson, “Report finds drop in number of

smart home devices per home.” https://www.telecompetitor.com/report-

finds-drop-in-number-of-smart-home-devices-per-home, August 2022. Ac-

cessed: April 12, 2024.

149

[6] Q. H. Mahmoud, “Network traffic flow based machine learning technique

for iot device identification,” in The Institute of Electrical and Electronics

Engineers, Inc. (IEEE) Conference Proceedings, (Piscataway), pp. 1–, The

Institute of Electrical and Electronics Engineers, Inc. (IEEE), 2021.

[7] G. Author, “Inside the infamous mirai iot botnet: A restrospective

analysis.” https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-

a-retrospective-analysis, September 2021. Accessed: April 12, 2022.

[8] O. klaba, “Ovh hosting suffers from record 1tbps ddos attack driven

by 150k devices.” https://it.slashdot.org/story/16/09/27/2042246/ovh-

hosting-suffers-from-record-1tbps-ddos-attack-driven-by-150k-devices,

September 2016. Accessed: April 12, 2022.

[9] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,

Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, et al., “Under-

standing the mirai botnet,” in 26th USENIX security symposium (USENIX

Security 17), pp. 1093–1110, 2017.

[10] B. Kovacs, “Over 500,000 iot devices vulnerable to mirai botnet.”

https://www.securityweek.com/over-500000-iot-devices-vulnerable-mirai-

botnet, Oct 2016. Accessed: April 15, 2024.

[11] P. Paganini, “Mirai botnet evolution since its source code is available on-

line.” https://resources.infosecinstitute.com/topic/mirai-botnet-evolution-

since-its-source-code-is-available-online/, June 2019. Accessed: April 12,

2022.

[12] B. Lingenfelter, I. Vakilinia, and S. Sengupta, “Analyzing variation among

iot botnets using medium interaction honeypots,” in 2020 10th Annual Com-

puting and Communication Workshop and Conference (CCWC), pp. 0761–

0767, IEEE, 2020.

150

[13] R. Kolcun, D. A. Popescu, V. Safronov, P. Yadav, A. M. Mandalari, Y. Xie,

R. Mortier, and H. Haddadi, “The case for retraining of ml models for iot

device identification at the edge,” arXiv.org, 2020.

[14] R. Kolcun, D. A. Popescu, V. Safronov, P. Yadav, A. M. Mandalari,

R. Mortier, and H. Haddadi, “Revisiting iot device identification,” arXiv.org,

2021.

[15] B. Charyyev and M. H. Gunes, “Iot traffic flow identification using local-

ity sensitive hashes,” in ICC 2020-2020 IEEE International Conference on

Communications (ICC), pp. 1–6, IEEE, 2020.

[16] K. Ding, C. Huo, B. Fan, S. Xiang, and C. Pan, “In defense of locality-

sensitive hashing,” IEEE transactions on neural networks and learning sys-

tems, vol. 29, no. 1, pp. 87–103, 2016.

[17] V. Satuluri and S. Parthasarathy, “Bayesian locality sensitive hashing for

fast similarity search,” arXiv preprint arXiv:1110.1328, 2011.

[18] staff, “What is the history of bots?.”

https://www.fastly.com/learning/what-is-the-history-of-bots, Jul 2022.

Accessed: April 20, 2024.

[19] J. Weizenbaum, “Eliza—a computer program for the study of natural lan-

guage communication between man and machine,” Communications of the

ACM, vol. 9, no. 1, pp. 36–45, 1966.

[20] E. Spafford, “The usenet,” in The User’s Directory of Computer Networks,

pp. 386–390, Elsevier, 1990.

[21] S. Dhenakaran and K. T. Sambanthan, “Web crawler-an overview,” Inter-

national Journal of Computer Science and Communication, vol. 2, no. 1,

pp. 265–267, 2011.

151

[22] T. Prakash, B. K. Tripathy, and K. Sharmila Banu, “Alice: A natural lan-

guage question answering system using dynamic attention and memory,”

in Soft Computing Systems: Second International Conference, ICSCS 2018,

Kollam, India, April 19–20, 2018, Revised Selected Papers 2, pp. 274–282,

Springer, 2018.

[23] P. Shukla, “The compromised devices of the carna botnet: As used for the

internet,” Proceedings of the DeepSec Conferences, vol. Special Edition: In

Depth Security, 2015.

[24] J. Nazario and T. Holz, “As the net churns: Fast-flux botnet observations,”

in 2008 3rd International Conference on Malicious and Unwanted Software

(MALWARE), pp. 24–31, IEEE, 2008.

[25] M. Baezner and P. Robin, “Stuxnet,” tech. rep., ETH Zurich, 2017.

[26] C. Cerrudo, “An emerging us (and world) threat: Cities wide open to cyber

attacks,” Securing Smart Cities, vol. 17, pp. 137–151, 2015.

[27] A. Gomez, H. Shahriar, V. Clincy, and A. Shalan, “Hands-on lab on smart

city vulnerability exploitation,” in 2020 IEEE 44th Annual Computers, Soft-

ware, and Applications Conference (COMPSAC), pp. 1777–1782, IEEE,

2020.

[28] R. Khatoun and S. Zeadally, “Cybersecurity and privacy solutions in smart

cities,” IEEE Communications Magazine, vol. 55, no. 3, pp. 51–59, 2017.

[29] R. Kitchin and M. Dodge, “The (in) security of smart cities: Vulnerabilities,

risks, mitigation, and prevention,” Journal of Urban Technology, vol. 26,

no. 2, pp. 47–65, 2019.

[30] M. M. Yamin, B. Katt, E. Torseth, V. Gkioulos, and S. J. Kowalski, “Make

it and break it: An iot smart home testbed case study,” in Proceedings of the

152

2nd International Symposium on Computer Science and Intelligent Control,

pp. 1–6, 2018.

[31] T. Nguyen, B. Lakshmanan, C. Lin, W. Sheng, Y. Gu, M. Liu, and S. Zhang,

“A miniature smart home testbed for research and education,” in 2017 IEEE

7th Annual International Conference on CYBER Technology in Automation,

Control, and Intelligent Systems (CYBER), pp. 1637–1642, IEEE, 2017.

[32] I. S. Alsukayti, “A multidimensional internet of things testbed system: De-

velopment and evaluation,” Wireless Communications and Mobile Comput-

ing, vol. 2020, pp. 1–17, 2020.

[33] M. AbdelHafeez and M. AbdelRaheem, “Assiut iot: A remotely accessible

testbed for internet of things,” in 2018 IEEE Global Conference on Internet

of Things (GCIoT), pp. 1–6, IEEE, 2018.

[34] O. A. Waraga, M. Bettayeb, Q. Nasir, and M. A. Talib, “Design and imple-

mentation of automated iot security testbed,” Computers & security, vol. 88,

p. 101648, 2020.

[35] I. A. Oyewumi, A. A. Jillepalli, P. Richardson, M. Ashrafuzzaman, B. K.

Johnson, Y. Chakhchoukh, M. A. Haney, F. T. Sheldon, and D. C. de Leon,

“Isaac: The idaho cps smart grid cybersecurity testbed,” in 2019 IEEE

Texas Power and Energy Conference (TPEC), pp. 1–6, IEEE, 2019.

[36] S. Siboni, V. Sachidananda, Y. Meidan, M. Bohadana, Y. Mathov,

S. Bhairav, A. Shabtai, and Y. Elovici, “Security testbed for internet-of-

things devices,” IEEE transactions on reliability, vol. 68, no. 1, pp. 23–44,

2018.

[37] Y. Li, X. Su, J. Riekki, T. Kanter, and R. Rahmani, “A sdn-based architec-

ture for horizontal internet of things services,” in 2016 IEEE international

conference on communications (ICC), pp. 1–7, IEEE, 2016.

153

[38] Z. Guo, Y. Hu, G. Shou, and Z. Guo, “An implementation of multi-domain

software defined networking,” in IET Conference Proceedings, (Stevenage),

The Institution of Engineering Technology, 2015.

[39] M. AbdelHafeez, A. H. Ahmed, and M. AbdelRaheem, “Design and opera-

tion of a lightweight educational testbed for internet-of-things applications,”

IEEE Internet of Things Journal, vol. 7, no. 12, pp. 11446–11459, 2020.

[40] T. Guo, D. Khoo, M. Coultis, M. Pazos-Revilla, and A. Siraj, “Iot platform

for engineering education and research (iot peer)–applications in secure and

smart manufacturing,” in 2018 IEEE/ACM Third International Conference

on Internet-of-Things Design and Implementation (IoTDI), pp. 277–278,

IEEE, 2018.

[41] P. Čeleda, J. Vykopal, V. Švábenskỳ, and K. Slav́ıček, “Kypo4industry: A

testbed for teaching cybersecurity of industrial control systems,” in Proceed-

ings of the 51st acm technical symposium on computer science education,

pp. 1026–1032, 2020.

[42] F. Sauer, M. Niedermaier, S. Kießling, and D. Merli, “Licster–a low-

cost ics security testbed for education and research,” arXiv preprint

arXiv:1910.00303, 2019.

[43] J. Munoz, F. Rincon, T. Chang, X. Vilajosana, B. Vermeulen, T. Walcar-

ius, W. Van de Meerssche, and T. Watteyne, “Opentestbed: Poor man’s iot

testbed,” in IEEE INFOCOM 2019-IEEE Conference on Computer Com-

munications Workshops (INFOCOM WKSHPS), pp. 467–471, IEEE, 2019.

[44] A. J. Raglin, D. Huang, H. Liu, and J. McCabe, “Smart ccr iot: Internet of

things testbed,” in 2019 IEEE 5th International Conference on Collaboration

and Internet Computing (CIC), pp. 232–235, IEEE, 2019.

154

[45] I. Koniaris, G. Papadimitriou, and P. Nicopolitidis, “Analysis and visual-

ization of ssh attacks using honeypots,” in Eurocon 2013, pp. 65–72, IEEE,

2013.

[46] S. Bistarelli, E. Bosimini, and F. Santini, “A report on the security of home

connections with iot and docker honeypots.,” in ITASEC, pp. 60–70, 2020.

[47] K. Finley, “Linux took over the web, now, it’s taking over the world,” Wired

Magazine, Oct 2016.

[48] J. Bennett, “The iot landscape and what it empirically looks like.”

https://ubuntu.com/blog/eclipse-2018-survey-the-iot-landscape-what-it-

empirically-looks-like, April 2018. Accessed: April 12, 2022.

[49] G. Kambourakis, C. Kolias, and A. Stavrou, “The mirai botnet and the

iot zombie armies,” in MILCOM 2017-2017 IEEE Military Communications

Conference (MILCOM), pp. 267–272, IEEE, 2017.

[50] S. Kumar, B. Janet, and R. Eswari, “Multi platform honeypot for generation

of cyber threat intelligence,” in 2019 IEEE 9th International Conference on

Advanced Computing (IACC), pp. 25–29, IEEE, 2019.

[51] A. Kyriakou and N. Sklavos, “Container-based honeypot deployment for the

analysis of malicious activity,” in 2018 Global Information Infrastructure and

Networking Symposium (GIIS), pp. 1–4, IEEE, 2018.

[52] N. Memari, S. Hashim, and K. Samsudin, “Container based virtual hon-

eynet for increased network security,” in 2015 5th National Symposium on

Information Technology: Towards New Smart World (NSITNSW), pp. 1–6,

IEEE, 2015.

155

[53] W. Cabral, C. Valli, L. Sikos, and S. Wakeling, “Review and analysis of

cowrie artefacts and their potential to be used deceptively,” in 2019 Inter-

national Conference on computational science and computational intelligence

(CSCI), pp. 166–171, IEEE, 2019.

[54] Z. Zhang, H. Esaki, and H. Ochiai, “Unveiling malicious activities in lan with

honeypot,” in 2019 4th International Conference on Information Technology

(InCIT), pp. 179–183, IEEE, 2019.

[55] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting

low-and medium-interaction honeypots at internet scale,” in 12th {USENIX}

Workshop on Offensive Technologies ({WOOT} 18), 2018.

[56] M. Nawrocki, M. Wählisch, T. C. Schmidt, C. Keil, and J. Schönfelder,

“A survey on honeypot software and data analysis,” arXiv preprint

arXiv:1608.06249, 2016.

[57] D. Fraunholz, D. Krohmer, H. D. Schotten, and C. Nogueira, “Introducing

falcom: A multifunctional high-interaction honeypot framework for indus-

trial and embedded applications,” in 2018 International Conference on Cyber

Security and Protection of Digital Services (Cyber Security), pp. 1–8, IEEE,

2018.

[58] I. Vakilinia, S. Cheung, and S. Sengupta, “Sharing susceptible passwords

as cyber threat intelligence feed,” in MILCOM 2018-2018 IEEE Military

Communications Conference (MILCOM), pp. 1–6, IEEE, 2018.

[59] L. Fan, S. Zhang, Y. Wu, Z. Wang, C. Duan, J. Li, and J. Yang, “An iot de-

vice identification method based on semi-supervised learning,” in 2020 16th

International Conference on Network and Service Management (CNSM),

pp. 1–7, IEEE, 2020.

156

[60] D. Fraunholz, M. Zimmermann, and H. D. Schotten, “An adaptive honey-

pot configuration, deployment and maintenance strategy,” in 2017 19th In-

ternational Conference on Advanced Communication Technology (ICACT),

pp. 53–57, IEEE, 2017.

[61] R. J. McCaughey, “Deception using an ssh honeypot,” tech. rep., Naval

Postgraduate School Monterey United States, 2017.

[62] J. M. Pittman, K. Hoffpauir, and N. Markle, “Primer–a tool for testing

honeypot measures of effectiveness,” arXiv preprint arXiv:2011.00582, 2020.

[63] H. Noguchi, T. Demizu, N. Hoshikawa, M. Kataoka, and Y. Yamato, “Au-

tonomous device identification architecture for internet of things,” in 2018

IEEE 4th World Forum on Internet of Things (WF-IoT), pp. 407–411,

IEEE, 2018.

[64] M. H. Mazhar and Z. Shafiq, “Characterizing smart home iot traffic in the

wild,” in 2020 IEEE/ACM Fifth International Conference on Internet-of-

Things Design and Implementation (IoTDI), pp. 203–215, IEEE, 2020.

[65] S. Aneja, N. Aneja, and M. S. Islam, “Iot device fingerprint using deep

learning,” in 2018 IEEE International Conference on Internet of Things

and Intelligence System (IOTAIS), pp. 174–179, IEEE, 2018.

[66] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O.

Tippenhauer, and Y. Elovici, “Profiliot: A machine learning approach for

iot device identification based on network traffic analysis,” in Proceedings of

the symposium on applied computing, pp. 506–509, 2017.

[67] R. R. Chowdhury, S. Aneja, N. Aneja, and E. Abas, “Network traffic analysis

based iot device identification,” in Proceedings of the 2020 the 4th Interna-

tional Conference on Big Data and Internet of Things, pp. 79–89, 2020.

157

[68] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and

S. Tarkoma, “Iot sentinel: Automated device-type identification for secu-

rity enforcement in iot,” in 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS), pp. 2177–2184, IEEE, 2017.

[69] S. Marchal, M. Miettinen, T. D. Nguyen, A.-R. Sadeghi, and N. Asokan,

“Audi: Toward autonomous iot device-type identification using periodic

communication,” IEEE Journal on Selected Areas in Communications,

vol. 37, no. 6, pp. 1402–1412, 2019.

[70] O. Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, “A machine learning

based framework for iot device identification and abnormal traffic detection,”

Transactions on Emerging Telecommunications Technologies, p. e3743, 2019.

[71] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, “Inferring iot device

types from network behavior using unsupervised clustering,” in 2019 IEEE

44th Conference on Local Computer Networks (LCN), pp. 230–233, IEEE,

2019.

[72] J. Bao, B. Hamdaoui, and W.-K. Wong, “Iot device type identification using

hybrid deep learning approach for increased iot security,” in 2020 Interna-

tional Wireless Communications and Mobile Computing (IWCMC), pp. 565–

570, IEEE, 2020.

[73] S. A. Hamad, W. E. Zhang, Q. Z. Sheng, and S. Nepal, “Iot device iden-

tification via network-flow based fingerprinting and learning,” in 2019 18th

IEEE International Conference On Trust, Security And Privacy In Comput-

ing And Communications/13th IEEE International Conference On Big Data

Science And Engineering (TrustCom/BigDataSE), pp. 103–111, IEEE, 2019.

[74] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray,

“Iotsense: Behavioral fingerprinting of iot devices,” arXiv preprint

arXiv:1804.03852, 2018.

158

[75] M. S. Gill, D. Lindskog, and P. Zavarsky, “Profiling network traffic behavior

for the purpose of anomaly-based intrusion detection,” in 2018 17th IEEE

International Conference On Trust, Security And Privacy In Computing And

Communications/12th IEEE International Conference On Big Data Science

And Engineering (TrustCom/BigDataSE), pp. 885–890, IEEE, 2018.

[76] N. Yousefnezhad, A. Malhi, and K. Främling, “Automated iot device iden-

tification based on full packet information using real-time network traffic,”

Sensors, vol. 21, no. 8, p. 2660, 2021.

[77] A. Aksoy and M. H. Gunes, “Automated iot device identification using net-

work traffic,” in ICC 2019-2019 IEEE International Conference on Commu-

nications (ICC), pp. 1–7, IEEE, 2019.

[78] N. Ammar, L. Noirie, and S. Tixeuil, “Network-protocol-based iot device

identification,” in 2019 Fourth International Conference on Fog and Mobile

Edge Computing (FMEC), pp. 204–209, IEEE, 2019.

[79] X. Feng, Q. Li, H. Wang, and L. Sun, “Acquisitional rule-based engine for

discovering internet-of-things devices,” in 27th {USENIX} Security Sympo-

sium ({USENIX} Security 18), pp. 327–341, 2018.

[80] N. Ammar, L. Noirie, and S. Tixeuil, “Autonomous identification of iot

device types based on a supervised classification,” in ICC 2020-2020 IEEE

International Conference on Communications (ICC), pp. 1–6, IEEE, 2020.

[81] J. Kotak and Y. Elovici, “Iot device identification using deep learning,” in

Computational Intelligence in Security for Information Systems Conference,

pp. 76–86, Springer, 2019.

159

[82] B. A. Desai, D. M. Divakaran, I. Nevat, G. W. Peter, and M. Gurusamy, “A

feature-ranking framework for iot device classification,” in 2019 11th Inter-

national conference on communication systems & networks (COMSNETS),

pp. 64–71, IEEE, 2019.

[83] D. Hadden, “Do smart cities improve citizen well-being,” vol. 4, pp. 389–413,

2018.

[84] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutierrez,

R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, et al., “Smartsantander:

Iot experimentation over a smart city testbed,” Computer Networks, vol. 61,

pp. 217–238, 2014.

[85] S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and P. Demeester,

“City of things: An integrated and multi-technology testbed for iot smart

city experiments,” in 2016 IEEE international smart cities conference

(ISC2), pp. 1–8, IEEE, 2016.

[86] J. Thom, T. Das, B. Shrestha, S. Sengupta, and E. Arslan, “Casting a wide

net: An internet of things testbed for cybersecurity education and research,”

in International Symposium on Performance Evaluation of Computer and

Telecommunication Systems (SPECTS), 2021, 2021.

[87] G. F. Lyon, Nmap network scanning: The official Nmap project guide to

network discovery and security scanning. Insecure, 2009.

[88] epsilonRT and Pascal, Jean, “mbpoll.”

https://github.com/epsilonrt/mbpoll. Accessed: April 21, 2024.

[89] Marty Roesch, “Snort ids.” https://www.snort.org/. Accessed: March 23,

2024.

[90] Gerald Combs, “Wireshark.” https://www.wireshark.org/. Accessed: March

21, 2024.

160

[91] Infosec and A. Yadav, “Network design: Firewall, ids/ips.”

https://resources.infosecinstitute.com/topic/network-design-firewall-

idsips/, 2020. Accessed: April 10, 2024.

[92] U. DOE, “21 steps to improve cyber security of scada networks,” 2002.

[93] U. CISA, “Ics advisory (icsa-12-102-02) koyo ecom modules vulnerabilities,”

2018.

[94] T. Alves and T. Morris, “Openplc: An iec 61,131-3 compliant open source

industrial controller for cyber security research,” vol. 78, pp. 364–379, 2018.

[95] C. Benitez, “21+ internet of things statistics, facts trends for 2024,” Feb

2023.

[96] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, “Software-defined

networking (sdn): a survey,” Security and communication networks, vol. 9,

no. 18, pp. 5803–5833, 2016.

[97] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, “Software-defined networking: A comprehensive survey,” Pro-

ceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[98] S. S. Bhunia and M. Gurusamy, “Dynamic attack detection and mitigation

in iot using sdn,” in 2017 27th International telecommunication networks

and applications conference (ITNAC), pp. 1–6, IEEE, 2017.

[99] R. Rayson, “Rayson/cowrie.” https://hub.docker.com/r/rayson/cowrie/,

January 2016. Accessed: April 12, 2022.

[100] T. D. Community, “The apache httpd server project.”

https://hub.docker.com//httpd, April2022.Accessed : April12, 2022.

161

[101] S. Stillard, “Stilliard/docker-pure-ftpd: Docker pure-ftpd server.”

https://github.com/stilliard/docker-pure-ftpd, April 2022. Accessed: April

12, 2022.

[102] W. Priesnitz Filho, C. Ribeiro, and T. Zefferer, “An ontology-based interoperabil-

ity solution for electronic-identity systems,” in 2016 IEEE International Confer-

ence on Services Computing (SCC), pp. 17–24, IEEE, 2016.

[103] M. Pirker, P. Kochberger, and S. Schwandter, “Behavioural comparison of systems

for anomaly detection,” in Proceedings of the 13th International Conference on

Availability, Reliability and Security, pp. 1–10, 2018.

[104] H. M. Kim, H. M. Song, J. W. Seo, and H. K. Kim, “Andro-simnet: Android

malware family classification using social network analysis,” in 2018 16th Annual

Conference on Privacy, Security and Trust (PST), pp. 1–8, IEEE, 2018.

[105] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati, “An open

digest-based technique for spam detection.,” in PDCS, pp. 559–564, Citeseer, 2004.

[106] M. N. Marsono, “Packet-level open-digest fingerprinting for spam detection on

middleboxes,” International Journal of Network Management, vol. 22, no. 1,

pp. 12–26, 2012.

[107] B. Charyyev and M. H. Gunes, “Locality-sensitive iot network traffic fingerprinting

for device identification,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1272–

1281, 2020.

[108] N. Sarantinos, C. Benzäıd, O. Arabiat, and A. Al-Nemrat, “Forensic malware

analysis: The value of fuzzy hashing algorithms in identifying similarities,” in

2016 IEEE Trustcom/BigDataSE/ISPA, pp. 1782–1787, IEEE, 2016.

[109] F. Breitinger and H. Baier, “Properties of a similarity preserving hash function

and their realization in sdhash,” in 2012 Information Security for South Africa,

pp. 1–8, IEEE, 2012.

162

[110] J. Oliver, C. Cheng, and Y. Chen, “Tlsh–a locality sensitive hash,” in 2013 Fourth

Cybercrime and Trustworthy Computing Workshop, pp. 7–13, IEEE, 2013.

[111] A. Andoni and P. Indyk. https://www.mit.edu/ andoni/LSH/manual.pdf, Jun

2005. Accessed: Feb. 10, 2024.

[112] A. Z. Broder, “On the resemblance and containment of documents,” in Proceed-

ings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171),

pp. 21–29, IEEE, 1997.

[113] A. Gionis, P. Indyk, R. Motwani, et al., “Similarity search in high dimensions via

hashing,” in Vldb, vol. 99, pp. 518–529, 1999.

[114] W. J. Buchanan, “Nilsimsa similarity hash.”

https://asecuritysite.com/encryption/nil, 2022. Accessed: April 12, 2022.

[115] J. Kornblum, “Identifying almost identical files using context triggered piecewise

hashing,” Digital investigation, vol. 3, pp. 91–97, 2006.

[116] V. Roussev, “An evaluation of forensic similarity hashes,” digital investigation,

vol. 8, pp. S34–S41, 2011.

[117] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A sur-

vey,” Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[118] F. Pagani, M. Dell’Amico, and D. Balzarotti, “Beyond precision and recall: under-

standing uses (and misuses) of similarity hashes in binary analysis,” in Proceedings

of the Eighth ACM Conference on Data and Application Security and Privacy,

pp. 354–365, 2018.

[119] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of brain

mechanisms,” American Journal of Psychology, vol. 76, p. 705, 1963.

163

[120] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I. W. Kwok, L. G. Ng, F. Ginhoux,

and E. W. Newell, “Dimensionality reduction for visualizing single-cell data using

umap,” Nature biotechnology, vol. 37, no. 1, pp. 38–44, 2019.

[121] J. Thom, N. Thom, S. Sengupta, and E. Hand, “Smart recon: Network traffic

fingerprinting for iot device identification,” in 2022 IEEE CCWC, pp. 0072–0079,

IEEE, 2022.

[122] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation

and projection for dimension reduction,” 2020.

[123] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola,

“Autogluon-tabular: Robust and accurate automl for structured data,” arXiv

preprint arXiv:2003.06505, 2020.

[124] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine

Learning, vol. 63, no. 1, p. 3–42, 2006.

[125] A. V. Dorogush, V. Ershov, and A. Gulin, “Catboost: gradient boosting with

categorical features support,” CoRR, vol. abs/1810.11363, 2018.

[126] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,

“Lightgbm: A highly efficient gradient boosting decision tree,” in Proceedings

of the 31st International Conference on Neural Information Processing Systems,

NIPS’17, (Red Hook, NY, USA), p. 3149–3157, Curran Associates Inc., 2017.

[127] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceed-

ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’16, (New York, NY, USA), p. 785–794, Association for

Computing Machinery, 2016.

[128] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple Classifier

Systems, (Berlin, Heidelberg), pp. 1–15, Springer Berlin Heidelberg, 2000.

164

[129] P. W. M. BAMBANG PARMANTO and H. R. DOYLE, “Reducing variance of

committee prediction with resampling techniques,” Connection Science, vol. 8,

no. 3-4, pp. 405–426, 1996.

[130] K. M. Ting and I. H. Witten, “Stacking bagged and dagged models,” in Proceedings

of the Fourteenth International Conference on Machine Learning, ICML ’97, (San

Francisco, CA, USA), p. 367–375, Morgan Kaufmann Publishers Inc., 1997.

[131] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes, “Ensemble selection from

libraries of models,” in Proceedings of the Twenty-First International Conference

on Machine Learning, ICML ’04, (New York, NY, USA), p. 18, Association for

Computing Machinery, 2004.

	Abstract
	Acknowledgement
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Dissertation Organization

	2 Background
	2.1 Bot Origins
	2.2 Proliferation and Commercialization
	2.3 Era of Advanced Botnet Techniques
	2.4 Botnets in the Age of Cyber Warfare
	2.5 Rise of IoT Botnets
	2.6 Mirai Landscape: Evolution and Diversification
	2.7 Current Problems

	3 Related Works
	3.1 Security Vulnerabilities in a Smart City
	3.2 IoT Testbeds
	3.2.1 Home IoT Testbeds
	3.2.2 Security-Specific Testbeds
	3.2.3 Software Defined Networking (SDN) Testbeds
	3.2.4 Education-Oriented Testbeds
	3.2.5 Other Testbeds

	3.3 Honeypots and Malicious Traffic Collection
	3.4 IoT Traffic Fingerprinting
	3.4.1 Temporal Features
	3.4.2 Network Protocol Features
	3.4.3 Initial Connection Phase Fingerprinting
	3.4.4 Flow-Based Feature Extraction
	3.4.5 Behavioral Fingerprinting
	3.4.6 Limited Feature Extraction/Engineering
	3.4.7 Textual Features and Data Mining

	3.5 Contribution to Current Research
	3.6 Taxonomy of Related Works on IoT Network Traffic Fingerprinting

	4 Vulnerabilities in a Smart City
	4.1 Introduction
	4.2 Background
	4.3 Methodology
	4.3.1 Vulnerabilities on the Perimeter
	4.3.2 Vulnerabilities Inside the Network
	4.3.3 Solutions for Perimeter Vulnerabilities
	4.3.4 Solutions for Inside the Network Vulnerabilities

	4.4 Results
	4.4.1 Results for Perimeter Vulnerabilities
	4.4.2 Results for Inside the Network Vulnerabilities
	4.4.3 Results for Perimeter Solutions
	4.4.4 Results for Inside the Network Solutions

	4.5 Future Solutions
	4.5.1 OpenPLC
	4.5.2 Interconnected Smart Cities

	5 A Software Defined Networking Testbed for IoT Research and Education
	5.1 Introduction
	5.2 Contributions
	5.3 System Model
	5.3.1 Smart City Controller
	5.3.2 Honeypot Devices
	5.3.3 Software Defined Networks
	5.3.4 Traffic Analysis and Network Probing

	5.4 Simulations
	5.4.1 Traffic and Flow Analysis
	5.4.2 Network Foot-printing and Honeypot Detection

	6 Utilizing Global Honeypots for Malicious Traffic Collection
	6.1 Introduction
	6.2 System Implementation
	6.3 Analysis and Insights from Cowrie Data
	6.3.1 Source IP Addresses and Port Numbers
	6.3.2 Destination IP Addresses and Port Numbers
	6.3.3 Daily Events
	6.3.4 Cowrie Sessions
	6.3.5 Usenames and Passwords
	6.3.6 Malicious Downloads

	6.4 Conclusion

	7 Heterogeneous Device Fingerprinting
	7.1 Introduction
	7.2 Locality Sensitive Hashing
	7.2.1 LSH Families
	7.2.1.1 E2 LSH
	7.2.1.2 MinHash
	7.2.1.3 SimHash
	7.2.1.4 Random Binary Projection
	7.2.1.5 K-Means LSH
	7.2.1.6 Bayesian LSH
	7.2.1.7 Hamming LSH

	7.2.2 Significant n-gram Based LSH Tools
	7.2.2.1 ssdeep
	7.2.2.2 sdhash
	7.2.2.3 tlsh
	7.2.2.4 Nilsimsa

	7.3 Methodology
	7.4 Results and Analysis

	8 Homogeneous Device Fingerprinting
	8.1 Introduction
	8.1.1 Difference of Our Study from Previous Works

	8.2 Hybrid LSH
	8.2.1 Tunable Parameters
	8.2.1.1 Sliding Window
	8.2.1.2 n-gram Size
	8.2.1.3 Accumulator Length
	8.2.1.4 Visualization of FlexHash tunable parameters

	8.2.2 fhash
	8.2.3 Hashing traffic data

	8.3 Methodology
	8.3.1 Identification of IoT Devices
	8.3.2 Ensemble Learning

	8.4 Experimental Analysis and Results
	8.4.1 Identify devices in the presence of background noise
	8.4.2 Identify devices by genre
	8.4.3 Identification of individual devices from identical peers

	9 Conclusions and Future Work
	9.1 Conclusion
	9.2 Future Research Directions
	9.2.1 Questions Regarding Tunable Parameters
	9.2.2 Further Explanation of the fhash Hashing Algorithm
	9.2.3 Device Anomaly Detection
	9.2.4 Questions Regarding Importance of Packet Elements
	9.2.5 Distribution Represented in UMAP
	9.2.6 Machine Learning Algorithm Optimization
	9.2.7 Implementation of FlexHash as a Framework

	A Publications
	A.1 Published
	A.2 Submitted for Review

	Bibliography

