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ABSTRACT 

Open pit highwall monitoring is an important part of maintaining safe mine operations. 

The current monitoring practices are ideal for tracking mass slope movements through 

round-the-clock monitoring of ground acceleration, but they are not well suited for 

quantifying the extent of damage to the highwall by mining practices like blasting or in-

situ conditions like faults and joints, which can lead to rockfall events that can harm people, 

damage equipment, and halt operations. The current monitoring practice to account for this 

gap is through in-person inspections by geotechnical engineers, which leaves the potential 

for large areas of the open pit highwall to go without coverage since there is only so much 

a human can do. There is current research focusing more on locating areas along the 

highwall where rockfall might have already happened, for example, using multispectral 

imaging, but the fracture prevalence has very few researchers looking into it. For this study, 

researchers utilized a U-Net model for image segmentation to identify cracks and fractures 

along the open pit mine highwall, aiming to enhance the current monitoring technique of 

visual inspections employed by geotechnical engineers. Unmanned aerial vehicles were 

used for data collection as they could access more of the highwall and capture high-quality 

imagery. Image annotation to label the cracks and fractures in the images was performed, 

developing the dataset needed to train a deep learning model such as U-Net. Several 

training schemes were followed to account for low amounts of data and to see which 

configuration would produce a good model for the problem at hand. Traditional edge 

detection using the canny edge detector was also used to illustrate the differences in 

prediction and workflow between deep learning methods and more traditional detection 
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methods, such as edge detection. The model trained with a mix of original and augmented 

images gave the best performance at 97% accuracy and a relatively high intersection over 

union (IoU), as well as producing segmentations close to the GroundTruth segmentation 

mask. 
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 INTRODUCTION 

Mining has been a thriving industry for many years. Throughout that time, the industry 

has undergone many transformations as new technologies emerge. Some of the 

transformations were aimed at improving safety, ore recovery, mineral recovery, and 

reducing costs. One of the biggest innovations to date has been the use of explosives. In 

large-scale mining, the most energy-consuming part of the process is rock breakage. To 

move the rock containing the ore through its beneficiation process, it needs to be 

progressively broken down into smaller chunks that can be handled by each stage of the 

process. Using explosives to break down the rock at the very beginning of the mining 

process has proven to be the most energy-efficient way to do it. 

However, the benefit of using explosives for rock breakage comes with certain 

downsides that the mining industry is always attempting to minimize. These negative 

impacts will usually couple themselves with other rock conditions that are inherent in that 

rock structure, which may lead to poor ground conditions in mining highwalls, resulting in 

rock falls and highwall stability issues. As the demand for resources grows and thus the 

need for more mining grows with it, issues like rock fall may also become all too common, 

resulting in greater challenges in the area of mine safety and efficiency. With that said, it 

is imperative that researchers in the mining industry attempt to address some of these 

current and pending challenges using modern technologies such as Artificial Intelligence 

(AI) and hardware such as unmanned aerial systems (UAS) and autonomous equipment. 

This thesis work will look to add to some of the work that has already been done here at 



2 

the University of Nevada, Reno to improve highwall and rockfall monitoring to foster 

safety and productivity in the industry. 

1.1 BACKGROUND 

Mining is an industry concerned with the extraction of minerals from the ground 

(Hartman, 2002). It is made up of four-unit operations that must be executed successfully: 

drilling, blasting, loading, and hauling. Drilling is the mechanical creation of a small 

diameter hole in the rock mass. It is done mainly for the adequate placement of explosives 

that will deliver the needed fragmentation energy (Darling, 2023). Blasting follows 

drilling, it is the release of energy from explosive compounds, which then fragment the 

rock around it. Loading and hauling involves the transportation of the blasted material from 

its current location in the pit to some destination, such as the processing plant or waste 

dumps. 

The drilling and blasting processes have the most impact on the downstream processes 

and on the safety conditions in the open pit in relation to rockfall occurrences and the 

highwall condition. These impacts will be discussed further in later chapters, but it is clear 

that as the demands on the mining industry grow, there is more need for advanced 

monitoring techniques that will assist engineers by providing more data for better decision-

making and an overall safer working environment. 

1.2 PROBLEM STATEMENT 

Securing the highwalls of a pit is an extremely important activity in any mining 

operation. The current practices of monitoring mining highwalls rely on geomechanical 

techniques that are mostly concerned with the movement of large areas of the highwall 
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slopes over time and less so on rockfalls that may be lurking. Currently, there are no 

methods that monitor the structural appearance of the highwalls to supplement the visual 

inspections conducted by engineers in their day-to-day tasks. However, with the 

uncertainty under which mining operates, it is imperative to collect as many data points 

about the mining environment as possible.  

With the emergence of new technologies like Unmanned Aerial Vehicles (UAVs) and 

Machine Learning (ML), new capabilities are being realized in the mining industry. (Ali & 

Frimpong, 2020) documents the many ways in which emerging technologies are being used 

and can be used in the mining industry now and in the future. UAVs or drones with different 

kinds of sensors are being deployed to collect data in different ways, which opens up new 

avenues of analysis to be pursued (Bamford et al., 2020). Images collected from drones 

give a new perspective to engineers about the mining environment, and those engineers 

can use that information to gain new insights about highwall conditions, pit and road 

conditions, working bench conditions, tailings ponds, and the mine site as a whole. With 

these new developments, interesting areas of research are also emerging. This thesis work 

is part of a larger project that was aimed at applying artificially intelligent systems to 

mining, with the aim to improving safety and productivity. It will look at presenting a new 

approach to determining the condition of the highwall in lieu of visual inspections by 

personnel during daily operations. The current practices only consider compliance with the 

mine designs and if there is movement of rock on the highwall in terms of accelerations 

that may lead to failures. But there is no work done on documenting the condition of the 

highwall, mainly if any fractures can be observed on the remaining highwall which may 

possibly lead to instantaneous events like rockfall. 
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1.3 RESEARCH QUESTIONS AND OBJECTIVES 

The aim of this thesis work is to examine the conditions of the remaining highwall in 

an open pit mine using computer vision methods as a way to offer more insight into the 

mining environment from the data that is being collected. This thesis looks to show how 

modern technology like drones and machine learning can be used to further the 

understanding of the mining environment and how that can give engineers a new 

perspective and improve safety conditions. In order to do this, the following research 

question must be addressed: 

1. What are the possible causes of cracks and fractures on open-pit highwalls? 

and how do they affect highwall stability? 

2. Can unmanned aerial vehicles (UAVs) imaging and deep learning be used to 

detect major and minor cracks on mine highwalls? 

1.4 SCOPE 

The work that will come from this thesis project will have the potential to be used for 

a wide range of areas in the mining industry as a whole. Still, due to limited data for this 

thesis work, the scope will be limited to demonstrating the value of this work from data 

originating from mine operations in the Reno area and some operations in Arizona. Due to 

this, special consideration may be given during this work to mining practices and 

geological conditions found in this area, which may not be applicable elsewhere.  

With that in mind, the following areas will be explored: 

• Reviewing of literature on rockfall, highwall stability, and factors such as rock 

mass properties and blasting practices that affect it. 
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• Review literature on machine learning, and computer vision, how they are used 

in the mining industry, and how it applies to this work. 

• Review literature on the use of drones as an imaging technique in the mining 

industry. 

• Data collection and image processing. 

• Pre-process images for machine learning or deep learning algorithms. 

• Train a machine learning deep learning model on highwall images to detect 

fractures. 

1.5 REPORT OUTLINE 

This section will complete the introduction chapter and give an overview of what to 

expect in the rest of this thesis document. Chapter 2 consists of literature review on open 

pit mining methods, highwall stability, factors that affect it, machine learning, image 

processing, and computer vision. It will also provide information on the use of drone 

technology and photogrammetry in collecting data at mining operations. It will give the 

reader a chance to get familiar with some of the topics that will be discussed in later 

chapters and also provide valid reasoning for the necessity of the work. Chapter 3 will dive 

into how data was collected, the drone technology used, the software used for data 

collection and processing, and the site locations that were appropriate. The methodology 

followed to pre-process the images collected, and the machine learning models coded to 

train and make predictions will be discussed in Chapter 4. The results and performance of 

the models, together with important discussion points will also be in Chapter 4. Chapter 5 

will close off the document with the conclusion and any future work that can be pursued. 
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 LITERATURE REVIEW 

This chapter will look at the literature that is available and relevant to the topics that 

will come up in this thesis work. Open pit mining methods will be looked at, and how 

highwalls are formed and managed in that setting. Drill and blasting practices, highwall 

monitoring, and other relevant monitoring techniques will be considered. The use of drones 

in modern survey methods and how they give mine operations a new perspective on their 

mine environment will be discussed. The fundamentals of Artificial Intelligence and 

Machine Learning will be discussed. The impact that these new technologies have on mine 

operations in the areas of geomechanical, drilling and blasting, and the monitoring 

techniques that come with them. 

2.1 OPEN-PIT MINING PRACTICES 

Selecting a mining method is an important part of the mine feasibility study. Open-pit 

mining as one possible mining method, is the extraction of valuable ore by accessing it on 

the surface of the earth. The orebody is mined from the top down in a series of horizontal 

layers of uniform thickness called benches (Sjöberg, 1996). As each bench is mined to 

exhaustion, a vertical cut called the bench face is left behind. The combination of all these 

bench faces as the orebody is mined to the bottom elevation makes up the highwall of the 

open pit. The bench face and the highwall both have to be sloped at certain angles to 

maintain the structural integrity of the open pit.  

These slope angles are determined by geomechanical engineers based on several data 

points collected in the area. Rock mass properties, structural geology features such as faults 

and shear zones (Osasan & Afeni, 2010), groundwater content, alterations in the orebodies, 
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and other in-situ rock stresses. All of these points of interest in the area to be mined are 

then incorporated into the open pit designs or mine plans by mining engineers. As 

mentioned above, the structural integrity of the open pit, which is achieved through the 

stability of the highwall, is of great importance, and the subsequent mining processes of 

drilling, blasting, loading, and hauling have to be in line with the design parameters.  

2.2 DRILLING AND BLASTING 

Drilling is the first step in the mining process. It is the creation of a small diameter hole 

in the area of interest, in which explosives are placed. Drilling is done mainly for the 

placement of explosive material in order to deliver fragmentation energy precisely where 

it is needed (Darling, 2023). There are a number of considerations to account for when 

creating a drilling plan, and most have to do with the rock mass properties, geologic 

structures, and the economics of it all. The rock mass properties will dictate the drillability 

of the rock. Drillability of rock means the actual or projected rate of penetration in a given 

rock. It is a combination of several factors related to rock properties such as density, 

compressive strength, tensile strength, hardness, toughness, brittleness, coefficient of 

internal friction, and abrasiveness (Nunoo et al., 2016). Drillability will affect the types of 

drilling equipment used to achieve the depth of drillholes, the diameter of drillholes, and 

the time frame in which to achieve this. 

After drilling, blasting is the next stage. Blasting is a chemical, physical, and 

mechanical process that involves the initiation of explosives for the purpose of breaking 

in-situ or large rocks into smaller rocks in a mining or construction setting (Girard & 

McHugh, 2000) and the demolition of buildings in the construction industry. Explosive 
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material deposited in a blast will generate a high volume of gases and a huge amount of 

heat within a short period of time in a confined space (blasthole). This results in a high-

pressure environment in the blasthole, which is exerted on the surrounding rock (Nunoo et 

al., 2016). The combination of high pressure, confinement, and heat will lead to the 

development of cracks and rock breakage. 

Drilling and blasting (D&B) has one main goal, which is to generate broken rock at 

the fragmentation needed for downstream mining processes such as loading and hauling, 

comminution (crushing and grinding), and mineral concentration processes like flotation. 

In pursuit of this fragmentation, other outcomes are also considered in order to ensure 

future operations are not impacted. Before D&B operations begin, a mine plan is drawn up 

that will be followed to ensure that the right material, through the proper sequencing, is 

drilled, blasted, and hauled to downstream processes. Thus, apart from reaching the desired 

fragmentation, achieving the drawn-out mine plan is an important goal. Drilling and 

blasting has other outcomes apart from fragmentation, that affect how a drilling and 

blasting operation is conducted. These outcomes will usually have an impact on the ground 

conditions around the pit, so it is important to know about them and control for them in the 

D&B process. These outcomes will be discussed in more detail in later sections. 

2.3 LOADING AND HAULING 

Following drilling and blasting is the load and haul process. This is another unit 

operation in mining (Hartman & Mutmansky, 2002) that involves the transportation of 

blasted material, ore or waste, from the mining area to the process plant or to waste dumps. 

In large scale open pit operations, the most common equipment used in load and haul 
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operations is the shovel and haul trucks. Shovels are the typical loading units (Darling, 

2023), they scoop up the blasted material from the ground and load it into haul trucks, 

which will then transport that material to another destination, usually outside the open pit. 

Just as is the case with blasting, loading and hauling also play a role in the condition of the 

highwall during mining, but their role is a secondary impact born from the outcomes of 

drilling and blasting. These will be discussed in more detail in the section below. 

2.4 IMPACTS OF UNIT MINING OPERATIONS ON HIGHWALL 

CONDITIONS 

As mentioned above, the unit operations of drilling and blasting, loading and hauling 

have some impact on the mine highwall. To understand how these unit operations may 

affect the highwall condition, it’s important to understand the in-situ conditions before 

mining operations begin. Prior to the start of mining, exploration is carried out to determine 

the condition of the ground on which mining will occur. The information gained from this 

will be used to inform many activities, including the type of drilling and blasting that is 

done to fragment the rock. However, due to the diverse nature of rock mass properties, it 

is hard to precisely determine what the outcome of any drill and blast plan will be and how 

it will affect the remaining highwall. 

Backbreak is one of the major outcomes of D&B, it refers to the excess breakage of 

rock induced by blasting past a certain limit, which is usually the last row of drillholes (S. 

Kumar et al., 2022).  When a section of highwall experiences a significant amount of 

backbreak, it weakens the area, leading to over mining of the area by the shovels or loose 

material primed to result in a rockfall event. Backbreak can occur as a result of poor blast 
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planning from an engineering standpoint or due to the presence of excessive geologic 

structures in the ground. Geologic structures are features and arrangements within Earth's 

crust that result from the deformation and movement of rocks over geological time, these 

include faults, folds, joints, and shear zones, just to name a few. Blast induces ground 

vibrations throughout the surrounding rock, and this may also lead to fractures and loose 

rocks along the highwall. Table 1 below outlines some of the damage that can be observed 

at different levels on the bench highwall after blasting. 

Table 1 Levels of damage to pit walls produced by blasting(Carlos et al., 1987) 
Arbitrary damage 

level Observed conditions of the wall 

 Joints & blocks Dip angle appearance and conditions of 
face 

Digging condition at 
face 

1. Slight  >75°  

 Joints closed, infilling still 
welded 

If used, semi-circular sections of wall 
control holes seen 

Scars of shovel teeth 
seem in softer 
formation, further 
digging not practical 

2. Moderate  >65°  

 
Weak joint infilling is 
broken, occasional blocks 
and joints slightly displaced 

Face is smooth, some hole sections 
seen. Mine cracks 

Some free digging 
possible, but teeth 
'chatter' 

3. Heavy  >65°  

 Some joints dislocated and 
displaced 

Minor spalls from face. Radial cracking 
seen 

free digging possible 
>5ft with some 
effort 

4. Severe  >55°  

 
Face shattered, joints 
dislocated. Some blocks 
disoriented 

Face irregular, some spalls, some 
backbreak cracks 

free digging possible 
<10ft 

5. Extreme  55°>37°  

 
Blocks dislocated and 
disoriented, blast-induced 
fines observed 

Face highly irregular, heavy spalling 
from face, large backbreak cracks 

Extensive free 
digging possible 
>10ft 

 

From the Table 1 above, it is evident that a pit highwall can experience different 

degrees of damage from blasting, and the structural geology features present in that area of 

the blast will affect the extent of the blasting and excavation impact. Because of the damage 

that the highwall can endure from basic mining operations, monitoring these highwalls is 
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an important part of the safety processes in open pit mining. This is part of the motivation 

for this thesis work, it will help engineers better determine, in a more efficient way, the 

level to which the highwall may be damaged and thus tailor operations in that area to 

compensate for that. The next section will get into the current monitoring methods being 

used in the industry. 

2.5 GEOMECHANICAL MONITORING 

In open pit mining, the area of geomechanical engineering is of great importance to the 

safety of people and equipment, and to ensuring that future operations in the area of the pit 

are not impacted by current actions. To be able to achieve these objectives, monitoring, 

which is a significant part of the geomechanical team in mining, has to be conducted at all 

times. (Sjöberg, 1996) indicates that the hallmark of a good monitoring system should 

focus on maintaining safe operational practices, providing advanced notice of instabilities, 

and providing additional geotechnical information regarding slope behavior in the open pit. 

Slope monitoring techniques can be categorized in different ways, (Sjöberg, 1996) 

indicates that there are two such categories, namely surface and subsurface measurements. 

However, a more recent publication (Osasan & Afeni, 2010) shows that there can actually 

be three categories to group the monitoring techniques, these are visual inspections, 

surface/subsurface measurements, and remote monitoring. This goes to show that as new 

technologies come on board, new and improved methods of operations will be discovered. 

2.5.1 SURFACE MEASUREMENTS 

Surface measurements in geomechanical and geotechnical settings involve some 

techniques and equipment placed on the earth’s surface, be it on highwalls, benches, or 
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haul roads. These equipment and techniques are mainly for the measurement of rock slope 

geometry and rock movement that may be occurring undetected. Survey Network, tension 

crack mapping, surface wire extensometers (Osasan & Afeni, 2010; Sjöberg, 1996), and 

the equipment used includes total stations, prisms, radar, laser scanners, terrestrial lidar, 

and wireline extensometers (Nunoo et al., 2016). 

A survey network refers to a combination of target prisms strategically placed around 

the pit highwalls in and around areas where instabilities can be expected, and one or several 

non-moving control points for the survey stations (Girard & McHugh, 2000). The way the 

system works is that angles and distances between the survey station and the target prisms 

are measured periodically to establish a record of the movement of the slopes or highwall. 

Drastic changes in movement of the different slopes in the pit can then be noted as they 

occur, and warnings can go out as promptly as possible. 

Tension crack mapping is another important practice in slope monitoring. Tension 

cracks usually occur at the crest of slopes or highwalls, and they indicate that the tensile 

stress in that area exceeds the tensile strength of the rock. Changes in crack width and 

direction have to be monitored and measured to determine crack propagation and establish 

the extent of the unstable area (Girard & McHugh, 2000; Osasan & Afeni, 2010). Wire 

extensometers are also another informative way of monitoring slopes. They are instruments 

that monitor the deformation or displacement of rock under various loads or conditions 

(Extensometers, 2023). The portable wireline extensometer is a common method of 

measuring movement across tension cracks. The usual setup is made up of a wire anchored 

on the unstable side of the ground, and a monitor and pulley station located on the stable 
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side, behind the tension crack (Girard & McHugh, 2000). As the unstable ground moves 

away from the pulley system, the displacement on the wire can be recorded. 

There are a number of other methods that are being employed for surface 

measurements, and they rely heavily on new technology coming into the market. These 

include radar monitoring devices such as slope stability radar (SSR), terrestrial laser 

scanning (N. Q. Long et al., 2018), and InSAR systems that continuously scan and compare 

high-resolution measurements of slope face for any movement, no matter how small 

(Nunoo et al., 2016). 

2.5.2 SUBSURFACE MEASUREMENTS 

These types of measurements are usually gathered with equipment placed below the 

surface of the ground, sometimes in boreholes, to gather data on water content, pressure, 

and any subsurface rock movement that may be occurring. The equipment that is used 

includes piezometers, inclinometers, and borehole extensometers. 

Piezometers are a class of instruments used for measuring groundwater pressure and 

water levels (Darling, 2023). The stability of highwalls can be negatively affected by the 

presence of groundwater. Water pressure can reduce the shear strength of failure surfaces 

and increase forces that induce sliding in tension cracks. Freeze-thaw cycles can increase 

the weathering of rock, which may lead to further instability (Wyllie & Mah, 2017). 

Piezometers will specifically measure pore pressure and can assist in evaluating the 

performance of mine dewatering programs and any impacts from seasonal variations 

(Girard & McHugh, 2000). 

Inclinometers are devices used to measure any underground movement of rock. The 

structures of an inclinometers consist of a casing that is inserted into the ground in the 
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region where movements are expected, with the assumption that the end of the casing is 

immovable. To determine any movement, the lateral profile of displacement can be 

calculated from sensor data (Girard & McHugh, 2000), and it can be established whether 

the movement is constant, accelerating, or responding to any remedies (Osasan & Afeni, 

2010).  

A borehole extensometer is a device comprised of tensioned rods anchored at various 

intervals down the borehole. The displacement of the rock mass is quantified by measuring 

variations in the distance between the anchor and the rod head. 

2.5.3 VISUAL INSPECTIONS 

This method of slope monitoring is the least technically involved. It relies on the 

geotechnical/geomechanical engineer to carry out routine inspections of the pit, 

accessways, highwalls, and crests that are close to working areas and may pose a potential 

danger to people, equipment, and mine operations (Osasan & Afeni, 2010). Equipment 

operators and mine supervisors are also vital members of the efforts of visual inspections, 

they spend more time throughout the day in the pit than most people and thus could provide 

valuable insight. As inspections are carried out, the current inspection is compared to the 

previous one, and any changes that may be detrimental to slope stability should be noted. 

With the advance of new technologies like survey drones, more accurate camera sensors, 

and photogrammetry, this area of slope monitoring can benefit a lot from using these to 

reach areas of the pit that may be out of reach by engineers, equipment operators, and 

supervisors. It is in this area that this thesis work may contribute. 
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2.6 UNMANNED AERIAL VEHICLES (UAVs) IN THE MINING INDUSTRY 

The use of drones has grown across a number of industries as shown in Figure 1. 

Drones can be applied to several industries for diverse tasks. Military and space exploration 

are the two main areas where unmanned vehicles of any kind have been widely used, and 

because of the incredible progress made in those industries, other industries such as mining, 

agriculture, construction, and wildlife management, just to name a few, have been able to 

adopt this technology and flourish. 

 
Figure 1 Different types of applications for UAVs (Darvishpoor et al., 2020) 

 

When it comes to the mining industry specifically, drones have seen a wide range of 

applications. Unmanned aerial vehicles (UAVs) have the capacity to carry many payloads, 

including cameras with differing optical capabilities, thermal sensors, multispectral 

imaging cameras, and geophysical instruments like magnetic and radiation sensors. This 
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versatility allows drones to be used for several purposes, including topographic mapping, 

stockpile volumetric surveys, and monitoring tasks such as slope stability surveys, tailings 

dams, and haul road surveys (Park & Choi, 2020). From these diverse capabilities, UAVs 

have been applied to three main functions of mine operations including topographic 

surveys, image data collection, and video data collection. The data collected from these 

three main functions can then be used to gain valuable insights into different stages in the 

life of a mine. The life of a mine is divided into five main stages, namely prospecting, 

exploration, development, exploitation, and reclamation, and in all these different stages 

the use of drone technology has been well documented.  

Prospecting refers to the search for ores or other valuable minerals like coal and non-

metallics (Hartman, 2002). It is divided into direct and indirect methods of determining the 

presence of minerals. The direct methods rely on physical geologic methods, where ore 

deposits can be visually examined as outcrops on loose fragments on the surface of the 

ground. The more valuable methods of prospecting are the indirect methods, which rely 

more on the science of geophysics and can be used to detect anomalies using physical 

measurements of seismic, gravitational, magnetic, electrical, electromagnetic, and 

radiometric variability of the earth. All these methods can be applied in many ways, one of 

them being through the air in terms of aerial photography to make geologic and 

photographic maps and airborne geophysics. In the past, larger aircraft were tasked with 

doing these duties, which are expensive and inconvenient in some areas, but drones are 

taking over those duties. (Eskandari et al., 2023) used a DJI Phantom 4 Pro UAV seen in 

Figure 2, to overcome terrain challenges when prospecting and exploring for podiform 

chromite deposits.  
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Figure 2 (A) a Mavic Matrice 600 Pro Hexacopter drone; (B) static drone position with the magnetometer 

hanging below; (C) base magnetometer for diurnal corrections (Porras et al., 2021) 
 

The UAV allowed them to survey and acquire geotagged images which can be used 

for geologic mapping. (Porras et al., 2021) used drone magnetic surveys to detect the 

mineralization of copper, cobalt, and nickel in the Estancias mountain range of Betic in 

Spain. They relied on the DJI Matrice 600 Pro drone, with a mounted payload of a vapor 

magnetometer. The geophysical survey gave researchers valuable data about the mining 

potential of the area, and how future research activities should be designed there. 

In the exploration stage, the objective is to further define the extent and value of the 

ore. It involves a lot of drilling, collecting assay samples for testing, estimating tonnages 

and ore grade, and making decisions on whether or not to abandon a project or move into 

the development phase (Hartman, 2002). Much like prospecting, the application of drones 

in exploration is mainly for image data collection, different kinds of camera sensors are 

used depending on the quality of image resolution required and the carrying capacity of the 

drone among others. (Park & Choi, 2020) outlines how UAVs employed in mineral 

exploration may be classified into two categories based on the type of data they collect: 

geological and structural study through remote sensing, and airborne geophysical 
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investigation. Remote sensing is a science discipline that encompasses the acquisition, 

processing, and interpretation of images and associated data. These images and data are 

obtained from aircraft and satellites, and they capture the intricate interplay between matter 

and electromagnetic radiation (Sabins, 1999). A novel approach for the automated 

lithological categorization of open pit mines employing tiny unmanned aerial vehicles 

(UAVs) and machine learning (ML) algorithms was proposed by Brazilian researchers. 

They used a red, green, and blue (RGB) camera to capture images and initially classified 

materials according to visible geological features. They then coupled this with ML 

techniques such as k-nearest neighbour (KNN), random forest (RF), and support vector 

machine to name a few to produce a more precise method of classification as compared to 

manual classification (Beretta et al., 2019). (Heincke et al., 2019) endeavoured to create a 

multi-sensor unmanned aerial system (UAS) with the ability to collect magnetic and 

hyperspectral data. Using both fixed-wing and multi-copter UAVs, their objectives were 

to use the magnetic surveys to trace sub-vertical carbonatite veins in the area covered by 

overburden, establish if any, the relationship between those veins and the main mineralogy 

of the area, and through hyperspectral imaging identify possible manifestation of rare-earth 

elements in test outcrop areas.  

Mine development is about opening up the orebody so that it is primed for exploitation, 

it involves setting up the required infrastructure and stripping the overburden to expose the 

ore. Mineral exploitation is the fourth stage of mining and refers to the actual recovery of 

the mineral from the earth. Traditional exploitation or mining methods fall into two 

categories; Surface or underground depending on the economics, geologic conditions, 

safety, available technology, and the orientation of the orebody (Hartman, 2002). The 
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exploitation stage of mining is usually the longest stage in the life of a mine and it is in this 

stage that the most use from UAVs can be assessed. Table 2 below outlines the areas of 

activity where drones are being deployed in the mining industry, it is evident that the same 

type of data can be used for different objectives.  

Table 2 Use of Unmanned Aerial Vehicles/Systems in Mining (Lee & Choi, 2016; Shahmoradi et al., 2020) 
Area of 

Operation Type Objective Data Type 

Mine 
Technical 

Mine Survey 
Pit Progression 

Topographic Survey - 3D 
Model, Pointcloud 

Dump and Stockpile 
management 

Drill and Blast 

Drill pattern design 
Blast monitoring: Flyrock, dust, 

misfires Image and Video 
Post blast surveys 

Material 
Handling 

(Truck and 
Shovel 

Planning) 

Run-Off-Mine (ROM) 
management 

Topographic Survey - 3D 
Model, Pointcloud 

Material Sources and 
Destinations  

Truck and Shovel material 
allocation 

Ore Control 
Drillhole sampling 

Aerial Photographs - 
Orthomosaic, drillhole 

survey  

Shotmuck Inventory Topographic Survey - 
Pointcloud 

Reconciliation 
Volumetric calculations Topographic Survey - 

Pointcloud ROM management 

Mine 
Operations 

Dispatch 

Fleet management Topographic Survey - 3D 
Model 

Haulage systems Topographic Survey - 3D 
Model, Pointcloud 

Water management 
Aerial Photographs - 

Orthomosaic, Image and 
Video 

Mine Safety 

Slope stability assessment Topographic Survey - 
Pointcloud, 3D model Road maintenance 

Emergency management 
Aerial Photographs - 

Orthomosaic, Image and 
Video 
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In the area of drill and blast specifically, there are several researchers working on 

creating workflows around the use of UAVs. (Bamford, Medinac, et al., n.d.) concluded, 

after reviewing many research papers and work being done in the D&B that it can 

categorized into pre-blast monitoring, which concentrates on providing accurate 

information on the area to be blasted in terms of the ground’s structural condition and the 

accuracy of drillhole placement. Following pre-blast monitoring is blast monitoring which 

occurs at the moment of firing the explosives. It involves the use of UAVs equipped with 

high-speed cameras to capture blasts as they occur and later analyze them possible misfires, 

Flyrock events, and dust spread. Post-blast monitoring as the final monitoring stage 

involves using UAVs for fragmentation analysis and assessment of the remaining 

highwalls so that improvements can be made to subsequent blast designs if needed. Table 

3 below outlines some of the areas in drill and blast where drones have been implemented. 

Table 3 Use of UAVs in drilling and blasting 
Research Area Drones Used Payload Attached Monitoring Papers 

Bench structural 
geology 

UAV 
(unspecified) 

RGB Camera Pre and Post 
blast 

(Stewart & 
Wiseman, 2017) 

Topographic Survey DJI Phantom 3 RGB Camera, 
RTK 

Pre and Post 
Blast 

(Beretta et al., 
2018)  

DJI Phantom 4 RGB Camera 
  

Topographic Survey Sensefly eBee 
drone 

RGB Camera Pre and Post 
Blast 

(Wiegand, 2016) 

Drilling accuracy DJI Phantom 4 
Pro 

GPS RGB Camera Pre-
blasting 

(Mueller, n.d.) 

Ground Vibrations DJI Phantom 4 
Pro 

GPS RGB Camera During Blast (Bui et al., 2020) 

Rock Fragmentation DJI Phantom 3 RGB Camera Post Blast (Tamir et al., 2017) 

Rock Fragmentation Parrot Bebop 2 RGB Camera Post Blast (Bamford, 
Esmaeili, et al., 

n.d.) 
Rock Fragmentation DJI Phantom 4 

Pro 
camera Post Blast (Valencia et al., 

2019)  
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2.7 ARTIFICIAL INTELLIGENCE IN THE MINING INDUSTRY 

Artificial intelligence (AI) refers to the interdisciplinary field that encompasses the 

scientific and technical aspects involved in the development of intelligent machines, with 

a particular focus on intelligent computer programs. AI is closely connected to the 

analogous endeavour of employing computers to comprehend human intellect. However, 

AI is not obligated to limit its approach to methodologies that are biologically perceptible 

(Mccarthy, 2007). It combines computer science and robust datasets to enable human-like 

problem-solving (WHAT IS ARTIFICIAL INTELLIGENCE?). AI can be categorized as 

strong or weak AI. Weak AI is the driver of most of the AI advancements in the world 

today (What Is Artificial Intelligence (AI)?, 2023) where an AI is used to solve a specific 

problem or task. Under the umbrella of AI, several technologies have been created or 

improved upon with AI such as machine learning and deep learning as seen in Figure 3 

below. Machine learning is a class of AI that gives computers the ability to learn from large 

amounts of data without any explicit instructions or program that allows them to do so 

(Machine Learning, Explained, 2023). Machine learning is centered around two 

interconnected inquiries: How can one develop computer systems that possess the ability 

to enhance their performance autonomously via accumulated experience? And what are the 

underlying principles of statistical computation and information theory that control the 

functioning of learning systems, including computers, humans, and organizations? (Jordan 

& Mitchell, 2015). 
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Figure 3 Relationship between artificial intelligence, machine learning, and deep learning 

 

By addressing these two questions, computer scientists have come up with a 

technology in machine learning that can be applied to various problems by using large 

amounts of data and statistical techniques. To be able to accomplish this task, a machine 

learning model uses certain algorithms that are suited for the task at hand. An algorithm 

may be described as a precisely defined computational procedure that accepts one or more 

values as input and generates one or more values as output within a limited duration. An 

algorithm may be defined as a series of computer operations that systematically convert 

the given input into the desired output(Cormen et al., 2022). Regression models, decision 

trees, random forest, and neural networks are just some of the algorithms that are used in 

ML models(datascience@berkeley, 2020).  

The neural network algorithm is among the more popular algorithms used in ML, it 

mimics the functionality of the human brain by using a large number of linked processing 



23 

nodes to run information through which makes it suitable for pattern recognition, image or 

related visual data processing, and other recognition functions.  

In recent years the mining industry has ventured into using AI and machine learning 

methods to enhance process understanding to better informed the decision making. In the 

day to day of a mine operation, there is a large amount of data being produced and 

historically this data has been stored without anyway of using it efficiently. By tapping into 

the concepts of AI, mine operations have the opportunity to gain new insights into the 

interconnectedness of their operations. 

 At the very beginning of mining, there is a great push to understand as much about the 

ground as possible, this is done through prospecting and mineral exploration where 

geophysical, geochemical, and aerial photography data is collected initially and then 

followed by different sampling methods such as drilling and excavations (Hartman & 

Mutmansky, 2002). In the past, these mine operators relied on statistical methods to analyse 

the data, but now research is shifting to more advanced AI methods. (Acosta et al., 2019) 

designed an ML framework to use a combination of hyperspectral data and high-resolution 

mineralogical data to map minerals on exploration drill cores. The cores are collected in 

100s of feet and then sectioned into 3 ft cylindrical sections. The current methodology is 

to analyze the total length of these cores to determine mineral presence, which is resource 

consuming. The framework proposed in the research entails using hyperspectral image data 

obtained from some of the cores, combined with scanning electron microscope (SEM) 

images that contain mineralogy data as a classification mask to predict the mineralogy of 

the rest of the drill core length. Random forest and support vector machines are the ML 

algorithms used here and they produced good predictions according to the publication, 
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producing an image than can be analyzed to produce an image that displays mineralogy 

data. Another researcher investigated the use of drill core images to determine the Rock 

Quality Designation (RQD) of the rock mass as shown on Figure 4. RQD is a measure of 

the proportion of the core length that is recovered in pieces greater than 10 cm (3.93 

inches), relative to the entire length of the core drilled during a particular operation (Carlos 

et al., 1987), it is an important metric in mining used to determine how intact the ground is 

and thus how mining operations should be conducted. 

 
Figure 4 Procedure of creating small square images (SSIs) to train and test the CNN model: (a) input tray 
image with core depth of each row of the tray shown on the vertical axis; (b) Illustration of row depth 
detection, row separation, and defining the SSIs; (c) manually labelled SSIs from the two classes. In this 
example, seven depths were detected using OCR and thus the tray was separated into seven rows (F. 
Alzubaidi, Mostaghimi, et al., 2022) 
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The researchers in this study used a standard convolutional neural network (CNN), 

which will be described in more details in later chapters, made up of four convolutional 

layers, one fully connected layer and an output layer. They also employed hyperparameter 

optimization which is a great way to determine the best user selected parameters for setting 

up the CNN model.  

As a mining operation develops onto the production stage, there are more opportunities 

to apply machine learning and deep learning technology. Drilling and blasting is one of the 

areas in mine operations were several ML techniques have been applied to attempt to 

correlate the controllable input parameters of D&B such as burden and spacing, drillhole 

depth, blasthole diameter, stemming length, and drilling pattern, with the outputs such as 

fragmentation, ground vibrations, muckpile geometry, airblast, and backbreak (Carlos et 

al., 1987) in order to optimizer parameter selection. Often times the values set for these 

parameters are not achieved during execution in the field, drillholes might be drilled short, 

or in wrong location and angle, amount of explosives used might be excess, or blastholes 

may not be properly confined due to short stemming column. (Valencia et al., 2022) 

Investigated the use of support vector machines and CNNs to detect the exact location of 

drillholes from images and compare these results with the what was designed. This assists 

engineers determine if the as drilled drillholes match up to the design parameters so that 

they can adjust the other parameters such as amount of explosives used, to ensure that the 

designed output is still achieved, drilling errors withstanding. Fragmentation is the most 

important outcome of D&B that has a great impact on the downstream operation, so it is 

imperative to have an accurate determination of how well a blasting instance fragmented 

the rock. One research group (Yaghoobi et al., 2019) used a multi-layer perceptron (MLP) 
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neural network to determine the fragmentation distribution after a blast. Instead of using 

images directly in the ML model, they used feature extraction methods such as Fourier 

transforms, Gabor, and wavelet method to extract visual features which were made into 

input vectors for the MLP algorithm. The output of the ML model was compared with the 

traditional method of using split-desktop software in manual mode, the results showed that 

this MLP combined with the feature extraction methods had great accuracy and was better 

than the automated mode of split-desktop in use now. 

As mentioned in the previous sections, rock fragmentation is important to the rest of 

the downstream processes, but there are other metrics such as backbreak, flyrock, and 

ground vibrations that is used to measure the success of blasting. A lot of researchers have 

looked into these outcomes and have endeavoured to connect them to the inputs using 

machine learning combined with mathematical optimization methods. The work flow of 

most of these research areas involve using drill and blasting parameters as inputs to a 

machine learning model, mostly a variation of the neural nets model, and then utilize 

optimization methods such as genetic programming (GP), ant colony optimization (ACO), 

and particle sawm optimization, to optimize the selection of hyperparameters that may give 

the best results from the ML model. These applications do not depend on images as input 

data, but they serve as a great indication on the push for adopting machine learning methods 

into the mining industry in order to gain more insight on the operation and extract more 

usefulness for the data the industry generates. Table 4 below outline some of these research 

areas that has been explored in this area. 
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Table 4 research areas were machine learning has been implemented in mining. The inputs represent blasting 
parameters; B-Burden, S-Spacing, ST-Stemming, D-Hole Diameter, L-Hole Length, SD-Specific Drilling, H-
Bench Height, J-Sub-Drill, CL-Charge Length, CLR-Charge Last Row, NR-Number of Rows, Pf-Powder 
Factor, Ch-Charge per Delay, SC-Specific Charge. The ML and optimization models used here are ANN-
Artificial Neural Networks, RF-Random Forest, GA-Genetic Algorithm, GP-Genetic Programming, ACO-
Ant Colony Optimization, ABC-Artificial Bee Colony, HHO-Harris Hawks Optimization, SCA-Sine Cosine 
Algorithm, MLP-Multi-Layer Perceptron, ANFIS-Adaptive Neuro Fuzzy Inference System, SVM-Support 
Vector Machines, BP-Back Propagation, RBF- Radial Basis Function, GWO-Grey Wolf Optimizer, XGB- 
Extreme Gradient Boosting, PSO-Particle Swarn Optimization. 
Papers ML model Input Output MSE/RMSE 

Monjezi et al., 2010 GA-ANN D, L, S, B, T, Pf, 
SD, Ch, RMR 

GA- 
hyperparameters 
selection 

 

Flyrock 0.327 

Backbreak MSE=0.009 

Shirani Faradonbeh et al., 
2016 GP B, S, ST, Pf, SR Backbreak 0.327 

Saghatforoush et al., 2016 ACO-ANN B, S, L, ST, Pf Backbreak  

Ebrahimi et al., 2016 ABC-ANN B, S, L, ST, Pf Flyrock 0.530 

Zhou et al., 2021 
HHO-RF 

B, S, L, ST, Pf, SD Backbreak 
0.106 

SCA-RF 0.0997 

Esmaeili et al., 2014 
MLP-ANN H/B, ST, SC, DN, 

NR, CLR, S/B Backbreak 
0.880 

ANFIS 0.600 

Mohammadnejad et al., 2013 SVM B, S, L, SD, ST Backbreak 0.340 

Sayadi et al., 2013 

BP-NN B, S, L, ST, SC, 
SD 

Backbreak 
 
Fragmentation 

0.221 
 
0.067 

RBF-NN B, S, L, ST, SC, 
SD 

Backbreak 
 
Fragmentation 

0.311 
 
0.112 

Nabavi et al., 2023 

GWO-
XGB B, S, ST, D, H, SC, 

NR Backbreak 0.010 
PSO-XGB 

Monjezi et al., 2013 BP-NN B, NR, Pf, S/B, 
ST/B, CLR, Ch Backbreak 0.643 

Ghasemi, 2017 

PSO-
Linear 

B, S, ST, Pf, SR Backbreak 
0.353 

PSO-
Quadratic 0.279 
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2.8 SEMANTIC SEGMENTATION 

To comprehend the concept of semantic segmentation, it is important to have a 

foundational understanding of computer vision. Computer vision is an integration of 

principles, methodologies, and theories derived from digital image processing, pattern 

recognition, artificial intelligence, and computer graphics (Wiley & Lucas, 2018). It 

facilitates the ability of computers and systems to extract significant and valuable insights 

from digital photos, videos, and other visual inputs. These insights can then be utilized to 

provide suggestions based on the acquired information (What Is Computer Vision?, 2023). 

For computer vision to be a possibility it relies on two main technologies that are subfields 

of machine learning, these are convolutional neural networks (CNN), and deep learning.  

Convolutional neural networks got the first part of its name from the mathematical 

linear operation between matrices called convolution, and neural is derived from the way 

in which it mimics how neurons in the human brain interact with one another. CNN 

learning models are made up of node layers namely the input layer which takes in the initial 

input data of the model, hidden layers which make up the middle part of the network and 

where all of the computation of the learning model occurs, a CNN can have more than one 

hidden layer, and an output layer which produces the results of the model (What Are 

Convolutional Neural Networks?, 2023). The CNN model uses three types of layers: 

convolution, pooling, and fully connected layers.  

The Convolutional layer is the initial and important element of the CNN architecture. 

It is made up of a collection of filters or kernels that execute a convolutional operation on 

the input data, which is usually in vector format (L. Alzubaidi et al., 2021). The filter itself 

is made up of a 2-D array of numbers or weights and as it moves across the image executing 
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the convolution operation (Figure 5), which involves the computation of a dot product 

between the input pixel values and the filter, it detects features in the input layer and outputs 

a feature map which is then fed through other layers in the CNN(What Are Convolutional 

Neural Networks? 2023). Operations carried out in these CNN layers are governed by 

hyperparameters that the user has to define beforehand, for the convolutional layer the size 

and number of kernels, stride of the kernel, and padding have to be set. The stride of a 

kernel or filter is the distance between two consecutive filter positions as it traverses the 

input data, while padding is a method used to preserve the shape (height and width) of the 

input array at the same time allowing the kernel to reach the elements in those corners by 

adding rows and columns to the input array (Yamashita et al., 2018). Zero padding, adding 

rows and columns of zeros, is the most common method of padding. 

 
Figure 5 Example of convolution operation with zero padding 

 

One convolutional layer can be followed by another convolutional layer, but at some 

point, a pooling layer is inserted in the CNN. The objective of the pooling layer is to sub-

sample or shrink the feature map that was created in the convolution layers (L. Alzubaidi 

et al., 2021), this will reduce the number of learnable parameters and computations in the 
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network (Jha & Sahu, 2020), which in turn helps to prevent overfitting the model to the 

current data and allows for faster training. There are two main pooling methods, these are 

max pooling and average pooling. Max pooling takes the maximum value from the region 

of the feature map that is within the pooling window, thus capturing the most noticeable 

features. While average pooling calculates the average of the values in the pooling window, 

which provides an average feature representation of the feature map (A. Kumar, 2023). 

Similar to the convolutional layer, certain hyperparameters in stride and size have to be 

selected by the user for the pooling layer. 

Lastly, there is the fully connected layer. This layer is found at the very bottom or end 

layers of a CNN (Bhatt et al., 2021), each node in the output layer connects directly to a 

node in the previous layer, hence the name fully connected (What Are Convolutional 

Neural Networks?, 2023). A fully connected layer receives its input from the final output 

of a pooling or convolutional layer that came before it, but before the fully connected layer 

can take this data as input it has to be flattened. Flattening entails transforming the 2-D 

array output from the last pooling or convolution layer into a vector. It is in this layer that, 

based on the features that have been extracted from the operations performed by the 

convolutional and the pooling layers, a classification of some kind can be made. 

The combination of these three types of layers will differ across the board, one or two 

convolutional layers may be paired with one pooling layer, or vice versa, and this leads to 

several CNN architectures with varying capabilities of processing data. Figure 6 below is 

an example of a CNN model. 
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Figure 6 A typical Convolutional Neural Network model (Shah, 2022) 

 

Deep learning is a subfield of machine learning. Deep learning models are essentially 

the same as the neural networks explained above, the only difference is deep learning 

models will have three or more types of layers(What Is Deep Learning?, n.d.). Deep 

learning allows for the nonlinear processing of data in multiple layers where the current 

layer takes the output from the previous layer as input(Vargas et al., 2017). 

With those two concepts explained, it is easier to understand how semantic 

segmentation works. Semantic segmentation, a computer vision task, facilitates the 

assignment of class labels to individual pixels within an input image. Subsequently, these 

assigned labels serve as the basis for the model's segmentation of the image, delineating 

distinct regions corresponding to the specified class labels. The usual output of a 

segmentation model is the segmented image and a masked image of the different 

segmentation labels. Figure 7 is an example of the expected output of a semantic 

segmentation model.  
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Figure 7 Given an image, a segmentation algorithm should output which pixels belong together 

semantically (Guo et al., 2018) 
 

2.8.1 FULLY CONVOLUTIONAL NETWORKS 

Fully convolutional networks are CNNs with the fully connected layers replaced with 

more convolutional layers, resulting in an end to end convolutional network (J. Long et al., 

2014), which allowed the model to have much better accuracy results (Lv et al., 2023).The 

system consists of two components: a down-sampling section and an up-sampling part. The 

down-sampling section consists of convolutional layers, pooling layers, and dropout layers. 

Conversely, the up-sampling section has deconvolutional layers. The down-sampling 

component is, in fact, a highly intricate convolutional network of 19 layers. The essential 

innovation of FCN is the up-sampling component, which reverses the down-sampling 

process and results in a dense forecast (Yang et al., 2018). The dense output of Fully 

Convolutional Networks (FCN) is different from the classification output of typical 

Convolutional Neural Networks (CNN). The up-sampling component integrates both 

global and local information by including particular layers from convolutional and 

deconvolutional layers. The local information in the preceding convolutional layers mostly 

provides information about the identity of the item, whereas the global information in the 

deconvolutional layers primarily provides information about the location of the object. One 



33 

advantage of this integrated structure is that it simultaneously deals with identification and 

localization issues. Additionally, the up-sampling component expands the classifications 

obtained from down-sampling to match the size of the original image, resulting in input 

and output images of the same size. Hence, the distinctive architecture guarantees the 

capability of FCN to effectively handle pictures that have several scales and levels.  

Using FCNs as the basis, several deep learning neural networks have been proposed 

for semantic segmentation such as UNet, DeepUNet, ResUNet, and DenseNet just to name 

a few (Singh et al., 2020). This deep learning model has been used in a variety of settings 

such as medical imaging to advance computer added diagnostics, civil construction for 

structural inspections, and parts manufacturing for detecting defects. The U-Net created by 

(Ronneberger et al., 2015) is one of the more popular image segmentation models and has 

been adopted and modified by many to tackle different kinds of segmentation problems. 

The first iteration of the U-Net model from the researchers listed above was motivated by 

the ability to use a small dataset of biomedical images effectively to train a deep learning 

model, which at that point had been a challenge. Another group of researchers in civil 

industry investigated the use of these models in identifying cracks on transportation 

infrastructure such as asphalt and concrete as a sign of aging. The researchers grouped their 

findings into 10 groups based on the genesis of the model architecture used for that 

particular crack detection method, this includes FCN, U-Net, encoder-decoder model, and 

a few unsupervised learning  methods (Li et al., 2022). 

In the mining industry, there has been a modest application of image segmentation. 

One researcher looking into the characterization of drill cores used the R-CNN model to 

segment fractures in the drill cores, that might indicate real world fractures. R-CNN is an 
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instance segmentation model that can localize, classify and segment objects, by combining 

both object detection and semantic segmentation (F. Alzubaidi, Makuluni, et al., 2022). 

Tension cracks, mentioned in section 2.5.1 earlier is another slope monitoring concern, 

(Winkelmaier et al., 2021) used aerial imaging, U-Net, and E-Net models to attempt to 

identify these tension cracks that occur on the crests of mine benches. The models 

performed well at localization of the mine benches, but struggled a bit when it came to 

identification of the tension cracks themselves. 

2.9 MODEL EVALUATION 

The evaluation of model performance holds significant importance in gauging the 

efficacy of deep learning architectures, specifically in the realm of semantic segmentation 

tasks, where fully convolutional models such as the U-Net demonstrate exceptional 

proficiency. This section elucidates the methodologies utilized for model evaluation, with 

the objective of furnishing a comprehensive comprehension of the metrics and techniques 

imperative for assessing the model's efficacy. 

In the realm of fully convolutional models tailored for pixel-wise predictions, the 

evaluation of model performance transcends conventional classification metrics and 

encompasses the meticulous assessment of spatial segmentation accuracy. The evaluation 

metrics employed encompass Intersection over Union (IoU), equation (1), which quantifies 

the degree of overlap between the predicted and ground truth segmentation masks, and the 

Dice Coefficient, which evaluates the similarity between these masks.  

The utilization of a confusion matrix is of utmost importance in providing a nuanced 

and exhaustive overview of model predictions, adeptly breaking down the results into true 
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positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The 

matrix mentioned above assumes a crucial role in the computation of diverse metrics, 

encompassing but not restricted to Intersection over Union (IoU), Precision (Pr), Recall 

(Re), and F1 score.   

𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹

                                                    (1) 

These metrics are crucial in providing intricate insights into the efficacy of machine 

learning models, especially in situations where there exist imbalanced class distributions 

or varying implications of false positives and false negatives, thereby requiring a 

comprehensive evaluation(Yu et al., 2023). Precision, denoted as the ratio of accurately 

identified positive instances to the sum of accurately identified positive instances and 

erroneously identified positive instances, functions as a comprehensive metric evaluating 

the model's efficacy in generating precise positive predictions. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃(𝑃𝑃𝑟𝑟) =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                                           (2) 

 

Recall, alternatively referred to as sensitivity or true positive rate, assesses the model's 

proficiency in capturing the entirety of positive instances within the dataset. 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅𝑒𝑒) =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                           (3) 

 

The F1 score, which is a composite measure derived from the harmonic mean of 

precision and recall, functions as a unified metric that effectively manages the delicate 

balance between false positives and false negatives.  
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𝐹𝐹1 𝑆𝑆𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃 =  2 ×𝑇𝑇𝑟𝑟𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑒𝑒𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑟𝑟𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑒𝑒𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

                                         (4) 

 

Other important metrics include pixel accuracy and the Dice coefficient, which is 

similar to IoU. These serves as a means to quantitatively assess the proportion of accurately 

predicted pixels in relation to the overall number of pixels. The aforementioned metrics 

offer spatially sensitive evaluations, which are of paramount importance in the context of 

semantic segmentation tasks. 

𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 =  2 × 𝑇𝑇𝑇𝑇
2 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹

                                              (5) 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅 𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑃𝑃𝐴𝐴 =  𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹

                                              (6) 

 

In addition to employing quantitative metrics, it is imperative to engage in visual 

scrutiny of model predictions compared to ground truth masks. This practice is 

indispensable for comprehending the model's inherent capabilities and potential 

limitations, particularly in its ability to capture intricate features that may pose challenges 

in numerical quantification.  

In summary, the comprehensive assessment of fully convolutional models, such as the 

U-Net, necessitates the adoption of a multidimensional methodology that encompasses 

spatially conscious metrics, visual scrutiny, and cross-validation methodologies. The 

evaluation framework that has been proposed not only quantifies the accuracy of the model, 

but also offers valuable insights into its capacity to capture spatial dependencies that are 

critical for semantic segmentation tasks. The present evaluation methodology, which is 
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characterized by its comprehensiveness, serves to enhance our understanding of the 

model's performance in real-world scenarios, thereby contributing to a more nuanced 

comprehension of its efficacy. 

2.10 EDGE DETECTION 

Edge detection is one of the older and important methods under the umbrella of 

computer vision. It can help provide additional information for many visual tasks including 

image recognition, image segmentation, face recognition, medical tracking, and others 

(Jing et al., 2022). Edge detection in computer vision refers to a process of capturing 

properties such as discontinuities in the photometrical, geometrical, and physical 

characteristics of objects in images (Ziou & Tabbone, 1998). Classical edge detection 

methods have a similar operation as the convolutional layer in CNNs, they depend on the 

mathematical operation of convolution. A 2-D filter or kernel will convolve the input image 

and it will be sensitive to large pixel value changes in the image while returning a zero 

value for regions of uniform pixel values (Ziou & Tabbone, 1998).  There are several edge 

detection methods that have been developed over the years, (Shrivakshan & Chandrasekar, 

2012) outlines the different edge detections such as Sobel, Prewitt, and Canny edge 

detectors that have shown some benefit in various applications. Edge detection methods 

fall under the umbrella of computer vision methods, thus it makes it simple to compare the 

effectiveness of any one method using similar metrics (Tariq et al., 2021) as the deep 

learning methods of image segmentation. In this thesis work, edge detection methods were 

looked at as a method of comparison between more classical methods of identifying and 

segmenting objects and advanced technologies such as deep learning and CNN models. 
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 METHODOLOGY  

This chapter will present the details of the research approach by describing the process 

of selecting locations for data collection and the UAVs along with required software 

needed for aerial photogrammetry. This chapter will also adventure into how the collected 

data was pre-processed before any training or detection of fractures can be done. This 

chapter will close of by looking at the segmentation models used and the parameters 

selected to obtain the best segmentation results possible. 

3.1 DATA COLLECTION 

The first part of collecting data is determining the best location to do so. This thesis 

work is completed under a broader project funded by NIOSH which had goals to build up 

the capacity of well-trained mining professionals to help the industry advanced in safety 

and technology. Due to this large project, there were a number of collaborations set up with 

other mining schools and the industry at large. Unfortunately, during that time, the Covid 

pandemic came to pass and this has made access to mine operations and their data a lot 

more difficult due to a number of safety and security concerns. Despite these challenges, 

quality data was secured at some mining operations located in Nevada around the Reno 

area and Arizona. 

In Nevada data was located at an aggregates quarry in the Reno-Sparks area. The Sierra 

Stone Quarry is owned and operated by All-Lite materials which provides aggregate 

materials around North Western Nevada area. It is located in Storey County, seen in Figure 

8, which has a rich mining history like most parts of Nevada, it has been operating since 

1989. The quarry sits on rhyolite intrusive rock with lithology including Igneous, 
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Hypabyssal, Felsic-hypabyssal, and Hypabyssal-rhyolite from the Eocene to Miocene 

geologic epochs(Nevada Mineral Explorer, 2021).  

 
Figure 8 Location and geology information on Sierra Stone Quarry from Google Earth and (Nevada 

Mineral Explorer, 2021) 
 

From the inception of the operation until recent years, Cemex Construction Materials 

(Previous owner) and All-Lite Materials operates this quarry as an open pit mine follow 

the normal mining process of drilling, blasting, loading, and hauling which was explained 

in earlier chapters. However, as the rock material and thus rock properties in the pit 

changed, they switched the from drilling and blasting to ripping and pushing with a dozer 

because the current pocket of material they are mining is softer and doesn’t require a lot of 

energy to break up to break up. For this thesis work, studying areas that have experienced 

blasting was important because that is the method of operation that is more common in the 

industry and thus would allow the findings of this work to be applied more broadly to the 

industry. Because of this desire for broad appeal, data was collected only in those area of 

the mine/quarry where drilling and blasting was done in the past. 
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There were two other mine sites identified for this project in Central and Southern 

Arizona. Both these mines are copper mines and similarly employ the normal four cycle 

mine operation. Due to the distance of the mines from the University and some company 

policies, it was difficult to arrange for researchers to go to the field themselves to collect 

data. Data sharing agreements were put in place between all parties, but adopting the data 

approved for sharing with the university to the data collection requirements described 

further below was challenging and thus most of that data proved to not be useful for the 

outlined approach. 

3.1.1 IMAGE COLLECTION USING UAVs 

After the location was established, the next step was to plan for data collection and 

then head out to the field to execute. As stated above this thesis work is part of a bigger 

project funded by NIOSH and with the assistance from those funds, the Mining and 

Metallurgical department here at University of Nevada, Reno has been able to secure 

several drone equipment for use in a number of projects. Table 5 outlines the drones that 

were available for the project and the different payloads they take. Payload in drone 

terminology refers to the weight a drone can carry, it is usually some kind of sensor or 

camera. 

For this study, three drones were selected for use, these were the Phantom 4, Mavic 

Pro, and Matrice 100 seen in Figure 9, Figure 10, Figure 11 below. The Phantom 4 and 

Mavic Pro have fixed payloads that cannot be substituted for others, which make the less 

adoptable to different task requirements. With that said, they are both very robust drones 

and because of their simplicity, are easier to use  
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Table 5 UAV collection in the University of Nevada, Reno Mining department 
Drones Features and Payload 

 
Figure 9 Phantom 4 Pro 

-1-inch CMOS sensor 4K/60fps 

videos, 20MP photos 

-Five directions of obstacle 

sensing 

-Remote controller with a built-in 

screen 

 
Figure 10 Mavic Pro 

-1/2.3” (CMOS), Effective 

pixels:12.35 M 

 
Figure 11 Matrice 100 

-Takes different kinds of payload 

sensors 

 

overall. The DJI drone manufacturer, makes the drones listed above, they have a unique 

developer’s platform that allows some of their drones to be adopted to research, or any 

professional discipline of their users. The Matrice 100 is one of those drones and for this 

project, it was put together from scratch, as DJI ships these types of drone unassembled. 

This allowed for the drone to be configured in a way that suited this study and the various 

other project in the research, mainly a bigger more robust mounting plate was use for the 
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body of the drone to allow it to carry a variety of payload sensors and cameras. A normal 

RGB camera was used for this study. 

After selection of drone systems to use, the next step was to select the drone in-flight 

control application. The use of UAVs has become ubiquitous in many industries in the past 

decade or so, (Darvishpoor et al., 2020) outline a lot of the ways different industries have 

changed their modes of operations to incorporate drones for faster, more efficient, and safer 

way of data collection. This growth has led to the development of a whole new industry 

centered around not only developing drones but the flight control software needed to rely 

commands to drone so that they can successfully complete the desired tasks. It is this area 

that the DJI drones excel, they are compatible with a lot of third-party drone flight 

applications, and through the DJI developer platform, researchers and other professionals 

can design and deploy their own applications to operate DJI drones. With that said, the 

important factors to considered when selecting the appropriate application for this research 

was whether or not it is compatible with the drones the department currently has, the 

different tools the application has and if they can be useful in simplifying data collection, 

and the cost. Cost is an especially important consideration because for a system like this to 

be implemented in the industry, its benefits must outweigh those of current methods, 

particularly cost. 

The drone flight applications which were used for this research were Pix4D, UgCS 

(Figure 13), and the DJI drone application (Figure 12). The DJI drone application does not 

have a lot of functionality apart from providing feedback about the health levels of the 

different hardware systems on the drone and the controller, so it is necessity regardless of 

which other application is being used for data collection. 
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Figure 12 User interface of the DJI GO drone application 

 

UgCS is a drone flight planning software developed by SPH Engineering (UgCS Flight 

Planning, 2023), its usage includes LiDAR surveys, mining, photogrammetry, vertical 

inspections, magnetic surveys just to name a few. UgCS is a detail driven application, 

during the mission planning mode, it gives the user the freedom to adjust a lot of parameters 

that many other applications automate on the background. Two important features it has is 

the vertical inspection and the simulator tools. Accurately surveying highwalls can be a 

difficult task for most drone applications, this is because the camera angle and flight paths 

allowed in those applications do not allow for maintaining a 90° angle with a vertical 

feature and surveying it in the vertical plane. But with the vertical inspection tool, is easy 

to set up a flight path that traverses the highwall from top to bottom, take high quality 

images at a 90° angle with the highwall which allows for most of the features to be captured 

accurately. After designing the flight path, UgCS has a flight simulation tool were details 

about the drone to be used can be entered and it will run a visual simulation so that the 
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operator can have some sense of how the drone will perform in the field. Like anything 

else UgCS has its downsides, one of the main issues experienced during this research was 

that when operating in poor network environments, which is expected in mining, the 

application is difficult to connect to and update any prior flight plans. It is in this area were 

older applications like Pix4D excel, it was chosen as a backup in the field for the 

unfortunate scenario where using UgCS might not be possible. Pix4D does not have the 

same vertical inspection tool as UgCS, but it does have a free fly tool which was useful for 

manual drone operation as a last resort. 

 
Figure 13 User interface of UgCS drone application. The green rectangle is the parameter of the drone 

flight path. 
 

The different flights conducted for this data collection can be seen on Table 6 below. 

The intention was to collect images at different times of the day to diversify the image 

dataset which is an important attribute of a good training dataset. 
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Table 6 Flight missions carried out at the mine 

Flight 
mission Drone Batteries 

used Images Flight time 
(min) Type Time of day 

1 Mavic Pro 2 806 28 manual morning, 10 am 

2 Matrice 100 3 986 62 Auto, 
manual Afternoon, 2:30 pm 

3 Phantom 4 1 154 9 Auto Afternoon, 3:30 pm 

 

3.2 DATA PRE-PROCESSING 

One of the most time-consuming steps about using AI techniques for any objective is 

the data pre-processing steps. Working with AI or deep learning is particularly requiring a 

large amount of data to get a well-trained model, and for most of these models receiving 

accurate information to be trained on is especially important. Thus, the two main objectives 

of data pre-processing for this study and many like it, are ensuring there is enough data 

available for training and making sure those data meet input requirements in terms of size 

and other image specific accuracy measures.  

The first step for this project was to go through the 1899 images that were collected to 

ensure that the crack of fracture feature that is the center of this research work was present 

in the images collected. A number of images were discarded from this first step. The next 

step was to verify that the image sizes were appropriate for inputting into a CNN type 

model. Image resizing is a common step in the process of training these models, the size 

of the image has a relationship with the amount of features a the model can extract from 

the image, and the speed of training for the model (Wang et al., 2020). (Wang et al., 2020) 

also found that most deep learning neural networks use an image size of 256 X 256 pixels 

as default while others go as high as 640 X 640 pixels. Three different images sizes were 
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captured during the data collection of this project corresponding to the different drones 

used, these were in the 4000 X 3000 pixel or higher range and thus would need to resized. 

The first approach was to use the image resizing tool in MATLAB which has the ability to 

resize images using different methodologies (MATLAB, 2023). Using this approach did 

not yield the best results because of the nature of the features in the images, so of the images 

had cracks that were barely visible as it is and the resizing methods available may lead to 

more challenges down the line. The method that was settled on was image tiling, this is a 

simple method of extracting smaller images of specified dimensions from a larger image 

while ensuring that all original pixels are accounted for in the smaller images. This was a 

good why of achieving the desired images size of 640 X 640 pixels. After this process 

about 1100 images were selected for further processing. 

To train a model, the required dataset is the images that have the feature of interest and 

image masks (Singh & Rani, 2020). Image masks are created by taking the original image 

and assigning different pixel labels, the pixels that are associated with the object of interest 

are assigned a label of one and the background or other objects that are not part of the 

object of interest are assigned a label of zero. This allows for localization of the object of 

interest and the ML model will better learn the features that make up the object of interest. 

There are many tools that are available to use for image annotation or labeling, (Sager et 

al., 2021) outlines several of them, some of which were manual, semi-automated, and open 

source or not. The tool that was used for annotating images in this study was the Computer 

Vision Annotation Tool (CVAT) developed by Intel. CVAT is an open source tool that 

allows for image labeling for different applications in computer vision, it has several 

instruments for labelling that make it easy to use and one big feature is that it allows for 
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team collaborations on annotation tasks (Rehman et al., 2021). This team feature allows 

for the project leader to assign different images to others for annotation and is then able to 

track their work, making corrections as needed. The output of CVAT is the binary mask 

coupled with its corresponding image as seen in Figure 14, which is exactly what is needed 

to input into a training model. 

 
Figure 14 Output of CVAT annotation. Original image on the left and the segmentation mask on the right 

 

After annotation of the available images, the next step is an image augmentation 

process. Deep learning and other machine learning models require a large amount of data 

for training (Singh & Rani, 2020), as a substitute for going on numerous data collection 

trips under different environmental settings to attempt to cover all conditions under which 

the object of interest can be found in, data augmentation can be used to increase the amount 

of data. Data augmentation is a process of generating new data samples by transforming 

them in some way, there are various ways to do this such as random cropping, rotation, 

radiation transformation, noise injection, flipping, and translation (Wang et al., 2020) 

(Shorten & Khoshgoftaar, 2019). Not all these different augmentation methods will work 
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well for training in all situations, it is important to know the kinds of data augmentation 

methods that will be appropriate for this study. (Wang et al., 2020) did an extensive study 

into augmentation methods that may improve training of crack detection data samples in 

concrete settings, they found that rotation was the best out of nine methods for improving 

the performance of the trained model. One study (Taylor & Nitschke, 2017) categorised 

the augmentation methods into geometric methods, which altered the geometry of the 

image my changing the location of the pixels in space, and photometric methods which 

changed the color channels of red, green, and blue (RGB) to new pixel values based on 

some pre-determined heuristics. They found that cropping had the best improvement in the 

performance of the model in classification accuracy. Following the recommendation of 

literature, rotation, and cropping were used for data augmentation in this study as they 

showed good results in related works.  

3.3 EDGE DETECTION 

One of the more common procedures for carrying out edge detection is explained in 

(Ziou & Tabbone, 1998) is the canny edge detector. The researchers outline three broad 

operations in edge detection starting with differentiation, smoothing, and labelling. 

Differentiation is about defining the desired features or edges of a feature that should be 

detected, smoothing is about denoising, were other features in the image that are not of 

interest have their prominence reduced so that their edges will not be identified later on. 

Finally, labeling consists of the isolation of edges and increasing the edge signal to noise 

ratio by suppressing unwanted edges. Figure 15 below outlines how these three-step 

processes was understood and implemented in the currently study.  



49 

 
Figure 15 Edge detection process 

 

    The main aim of image enhancement is to improve the quality of an image to give a 

better input for downstream image processing (Janani et al., 2015). There are several 

techniques of image enhancement which can be categorised into spatial domain, were by 

the operation is implemented at the pixel level of the image, and frequency domain methods 

which are applied on the Fourier transform of the image. A lot of research (Igbinosa 

Ireyuwa, 2013)(Shrivakshan & Chandrasekar, 2012)(Ziou & Tabbone, 1998) and real time 

solutions around edge detection rely more on spatial domain methods due to ease of 

interpretation, simplicity, and low complexity (Janani et al., 2015). As seen in Figure 15 

above, the methods employed were brightness and contrast adjustment, coupled with noise 

reduction. Noise reduction was achieved using the gaussian filter method. The inputs to 

this method include the image to be filtered, the kernel size in width and height, and a 

sigma value for the standard deviation. The most effective sigma value for the images in 

this study was σ = 2, and the OpenCV function for this operation can calculate the kernel 

size automatically from the sigma. 
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After noise reduction, the image is transformed to grayscale which allows for more 

image processing techniques to be applied to it. Histogram equalization is another method 

of adjusting image contrast, it involves transforming the intensity values of the image by 

stretching the intensity range across more pixels (Huamán, 2023b). The steps described 

above have all be aimed at trying to isolate the wanted edges in the image, once that is 

completed the image can be binarized which makes it easy for edges to be calculated. To 

binarize an image, you set a particular threshold value and if the pixel value is above this 

value it will change to some maximum value and below that threshold it turns to zero. The 

equation below defines this, dst is the destination image, src is the source image, thresh 

represent the threshold value, and maxVal is the value to which all pixel above the 

threshold will be set (Huamán, 2023a). 

𝑑𝑑𝑃𝑃𝑑𝑑(𝑃𝑃, 𝐴𝐴) =  �𝑚𝑚𝑅𝑅𝑃𝑃𝑚𝑚𝑅𝑅𝑅𝑅      𝑃𝑃𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃, 𝐴𝐴)  > 𝑑𝑑ℎ𝑃𝑃𝑃𝑃𝑃𝑃ℎ
0             𝐼𝐼𝑑𝑑ℎ𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃                

                  (7)                                 
 

Once the aforementioned preparation steps have been completed, the edge detection 

process can commence. The Canny edge detection method is highly effective among 

various edge detection methods. The Canny edge detection method, developed by John 

Canny in 1986, was designed with three primary objectives. A reliable edge detection 

method that accurately identifies edges without any omissions. Accurate edge localization 

within specific pixels. To achieve a high response rate, it is important to accurately identify 

multiple edge pixels in cases where a single edge is present. The implementation of the 

Canny edge detector involves applying a Gaussian filter to the image for noise reduction, 

followed by determining the gradient magnitude and direction. If the magnitude of the 
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gradient of a pixel is greater than the magnitudes of its two neighboring pixels in the 

direction of the gradient, classify the pixel as an edge. Otherwise, classify the pixel as the 

background (Igbinosa Ireyuwa, 2013). 

To display the edges on the original image and make other possible calculations such 

as length and area a FindContours command is used to filter out and superimpose some of 

the representative edges found. 

3.4 MODEL DESIGN 

In earlier chapters, the intricacies of CNNs were explained. When tasked with devising 

a model, it is paramount to understand the complexities that govern its structure. Models, 

in a broader sense, encapsulate the entire machinery responsible for transforming data into 

insightful predictions or decisions. Within this framework, neural networks stand out as an 

exemplary subset, mimicking the intricate connectivity of the human brain. As we delve 

into the specifics, the focus on CNNs emerges, especially for tasks involving grid-like data, 

such as images. In the following sections, we will explore the development of a particularly 

influential CNN architecture, the UNet, and shed light on the crucial elements shaping its 

design. 

3.4.1 U-Net ARCHITECTURE 

The U-Net architecture was developed by (Ronneberger et al., 2015) as an innovative  

component in the difficult task of image segmentation of biomedical images. As its name 

suggests, the U-Net design exhibits a unique U-shaped structure, depicted in Figure 16 

encompassing a contracting path, also known as an encoder, and an expanded path, also 

known as a decoder. 
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Figure 16 U-Net model(Ronneberger et al., 2015) 

 

The encoder component of a U-Net architecture assumes the crucial role of capturing 

and encoding the salient features of the input image across various hierarchical levels of 

abstraction. The aforementioned process assumes a pivotal role in the extraction of 

hierarchical representations from the given input, thereby advancing from granular low-

level particulars to more abstract high-level semantics. This process of contraction is 

characterized by the utilization of input layers, convolutional layers, downsampling, 

dropouts, and ReLU activation functions, which facilitate the acquisition of contextual 

information. The input layer is of size 640 X 640 pixels and 3 color channels, which dictates 

the size of the input images, this choice of a 640 X 640 input layer aims to balance 

computational efficiency with the preservation of spatial details of the image. As the input 

progresses along the encoder convolutional blocks, the spatial dimensions gradually 

decrease, while simultaneously extracting intricate high-level information. Each of these 

convolutional blocks consists of a (3, 3) convolutional layers, ReLU activation, and same 
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padding, dropout layer with a progressive dropout amount, and maxpooling filter of size 

(2, 2).  

The choices made in the encoder side help with a number of things, capturing both 

intricate low-level features and higher-level semantics in the case of convolutional layers, 

the dropout layer introduces regularization, preventing overfitting and fostering the 

learning of more robust features which will help the model with preventing excessive co-

adaptation of neurons and maintaining the model's capacity to perform when introduced to 

unseen data. The repeated application of convolutional layers and max-pooling contributes 

to the hierarchical abstraction of features, culminating in a bottleneck block that 

encapsulates abstract representations. The expanding pathway aims to restore spatial 

information through the utilization of transposed convolution and ReLU-activated 

convolutional layers of size (2, 2). Significantly, skip connections are intricately integrated, 

establishing connections between equivalent levels of the contracting and expanding 

pathways. The strategic connectedness present in U-Net allows for the retention of intricate 

spatial information and enhances accurate localization, which has been a significant factor 

contributing to the success of this model in other studies. The selection of (3, 3) 

convolutional layers in the decoder, accompanied by dropout and additional convolutional 

layers, reflects a deliberate effort to refine and augment feature representations. The 

ultimate addition is a 1x1 convolutional layer that incorporates a sigmoid activation 

function, resulting in the generation of a pixel-wise binary segmentation mask.  

The selection and tweaking of hyperparameters play a crucial role in determining the 

performance of the model. Hyperparameters need researchers to make well-informed 

decisions in order to maximize performance. In the domain of U-Net, thorough calibration 
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is required for critical hyperparameters such as the number of filters, learning rate, and 

batch size. The contracting and expanding pathways, which include the use of 

convolutional and transposed convolutional layers, require careful changes in order to 

achieve an appropriate trade-off between retaining information and ensuring computational 

efficiency. Regularization strategies, such as dropout, serve as a defense mechanism 

against overfitting, hence enhancing the model's capacity to generalize to new and 

unknown data. The selection of a loss function, cross-entropy in the case of this study, and 

an optimizer, such as Adam optimizer, plays a crucial role in determining the efficacy of 

model training. Conducting a thorough assessment on a separate test dataset offers valuable 

insights into the practical performance of the model, leading to repeated adjustments of 

hyperparameters in order to strike a well-balanced equilibrium between computational 

efficiency and prediction accuracy. Some of the code used to develop this model was 

adapted from (Bhattiprolu, 2023). 

3.4.2 PRE-TRAINED MODEL 

Training a machine learning model is a resource intensive and time-consuming task 

that usually requires a large amount of data and in the area of image segmentation, every 

pixel in all those images have to be annotated in the pre-processing stage which is a massive 

time commitment. To get around these issues steps such as data augmentation (Wang et 

al., 2020) to increase dataset, and using simpler training models to reduce computational 

demands may be used. Another popular option is to use pre-trained models for to tackle 

the issue at hand.  A pre-trained model refers to a neural network model that has undergone 

extensive training on a substantial dataset, with the aim of accomplishing a particular task. 

Subsequently, this model is preserved or disseminated for the purpose of subsequent 
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utilization in a distinct, albeit interconnected, task (Iglovikov & Shvets, 2018). The 

fundamental concept underpinning pre-training is to harness the acquired knowledge 

derived from successfully addressing a particular task, known as the pre-training task, and 

subsequently employ it to tackle a closely related task, referred to as the target task. This 

approach proves to be particularly advantageous in scenarios where the target task exhibits 

a scarcity of annotated data. This is owing to the fact that the pre-trained model has already 

assimilated valuable features from the extensive corpus of data employed during its initial 

training phase. 

               
Figure 17 Example of image and annotation mask  from (Liu et al., 2019). dataset 

 
     In this study a U-Net model was pre-trained on a 5 000 image dataset put together by 

(Liu et al., 2019). The dataset is made of asphalt and concrete crack images as seen in 

Figure 17 above, it was put together from smaller datasets and new images captured by the 

researchers above. After training, the learned weights and architecture of the model are 

saved and fine-tuning is conducted. Fine-tuning is were by specific components of the 
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model a retrained on the new dataset which allows the model to adapt to the specific 

features and patterns of the new task. 

 
Figure 18 The encoder side of the U-Net were frozen after the initial training 

 

As the model under goes training, the encoder side of the model will be frozen, shown in 

Figure 18, so that those previously trainable parameters become non-trainable parameters 

as they will have the trained weights from pretraining. The decoder side of the model can 

be approached in different ways, training can be continued on the weights that have been 

previously trained or trained can be done on completely new weights that have not 

undergone any training at all.  
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 RESULTS AND DISCUSSION 

This chapter presents the outcomes of a comprehensive investigation into crack and 

fracture detection on mine highwalls, employing a comparative analysis of three distinct 

methodologies: traditional edge detection techniques, a U-Net model constructed from 

scratch, and a U-Net model pretrained on relevant datasets. Traditional edge detection 

algorithms offer a baseline for comparison, representing conventional methods widely 

employed in computer vision studies. The U-Net architecture, a convolutional neural 

network known for its proficiency in semantic segmentation tasks, is explored both from a 

ground-up construction perspective and as a pretrained model leveraging transfer learning 

and fine-tuning. 

4.1 EDGE DETECTION 

The steps followed for edge detection were outlined in the previous chapter. Figure 19 

below shows the outcome of the first step of image enhancement in which the image 

underwent brightness and contrast adjustment, and a gaussian filter applied to reduce noise. 

These first steps allowed for the background features of the image to be minimized so that 

they are not widely detected when edge detection methods are applied to them. When these 

background features of images are minimized, this in itself maximizes the appearance of 

the foreground features of interest. Following the image enhancement process is histogram 

equalization and binarization, histogram equalization did well to highlight the remaining 

features in the image at this stage of processing, but this presented a downside as seen on 

Figure 20 were the histogram equalization method was too sensitive to elements in the 

image that are classified as background and should not be detected. 
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Figure 19 Filtered image went through brightness and contrast adjustment, gaussian filtering, and then 

turned to grayscale. 

 
Figure 20 Histogram Equalization 

 

 With the sensitivity of histogram equalization, binarization became a more viable 

method to proceed with. A number of techniques were tested in accordance with the 

literature (Huamán, 2023a) these include simple thresholding, adaptive thresholding, and 

the Otsu’s binarization seen in Figure 21. Both adaptive thresholding and Otsu’s 

binarization attempt to account for all the features in the image, adaptive thresholding for 

example uses a local thresholding type of process by determining the maximum pixel 

values in user defined search area and elevating those pixels with higher pixel values. 

Otsu’s binarization uses a similar global thresholding process used by the simple 

thresholding method, the difference is that it selects its own thresholding limit by 
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considering all pixel values which leads it to elevate the features represented by those 

pixels. The simple thresholding method was the most reliable of the three methods, but 

adaptive thresholding was also better to use for certain images. Simple thresholding is more 

intuitive in this case as it is easier to control the degree of sensitivity of the method. 

 
Figure 21 Performance of different binarization methods 

 

 After thresholding, edge detection is applied to isolate exactly were the fractures and 

cracks start and end. The canny edge detector is applied to the binarized images and if the 

prior steps are followed, detecting the edges will be fairly simplified. After detecting the 

edges, they can now be superimposed on the original image to see how well they align with 

the cracks or fractures observed. Figure 22 shows the final output of edge detection.  
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Figure 22 Detected edges from the edge detection procedure and the edges plotted on the original images 

 

4.2 U-Net MODEL  

The U-Net model employed for this work was explained in the previous chapter and 

Figure 16 outlines the structure of the fully convolutional model. The extensive 

TensorFlow and Keras libraries were used to prepare the python code, these libraries 

contain a number of functions and classes related to machine learning that were used to 

develop the python code used in this study (TensorFlow, 2023). Another python library 

used was the OpenCV library which is a computer vision library, was essential in importing 

the image data from the computer and performing several manipulations to that image data 

so that it can be ran through the model during training.  
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4.2.1 Data Pre-Processing 

To prepare the image data for training the model, several pre-processing steps were 

followed such as image tiling, augmentation, and normalization. The images collected 

during data collection had large dimensions at about 4000 x 3000 pixels, a decision was 

made to reduce the size of these images before using them in the model. Convolutional 

neural networks can handle large image sizes, but literature suggests that in most instances 

this leads to long training periods and high computational demands. A couple of methods 

where looked at to achieve this desired input size, resizing the images or cropping them. 

Resizing the images was considered first, the issue that came up here was that scaling an 

image by such a large amount results in pixelation and loss of important image details. This 

is somewhat counterproductive for a ML framework because for the model to be able to 

make accurate predictions, it has to be able to learn from clear features on the images. 

Image cropping is an alternative method, it serves two purposes in that it produces the 

image size desired without compromising on image resolution and is an augmentation 

method as well which helps increase size of the dataset. Figure 23 below shows the 

difference between these methods and it is apparent that the cropped image is better for 

showing the fractures that this thesis work is attempting to identify.  

The next step was image augmentation. Cropping was already done to get the desired 

size images for training, image flipping, and image rotation were the other two geometric 

augmentation methods used in this study, coupled with brightness adjustment as a 

photometric method (Taylor & Nitschke, 2017). These methods are widely used for image 

augmentation due to their computational efficiency. 
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Figure 23 Comparison between an original image, its resized image on the left and a cropped patch from 

the image 
 

4.2.2 MODEL TRAINING 

Two training iterations of this model were conducted. In the first iteration there were 

only 100 annotated images used. The data was randomly separated into two categories, 

80% portioned to the training set and 20% to the testing set. To train the model, several 

model hyperparameters have to be selected. Table 7 below outlines the selected 

hyperparameters for the initial training process, most of the selection decision were advised 

by research done in adjacent industries like construction.  

Table 7 Hyperparameters selected for model training 
Hyperparameter Value 

Input Size (640, 640, 3) 
Activation Function ReLU 

Dropout 0.1 -0.3 
Pooling MaxPooling2D 

Upsampling conv2d_transpose 
Loss Function Binary Crossentropy 

Optimizer Adam 
Learning Rate 0.001 

Batch Size 5 
# of Epochs 30 

Early Stopping Validation loss, patience=4 epochs 
 



63 

Figure 24 and Figure 25 below outline the accuracy and losses tracked during the 

model training period.  

 
Figure 24 Training accuracy of U-Net trained with 100 images 

  
Figure 25 Training and validation loss of U-Net trained on 100 images 

 

The model trained to only 20 epochs due to the early stopping protocol that was set to 

track validation loss and end the training if the validation loss does not show improvement 

for 4 epochs. The U-Net model demonstrates exceptionally high accuracy in both testing 

and training data, according to literature this may be a common trait when training on 

imbalanced data. A discernible performance gap is observed between the training and 

validation set, with the losses converges at 0.22 and 0.14 respectively. These figures may 

suggest that the model has successfully learned the inherent features of the training set, but 
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its generalization capability to unseen data could be further improved. The outcomes from 

this training period suggests that further investigation into the ability of the model to 

generalize is needed, and a more improved data size as well. The second training iteration 

consisted of the same U-Net architecture model, but it included data augmentated using 

augmentation methods such as rotation, brightness adjustment, cropping, saturation, and 

flipping which increased the dataset to 1000 images and a few hyperparameters where 

adjusted as well. The batch size was increased to 15 and the learning rate was changed to 

0.0015 with epoch number of 40. 

 
Figure 26 Training iteration with 1000 images 

 
Figure 27 Training accuracy of U-Net model trained with 1000 images 
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Figure 26 and Figure 27 above shows how the training progressed. The U-Net model 

manifested some convergence during the training phase. This efficiency extends to the 

validation set, where the loss stabilizes at a slightly higher but comparable value. The 

accuracy metrics in both the training iterations explained above show a high proficiency, 

which is not very surprising in image segmentation of this nature where the background is 

so largely represented in many images. Further model evaluation methods will need to be 

looked at to determine how well the model may be performing. 

4.3 PRE-TRAINED U-Net MODEL 

Another option that was explored was using a pre-trained U-Net model as a base for 

accomplishing the objectives of this research. There are a number of reasons to use a pre-

trained model, for the purposes of this study there were three main reasons that it was 

considered; data efficiency, time and resource savings, and adaptation to a new domain. 

Under data efficiency, using a pretrained model allows researchers to work with a smaller 

dataset because the pre-trained model has already learned from a large dataset so if there 

are any data acquisition or pre-processing challenges a pre-trained model will help bridge 

that gap. As for time and resource, Training deep neural networks, especially U-Net models 

with many parameters, can be computationally expensive. By starting with a pre-trained 

model, you can significantly reduce the training time and computational resources needed 

for convergence. Lastly, if the dataset of the pre-trained model is closely related to the 

current project dataset, similar types of images for example, the pre-trained model can be 

effective in adapting to the target requirements, even if the tasks differ slightly. 
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The model used for this pretraining is the same U-Net model architecture described 

above. The dataset was also touched on in the previous chapter, Figure 17 show an example 

of the dataset. The 5000 images had dimensions of 448 x 448 pixel, thus in the pre-

processing stage they were upsized to 640 x 640 pixels and this was done to keep these 

images consistent with the images in the project dataset.  

 
Figure 28 Accuracy for the pretrained model training iteration 

 
Figure 29 Loss for the pretrained model training iteration 

 

The pretrained model was then trained on the 1000 images in the dataset of this project, 

the training setup consisted of 15 epochs, batch size of 15, and a learning rate of 0.001. 

Figure 28 and Figure 29 above shows how the training progressed, the accuracy of both 
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the training and validation were trending up around 97%. The loss also displayed some 

convergence as it was trending down for both training and validation which indicates that 

the model might be generalizing well to unseen data, this insight was further seen when the 

model was tested on 220 images it had not seen before and scored an accuracy of 97%, 

which is consistent with training and validation, and a loss of 0.0835 which is slightly 

higher, but close to the training loss.  

4.4  MODEL EVALUATIONS 

To keep the performance evaluation similar across the board, four basic evaluation 

metrics were utilized for the different segmentation methods in this study and these are 

precision, recall, F1 score, and intersection over union (IoU).  The relevance of these 

methods was considered under section 2.6.3 of this write up, in summary they are 

concerned with how well the segmentation method is able to classify each and every pixel 

of the image in the testing data into a fracture pixel or no fracture pixel and matches this to 

the segmentation mask/GroundTruth. To calculate the metrics above a confusion matrix 

has to be determined first, this matrix contains the true positive (TP), true negatives (TN), 

false positive (FP), and false negative (FN) values obtained from comparing the predicted 

segmentation mask with the GroundTruth or actual segmentation masked obtained from 

human annotation. The configuration of a confusion matrix is seen in Table 8. 

Table 8 Pixels in each image are separated into the different categories shown  
GroundTruth 

Prediction No Facture (0) Fracture (1) 

No Fracture (0) TN FN 

Fracture (1) FP TP 
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The mathematical equations that define the metrics above can also be found in section 

2.6.3. The TensorFlow Keras library was used to calculate the confusion matrix and from 

that the values of precision, recall, F1 score and IoU were calculated. Table 9 below shows 

the metrics calculated and thus the numerical performance of the different iterations and 

methods investigated in this research. U-Net_100 was the initial iteration of just 100 

annotated images and segmentation masks. U-Net_1000 has the same model architecture 

as U-Net_100, the only difference was that image augmentation was performed on the 

images. The pretrained_U-Net also has a similar architecture as the first two models, the 

encoder side of the U-Net model was first trained on a different but similar database, 

different hyperparameters were also explored for these models as discussed in section 4.2.2 

above. 

Table 9 Training iterations and their respective scores on various ML metrics 
Methods Pr Re F1 IoU 

U-Net_100 0.7014 0.1399 0.2206 0.5397 

U-Net_1000 0.7733 0.6645 0.6993 0.7706 

Pretrained_U-Net 0.7213 0.4878 0.5597 0.6928 

Edge detection 
and Thresholding 0.6968 0.7329 0.7072 0.7504 

 

In addition to the numerical metrics compared above, it is important to study the visual 

outcome in the form of a segmentation mask generated by these models. This is an 

important step because a visual inspection of the segmentation masks can give some 

valuable insight on the areas of the image that the U-Net model may be struggling or 

excelling at segmenting, insight that can be used to improve the model in the next training 
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iterations. Figure 30 shows these visual outputs and it is clear that as the metrics above 

depict, the U-Net_1000 model trained on 1000 images and the pretrained_U-Net model 

have a superior performance to the U-Net_100 model trained on 100 images. 

 
Figure 30 Comparison of predicted results among various methods and iterations on the fracture dataset. 

(a) original image, (b) GroundTruth, (c) U-Net_100, (d) pretrained_U-Net, (e) U-Net_1000 
 

4.5 DISCUSSION 

The pursuit of an effective crack and fracture segmentation methodology on mine 

highwalls represents a significant stride toward enhancing safety and structural 

assessments in the harsh mining environment. In this study, a multi-faceted approach was 

employed to attempt to integrating U-Net models, edge detection and thresholding 

techniques to unravel the complexities of detecting major and minor fractures along mine 

highwalls. The investigation spans several iterations of the U-Net model training, coupled 
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with the more traditional edge detection, each marked by distinct training strategies and 

data configurations. This discussion meticulously dissects the comparative performance of 

these iterations, addressing nuances, challenges, and the overarching implications for the 

research question: Can photogrammetry and machine learning be employed to detect major 

and some minor cracks on mine highwalls? 

The U-Net models, constituting the backbone of the machine learning approach, 

underwent iterative refinement. The first iteration, trained on a modest dataset of 100 

images without augmentation, revealed limitations in performance, indicative of the 

model's struggle to capture the complexity of highwall fracture patterns and the diverse 

nature of the image background. The model still demonstrated high levels of accuracy 

during training at 95.41%, with training loss at a low level. Accuracy can be a misleading 

metric in assessing image segmentation models, especially considering the data used in this 

study were the majority of the pixels in any one image belong to one class, this can inflate 

the accuracy so it is important to consider other metrics such as IoU, on which this first 

iteration performed at 53.97%. The second iteration was deployed on an expanded dataset 

of 1000 augmented images and a nuanced adjustment of the learning rate from 0.001 to 

0.0015. This model setup emerged as the top performer across various evaluation metrics, 

which underscores the critical role of data diversity and volume in enhancing the U-Net 

model's segmentation capabilities. This model set achieved the highest Pr, IoU, and a 

comparable F1 score when put up against the other training iterations as seen on Table 9 

above. 

The third iteration, leveraging a pre-trained U-Net model on asphalt and concrete crack 

images, demonstrated substantial competence, securing the second-best performance. 
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Freezing the encoder layers during training on mine highwall fracture images allowed the 

model to transfer relevant features from the source domain. This finding accentuates the 

potential of transfer learning, especially when pre-training data closely aligns with the 

target domain. The pretrained model showed great performance in the IoU measure, but 

less so for precision, recall, and F1 score. This indicates that the model may be achieving 

high spatial accuracy by correctly predicting the presence and location of features, but 

struggling with the exact class or intricacies of the boundaries. This may be caused by class 

imbalance in the dataset, this means that one class may be over represented in the images 

provided. 

In parallel to the U-Net model, an edge detection and thresholding workflow was 

developed as a means of comparison between more traditional methods of detection in 

computer vision and newer deep learning approaches. The performance of edge detection 

closely mirrored that of the U-Net model trained on 1000 images, suggesting that, in certain 

contexts, conventional methods can rival the efficacy of machine learning models. To 

achieve these kinds of results from edge detection does require a significant amount of 

work by the research as compared to a deep learning approach to the problem. Due to the 

differences in the make-up of images in terms of pixel values, the edge detection workflow 

such as the blurring effect, image enhancement and thresholding would have would have 

to be altered slightly to suit the image currently being handled. However, this finding 

underscores the importance of evaluating the trade-offs between computational complexity 

and performance, especially in resource-constrained environments. 
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 CONCLUSION 

A U-Net model was developed for this thesis work to identify and segment fractures 

on open pit mine highwalls as a means to augment the current practice of human visual 

inspections. The U-Net model was trained on data obtained from an open pit aggregates 

mine located in Storey county just outside Reno Nevada. Three different scenarios where 

setup for training the model and these configurations were centered around the availability 

of data, the first configuration was training the model on a modest dataset of 100 images, 

the second configuration was on a dataset using the same model architecture, but with a 

dataset of 1000 images contain original and augmented images. The third configuration 

relied on the benefits of transfer learning, were by a machine learning or deep learning 

model is trained on a different, but related dataset, in this case images showing cracks on 

concrete and asphalt. The pretrained model is repurposed to train on the relevant dataset 

using the knowledge gained from prior training to assist in better learning the features of 

the current data set. In addition to these 3 different configurations, a traditional edge 

detection method was used to serve as a comparison between the newer methods of deep 

learning and more classical methods of pixel wise detection. 

The data collection was one of the more important parts of this thesis work. The use of 

UAVs has become ubiquitous in the mining industry which makes the collection of image 

data around the mine much easier than in the past. Challenges still exist, most UAVs used 

for surveying do not require a high level of accuracy because the data is mainly used for 

volume calculation and measurements, and in the mining industry were tens of thousands 

of tons are being excavated a day, there is low requirement for a high level of detail. But 
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for the kind of work done for this research it was important to collect fairly good image 

data so that the relevant features can be easily extracted by a deep learning model. To 

achieve this a specific setup for the drone flights was setup using the UgCS drone flight 

application, this entailed a simple setup of surveying vertical surface with the camera at a 

90-degree angle to the surface, which proved to be the best set up for collecting the data 

needed for this work. 

After data was collected, pre-processing began. This step is an important one as well, 

and it takes some time to complete, but it was very beneficial to take more time preparing 

the data because it made the training process that much easier. Data annotation was a key 

element to the whole thesis work, this is because for the deep learning model to work it 

needs images and their respective segmentation masks so that it knows which features 

belong to which category. This step was one of the main challenges encountered in this 

thesis work, the images in the dataset were somewhat complex and making errors at the 

begging stages of annotation was part of the process, which caused some delays. 

Once pre-processing was complete the model was coded and training began. The U-

Net model was first introduced by (Ronneberger et al., 2015) for use in the biomedical 

field. It was later widely adopted for many areas were computer vision is applicable. This 

model architecture was modified in accordance with the currently industry uses similar to 

segmentation of fractures. The main challenge when it came to training was availability of 

computing resources, some of the training iterations took some time, especially with the 

pretrained model due to the size of the dataset. 

The goal of this thesis work was to characterize the possible causes of highwall damage 

in the normal process of mining, use drone photogrammetry in combination with deep 
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learning techniques to identify cracks and fractures on open pit highwalls. Firstly, from the 

literature reviewed during this project, it is clear that damage found on mining highwalls 

is usually caused by a combination of the in-situ conditions such as the rock mass 

properties, geologic structures (faults, shear zones, and joints sets), pore pressure due to 

groundwater presence, and blasting practices that results with too much energy from the 

blast engaging with the remaining highwall through ground vibrations and backbreak 

events. The combination of all these elements are why geotechnical monitoring is such an 

important part of the safety practices in the mining environment, and why improving those 

monitoring methods is an important undertaking. 

Secondly, it was shown through the data collection stage that the use of UAVs or 

drones is very useful in the mining industry and that utility was the backbone of this 

research work. Mine highwalls are hard to reach places, most open pit mines are 100s of 

feet deep and access to most of the highwall work capturing data needed for this thesis 

work would not be possible without the advanced drone technology in the market today. 

Lastly, this work has shown how the use of artificial intelligence, deep learning in 

particular is such a pivotal turn in the mining industry. The U-Net model used in this work 

showed a lot of potential to be a practical tool in the mining industry, the model was able 

to identify a lot of the cracks and fractures in the test image provided. The IoU scores the 

model attained showed that the model does well to correctly locate and delineate the 

features in the image. That said, with the availability of a large annotated dataset, much 

better performance can come to be expected from this model. 
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5.1 POTENTIAL FUTURE WORK 

The work that has been done in this thesis has the potential to be extended in many 

ways. The National Institute of Occupational Health and Safety, which sponsored the 

research grant under which this work was funded is always looking for new ideas to make 

the mining industry safer and productive.   

5.1.1 INCORPORATION OF MORE DATA 

Collecting relevant data from mining companies is a difficult task, but one that should 

be done continuously to amass a large enough dataset to keep on hand. Deep learning 

models work very well when they have a large dataset to train on and mine operations 

generate this data on a daily bases, with a larger dataset the model used in this current study 

can be tested further to see if any improvements can be made its performance. Diversifying 

the dataset is another benefit of more data collection, there are a variety of rock types at 

different alteration stages that may present differently at a pixel level in an image, and 

including those diverse imagery in the training set, might help the model generalize better. 

5.1.2 TESTING DIFFERENT MODEL ARCHITECTURES 

The area of artificial intelligence is always growing, new and advanced learning 

models are being developed all the time and it would be beneficial to test out newer 

segmentation models as they are developed or more interestingly to merge existing models 

to see if any performance can be gained from that. A deep learning models such as the 

encoder decoder model, which is very similar to the U-Net model, is very good at extracting 

features from data and could possibly be measured with a U-Net model to improve the way 

it learns features from images before producing a segmentation mask. 
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5.1.3 GEOLOGIC STRUCTURE CHARACTERIZATION 

As I mentioned in previous chapters, some of the in-situ ground conditions that can be 

found in mining areas include faults and joint sets. Currently drilling campaigns are 

conducted during exploration, before mining starts, and from the data gathered from this 

drilling faults and joints can be modelled. More can be done in this area of characterizing 

faults because as mining progresses, those faults and joints in the ground can also be 

observed as fractures on mine highwalls and they can be identified through the use of the 

imagery and deep learning models. But to go one step further, there may be a possibility to 

use the images collected to make a 3D representation of the highwall and using similar 

deep learning models, identify not just the fractures, but the direction the fracture or fault 

in this case, might be extending back into the highwall known as the strike. 

5.1.4 CONNECTING FRACTURE DENSITY TO BLASTING OPERATIONS 

The highwall condition of a mining operation is influenced by the in-situ ground 

conditions, coupled with blasting outcomes. There isn’t much that can be done about the 

ground conditions, mine operators have to work within those constraints. However, this 

research can be couple with descriptive scales of blasting outcomes such as the one outlined 

in Table 1, to rank the highwall condition and then use machine learning and deep learning 

algorithms to connect the condition of the highwall with the drill and blasting parameters 

(burden, spacing, stemming etc.) selected for that area to see the degree of correlation and 

possibly use this to inform on which parameters are best suited for that mining area. 
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DATA AND SOURCE CODES 

The data and codes used in this thesis work can be found at the GitHub repository at 

the link below. Please reference this thesis work if you intend to use any of that data. 

GitHub: Images and code for training semantic segmentation model 

https://github.com/motsumi1794/crack_segmentation_on_open_pit_mines/tree/master
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