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ABSTRACT 

This study introduces a machine learning methodology for predicting gas concentrations 

at specific location within a tunnel model. The machine learning model is trained using 

gas concentration data obtained from sensors placed at diverse locations. The procedural 

sequence commences with the acquisition of data through an experimental protocol 

designed for training the machine learning model. Subsequently, the K-Nearest Neighbor 

(KNN) model is employed for predictive computations. The efficacy of the model is 

assessed through a comprehensive case study. The findings demonstrate that the proposed 

methodology exhibits a high level of accuracy, affirming its robust performance in 

predicting gas concentrations within the tunnel model. 
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CHAPTER 1 : INTRODUCTION 

The intake air of underground mines has a composition of 78% nitrogen, 21% oxygen 

and 1 % of other gases(Mcpherson et al., n.d.). Various emission such as Dust, Diesel 

Particulate Matter, gases from strata, blasting of explosives have resulted in change in 

composition of air. Various researchers have been studying these emissions to increase the 

scope of ability to understand its impact of health and safety on miners, environmental 

impact and technological advancements (Figure 1). With the increased availability of cost 

effective sensors and air monitoring systems, it has been now convenient to monitor the 

atmospheric condition of underground mines by companies like Barrick, Newmont & 

Kinross. The transformation of data generated by theses air monitoring systems into a 

predictive machine learning models is a significant benefit in exposure monitoring in mine 

environment. 

 

Figure 1 Increasing Research in the field of Emissions (Data taken from web of science). 
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This research constitutes a vital component of the NIOSH project entitled 

“Comprehensive Intelligent Exposure Management Systems.” The overarching objective 

of this project is to formulate an advanced exposure management system, emphasizing the 

integration of machine learning techniques. The primary goal is to construct a predictive 

model derived from discerning trends in air quality data, This innovative approach seeks 

to enhance the capability of anticipating and managing potential occupational exposures, 

contributing to a more robust and intelligent framework for safeguarding the health and 

well-being of miners. 

Some of the drawbacks of the current air monitoring practices which are addressed through 

this research work are (1) The air monitoring systems essentially monitor the constituents 

of air such as gas concentrations, humidity, dust but are unable to make a predictive 

analysis. This research aims to overcome this limitation by incorporating machine learning 

techniques, to enable predictive modeling of air quality trends. (2) The wealth of data 

generated by air monitoring systems can be intricate to interpret and translate into 

actionable insights. This research seeks to streamline data interpretation processes, 

ensuring that information derived from monitoring efforts is readily comprehensible and 

useful for understanding air quality dynamics.  

This thesis is organized into 3 chapters, each of which is briefly outlined as follows: 

Chapter 1:  Introduction 

An overview of challenges associated with the existing technology utilized for analyzing 

and monitoring air quality in the underground mines has been provided. The objectives of 

this research and the broader NIOSH project have also been elucidated. 



3 

 

 

Chapter 2: Literature Review  

A review of an in depth examination of factors influencing the health and safety of 

underground miners, with a particular emphasis on 𝐶𝑂2, 𝐶𝐻4, CO, Dust and DPM. 

Furthermore, a concise overview of commercially accessible air monitoring systems 

designed for implementation in underground mines has been provided. Additionally, the 

literature review encompasses a comprehensive analysis of both supervised and 

unsupervised learning methods, shedding light on the existing body of knowledge in these 

areas.  

Chapter 3: Predictive Model  

This chapter proposes a methodology for developing predictive model for gas 

concentrations within a tunnel, employing a machine learning approach. Recognizing the 

need for effective training, an experiment was conducted to generate a diverse dataset 

reflecting variations in gas concentrations over time. The primary objective is to develop a 

model that not only accurately captures the variability in gas concentrations but also 

demonstrates practical applicability for air quality monitoring a management. The 

preliminary results indicate the K-Nearest Neighbor (KNN) demonstrates remarkable 

predictive capability among the tested algorithms, with a focus on assessing performance 

metrics such as R-squared (𝑅2) and Mean Squared Error (MSE). Furthermore, correlation 

analysis sheds light on interrelationships between gas concentrations at different locations, 

emphasizing the importance of certain factors, such as locations in the predictive model. 



4 

 

CHAPTER 2 : LITERATURE REVIEW 

2.1 Factors Affecting the Health and Safety of Underground Miners  

2.1.1 Carbon Dioxide 

Several things can cause co2 release in underground mines. If the appropriates 

measures are not taken place it can cause serious risk to live of miners. According to 

(Monsé et al., 2014) inhaled 𝐶𝑂2  greater than 2% volume can be expected to cause adverse 

effects in the form of cardiovascular, respiratory, and neurophysiological results. 

Spontaneous Heating-It is a chemical process that occurs when oxidation of organic matter 

in coal starts which releases heat and gases, including CO2. This happens the carbon 

combines with oxygen from the air to from CO2.Explosives- Explosives releases carbon 

dioxide (CO2) through a process of combustion when they detonate. Combustion involves 

the reaction of explosive material with oxygen in the air leading to the formation of various 

gases, including CO2. Diesel Equipment- The diesel-powered machines and vehicles are 

essential for mining operations, but they can also contribute to the production of carbon 

dioxide (CO2). Diesel Engines operate on the principle of internal combustion. Diesel fuel 

is injected into the engine’s combustion chamber, where it mixes with air. The mixture is 

compressed and ignited by a spark plug or through compression ignition. During 

combustion, the carbon (C) and the (H) in the diesel fuel react with oxygen (O2) from the 

air resulting in the release of CO2 and water vapor (H2O).Gas Outburst-  The unexpected, 

variable-in-intensity emission of gas from coal seam is called as gas outburst.IT has been 

reported by (Black, 2019) in Australian coal mines that gas outburst can occur in areas with 
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high gas content (> 16𝑚3/t) and high concentrations of carbon dioxide (>95% CO2). The 

author also asserted that the C𝑂2 is more outburst prone than CH4 and more violent than 

𝐶𝐻4.  

2.1.1.1 Carbon Dioxide Release in Coal Mines. 

One of the most frequent gases in the strata is carbon dioxide. The most significant sources 

of CO2 in coal mines is the combustion of coal itself through slow 

oxidation(Gases_Found_in_Coal_Mines, n.d.).It is generally called as black damp in 

mining terminology. Average black damp contains 10 to 15 per cent carbon dioxide and 

85 to 95 % of nitrogen. It is mostly produced by underground fires and is present in the 

afterdamp of an explosion. It is always found in the return air of coal mines in small 

proportions. Concerns have been raised over the amount of coal mine carbon dioxide 

released during mining operations and the necessary ventilation needed to guarantee that 

work safety conforms with statutory limitations(W. Li et al., 2015). The quantity of gas 

released varies depending on how much coal is being mined. It is difficult to pinpoint the 

source of the emission. The parameter influencing the emission of carbon dioxide may vary 

from rank of coal seam, the depth of the coal seam, types of machines. Various indices are 

used for fire detection. C𝑂2 as an indicator is used in Young’s ratio to detect oxidation of 

coal. The concentration of carbon dioxide, Nitrogen and oxygen is in percentages, while f 

represents return air concentration for the gas.  

𝑌𝑅 =
(𝐶𝑂2𝑓−𝐶𝑂2𝑖)

0.265 𝑋 𝑁2𝑓−𝑂2𝑓
                                                                                                  (1) 
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Similarly, there is CO/𝐶𝑂2 ratio which is independent of oxygen which determines the 

change in the carbon monoxide produced to carbon dioxide produced as a function of the 

coal temperature.  

𝐶𝑂

𝐶𝑂2
𝑅𝑎𝑡𝑖𝑜 =  

(𝐶𝑂𝑓−𝐶𝑂𝑖)

(𝐶𝑂2𝑓−𝐶𝑂2𝑖)
                                                                                              (2)                 

Morris Ratio is the ratio of amount of oxygen absorbed by the coal to the amount of 

oxidation produced by the coal.  

𝑀𝑅 =
(𝑁2𝑓−𝑁2𝑖)

(𝐶𝑂𝑓+𝐶𝑂2𝑓)
                                                                                                           (3) 

Jones-Trickett Ratio (JTR) is the measurement of the amount of oxygen required to be 

consumed to produce the oxidation products compared to the amount of oxygen removed 

from the inlet gas stream.  

𝐽𝑇𝑅 =
(𝐶𝑂2𝑓+0.75 𝑋𝐶𝑂𝑓−0.25𝑋𝐻2𝑓)

(0.265𝑋𝑁2𝑓−𝑂2𝑓)
                                                                                    (4) 

C/H ratio is used to investigate the characteristics of the seal off fires and the nature of 

oxidation process. It calculates the proportion of carbon to hydrogen and estimates how 

much oxygen is consumed by mine gases.  

C/H Ratio =
6𝑋(𝐶𝑂2+𝐶𝑂+𝐶𝐻4+2𝐶2𝐻4)

2𝑋(
𝑁2

3.78
−𝑂2−𝐶𝑂2+𝐶𝐻4)−𝐶𝑂+𝐶2𝐻4+𝐻2

                                                          (5) 
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Table 1 Interpretation of Indices 

Young’s Ratio <0.25 Normal Situation 

0.25-0.50 Heating 

>0.50 High intensity fire 

CO/𝐶𝑂2 <0.02 Normal Situation 

<0.05 Temperature of coal <60°C 

<0.10 Temperature of coal <80°C 

<0.15 Temperature of coal <100°C 

<0.35 Temperature of coal <150°C 

Morris Ratio  From seam to seam, the actual figures differ. As the temperature 

rises, the ratio rises. In a sealed fire zone, it is sensitive to 

changes in the condition of the gases. 
Jones-Trickett Ratio <0.4 Normal situation 

<0.5 Methane fire possible 
<0.8 Coal, oil, belt fire possible 
<1.6 Timber fire 
>1.6 Error in analysis 

 

2.1.1.2 Carbon Dioxide Release in Metal/Nonmetal Mines 

NIOSH talks about recommending exposure limits for C𝑂2 in the metal mine should 

be 0.5 percent or 5000 parts per million for a 40-hour workweek. In normal air the carbon 

dioxide level is 0.035 percent but for 15 min of short-term exposure limit it is 3 percent. 

Since the 𝐶𝑂2 emissions in metal/ nonmetal mines is inconsistent it’s hard to anticipate it’s 

release.  The constant worry about carbon dioxide in coal mines is one notable difference 

between the metal/nonmetal and coal mines. Mostly the carbon dioxide is produced in 

metal mine through the diesel engines operated machines through combustion process and 

it can be easily mitigated through proper ventilation.Mines also have detection capabilities  

and 𝐶𝑂2 emissions can be monitored using variety of devices. Therefore, monitoring is a 

frequent action that raises awareness of the potential risks associated with carbon dioxide. 
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2.1.2 Methane (CH4) 

Methane stands out as one of the most feared gases in underground coal mining 

scenarios, arising from chemical decomposition of organic matter. It resides in cracks, 

spaces, pores and is released when penetrated by boreholes or mining excavations. It is not 

poisonous in nature but it is dangerous because it is explosive when it mixes with air. The 

explosibility of mixture of air and combustible gases like methane, carbon monoxide and 

hydrogen is explained by cowards diagram (Figure).  

 

Figure 2 Coward explosive triangle for methane, carbon monoxide and hydrogen(Cheng 

& Luo, 2013). 

When the methane released in the mine atmosphere undergoes dilution the 

explosibility depends on the percentage of methane and oxygen in mine air. The 

explosibility triangle explains if the percentage of methane-air mixture will be explosive 

in nature as well as produce an insight if it will be become explosive in future depending 

on the increase or decrease in air or methane concentration. The upper explosive limit 

(UEL) is 15 % where the gas mixture is not explosive. The explosive limit is between 5% 

to 15 % and lower explosibility limit is below 5 %, where the methane-air mixture do not 
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light (Figure 2). Some of the ways to prevent the formation of explosive mixture is to have 

strong ventilation in the mining face. Another method in the application of water sprays on 

the cutting as well as excavating machines utilized for winning the coal. Ensuring proper 

air quality monitoring systems near the mining faces as well as the heavy machineries can 

also help in mitigating the risks associated with methane release in coal mines.  

2.1.3 Carbon Monoxide (CO ) 

In the depth of the Earth, where valuable resources are unearthed to power our world, 

a silent yet deadly threat looms- carbon monoxide. For centuries, underground mining has 

been at heart of industrial progress, but with it comes the insidious presence of this 

colorless, odorless gas, capable of silently endangering the lives of miners and 

sustainability of mining operations. When CO is inhaled, it enters the bloodstream and 

forms a strong bond with hemoglobin and forms carboxyhemoglobin (COHb), which is the 

compound created when CO binds to hemoglobin, reduces the blood’s oxygen-carrying 

capacity and endangering lives. In mining, carbon monoxide is also known as white damp. 

Some of the known sources of CO in mines includes explosives, fires, exhaust of vehicle, 

heated lubricants and oils and spontaneous heating of coal. In United States, MSHA has 

set the permissible exposure limits (PELs) for CO in underground mines, These limits are 

set to protect the health and safety of miners. The PELs for CO for Time-Weighted Average 

(TWA) is 50 parts per million (ppm) for an 8-hour work shift and Short-Term Exposure 

Limit (STEL) is 400 ppm for any 15- minute period. 
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Table 2 CO exposure level and symptoms. 

Exposure Symptoms 

70-100 PPM  Headache, Fatigue 

150-300 PPM Increased Dizziness, Vomiting, Reddened skin, Drowsiness,  

chest pain, impaired judgement, confusion, hallucination 

>400 PPM Convulsions, Coma, Brian Damage, Unconsciousness 

=6400 PPM Death 

 

2.1.4 Dust Release in Underground Mines 

Mining operations have generated significant amounts of airborne respirable dust in the 

past and present, leading to the development of lung illness in miners. Pneumoconiosis 

and silicosis in coal miners are among the lung illnesses that have harmed the health of 

thousands of mine workers around the world(Austin et al., 2021). Based on their effects 

on the environment, workplace health, physiological and combustible consequences, and 

source of generation, mine dusts can be categorized. The level of risk associated with 

different mine dusts substantially varies. . The crucial elements that determine whether 

dust is toxic to humans are its chemical makeup and particle size. Some dusts, such those 

produced in coal and sulfide ore mines, not only present a health risk but also have the 

ability to set off explosions due to spontaneous heating(Rao et al., 2020).Explosive dusts 

are quite concerning since they endanger the security of the mines. Detailed 

Classification of mine dust is given below(Paluchamy et al., 2021). 
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Figure 3 Classification of Mine Dust(Paluchamy et al., 2021). 

According to their size fractions, which impact how well the human lungs work, airborne 

dust have been categorized as inhalable, thoracic, and respirable dust based on potential 

health risks (Figure 3). Figure 4 depicts the classification rules for dust fractions as 

agreed upon by ISO and the European Committee for Standardization .  

Classification of mine 
dust

Based on 
environmental 

effect

1) Generated Dust

2) Total 
Suspended Dust 

3) Nuisance Dust

4) Fugitive Dust 

Based on 
occupational 
health effect

1) Inhalable Dust

2) Thoracic Dust 

3) Respirable Dust 

Based on 
physiological 

effect

1) Toxic Dust 

2) Carcinogenic 
Dust 

3) Fibrogenic Dust 

3) Nuisance Dust 

4) Radioactive 
Dust 

5)DPM

Based on 
combustible 

effect

1) Combustible 
dust /Explosive 

dust

2) Non-
combustible dust
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Figure 4 Inhalable, thoracic and respirable convention as percentages of total airborne 

dust and fine dust fraction according to the Johannesburg convention(Paluchamy & 

Mishra, 2021). 

It also depicts the Johannesburg convention for fine dust fractions. The workers' exposure 

is measured using these convention curves, which are also used as a guide when 

developing dust sampling apparatus. part of airborne dust that enters the nose and mouth 

while breathing and is deposited in the upper respiratory tract is known as inhalable dust. 

The inhalable dust fractions also encompass the thoracic and respirable dust fractions 

with aerodynamic diameter of particles up to 100µm.(Wippich et al., 2020)The mass 

fraction of inhalable dust that passes through the larynx changes depending on each 

person's breathing pattern and is known as the thoracic fraction. The percentage of 

inhalable dust that enters the area of the lungs responsible for gas exchange (alveoli), is 

known as airborne respirable dust (ARD). The size variation is mainly between 0.1 and 

10 mm, and the miners' health is of major concern when they breathe the air containing 

dust. The size distribution of particulate matter (PM) in ambient air is defined by the US 

Environmental Protection Agency (USEPA) as follows: inhalable particles, defined as 
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particles with a diameter of less than 10 micrometers and smaller.; fine inhalable 

particles, defined as particles with a diameter of less than or equal to 2.5 micrometers 

(PM2.5); and coarse or thoracic coarse particles, defined as particles with a diameter 

greater than 2.5  micrometers. and less than or equal to 10 µm (PM10-2.5). Both the fine 

and coarse fractions of PM10—particles with aerodynamic sizes typically less than or 

equal to 10 µm are present(PM Basics, n.d.). 

2.1.5 Diesel Particulate Matter (DPM) 

Exposure to diesel particulate matter (DPM) in underground mining is a significant 

occupational health concern. Diesel engines are commonly used in underground mining 

operations for their power and reliability, but they emit DPM, which can have adverse 

health effects. Studies have concluded that long-term exposure to high concentration DPM 

could lead to increase the risk of negative health effects such as acute irritation, asthma, 

cough, light-headedness. In the united states, the Mine Safety and Health Administration 

(MSHA) has established a regulatory limit for diesel particulate matter (DPM) in metal / 

non-metal mines. The current regulations are designed around assessing an individual 

miner's exposure to diesel particulate matter (DPM). They stipulate that, within an 

underground metal/nonmetal (MNM) mine, a miner's daily exposure should not surpass an 

average concentration of 160 micrograms of total carbon (TC) per cubic meter of air 

(160TC µg/m³) when measured as an 8-hour, time-weighted average concentration 

(TWA8)(Title 30-Mineral Resources Chapter I-Mine Safety and Health Administration, 

Department of Labor Subchapter K-Metal and Nonmetal Mine Safety and Health Part 57-

Safety and Health Standards-Underground Metal and Nonmetal Mines Subpart D-Air 
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Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate 

Matter-Underground Only, n.d.). Investigations have revealed that when the size of 

particles is less than 0.5 μm, the filtering capacity of the nose is notably low. In cases where 

the particle size is less than 1 μm, they have the ability to deposit in the deepest regions of 

the lungs. Figure 5 illustrates typical size distributions of diesel particles, both in terms of 

mass-weighted and number-weighted. It's evident that more than 90% of these particles 

have diameters below 1 µm, making them capable of reaching the deepest areas of the 

lungs. Numerous studies have provided evidence that airborne particulate matter, with 

DPM as a significant component, contributes to both respiratory mortality and morbidity. 

 

 

Figure 5 Diesel Particulate Matter Size Distribution(Chang & Xu, 2017). 

 

2.2 Air Quality Monitoring Systems in Underground Mines. 

Underground mining environments are often hazardous due to the presence of gases, dust, 

and other potential contaminants. Air monitoring systems are crucial for early detection of 

dangerous conditions, helping to prevent accidents and protect miners. These systems 

monitor the concentrations of gases like methane, carbon monoxide, sulfur dioxide oxygen, 
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dust and Diesel Particulate Matter. High Concentrations of these contaminants can be 

lethal. Monitoring dust levels, including respirable dust is essential for assessing air quality 

and protecting miners from respiratory diseases. Monitoring temperature and humidity also 

plays an important to ensure that the working conditions are within safe limits for miners 

Figure 6.  

 

 

Figure 6 Air Monitoring System- Scheme. 

. 
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Figure 7 Vigilante AQS(<i>Vigilante AQSTM - Air Quality Station _ Maestro Digital 

Mine _ Maestro Digital Mine</i>, n.d.). 

 

In earlier days, warm-blooded birds like munia were commonly used for gas detection due 

to their heightened sensitivity to CO. Then came the color changing detectors. These 

detectors contain chemicals that change color in response to specific gas concentrations, 

enabling gas percentage determination by matching the tube's color with a reference chart, 

as exemplified by P.S detector, Hoolamite detector, and Drager multi gas detector. 

Numerous companies have manufactured automatic detectors capable of measuring even 

trace gas concentration in mines. The often feature adjustable probes for reading from the 

roof, including products like Automatic fire damp detector, Interference methanometer and 

memac I. With the advancement in technologies, wireless air monitoring systems have 

made it easy to monitor real-time monitoring and data collection of air quality and 

environmental condition. These systems offers several advantages and applications in 
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mining as well as various field, including environmental science, industrial safety and 

public health. The components responsible for collecting data are sensors and can be 

designed to measure various air quality parameters, including temperature, humidity, 

particulate matter (PM), gases (e.g.CO, CO2, NOx) and Volatile organic compounds. 

Wireless communication technology, such as Wi-Fi, Cellular networks or radio frequency 

(RF) is used to transmit data in real-time. from sensors to a central data point. The Fig show 

a typical air monitoring system used in underground mining. The data collected from the 

systems is processed further to provide valuable insights, trends and real time information 

about air quality conditions. Figure 7 shows Vigilante AQS and Table.3- Existing Air 

Quality System talks about available systems utilized in industry with its features, strengths 

and limitation. More flexible ways are handheld devices that can measure concentration 

with simple user interface but without the possibility of data analysis. The figure shows the 

examples of portable gas detectors. 
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Figure 8 Portable handheld devices(Dräger Pac® 6500 _ Draeger, n.d.),(GasBadge® Pro 

n.d.),(Tango TX1 Single-Gas Detector, n.d.) 

Table 3 Existing Air Quality Monitoring Systems 

Name of System Features Technolog

y 

System 

Capabilities 

Advantag

es  

Limitati

ons 

MSH

A 

Approved 

Vigilante AQS 

(<i>Vigilante 

AQSTM - Air 

Quality Station _ 

Maestro Digital 

Mine _ Maestro 

Digital Mine</i>, 

n.d.) 

Multi-

Gas 

Detection 

Wireless 

Sensor 

Network 

Real 

Time 

Alerts, Data 

Logging, 

Integration, 

Scalability 

Real-

Time 

Decision 

Support, Data 

Analysis , 

Wireless 

Connectivity 

Regular 

Maintenance

, Calibration 

of Gas 

Sensors 

Yes 

Rajant Kinetic 

Mesh Network for 

underground 

monitoring(Kinetic 

Mesh Networks for 

Underground 

Mining 

Https://Rajant.Com/

Kinetic-Mesh-

Networks-for-

Underground-

Mining/ 1/4 Don’t 

Miss Rajant’s World 

Wireless 

Mesh 

Connectivity. 

Self-Healing, 

High 

Bandwidth, 

Multiple 

Device 

Integration 

Mesh 

Networking, 

Mobile Nodes 

Real-

Time Data 

Transmissi

on, 

Geolocatio

n, 

Integration 

Reliabilit

y, Scalability, 

Reduced 

Downtime  

High 

Initial Cost, 

Initial Setup 

Complexity 

No 
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Music Benefit for 

CHOP Learn More 

Kinetic Mesh 

Networks for 

Underground 

Mining, n.d.) 

Sensidyne 

Gilian Air Sampling 

Pumps(Gilian Air 

Sampling 

Equipment from 

Sensidyne AIR 

SAMPLING 

EQUIPMENT FOR 

MONITORING 

EXPOSURE TO 

AMBIENT 

PARTICULATES, 

GASES, OR 

VAPORS, n.d.) 

 Versatile 

Sampling- 

dust, 

particulates, 

gases and 

vapors, Flow 

rate Option, 

Programmabl

e specific 

sampling 

duration and 

flow rates, 

Compact and 

light weight 

Positive 

Displacement 

Pump, 

Electronic 

Controls 

Sample 

Collection, 

Data 

Logging, 

Portable  

High 

Accuracy, 

Programmabi

lity, 

Portability, 

Data Logging 

Limited 

Battery Life, 

Regular 

Maintenance 

No 

Fogmaker 

Underground Mine 

Solution(0/23/23, 

7:28 PM Protect 

Mining and 

Tunneling 

Equipment from 

Fire-Fogmaker 

Https://Fogmaker.C

om/Business/Mining

-and-Tunneling/ 

2/6, n.d.) 

Fire 

Suppression, 

High Pressure 

Water Mist, 

Rapid 

Response, 

Customizable 

Design, User-

Friendly 

Interface 

High 

Pressure 

Water Mist, 

Automatic 

Detection, 

Integration 

Fire 

Suppressio

n, Quick 

Response, 

Customizati

on, 

Integration 

Rapid 

Fire 

Suppression, 

Automatic 

Activation, 

Customizatio

n, Safety 

High 

Initial Cost, 

Regular 

Maintenance 

No 

Sick Maihak 

GmbH - Ventilation 

Air Methane (VAM) 

Monitoring 

System(Schibig et 

al., 2015) 

Gas 

Detection, 

Real-time 

Monitoring, 

Data logging, 

Customizatio

n, Remote 

Monitoring, 

Alarms 

Sensors, 

Wireless 

Communicatio

n, Data 

analysis 

Real-

time  

Monitoring, 

Data 

Storage, 

Customizati

on 

Data 

Accuracy, 

Historical 

Data 

Analysis, 

Remote 

Access 

High 

Initial Cost, 

Regular 

Maintenance 

No 

Drager X-pid 

series (Dräger X-

Multigas 

Detection, 

Volatile 

Photoioni

zation 

Detection 

Multi-

Gas 

Detection, 

Compreh

ensive Gas 

Detection, 

Relative

ly High 

Cost, 

No 
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Pid® 9500 _ 

Draeger, n.d.) 

Organic 

Compound 

Compound 

(VOCs), 

Toxic gases , 

Photoionizati

on Detection 

technology 

(PID), Real-

Time 

Monitoring, 

Compact and 

Portable, 

Customizable 

Sensors, Ata 

Logging, 

User-

Friendly 

Interface, 

Alarm and 

Alert System 

(PID), Data 

Acquisition, 

Interchangeabl

e Sensors 

Real-Time 

Data, 

Customizati

on 

Real-Time 

Response, 

Portability, 

Interchangea

ble Sensors, 

User-

Friendly 

Periodic  

calibration 

sensors 

RAE systems by 

Honeywell 

(Honeywell _ RAE 

Systems Gas 

Detection 

Equipment _ 

Safeware, n.d.) 

Wireless 

Gas 

Detection, 

Multi-Gas 

Monitoring, 

Mesh 

Network, 

Data logging, 

Real-Time 

Alerts, 

Integration, 

Portable Gas 

Detectors 

Wireless 

Mesh 

Network, 

electrochemic

al , infrared , 

photoionizatio

n sensors, Real 

time data 

transmission 

Remote 

Monitoring 

Adaptive 

Mesh 

Network, 

Comprehen

sive Gas 

Detection, 

Data 

Logging 

Real-

Time 

Monitoring, 

Scalability, 

Wireless 

Deployment, 

Data 

Integration. 

Cost Efficient 

High 

initial setup 

cost, 

Routine 

Maintenance

, Regular 

sensor 

calibration 

No 
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Table 4 Development of new Air Quality Monitoring System for Underground Mining. 

Author Method Strength Limitations 

H W Wu, ADS 

Gillies, 2008 (Wu 

& Gillies, n.d.) 

Data 

collection, 

Network 

Simulation, 

Interpretation of 

data, Online 

Monitoring 

System, Testing  

and Optimization 

Real-time 

monitoring, 

improved 

efficiency, data 

integration, safety 

enhancement.  

Cost and 

implementation, 

Data Security, 

Sensitive, Sensor 

Reliability, system 

complexity. 

Z.Agioutantis, 

K.Luxbacher, 

M.Karmis, S 

Schafrik, 

2014(Development 

of an Atmospheric 

Data-Management 

System for 

Underground Coal 

Mines Current 

Monitoring 

Technologies in US 

Coal Mines Figure 

1-Simplified Layout 

of Sensor 

Deployment in US 

Coal Mines Figure 

2-Data Acquisition 

for Atmospheric 

Monitoring in Coal 

Mines, n.d.) 

Data 

Collection, Data 

Management, 

Intrinsically Safe 

Components, 

Real-Time 

Analysis, Data 

Independence  

Safety 

Compliance, Real-

Time Monitoring, 

Data Integrity, 

Complex Analysis, 

Alarm Generation 

Costly and 

Complex, Data 

Security, 

Maintenance and 

Calibration, 

Personnel training, 

Data Volume 

Bharath Belle 

(Belle, 2014) 

Continuous 

Real-Time 

Monitoring, 

Envisaged 

Benefits, Accuracy 

and Validation, 

Operational 

Factors 

Continuous 

Monitoring, 

Operational 

Benefits, Data 

Confidence 

Instrument 

Accuracy, 

Operational 

Variability, Data 

Validation, Costly 

implementation 

J.H. Rowland 

III, S.P.Harteis, 

AMS Usage 

Survey,  

Regulatory 

Compliance, Impact 

Data 

dependency, Lack of 

Qualitative Insights 
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L.Yuan (Rowland et 

al., 2018) 

Assessment, Data 

Availability 

ByungWan Jo, 

Rana Muhammad 

Asad Khan 2018(Jo 

& Khan, 2018) 

Arduino-based 

sensor modules, 

Data 

Transmission, 

Data Assessment, 

Artificial Neural 

Network, 

Performance 

Evaluation 

Comprehensive 

Monitoring, 

Assessment 

Prediction, 

Efficiency, Safety 

Enhancement  

Hardware 

Maintenance, Data 

Transmission, Data 

Security, Data 

Dependency 

Mokhinabonu 

Mardonova , 

Yosson Choi, 

2018(Mardonova & 

Choi, 2019) 

Open Source 

System 

Development, 

Arduino, 3-D 

printing, MIT App 

inventor, Android 

Application 

Cost-Effective, 

Remote Monitoring 

Low- Precision, 

Scalability issues 

Generalizability 

Bartlomiej 

Zietek, Aleksandra 

BAnasiewicz, 

Radoslaw, Zimroz, 

Jaroslaw Szrek, 

Sebastian Gola, 

2020(Ziętek et al., 

2020) 

System 

Component- Gas 

Sensors, 

microcontrollers, 

Smartphone 

Integration, Data 

Collection, Data 

Analysis, Testing 

Cost Effective, 

Real-Time Data, 

Portability, 

Accessibility, Safety 

Enhancement 

Sensor 

precision, 

Scalability 

Ankit Jha, 

Purushotham 

Tukkaraja, 2020 

(Jha & Tukkaraja, 

2020) 

Laboratory 

Scale Model, 

Sensor 

Deployment, Data 

Interpretation, GIS 

tools, GIS tools, 

Safety and 

Comfort  

Optimization 

Safety 

Enhancement, Data-

Driven Decision, 

Visualization, 

Controlled Testing, 

Interdisciplinary 

Approach 

Scale Model 

Representativeness, 

Sensor Accuracy, 

Const and Resource 

Intensity, 

Environmental 

Dynamics, 

Generalizability 

Mahesh 

Shriwas, 

Christopher 

Pritchard, 

2020(Shriwas & 

Pritchard, n.d.) 

Sensors, 

control systems,  

software 

technologies. Data 

transport system, 

Industrial Internet 

of Things, 

Ventilation 

network simulators 

Comprehensive 

Review, 

Identification of 

Challenges, Global 

Perspective, 

Interdisciplinary 

Approach 

Technology 

Evolvement, 

Generalizability 
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Researchers have undertaken ambitious endeavors to develop cutting-edge systems 

that aim to revolutionize the management of air quality in underground mines. By 

harnessing advanced computer software and real-time data from ventilation airflow 

sensors, these innovative solutions aim to not only provide immediate insights into key 

ventilation system paraments but also enhance the overall safety and efficiency of 

underground mining operations.(Wu & Gillies, n.d.)  have highlighted the development of 

sophisticated computer software that seamlessly connects real-time data from underground 

mine ventilation airflow sensors to a network simulation program. The resulting system 

enables immediate interpretation of key ventilation system data and operational changes, 

ultimately enhancing air quality management within underground mines.(Development of 

an Atmospheric Data-Management System for Underground Coal Mines Current 

Monitoring Technologies in US Coal Mines Figure 1-Simplified Layout of Sensor 

Deployment in US Coal Mines Figure 2-Data Acquisition for Atmospheric Monitoring in 

Coal Mines, n.d.)  emphasize on development of intrinsically safe and approved monitoring 

components in US coal mines highlights the paramount importance of adhering to safety 

standards. The author also discusses the need for independent data validation and storage 

and control 

devices, Case 

studies 

Prasanjit Dey, 

S.K. Chaulya, 

Sanjay Kumar, 

2021(Dey, Chaulya, 

et al., 2021a) 

IOT-Enables 

Sensors Hybrid 

CNN_LSTM 

Model, Prediction 

of Mine Hazards, 

performance 

evaluation 

Improved Safety 

and Productivity, 

Spatial and 

Temporal Feature 

Extraction, IoT 

Integration, Better 

Prediction 

Accuracy, 

Scalability 

Data 

Dependency, Model 

Complexity, 

Generalizability, 

Maintenance and 

Deployment 
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apart from filtering, data reduction and visualization processes. (Belle, 2014)  enumeration 

of potential benefits resulting from real-time velocity monitoring underscores the practical 

approaches. Furthermore it emphasize on the ‘accuracy of instruments and the absence of 

clear guidance serves as a call to action for standardization in Ventilation Air Methane 

(VAM).(Rowland et al., 2018)  talks about the ventilation surveys which were conducted 

in 1995 and 2003, offering insights into the historical landscape of mine safety technology. 

Of paramount importance is the recognition of regulatory requirements regarding early fire 

detection systems in belt haulage entries have evolved over time. Notably, the prohibition 

of point-type heat sensors and the shift to carbon monoxide (CO) sensors as mandated by 

MSHA as of December 31, 2009, represents a significant regulatory change. These insights 

in understanding the practical implication of safety regulation and technology adoption 

within the mining industry. (Jo & Khan, 2018) have introduced  an IoT-based system for 

air quality monitoring in underground coal mines, expanding its capabilities to include 

assessment and pollutant prediction. The introduction of the Mine Environment Index 

(MEI) as a metric for evaluating air quality is a noteworthy advancement in mine safety 

technology. The Principal Component Analysis (PCA) based Artificial Neural Network 

(ANN) model demonstrates impressive predictive performance, highlighting the potential 

for this approach in advancing mine environmental safety. (Mardonova & Choi, 2019) have 

highlighted the growing significance of open-source technology in Industry 4.0, illustrating 

its diverse applications and its capacity to address industry-specific challenges. (Ziętek et 

al., 2020) acknowledges the critical nature of air-quality measurements in deep 

underground mines, emphasizing the complexities associated with ventilation, mine 
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geometry and mine safety. A need for portable, personal devices to offer real-time 

information on gas hazards is recognized, particularly given the limitations of existing 

tools. The paper introduces an innovative system that overcome these limitations, 

employing low-cost gas sensors, microcontrollers and common smartphones for data 

storage, analysis and visualization. The adoption of smartphones as a versatile resource 

highlights the system’s adaptability and potential for cost-effective data analysis.(Jha & 

Tukkaraja, 2020) underscores the paramount importance of monitoring and assessing 

underground climatic conditions as preventive measure to avert hazardous situations and 

possible disasters. Employing a laboratory scale model as the basis for experimentation, 

the research focuses on the real-time monitoring of ventilation parameters that directly 

impact miner safety. The data is collected by sensors, enabling the surveillance of key 

variables such as temperature, humidity and gas concentrations. The study introduces a 

predictive  dimension by utilizing established ratios and indices to anticipate the presence 

of fire gases and conditions conducive to spontaneous combustion. The integration of GIS 

tools is a notable innovation, facilitating the real-time visualization of data on a mine map, 

thereby enhancing situational awareness and contributing to a safer and more comfortable 

working environment for underground personnel and equipment. (Shriwas & Pritchard, 

n.d.) have undertaken a comprehensive evaluation of real-time ventilation monitoring and 

control solutions, reflecting the growing emphasis on miner safety. The study’s global 

perspective encompasses mining operations in Canada, Australia and the USA, 

exemplifying the real-world applications of ventilation monitoring and control 

systems.(Dey et al., 2021) presents a formidable alliance for addressing mine hazards using 
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IoT-enabled sensors and machine leaning. The model's utilization of a hybrid CNN-LSTM 

architecture excels in deciphering the complex spatial and temporal features within mine 

data. Noteworthy experimental results demonstrate the model's exceptional precision, as 

seen in its minimal mean square error and high correlation coefficients. The proposed 

CNN-LSTM model as a significant advancement, surpassing the capabilities of 

conventional CNN and LSTM models. (Balushi & Hussain, n.d.) also adopts an innovative 

approach by combining Wireless Sensor Networks (WSN) and the Internet of Things (IoT) 

to create a comprehensive monitoring and control system. The practical implementation 

uses Arduino UNO, a suite of sensors, and the ESP8266-01 WIFI module to enable data 

capture and IoT connectivity. The choice of ThingSpeak as an IoT platform empowers the 

system to serve as both an observatory dashboard and a control channel. The four-node 

network configuration is pivotal, with two nodes dedicated to data collection and the other 

two responsible for controlling ventilation and sirens. The paper signifies a remarkable 

leap in mine safety and operational control, showcasing the potential of IoT and WSN to 

transform the mining environment into a safer, monitored, and controlled workspace. The 

quest for enhancing safety and operational efficiency in underground mines has never been 

more urgent, given the complex and hazardous conditions faced by miners. The need to 

monitor a range of critical parameters such as gas levels, temperature, and airflow in real-

time necessitates innovative solutions. The studies presented not only highlight the 

challenges in atmospheric monitoring in underground mines but also underscore the 

significant strides made in addressing these concerns.  
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2.3 Machine Learning 

We know humans learn from their past experiences and machines follow instructions given 

by humans. Training machines to learn from past data and do what humans can do much 

faster is called machine learning. The scientist Arthur Samuel (1959) defined machine 

learning as a field of study that gives computers the ability to learn without being explicitly 

programmed(Samuel, n.d.). Basically, it is teaching machines how to handle data more 

effectively. With the abundance of data sets, we can make machines learn to find solutions 

to problems without explicitly programming them. There are many approaches to apply 

machine learning to handle large data sets.  

 

Figure 9 Types of Machine Learning Algorithm. 

Using various algorithms (Figure 9) data can be effectively handled and processed for a 

wide range of task and applications. Depending upon the complexity of the problem a 

particular algorithm can be chosen, which best suits it. Some of the commonly used 

machine learning methods are listed below. 
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2.3.1 Supervised Machine Learning 

Supervised Machine Learning is category of Machine learning where algorithm learns from 

a labelled dataset which is called as a model. The dataset has input labels and output labels. 

Both are corresponding to each other. The goal of supervised learning is to make a mapping 

function from input data to output labels so that the algorithm can make predictions on 

new, unseen data. The data is divided into two sets of training and test sets (Figure 10). 

The algorithm learns from the pattern generated by the training set and applies it to the test 

set for prediction or classification. The workflow of the supervised machine learning 

algorithm is shown below.  

 

Figure 10 . Work Flow of Supervised Learning Model (Mahesh, 2018). 

 

2.3.2 Logistic Regression 

It is a statistical method used for binary classification. It is employed when the target 

variable has two possible outcomes, often denoted as 0 and 1 or “negative and “positive”, 

“spam” or “not spam”,” Yes” or “No”. It uses a sigmoid function to model the relationship 

between the input features and probability of the binary outcome. The sigmoid function is 
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an S-shaped curve that maps a real-valued number to a value between 0 and 1. The formula 

for the sigmoid function is: 

𝑆(𝑧) =
1

1+𝑒−𝑧                                                                                                                   (6) 

Where z is the linear combination of input features and their associated weights. z = 𝑤0 +

𝑤1𝑥1 + 𝑤2𝑥2 +……+𝑤𝑛𝑥𝑛, where w represents the weights, x represents the input 

features and n is the number of features. It assumes that there exists a linear decision 

boundary that separates the two classes. In a two-dimensional feature space the boundary 

is a straight line while in higher dimensions, it is a hyperplane. The optimal values for the 

weight coefficient (w) such that the sigmoid function fits the training data is found by 

optimization techniques like gradient descent.   The probability that a given input belongs 

to one of the two classes can be predicted once the model has been trained. The output of 

the sigmoid function is represented by the probability and a threshold (usually 0.5) is 

applied to determine the predicted class. If the probability is greater than or equal to the 

threshold, the input is classified as belonging to one class; otherwise as belongs to the other 

class. The performance of the logistic regression models can be measured using metrics 

such as accuracy, precision, recall, F1-score, and the ROC curve. These metrics help assess 

how well the model classifies data points into correct classes. The major advantages of 

logistic regression include its simplicity and efficiency. 

2.3.3 Decision Trees 

A decision tree is a popular machine-learning algorithm used for both classification and 

regression tasks. It is a tree structure that recursively divides the dataset into subsets based 

on the most significant attributes, ultimately leading to a decision or prediction (Somvanshi 
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& Chavan, n.d.). The key factor behind the wide usage of decision trees is its ease of 

understanding, interpretation, and visualization. It has a top node at the beginning of the 

tree structure which is also known as the Root node. It is the representation of the entire 

dataset or the entire problem to be solved. The root node is connected with internal nodes 

which are right below it. Each internal node corresponds to a feature and represents a 

decision point. The algorithm evaluates the value of the associated feature for the data point 

currently being considered at each internal node. The possible outcomes based on the 

feature’s value are represented by branches coming out from each internal node. For binary 

features (yes/no, true/false), there are typically two branches. For categorical features, there 

are many branches as there are unique categories. The tree continuously splits at internal 

nodes until a stopping criterion is met. The criteria can be a maximum depth for the tree, a 

minimum number of data points in a leaf node, or other user-defined conditions(Dietterich 

& Kong, n.d.). When stopping criteria are met, the final nodes are called “leaves” or 

“terminal nodes”. Each leaf node is associated with a class label (in classification) or a 

numerical prediction (in regression). This is the decision made by the decision tree for data 

points that reach that particular leaf. To make a prediction or classification, begin with the 

root node and follow the decision path by evaluating the feature values at each internal 

node, moving down the tree until a leaf node is reached. The leaf node’s class label or 

prediction is the final decision. The decision tree uses various criteria to determine the best 

attribute to split the data at each internal node. Common splitting criteria include Gini 

impurity and entropy for classification tasks and mean squared effort for regression 

tasks(Disha & Waheed, 2022; Granziol et al., 2019). The aim of the algorithm is to 
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minimize impurity or error after each split. Figure 11 shows a simple explanation of the 

decision tree(2011 IEEE Control and System Graduate Research Colloquium., 2011). 

Decision trees have a wide range of applications such as credit scoring, medical diagnosis, 

customer churn prediction, and gaming. 

 

Figure 11 Example of a decision tree. 

 

2.3.4 Random Forest 

Random forest is a powerful ensemble learning technique used in machine learning for 

both classification and regression task. It is based on the idea of building multiple decision 

tress during training phase and then combining their predictions to improve accuracy and 

reduce overfitting. Figure 12 shows a basic flow chart of random forest 

methodology(Mahdi Abdulkareem & Mohsin Abdulazeez, 2021). 
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Figure 12 Flow Chart of Random Forest. 

Random forest starts with creating multiple subsets of the original dataset through 

bootstrapped sampling. The bootstrap sampling is a method of crating subset by randomly 

selecting data points from original dataset with replacement. For each bootstrap sample a 

decision tress is constructed. The key difference from a standard decision tree is that at 

each node of the tree, when selecting a feature to split on, Random Forest only considers a 

random subset of the features which ensures diversity among the individual trees. After 

building all the decision trees they are used for prediction. In a classification task, each tree 

“votes” for a class, and the class that receives the majority of votes in the final prediction. 

In a regression task, the individual tree predictions are predicted and averaged to produce 

the final regression output. The fundamental idea behind Random Forest is ensemble 

learning which combines prediction from multiple trees to improve generalization 

performance(Belgiu & Drăgu, 2016). It reduces the risk of overfitting because the 

individual tree may overfit to different parts of the data by cancelling each other’s errors 
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when combined together. It can also provide a measure of feature importance. This is based 

on the reduction in impurity or reduction in mean squared error attributed to each feature 

when it is used in tree splits. Some benefit of using random forest is that it is very robust 

to outliers and noisy data. The ensemble nature of random forest helps in mitigating the 

overfitting of data and making them more generalizing to unseen data compared to single 

decision trees(Sagi & Rokach, 2018). Also building individual trees in random forest can 

be done in parallel making it suitable for parallel and distributed computing environments. 

Random forests are widely used in many applications including image classification, text 

classification, fraud detection, and stock price prediction. 

2.3.5 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) are a type of supervised learning algorithm that can be 

used for both classification and regression tasks. They are particularly well suited for tasks 

where there is a clear margin of separation between different classes or when dealing with 

high-dimensional data.  

SVMs are often used for binary classification where the goal is to separate data points into 

one of the two classes. (e.g., spam or not spam, positive or negative sentiment). It aim to 

find a hyperplane (a higher-dimensional version of a straight line in 2D ) that best separates 

the data points of one class from those of the other class. Figure 13 explains support vector 

machines. The hyperplane should maximize the margin, which is the distance between the 

hyperplane and the nearest data points of each class. These nearest data points are called 

support vectors. In cases where the data is not linearly separable in the input space, SVMs 

can still find a separating hyperplane by mapping the data into a higher – dimensional space 
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using a “kernel function”. Common kernel functions include the linear kernel, polynomial 

kernel, and radial basis function (RBF) kernel. The choice of the kernel depends on the 

problem’s characteristics. By introducing the concept of “slack variables” SVMs allow for 

some miscalculation. The optimization objective of SVMs is to maximize the margin while 

minimizing the classification error, which is penalized based on the slack variables.  

 

Figure 13 Support Vector Machine 

2.3.6 K-Nearest Neighbour (KNN) 

k-Nearest neighbor (k-NN) is a supervised machine algorithm used for both classification 

and regression tasks. It’s a simple and intuitive algorithm that makes predictions based on 

the similarity between the input data point and its k-nearest neighbors in the training 

dataset(2019 International Conference on Intelligent Computing and Control Systems 

(ICCS)., n.d.). The “k” in k-NN represents the number of nearest neighbors considered 

for making predictions. During the training phase of k-NN, the algorithm simply stores 
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the entire training dataset which consists of labeled data points. Each data point in the 

training dataset includes features (input attributes) and the corresponding target values or 

class labels.  For a classification task, when we want to predict the class label of a new, 

unseen data point, the algorithms calculate the distance (similarity) between this data 

point and all the data points in the training dataset(Sun et al., 2009).  Depending on the 

nature of the data, it uses metrics that include Euclidean Distance, Manhattan distance, or 

cosine similarity. These distances help in figuring out which data points are closest to the 

new one based on the chosen distance metrics. The Euclidean distance can be measured 

from the formula below. 

√∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                                                                                                             (7) 

KNN for classification can be achieved by letting the k nearest neighbor vote. By 

counting how many neighbors belong to each class and picking the class with the most 

votes as the predicted class for the new data points. For regression, KNN can be applied 

by taking the average of the values (e.g., prices ) of the k nearest neighbors. The average 

will be the prediction for the new data point. In classification, the prediction is a class 

(e.g., “apple” or “banana”), while in regression the prediction is a numeric value (e.g, the 

price of a house). KNN is simple and easy to understand with some consideration. It is 

important to select the right value of “k”. A small value of “k” is sensitive to noise, while 

a large “k” can smooth out the patterns. Using large datasets can use an assumption of 

similar data points which is not always true and requires more computation. 
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2.3.7 Unsupervised Machine Learning 

Unsupervised machine learning is a category of machine learning where the algorithm is 

trained on a dataset without explicit supervision or labeled outcome (Figure 14). The 

algorithm tries to find patterns, relationships, and structure within the data on its own 

without being given specific instructions on what to look for. Unlike supervised learning 

the input data doesn’t have predefined categories or target values but has features or 

attributes. Using clustering algorithms similar data are grouped together based on 

similarities or patterns they identify together within the data. For example, clustering to 

group customers with similar purchasing behavior. Dimensionality Reduction is another 

application of unsupervised machine learning. It uses Principal Component Analysis or t-

distributed stochastic Neighbor Embedding (t-SNE) to help reduce the number of features 

in the data while retaining its essential characteristics. Anomaly detection can also be 

achieved from unsupervised learning. Data points that deviate from the expected patterns 

or behaviors are called anomalies. They are crucial in fraud detection, network security, 

and quality control. Unsupervised learning is also used for feature learning by 

discovering and representing relevant features or representations from data helping in 

improving the performance of machine learning models. Generative modeling is another 

application where the algorithm learns the underlying probability of the data. Generating 

new data samples that resemble the original data is achieved by applications like image 

generation with Generative Adversarial Networks (GANs).  
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Figure 14 Flow chart of unsupervised Machine Learning. 

It is widely used in data exploration, data processing and initial cases where we may not 

know what to look for initially, letting the algorithm uncover hidden insights within the 

data.  

2.3.8 K-Means Clustering 

It is an unsupervised machine learning algorithm used for partitioning a dataset into 

distinct groups or clusters based on similarity. Initially, the algorithm starts by randomly 

selecting K initial cluster centroids where K is a user-defined parameter representing the 

number of clusters. These centroids can be any data point in the dataset. Each data point 

in the dataset is assigned to the nearest centroid based on a distance metric commonly 

Euclidean distance. After that the algorithm calculates the new centroids for each cluster. 

The assignment and updating centroid is repeated until one of the stopping criteria is 

achieved. Eventually, the algorithm converges to a solution where the centroids stabilize, 
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and the data points remain in the clusters assigned to them. 

 

Figure 15 K-Means Clustering. 

Here is an example of customer segmentation using k -means clustering. The above Figure 

15 shows data on the left side. The data can be based on domain knowledge, business goals 

etc. After running K-means algorithm on the pre-processed data with the chosen value of 

K, the algorithm will cluster customers into K-segments based on their similarity in the 

selected features. Once the cluster is complete it can be interpreted for results. Each cluster 

represents a group of customers who share similar characteristics. For example, one cluster 

might consist of young, high-frequency shoppers, while another could include, occasional 

buys. This might involve creating personalized product recommendations, and targeted 

advertising. Thus, clusters represent the grouping of the data points based on their 

significant characteristics. 
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2.3.9 Artificial Neural Networks 

Artificial Neural Networks also known as Neural Networks are fundamental concept in 

machine learning and are inspired by the structure and function of the human brain, 

mimicking the way that biological neurons signal to one another(Yaot, n.d.). The neural 

network consists of interconnected artificial neurons or nodes organized in layers: an 

input layer, one or more hidden layers and an output layer. The input layer receives the 

initial data or features, while the output layer produces the network prediction or output. 

The hidden layers perform intermediate computations helping the network learn complex 

relationships within the data.  

 

Figure 16 . A neuron (processing element). 

Each connection between neurons has an associated weight which determines the strength 

of the connection Figure 16. Neurons in one layer are connected to neuron in the adjacent 

layer through weighted connections as well as bias term which allows the network to 

capture more complex patterns.   
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The neuron applies an activation function to the weighted sum of its input bias. Common 

activation function includes sigmoid, ReLU (Rectified linear Unit) and tanh (hyperbolic 

tangent)(Arora et al., 2016; Pratiwi et al., 2020; Shakiba & Zhou, 2021). The activation 

functions introduce non-linearity into the model, enabling neural networks to approximate 

complex, non linear functions. The relationship between the inputs 𝑋0 … … … 𝑋𝑛 of neuron 

j and its output 𝑌𝑗 is given by equation the following equations(Dougherty, 1995). 

𝐼𝑗 = ∑ 𝑊𝑗𝑖𝑋𝑖                             (𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛)
𝑛
𝑖=0                                                                              (8) 

𝑌𝑗 = 𝑓(𝐼𝑗)                                (𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)                                                                          (9) 

 

After feeding the data for making prediction through the network in a process called 

forward propagation(Kag & Saligrama, 2021). Each neuron in a layer receives input from 

the previous layer, calculates a weighted sum, applies the activation function and passes 

the result to the next layer. The process goes on until the output layer produces the final 

prediction. Neural networks learn from data through a process called training. During 

training, the network compares its predictions to the actual target values (ground truth) and 

adjusts the weights and biases to minimize the prediction error. Generally, a back 

propagation algorithm is used for this purpose, where errors are propagated backward 

through the network to update the weights.   

A loss function also referred as cost function measures the difference between the predicted 

values and the true target values(Barron, 1989). The aim of training is to reduce the cost 

function and different tasks (classification, regression) may require different types of loss 
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functions. Neural networks have hyperparameters, such as the number of hidden layers, the 

number of neurons in each layer, learning rate and batch size(Nikbakht et al., 2021). Tuning 

these hyperparameters is essential to achieve good performance and avoid overfitting. 

After training the neural network can be utilized to make predictions or classification on 

new, unseen data.  These models have high flexibility in modelling relationship with data 

which makes them powerful tools in machine learning tasks. They have achieved 

remarkable success in the field of image and speech recognition, natural language 

processing, recommendation systems and more.  

 

2.3.10 Related Studies 

The table 5 presents strengths and drawbacks of each method presented by researchers 

for predictive approaches using machine learning. This table presents the methods, 

strengths and limitations of various methods and algorithms which are likely used in 

machine learning and data analysis. Support Vector Machines (SVM), Linear and Non-

Linear Predictions Methods, Bayesian Networks, Chaotic Time Series Prediction, Time 

Series Neural Network, Artificial Neural Networks (ANN), ARIMA (Auto Regressive 

Integrated Moving Average), Particle Swarm Optimization, ADAM (Adaptive Moment 

Estimation), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) 

networks are all techniques used for predictive modelling. These methods are employed to 

make predictions or classifications based on historical data patterns or relationships within 

the data. It also highlights the challenges in implementing methods based on the scale of 

data. Many of these methods can be applied to a wide range of problems and making them 
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versatile tools in machine learning. Techniques like neural networks (including CNNs and 

LSTMs) and SVMs can adapt to complex relationships in data, allowing them to model 

intricate patterns. All the methods mentions in table-5 are data driven and can learn patterns 

and representations from the input data. These methods have been successfully applied 

across various domains, including finance, healthcare, image processing, time series 

analysis. When properly tuned and trained, these methods can achieve high levels of 

prediction accuracy.  Many methods especially neural networks require large amount of 

labelled data for effective training. Limited data can lead to overfitting or poor 

generalization. Some methods, such as neural networks and SVMs with complex kernals, 

lack interpretability. Understanding the inner workings of the model can be challenging. 

Techniques like neural networks, SVMs with complex kernels and optimization algorithms 

can be computationally intensive, requiring substantial computing resources, Many 

methods have hyperparameters that need to be carefully tuned for optimal performance. 

Sensitivity to hyperparameter choices can impact results. More complex models like deep 

neural networks may suffer from overfitting and require additional techniques like 

regularization to mitigate this issue. Some methods, like linear models make assumptions 

about the linearity of relationships in data which may not hold in all cases. It has been seen 

that some of the models might struggle with generalizing well to new, unseen data, 

especially if the training data is not representative of the entire problem space due to that 

achieving a comprehensive understanding of the model’s decision making process, 

especially in complex models can be challenging, limiting their interpretability.   



43 

 

The successful application of machine learning models in real time scenarios involves 

considering various factors to ensure  efficiency, accuracy and practicality. Real time 

applications demand low latency to provide timely responses. Consider the time it takes for the 

model to process inputs and generate predictions or decisions. Techniques like model 

quantization or model compression can be applied to reduce inference time. For dynamic and 

unpredictable usage patterns ensuring the model architecture and infrastructure can scale to 

handle increasing work load. Smaller models has faster inference times which is important for 

real time applications. Pruning unnecessary parameters or using techniques like knowledge 

distillation helps in optimizing models. It is essential that input data is preprocessed efficiently 

by considering techniques like feature engineering, data normalization and parallel processing 

to speed up data preparation. To adapt changing data distribution or trends it will be valuable to 

implement mechanism for continuous learning of model in some real time applications. It is also 

important to match the model’s requirements with the available infrastructure, some model’s 

may be resource intensive considering the hardware and computational resources available. In 

the application of dealing with streaming data, ensuring that the model can process and make 

predictions on data as it arrives in real time by using algorithms designed for streaming data or 

streaming data or implementing windowed processing will help in live data handling. Fault 

tolerance and reliability of real time models should be designed to handle failure gracefully. By 

implementing redundancy and backup systems to ensure reliability in case of model or system 

failures. If the real-time application involves sensitive data. It is crucial to address security 

concerns by implementing encryption, access controls and other security measures to protect 

both the model and the data. Regularly updating and retraining the model to ensure they remain 
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accurate and relevant to the evolving data distribution helps in detecting model degradation or 

drift over time. Finally, it is important to address the cost associated to deploy and maintain the 

model as well as optimize resource usage to achieve cost-efficient real-time predictions.   

 

Table 5 Approaches for gas concnetration predictions with strengths and limitations. 

Authors and Years Input type Method(s)/Approa

ch(es) 

Strength(s) Limit

ation 

Jian-sheng Qian, Jian Cheng, and Yi-

nan Guo, 2006 (Qian et al., 2006) 

Data set Two-Stage 

Multiple Support Vector 

Machines(SVMs), 

Mackey-Glass chaotic 

time series 

Fast 

conversion, 

Enhanced 

Generalization 

Performance, 

Reduced Support 

Vectors  

Complex 

tuning, Data 

Dependency 

Marek Sikora, Zdzislaw Krzystanek, 

Bozena 

Bojko,Karol,Spiechowicz,2008(Sikora et al., 

2008) 

SMP-NT 

data 

Linear and Non 

Linear Prediction 

Methods  

Versatility, 

stable 

Assumption 

dependence, Limited 

Modelling, Data 

Preprocessing 

Oliver Obst, X.Rosalind Wang, 

Mikhail Prokopenko, 2008(Obst et al., 2008) 

Network 

sensors 

readings 

Echo State 

Networks, Bayesian 

Network Based 

Anomaly Detection 

Real- time 

anomaly 

detection, 

Dynamic 

application 

Complex 

tuning, limited 

interpretability 

Ma Xian-Min, 2010(X. M. Ma, 2010) Sensor 

Data 

Chaotic time 

series, Time series 

neural network  

Captures 

complex and non 

linear patterns 

Less 

interpretability , 

Computationally 

intensive 

Xian-Min Ma,2011(X.-M. Ma, n.d.) Sensor 

Data 

Correlation 

Integral Computation 

Algorithm (C-C) 

Parameter 

Optimization, 

Noise 

Resilience, 

Chaotic 

Characteristic 

Identification 

Noise 

challenge, 

Complexity less 

interpretability 

Zhai Shengrui, Nie Baisheng, Liu 

Shuiwen, Wang Hui, Zhao Caihong, Li Qian, 

Li Hailong, 2011(Zhai et al., 2011) 

Monitorin

g Station Data 

Chaos System 

Predictability and 

Taken’s Theorem 

Chaos 

System 

Predictability, 

Phase Space 

Reconstruction, 

Optimal 

Parameter 

selection, Low 

Error and RMSE  

Data 

Dependency, 

Complexity, 

Short Term 

Forecasting  
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Yanli Chai, 2011 (Institute of Electrical 

and Electronics Engineers., 2011) 

Sensor 

Data 

Support Vector 

Regression (SVR), 

Particle Swarm 

Optimization (PSO) 

Improved 

Accuracy, 

Generalizat

ion Ability 

Computational 

Complexity, Hyper 

parameter Sensitivity 

Dong Dingwen,2012 (Dong, 2012) Time 

Stamps, Gas 

emission 

Quantities 

Q-T Model 

(Relationship between 

gas emissions quantity 

and time), 

Autoregression Model 

Higher 

accuracy, 

flexibility, 

practical 

application.  

Computational 

Complexity, 

Hyperparameter 

Tuning, Model 

Interpretability 

Xincheng Hu, Shengqiang Yang, 

Xiuhong Zhou, Zhaoyang Yu,Chunya Hu, 

2015,(Hu et al., 2015) 

Gas 

Samples, Time 

Series Data, 

Effective Delay 

Time 

Rescaled Range 

Analysis, Fractal 

Dimension Analysis, 

Risk Prediction Stages  

Effective 

Risk Prediction, 

Non-Invasive 

Monitoring, 

Data Driven 

Approach 

Data 

Availability, 

Generalization, 

Complexity 

Yang Zongchag, Zhou Shaowu, 

2015(Yang & Zhou, 2015) 

Sensor 

data, Time 

Series Data 

Elliptic Orbit 

Model, Auto Regressive 

Model 

Intuitive 

Representation, 

Hourly Variation 

Model, 

Performance 

Comparison, 

Concise 

Approach 

Data 

Requirement, 

Generalization, 

Complexity, Model 

Comparison 

V.A.Nivin, 

V.V.Pukha,A.V.Lovchikov,R.G.Rakhimov,

2016(Nivin et al., 2016) 

Time 

series data 

Statistical 

Analysis, Time series 

Decomposition, 

Harmonic Analysis  

Long-Term 

insights, 

Comprehensive 

Analysis, 

Harmonic 

Analysis. Data 

Characterization 

Data Quality, 

Model Complexity, 

Generalization 

Yue Geng, 2016(Geng, 2016) Coal 

Mine Methan 

Concentration 

Time Series 

Chaotic 

Characteristic, Delay 

Time and Embedding 

Dimension Calculation, 

Chaotic Sequential 

Phase Space 

Reconstruction, Particle 

Swarm Optimization, 

RBF Neural Network, 

Model Coupling 

Chaotic 

analysis, 

Optimization, 

Model 

Comparison, 

Coupled Model  

Data Quality, 

Model Complexity, 

Generalizability 
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Zhang Xiaoqiang, Cheng Weimin, 

Zhang Qin, Yang Xinxiang, Du Wenzhou, 

2017 

Airflow, 

gas 

concentration 

data 

Chao Theory 

Analysis, Time series 

mapping, Chao 

prediction model, Safety 

forecasting and 

forewarning system, 

iterative refinement 

Data 

integration, 

application of 

chaos theory, on 

field application  

Real time data, 

Model Complexity, 

generalizability 

Byung Wan Jo, Ran Muhammad Asad 

Khan, 2018 

Gas 

concentration, 

temperature, 

humidity 

Mine Environment 

Index, Principal 

Component Analysis, 

ANN 

Real time 

monitoring, 

good predictive 

performance. 

Sensitive to 

environmental 

conditions, periodic 

training. 

Justyna Hebda- Sobkowicz, Sebastian 

Gola, Radoslaw Zimroz, Agnieszka 

Wylomanska, 2019(Hebda-Sobkowicz et al., 

2019) 

Time 

series data of 

gas 

concentration 

Signa 

Segmentation, 

Statistical analysis  

Safety 

Assessment, 

Blasting 

Moment 

Localization 

Data 

availability, Safety 

probability 

Pingyang Lyu, Ning Chen, Shanjun 

Mao, Mei Li, 2020(Lyu et al., 2020) 

Time 

series gas 

concentration 

Pearson 

Correlation Coefficient, 

ARMA Model, Chaos 

Model, Encoder-

Decoder Model, 

Multi-Step 

Prediction, 

Robustness 

Data Quality, 

Model Complexity, 

Generalization 

Rong Liang, Xintan Chang, Pengtao 

Jia, Chengyixiong Xu, 2020(Liang et al., 

2020) 

Gas 

concentrations 

Laida criterion, 

Lagrange interpolation, 

Bidirectional Gated 

Recurrent Unit Neural 

Network, Adamax 

Optimization 

Algorithm, Loss 

Function 

Improved 

accuracy, 

Effective 

optimization 

Data quality, 

Model Complexity, 

Generalization 

Xiucai Guo, Junkai Mao, 2020, (B. Xu 

et al., n.d.) 

Time 

series data of 

gas emissions 

Particle Swarm 

Optimization, Gated 

Recurrent Unit, 

Evaluation metrics 

Improved 

Prediction 

Accuracy, 

Parameter 

Optimization, 

Evaluation 

Metrics 

Data Quality, 

Complex 

Computation, 

Genetalization 



47 

 

Pengtao Jia, Hangduo Liu, Sujian 

Wang, Peng Wang, 2020(Jia et al., 2020) 

Times 

series data 

Preprocessing,  

pauta criterion, 

Lagrange interpolation, 

Spatial Reconstruction, 

Gated Recurrent Units, 

Loss function, Adaptive 

Moment Estimation 

(ADAM)  

High 

Prediction 

Accuracy, Time- 

series utilization, 

high efficiency 

Data 

dependency, model 

generalization, 

Complex 

computation 

Michal Kozielski, Marek Sikora, 

Lukasz Wrobel, 2021(Grzegorowski et al., 

2021) 

Time 

series data 

from sensors 

Classification, 

Regression, Time series 

analysis, Stream Data 

Analysis 

Real-Time 

analysis, 

Versatility 

Data Quality, 

Sensor Variability, 

Model Complexity, 

Generalization 

Prasanjit Dey, S.K Chaulya, Sanjay 

Kumar, 2021(Dey, Chaulya, et al., 2021b) 

Time 

series, spatial 

measurement 

Hybrid 

Convolutional Neural 

Networks (CNN) and 

Long Short-Term 

Memory (LSTM) 

networks  

Spatial-

Temporal 

Analysis, Real-

Time monitoring 

Model 

Complexity, 

Generalization, 

Integration 

Challenges 

Juan Diaz, Zach Agioutantis, 

Dionissios T. Heistopulos, Steven Schafrik, 

2021(Diaz et al., 2021) 

AMS data Filtering, Outlier 

Detection, Gap-Filling, 

Homogenization 

Data 

Quality 

Improvement, 

Correlation and 

Dependency, 

Predictive 

modeling  

Computationall

y intensive, 

Assumptions and 

interpolation 

Xiucai Guo, Penglin Guan, Lekun 

Yang, Meng Du, 2021 (Guo et al., 2021) 

Mine gas 

concentration 

Wavelet Noise 

Reduction, 

Thresholding, 

Reconstruction, 

Autoregressive 

Integrated Moving 

Average (ARIMA) 

Modeling 

Noise 

reduction, 

Improved 

Prediction 

Accuracy, Short 

Term Prediction, 

Comparative 

analysis 

Model 

Complexity, Data 

availability, 

Parameter Selection, 

Short Term Focus 

Prasanjit Dey, K. Saurabh, C.Kumar, 

D. Pandit, S.K Chaulya, S.K Ray, 

G.M.Prasad, S.K. Mandal, 2021(Dey, 

Saurabh, et al., 2021) 

Gas 

sensor data 

t-Distributed 

Stochastic Neighbor 

Embedding (t-SNE), 

Variational 

Autoencoder (VA), 

Bidirectional Long 

Short-Term Memory 

(bi-LSTM)   

Multi-Gas 

Concentration 

Prediction, 

Dimensionality 

Reduction, 

Improved 

Prediction 

Accuracy, Real 

Time Monitoring 

Data Quality, 

Model Complexity, 

Resource intensive  
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K. Kumari, Prasanjit Dey, Chandan 

Kumar, Dewangshu Pandit, S.S Mishra, 

Vikash Kisku, S.K Chaulya, S.K. Ray, 

G.M.Prasad, 2021(Kumari et al., 2021) 

Gas 

concentrations 

Uniform Manifold 

Approximation and 

Projection (UMAP) , 

Long Short- Term 

Memory (LSTM) 

Fire status 

prediction, Multi 

gas 

concentration 

prediction , 

Dimensionality 

reduction, Deep 

learning 

approach, early 

warning 

Data quality, 

Model Complexity, 

Resource intensive, 

generalization 

ZhaoZhao Zhang, Qiang Dai, YinQin 

Zhu, 2021(Zhang et al., 2022) 

Time 

series gas 

concentrations 

Empirical Model 

Decomposition, Low-

Pass Filtering, Phase 

Space Reconstruction, 

Conditional Fuzzy 

Clustering, Sub-Model 

Selection  

Noise 

Reduction, 

Nonlinear 

Characteristics, 

Accuracy, 

Adaptability 

Data Quality, 

Computationally 

intensive, 

Interpretability. 

Ningke Xu, Xiangqian Wang, Xiangrui 

Meng, Haoqian Chang, 2021(N. Xu et al., 

2022) 

Gas 

concentrations 

data over time. 

Improved Whale 

Optimization Algorithm 

(IWOA), Long Short 

Term Memory (LSTM ) 

Neural Network, 

Complete Ensemble, 

Empirical Mode 

Decomposition with 

Adaptive Noise 

(CEEMSAN), Optimal 

Weight Combination 

Improved 

Accuracy, Multi-

Step Prediction 

Computationall

y intensive, Model 

interpretability 

Yuxin Huang, Jingdao Fan, Zhenguo 

Yan, Shugang Li , Yanping Wang, 2021(Y. 

Huang et al., 2022) 

Real time 

streaming gas 

concentration 

data 

Spark Streaming 

Framework, 

Autoregressive 

Integrated Moving 

Average (ARIMA) 

model, Support Vector 

machine (SVM) Model, 

SPARS Model  

Real time 

prediction, 

Efficiency, 

Timeliness, 

learning 

characteristics 

Computationall

y intensive, Model 

Complexity 

De Huang, Yong Liu, Yonghong Liu, 

ying Song, Chagshou Hong, Xiangyang 

Li(D. Huang et al., 2022) 

Concentra

tion data 

Mathematical 

Model, particle Swarm 

Optimization, Long 

Short-Term Memory, 

PSO-LSTM method 

Timely 

Early Warning, 

Optimized 

Monitoring, 

Reliable 

Model 

Complexity, Data 

overfitting 

Mayank Sharma, Tanmoy Maity, 

Aniket Vatsa, Soumyadip Banerjee, 

2021(Sharma et al., 2022) 

Sensor 

data 

Parameterized 

Residual Recurrent 

Neural Network (PR-

RNN), Long Short Term 

memory (LSTM), 

Recurrent Neural 

Network (RNN), 

Artificial Neural 

Network (ANN), 

Graham’s Ratio 

High 

prediction 

accuracy 

Complexity, 

Generalization 
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Xiangrui Meng, Haoqian Chang, 

Xiangqian Wang,2021(Meng et al., 2022) 

Methane 

Concentration 

Data 

Recurrent Neural 

Network (RNN), Long 

Short-Term memory 

(LSTM), gated 

Recurrent Unit (GRU), 

Combination Approach 

Reduced 

RMSE Loss, 

overfitting 

Mitigation 

Model 

Complexity, 

interpretability, Data 

preprocessing  

Xianqian Wang, Ningke Xu, Xiangrui 

Meng, Haoqian Chang, 2021(Wang et al., 

2022) 

Real time 

gas 

concentration 

data 

Long short-Term 

Model (LSTM), Light 

Gradient Boosting 

framework 

(LightGBM), LSTM-

LightGBM model, 

Variable weight 

Combination 

Improved 

prediction 

accuracy, Safety 

enhancement 

Model 

Complexity, Data 

preprocessing   

Hua Fu, Haofan Shi, Yaosong Xu, 

Jingyu Shao, 2022(Fu et al., 2022) 

Factors 

contributing to 

gas outburst 

Modified Snake 

Optimization Algorithm 

(MFISO), Temporal 

Convolutional Network 

(TCN), Phase Space 

Reconstruction, Hyper 

parameter Optimization, 

Tangent Based Rectified 

Linear Unit (ThLU) 

Improved 

Prediction 

Accuracy, 

Incorporation of 

Multiple 

Strategies, 

Generalization  

Model 

Complexity, 

parameter Tuning, 

Interpretability 

Jie Liu, Qian Ma, WAnqing Wang, 

Guanding Yang, Haowen Zhou, Xinyue Hu, 

Liangyun Teng, Xuehua Luo. 2022(Liu et al., 

2022) 

Social 

Factor, Human 

related factors, 

Machinery 

Evaluation Index 

System, Combined 

Assignment Model, 

Rough set theory, (RS-

G1), Entropy-G-1 

(Entropy Method), 

CRITIC-G1(CRITIC 

Method), GM(1,1) 

model, Quadratic 

Exponential Smoothing 

Method, ARIMA model 

Comprehe

nsive 

Assessment, 

Improved 

Assignment 

Accuracy, 

Prediction 

Accuracy 

Model 

Complexity, 

Interpretability, 

Data-Driven 

Limitation 

Chengyu Xie, Lei Chao, Yaguang Qin, 

Jie Cao, Yuhao Li, 2020(Xie et al., 2020) 

Gas 

Concentrations 

Correlation 

analysis, Short-term and 

Long-Term Memory 

Neural network, 

Random Forest 

Regression 

Compressi

ve Analysis, 

Correlation 

analysis  

Data Quality, 

Model Complexity, 

Interpretability, Data 

Availibility 

Juan Diaz, Zach Agioutantis, 

Dionissios T.Hristopulos, Steven Schafrik, 

Kray luxbacher, 2022(Diaz et al., 2022) 

AMS data Data 

preprocessing, Cross-

Correlation, 

Autocorrelation, Cross-

Covariance, Variogram, 

Autoregressive 

Integrated Moving 

Average (ARIMA) 

Data driven 

approach, 

Statistical 

analysis, Time 

Series Modelling  

Complexity, 

Generalizability, 

Assumptions 
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Jian Cheng, Jian-sheng Qian, Yi-nan 

Guo,2023(Cheng et al., 2006) 

Gas 

concentration 

data 

Data Partitioning, 

Fuzzy C-means 

Algorithm, Submodel 

Construction, Gaussian 

radial basis function 

kernels, output 

synthesis, fuzzy 

synthesis  

Improved 

prediction 

accuracy, 

Generalization 

performance  

Model 

Complexity, Data 

Dependence, 

Computational 

Resource 

Yujie Peng, Dazhao Song, Liming Qiu, 

honglei Wang, Xuwqiu He, Qiang Liu, 

2023(Peng et al., 2023) 

Multivari

ate monitoring 

data 

Sperman’s rank 

correlation, Time series, 

spatial topology 

features, Dynamic 

optimization, Bi-

directional long Short-

Term Memory (Bi-

LSTM)  

Dynamic 

Indicator 

Optimization, 

Strong 

Correlations, 

High Predictive 

Accuracy 

Data Quality, 

Model Complexity, 

data Generalizability 

Juan Diaz, Zach Agioutantis, 

Dionissios T.Hristopulos, Steven Schafrik, 

Kray luxbacher, 2022(Diaz et al., 2023 

Methane 

Gas 

Concentration 

Univariate 

Autoregressive 

Integrated Moving 

Average (ARIMA), 

Multivariate Vector 

Autoregressive (VAR), 

ARIMA with 

Exogenous Inputs 

(ARIMAX) 

Comprehe

nsive 

Comparison, 

Multivariate 

Approach 

Data quality, 

Model Complexity, 

generalizability 

Chao Liu, Ailin Zhang, Junhua Xua, 

Chen Lei, Xiangzhen Zeng, 2023 

Gas 

Concentration 

data 

Feature selection 

with pearson coefficient 

, Long Short-Term 

Memory (LSTM), 

Adaptive Moment 

Estimation (ADAM) 

algorithm, Model 

optimization 

Feature 

Selection, Time 

Series Modeling, 

High prediction 

Accuracy 

Data Quality, 

generalizability, 

Complexity, Data 

sampling Interval 

Chuan Li, Xianqiu Fang,Zhengua Yan, 

Yuxin Huang, Minfu Liang, 2023(C. Li et al., 

2023) 

Time 

series data 

Autoregressive 

Integrated Moving 

Average (ARIMA) for 

linear predictions, Long 

Short-Term Memory 

(LSTM) for non linear 

predictions, Combined 

forecasting ARIMA-

LSTM  

Hybrid 

Approach, High 

prediction 

accuracy, Early 

warning  

Data Quality, 

Generalization, 

Computational 

Resources, 

Hyperparameter 

Tuning, 

Interpretability 

Tulio Dias, George Danko, 

(Methane Concentration 

Forward Prediction Using 

Machine Learning from 

Measurements in Underground 

Mines, 2021) 

Atmosphe

ric Condition 

data, 

Contaminant 

Concentration 

data 

LSTM, Time-

Series Filter 

Long-term 

dependencies 

Require large 

data Limited in 

handling non-linear 

dependencies 
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George Danko (Danko, 2021) Real 

Continuous 

time series data 

over a sliding 

time window, 
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CHAPTER 3 : PREDICTIVE MODEL 

3.1 Proposed Method 

In this study, a novel method has been proposed for the predicting the gas concentration 

of sensor “s1” using the data accumulated from 9 sensors (“s2” to “s3”) using K nearest 

neighbour (KNN) algorithm through an experimental setup built for data acquisition. This 

method comprises of steps depicted in Figure 17. These steps are thoroughly explained in 

the following sub-sections.  

  

 

Figure 17 Flow chart of the proposed methodology 

 

 

Data Collection 

Data Preprocessing

Model Architecture

Model Training 

Model Testing
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3.2 Data acquisition  

The first step in this methodology is to collect the 𝐶𝑂2 concentration data from sensors. 

For this study, an experimental setup was established using a cylindrical pipe (Test section) 

of diameter 460 mm and length 2380mm. One end of the pipe is connected with a Fan 

(with variable frequency drive) and conical adapter, and the other end of the pipe is 

connected with extension for injecting gas (𝐶𝑂2 and Argon Mixture). 

The pipe is equipped with 10 units of MH-Z19B 𝐶𝑂2 sensors. 5 sensors were established 

on the top and the bottom of pipe from inside in such a way that each sensor is 24 inches 

away from each other. The range of 𝐶𝑂2 sensors is from 0-5000 ppm and with the accuracy 

of ±50 ppm + 5 %. A data acquisition system is built using Arduino Atmega2560 which 

parse data from sensors with UART, rate = 1 sample/second in a form of list. A python 

program is prepared to store the list generated every second in an excel sheet.   

The Figure 18 shows (a) Long View of experimental setup, (b) Tunnel Test Section, (c) 

MH-Z19C 𝐶𝑂2 , (d) Arduino Atmega2560  and (e) Schematic representation of 

experimental setup.   
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(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 18 (a) Long View of Experimental Setup, (b) Tunnel Test Section, (c) ) MH-Z19B 

CO_2 Sensor (d) Arduino Atmega 2560 (e ) Schematic representation of experimental 

setup. 
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The experiment consisted of systematically introducing gas from a cylinder at different 

pressure levels at intervals as a period of  min. The air flow of 0.3-0.4 m/s was prescribed 

for the experiment. For the initial 5 mins there was no gas introduced inside the tunnel 

model to warm up the sensors. Subsequent 10 minutes the gas pressure was increased to 5 

psi. Following 5 minutes the gas pressure was further increased to 10 psi. For next 5 mins, 

the gas pressure was elevated to 15 psi. For another 5 minutes the gas pressure reached 20 

psi. For 6.37 minutes the gas pressure was reduced to 0 psi, in the concluding 5 minutes 

the gas pressure was reintroduced at 5 psi and last minute the gas pressure was increased 

to 10 psi. A detailed overview of the experimental conditions and the corresponding 

variations in the gas pressure, a comprehensive Table 6 has been included below. Over a 

period of 30 minutes the data acquisition system collected 1800 sets of data for training 

and listing in the order of (s1, s2, s3, s4, s5,s6,s7,s8,s9,s10). For testing purposes another 

1800 sets of data were generated by intruding gas at 15 psi for 30 Mins.  

 

Table 6  Specific Time Interval and The Corresponding Variations in Gas Pressures 

Applied During The Experiment. 

Time interval Gas Pressure (PSI) 

Air Velocity = 0.3-0.4 m/s 

0-5 mins 0 

5-10 Mins 5 

10-15 Mins 10 

15-20 Mins 15 

20-25 Mins 20 

25-31 Mins 0 

31-35 Mins 5 

35-36 Mins 10 
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3.3 Data Preprocessing  

The experiment consisted of systematically introducing gas from a cylinder at different 

pressure levels at intervals as a period of  min. The air flow of 0.3-0.4 m/s was prescribed 

for the experiment. For the initial 5 mins there was no gas introduced inside the tunnel 

model to warm up the sensors. Subsequent 10 minutes the gas pressure was increased to 5 

psi. Following 5 minutes the gas pressure was further increased to 10 psi. For next 5 mins, 

the gas pressure was elevated to 15 psi. For another 5 minutes the gas pressure reached 20 

psi. For 6.37 minutes the gas pressure was reduced to 0 psi, in the concluding 5 minutes 

the gas pressure was reintroduced at 5 psi and last minute the gas pressure was increased 

to 10 psi. A detailed overview of the experimental conditions and the corresponding 

variations in the gas pressure, a comprehensive Table 6 has been included below. Over a 

period of 30 minutes the data acquisition system collected 1800 sets of data for training 

and listing in the order of (s1, s2, s3, s4, s5,s6,s7,s8,s9,s10). For testing purposes another 

1800 sets of data were generated by intruding gas at 15 psi for 30 Mins.  

Table 7  Specific Time Interval and The Corresponding Variations in Gas Pressures 

Applied During The Experiment. 

Time interval Gas Pressure (PSI) 

Air Velocity = 0.3-0.4 m/s 

0-5 mins 0 

5-10 Mins 5 

10-15 Mins 10 

15-20 Mins 15 

20-25 Mins 20 

25-31 Mins 0 

31-35 Mins 5 
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35-36 Mins 10 

 

3.4 Model Training  

After feeding the data to the model, the ‘fit’ method is called to train the KNN regressor 

on the provided data. In the realm of machine learning, assessing the performance of a 

predictive model is crucial to understand its ability to make accurate and reliable 

predictions.  One of the metrics widely utilized for regression tasks in the R-squared (𝑅2) 

score, a measure that quantifies the goodness of fit between the predicted values and the 

actual values. Basically, it is a statistical measure that provides insight into the proportion 

of variance in the target variable that is explained by the model. It’s value ranges between 

0 and 1 where score of 1 indicates a perfect fit, meaning the model’s predictions closely 

align with the actual values indicating a high level of predictive accuracy. Conversely, a 

score of 0 suggests that the model is not capturing the variability in the data and might not 

be providing meaningful predictions and a negative 𝑅2 score may indicate that the model 

is performing worse than a simple mean-based model. In this model, for the training data, 

the 𝑅2 is 0.99 & the RMSE is 1.12, indicating that the model is effective in explaining the 

variance in the target variable (s1) based on the provided features. 

3.5 Model Testing  

After training the model with data of various gas concentrations with 1800 sets of data 

it is necessary to test the accuracy of the machine learning model for prediction. A data set 

of another 1800 data sets is prepared to test the accuracy by keeping the air velocity at 0.3 

m/s and introducing 𝐶𝑂2 concentration at 15 psi for 30 mins. After acquiring the data from 
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the data acquisition system, it is processed to feed into the model by preparing a data frame 

by selecting the sensor 1 data for targeting and later for the feature training. Figure 19 (a) 

& (b) shows the Sensor 1 and Sensor 2 – 10 data respectively. 

 
(a) 
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(b) 

Figure 19 (a) Sensor 1 Concentration over time for testing data, (b) Sensor 2 to Sensor 

10 concentration over time for testing data 

 

3.6 Results And Discussion 

In the evaluation of the predictive machine learning model for sensor 1 using data from 

sensor 2 to sensor 10, the results reveal valuable insights into the model’s performance. 

The graphical representation in Figure 21 (a) illustrates the relationship between the actual 

concentration and predicted concentration for sensor 1 using the KNN predictive model.  

The visualization portrays a favorable scenario, with a majority of predicted gas 

concentrations at sensor 1 falling either on the ideal line or in a close proximity to it. The 

red dashed line, symbolizing the ideal scenario where actual values equals predicted values, 
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serves a benchmark for accuracy. Points closely following this line suggest precise 

predictions, showcasing the model’s capability to accurately predict concentrations at 

sensors 1. Instances where data points lie above the line indicate the model overestimating 

predicted gas concentration, while points below the line signify instances of 

underestimation.  

Table 8 R^2 Score & Mean Squared Error (MSE) observed with various algorithms. 

Model 𝑅2 Score Mean Squared Error (MSE) 

KNN (K-Nearest 

Neighbour) 

0.82 541.72 

LR (Linear Regression) 0.77 675.12 

BLR (Bayesian Regressor) -1.63 8036.65 

GBR (Gradient Boost 

Regressor) 

-4.28 16132.12 

LGR (Light Gradient 

Boost) 

-10.83 36117.69 

RF (Random Forest) -0.23 3762.29 

SVM (Support Vector 

Machines) 

0.35 1968.63 

XGB (X-Gradient Boost) -12.43 40995.37 

To provide a quantitative assessment of the model’s performance, the R-squared 

(coefficient of determination) value was calculated. The obtained R-squared value of 0.82 

indicates a high level of accuracy in predicting sensor 1 concentrations, affirming the 

model’s ability to align predictions closely with the actual values.  

The assessment of multiple machine learning algorithms further underscores the 

effectiveness of the KNN model. Table 7 summarizes the R-squared scores and Mean 

Squared Error (MSE) for various algorithms, showcasing the relative performance of each. 

Notably, the KNN model outperforms other algorithms with an impressive R squared score 

of 0.82 and a relatively low MSE of 541.72.  
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This study also produces an insight regarding choosing the right machine learning model 

is crucial for achieving accurate predictions in each task. The selection of a model depends 

on the nature of the data, the underlying patterns, and the specific requirements of the 

problem at hand.  The Linear Regression model explains around 77 % of the variability in 

the dependent variables in the data. The Mean Squared Error (MSE) is higher compared to 

KNN, but it still provides a measure of the average squared difference. The Support Vector 

Machine (SVM) model explains approximately 35 % of the variability, which is lower than 

the K Nearest Neighbor  (KNN) and Linear Regression (LR) model. The result of the 

models Linear Regression & Support Vector Machine can be seen in Figure 21 (b) & (g) 

MSE The Gradient Boost Regression (GBR), Light Gradient Boost Regression (LGR), 

Random Forest (RF), Bayesian Regression (BLR) and X-Gradient Boost (XGB) performed 

poorly, as evidenced by the negative R-squared score and significantly higher MSE values. 

These models struggled to capture the underlying patterns in the data as shown in Figure 

21 (c),(d), (e) ,(f) &(h).  

Figure 20 (i) provides an insightful exploration into the individual correlation coefficient 

of gas concentrations measured from sensor 1 to sensor 10. This correlation analysis allows 

us to understand the extent to which 𝐶𝑂2 gas concentrations vary across different location 

(s1-s10) based on the given dataset. The correlation is a statistical measure that describes 

the extent to which two variables (in this case concentration of gas at two locations) change 

together. It indicates the strength and direction of the linear relationship between two 

variables. The correlation coefficient is quantifying the degree to which the movement of 

gas concentration at one location corresponds to the movement in another. The magnitude 
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of the correlation coefficient indicates the strength of this relationship. There are strong 

positive correlations between s2, s3, s4 locations. This suggests that if the 𝐶𝑂2 

concentration is increasing at one location, it is likely to increase at the other location as 

well. This information is crucial for predictive modeling, indicating that certain locations 

tend to have similar trends in 𝐶𝑂2 levels. 

 
(a) 

 

          

 
 

 

(b) 
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(c) 

 

 
(d) 
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(e) 

 
(f) 
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(g) 

 
(h) 
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(i) 

Figure 20  Actual Concentration Vs Predicted Concentration for sensor 1 using (a) KNN 

Predictive model. (b) Linear Regression (c) Bayesian Regression (d) Gradient Boost 

Regression (e) Light Gradient Regression (f) Random Forest (g) Support Vector 

Machines (h) X-Gradient Boost (i) Correlation matrix for testing data 

Some correlations, like between s6 and s7 locations are moderate. This implies that there 

is a connection between 𝐶𝑂2 concentrations at these locations, it’s not as strong as in the 

case of strong positive correlations. Understanding these moderate correlations can help in 

refining predictions and identifying locations that may deviate from the overall trend. Weak 

correlations are observed between s9 and other locations. This suggests that the 𝐶𝑂2 

concentrations at location s9 may not be strongly influenced by the factors affecting the 

other locations. It is important to consider such weak correlations to avoid over 

generalization in predictive models. s2, s3,s4 seems to be highly correlated with other 

locations, making them important for predicting overall trends.   

3.7  Conclusions 

This study aims to propose a predictive model for gas concentrations in a tunnel using 

machine learning approach. In this work, an experiment is performed to generate data of 
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gas concentration inside a tunnel model. The 𝐶𝑂2 has been introduced at various time 

intervals which generate a diverse dataset to ensure a through and effective training of the 

KNN model. A testing data set of same intervals has been utilized for validating the model. 

The results show that the proposed model is capturing around 82% of the variability in the 

𝐶𝑂2 concentrations. This is a good result, suggesting a strong predictive capability.   

Furthermore, the correlation analysis conducted in the study adds depth to our 

understanding off the interrelationships between gas concentrations at different locations. 

Strong positive correlations between specific locations, such as s2,s3 and s4 highlight the 

importance of considering these factors in the predictive model. This analysis contributes 

to the model’s accuracy by acknowledging the tendencies of certain locations to exhibits 

similar trends in 𝐶𝑂2 levels. 

The incorporation of machine learning showcases significant potential in predicting gas 

concentrations for air quality monitoring data. The ability to capture a substantial portion 

of the variability in 𝐶𝑂2 concentrations underscore the practical applicability of machine 

learning in environmental monitoring. The study showcases the promising future of 

machine learning applications in the realm of predicting gas concentrations, providing 

valuable insights for air quality monitoring and management.  

3.8 Future Work 

The presented research has shown the application of machine learning for predictive 

modelling of gas concentrations inside tunnel using data accumulated with 10 sensors. In 

future, more research will be done on the same methodology to improve the accuracy of 

prediction by increasing the number of sensors. Further, data collection will enhance the 
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quality of training dataset for predictive analysis. Application of other machine learning 

algorithms on enhanced datasets needs to be investigated.  
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